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Abstract

We develop a dynamic model of investment, financing, and cash management decisions

in which investment is lumpy and firms face capital supply uncertainty. We charac-

terize optimal policies explicitly, demonstrate that smooth-pasting conditions may not

guarantee optimality, and show that firms may not follow standard Miller and Orr

(1966) barrier policies. In the model, firms with high investment costs differ in their

behaviors from firms with low investment costs, financing policy does not follow a strict

pecking order, and the optimal payout policy may feature several regions with both

incremental and lumpy dividend payments.
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Following Modigliani and Miller (1958), standard models of investment under uncertainty

assume that capital markets are frictionless so that firms are always able to secure funding

for positive net present value projects and cash reserves are irrelevant.1 This traditional view

has recently been called into question by a large number of empirical studies.2 These studies

show that firms often face uncertainty regarding their future access to capital markets. They

also reveal that the resulting liquidity risk has led firms to accumulate large cash balances,

with an average cash-to-assets ratio for U.S. industrial firms that has increased from 10.5%

in 1980 to 23.2% in 2006 (see Bates, Kahle, and Stulz, BKS 2009).

While it may be clear to most economists that capital supply frictions can affect corporate

policies, it is much less clear exactly how they do so. In this paper, we develop a dynamic

model of cash management, financing, and investment decisions in which the Modigliani and

Miller assumption of infinitely elastic supply of capital is relaxed and firms have to search

for investors when in need of funds. With this model, we seek to understand when and how

capital supply uncertainty affects real investment. We are also interested in determining the

effects of capital market frictions on firms’ financing and cash management policies, i.e. on

the decision to pay out or retain earnings and the decision to issue securities.

To aid in the intuition of the model, consider the following two settings in which capital

supply uncertainty and search frictions are likely to be especially important:3

1. Public equity offerings and capital injections for private firms : Firms first sell their

equity to the public through an initial public offering (IPO). One of the main features of

IPOs is the book-building process, whereby the lead underwriter and firm management

search for investors until it is unlikely that the issue will fail. Yet, the risk of failure

is often not eliminated and a number of IPOs are withdrawn every year. For example,

1See for example the early papers of McDonald and Siegel (1986), Dixit (1989) or the recent contributions
of Manso (2008), Grenadier and Malenko (2010), or Carlson, Fisher and Giammarino (2010). Dixit and
Pindyck (1994) and Stokey (2009) provide excellent surveys of this literature.

2See for example, Gan (2007), Becker (2007), Massa, Yasuda, and Zhang (2010), Duchin, Ozbas, and
Sensoy (2010), Campello, Graham, and Harvey (2010), and Lemmon and Roberts (2010).

3We thank Darrell Duffie for suggesting these applications.
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Busaba, Benveniste, and Guo (2001) show that between the mid-1980s and mid-1990s

almost one in five IPOs was withdrawn. Evidence from more recent periods suggests

that this fraction has increased to over one in two in some years (see Dunbar and

Foerster, 2008). Search frictions are also important for firms that remain private but

need new capital injections. Indeed, when a private company decides to raise equity

capital, it must search for investors such as angel investors, venture capital firms, or

institutional investors. Even when initial investors are found, the firm will need to

search for new investors in every subsequent financing round.

2. Financial crises and economic downturns : Search frictions are also important for large,

publicly traded firms when capital becomes scarce, e.g. during a financial crisis or an

economic downturn. The recent global financial crisis has provided a crisp illustration

of the potential effects of capital supply dry-ups on corporate behavior, with a number

of studies (e.g. Duchin, Ozbas, and Sensoy (2010)) documenting a large decline in

investment following the onset of the crisis (controlling for time variation in investment

opportunities). A survey of 1,050 CFOs by Campello, Graham, and Harvey (2010)

also indicates that the contraction in capital supply during the crisis led firms to burn

through more cash to fund their operations and to bypass attractive projects.

To illustrate the effects of capital supply frictions on corporate behavior, we consider

a firm with assets in place that generate stochastic cash flows as well as a finite number

of opportunities to expand operations (i.e. growth options). In the model, the firm faces

two types of frictions: Capital supply frictions and lumpiness in investment. Notably, we

consider that the firm has to search for investors when in need of capital. Therefore, it faces

uncertainty regarding its ability to raise funds. In addition, the firm has to pay a lump-sum

cost when investing. Indeed, as noted in Caballero and Engel (1999), minor upgrades and

repairs aside, investment projects are intermittent and lumpy rather than smooth (see also

Doms and Dunne (1998) and Cooper, Haltiwanger, and Power (1999)). The firm maximizes
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its value by making three interrelated decisions: How much cash to retain and pay out,

when to invest, and whether to finance investment with internal or external funds. Using

this model, we first show that capital supply frictions lead firms to value financial slack.

Second, and more importantly, we demonstrate that the interplay between lumpiness in

investment and capital supply frictions implies that barrier policies for investment, payout,

and financing decisions may not be optimal. We then use these results to shed light on

existing empirical facts and to generate a rich set of testable predictions.

To understand these effects, consider first the case of a firm with assets in place but

no growth option. If capital markets are frictionless, the firm can instantly raise as much

capital as its wants and there is no need to safeguard against future liquidity needs by

hoarding cash. With capital supply frictions, cash holdings serve to cover potential operating

losses and, thus, avoid inefficient closure. Holding cash however is costly because of the

lower return of liquid assets inside the firm. Based on this tradeoff, the paper provides an

explicit characterization of the value-maximizing payout and financing policies and shows

that, absent growth options, optimal policies are always of barrier type. Specifically, we

show that there exists a target level for cash holdings (the barrier) such that the optimal

payout policy is to distribute dividends to maintain cash holdings at or below the target and

to retain earnings and search for investors when cash holdings are below the target.

Consider next a firm with both assets in place and growth options. For such a firm, cash

holdings generally serve two purposes: Reducing the risk of inefficient closure and financing

investment. Our analysis demonstrates that when the cost of investment is low (i.e. for

growth firms), it is again optimal to follow a barrier strategy whereby the firm retains

earnings and invests if cash reserves reach some target level or upon obtaining outside funds.

We show however that when the cost of investment is high (i.e. for value firms), barrier

strategies are no longer optimal. Notably, when cash reserves are high, the firm optimally

retains earnings and invests if cash reserves reach some target level or upon obtaining outside
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funds. However, if cash reserves fall to a critical level following a series of losses, the firm

abandons the option of financing investment internally as it becomes too costly to accumulate

enough cash to invest. At this point, the marginal value of cash drops to one and it is optimal

to make a lump-sum payment to shareholders. After making this payment, the firm retains

earnings again but finances investment exclusively with outside funds.

Our model therefore shows that, when capital supply is uncertain, the optimal policy

choices of the firm are in stark contrast with the theoretical predictions of canonical inventory

models. In particular, a striking feature of the model is that it may not be optimal for firms

to follow the standard Miller and Orr (1966) barrier policy. We also demonstrate in the paper

that the smooth-pasting conditions used to characterize optimal polices in prior contributions

are necessary, but may not be sufficient, for an optimum in our model.

Building on these results, we show that when barrier policies are suboptimal, firms follow

band strategies whose policy implications differ significantly from those of barrier strategies.

Notably, firms may optimally raise funds before exhausting internal resources and the optimal

payout policy may feature several payout regions, with both incremental and lumpy dividend

payments. We also demonstrate that firms with low cash reserves do not finance investment

internally and may decide to pay dividends early. By contrast, firms with high cash reserves

may finance investment internally and optimally retain earnings. Therefore, in our model

investment and payout do not always increase with slack, challenging the use of investment-

cash flow sensitivities and payout ratios as measures of financing constraints.

A second set of implications relates to the use of inside and outside cash by financially

constrained firms. We show that the choice between internal and external funds for financing

investment does not follow a strict pecking order, in that any firm can use both internal and

external funds to finance investment. We find however that firms usually wait until external

financing arrives before investing, consistent with Opler, Pinkowitz, Stulz, and Williamson

(OPSW, 1999), BKS (2009), and Lins, Servaes, and Tufano (2010). We also find that the
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probability of investment with internal funds increases with asset tangibility and agency

costs and decreases with cash flow volatility and market depth, and that when financing

investment with external funds, firms should increase their cash reserves, consistent with

Kim and Weisbach (2008) and McLean (2011). Finally, we show that negative capital supply

shocks should hamper investment even if firms have enough slack to finance investment,

consistent with Gan (2007), Becker (2007), Lemmon and Roberts (2010).

In the model, the suboptimality of barrier strategies is implied by a local convexity in

the value function. We therefore investigate whether this convexity may lead to a gambling

behavior, in which management engages in zero NPV investments with random returns in an

attempt to improve firm value. We show that while it is theoretically possible to eliminate

the convexity in firm value and restore the optimality of barrier strategies, this requires

gambling strategies that are infeasible or unrealistic. In our base case environment for

example, eliminating band strategies requires taking positions in derivatives contracts that

multiply cash flow volatility by 13, a number inconsistent with the recent study of Duchin,

Gilbert, Harford, and Hrdlicka (2014) on the composition of corporate cash reserves.

The present paper relates to several strands of literature. First, it relates to the literature

on inventory models applied to liquid assets. Seminal contributions in this literature include

Baumol (1952), Miller and Orr (1966), and Tobin (1968). Recent contributions include

Anderson and Carverhill (2012), Décamps, Mariotti, Rochet, and Villeneuve (DMRV, 2011),

and Bolton, Chen, and Wang (BCW, 2011). This literature generally assumes that liquid

assets holdings have continuous paths and, therefore, does not allow for lumpy investment.

Notable exceptions are Alvarez and Lippi (2009) and Bar-Ilan, Perry, and Stadje (2004).4

One important difference between our paper and these contributions is that jumps in our

model correspond to endogenous investment or financing decisions. Another key difference

is that these papers restrict their attention to barrier strategies. By contrast, our paper pro-

4Another exception is the study of Décamps and Villeneuve (2007), that examines the dividend policy of
a firm that owns a single growth option and has no access to outside funds.
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vides a complete characterization of optimal decision rules and shows that barrier strategies

may not be optimal when investment is lumpy.

Second, our paper relates to the large literature on investment under uncertainty, in

which it is generally assumed that firms can instantaneously tap capital markets at no cost

to finance investment (see footnote 1 and the references therein). In these models, there is

no role for cash holdings, investment is financed exclusively with outside funds, and firms

may raise funds infinitely many times to cover temporary losses.

Third, our paper relates to the literature analyzing investment and financing decisions

in the presence of financing constraints (see e.g. DMRV (2011) or Gryglewicz (2011)). In

this literature, firms can always access capital markets. Depending on whether the costs

of external finance are high or low, firms either never raise funds or are never liquidated.

In addition, when the cost of external finance is low, there is a strict inside/outside funds

dominance in that firms only raise funds when their cash reserves are depleted. The papers

that are most closely related to our analysis in this literature are BCW (2011, 2013). In these

papers the authors assume that investment is infinitely divisible and that the firm follows

a barrier policy for investment and financing decisions. Our analysis considers instead an

environment in which investment is lumpy and demonstrates that in this case the optimal

policy may not take the form of a barrier policy. Another distinctive feature of our analysis

is that in our paper firms raise external funds in discrete amounts on a regular basis and

some firms can be liquidated even when issuance costs are low. Also, while firms can use

both internal and external funds to finance investment in our model, investment is financed

exclusively with internal funds in BCW.

Our model also shares some of its objectives with the discrete-time models of Riddick and

Whited (2009), Eisfeldt and Muir (2013), and Falato, Kadhyrzanova, and Sim (2013). These

papers consider neoclassical investment models in which firms face adjustment costs that are

proportional to firm size and derive implications for corporate behavior based on a numerical
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solution of the model. By contrast, our paper provides an analytical characterization of

firms’ policy choices when the cost of investment is fixed and investment is lumpy. Another

difference is that our paper incorporates capital supply frictions and shows that these frictions

can have first order effects on corporate behavior.

Lastly, our paper relates to the studies of DeMarzo, Livdan, and Tchistyi (2014) and

Makarov and Plantin (2014), that investigate management’s incentives to increase firm risk

by engaging in gambling strategies.

The remainder of the paper is organized as follows. Section 1 presents the model. Section

2 derives the firm’s optimal financing, investment, and payout policies. Section 3 analyzes the

effects of gambling on optimal policies and firm value. Section 4 discusses the implications

of the model. The proofs are gathered in the Appendices.

1 Model and assumptions

Throughout the paper, agents are risk neutral and discount cash flows at a constant rate

ρ > 0. Time is continuous and uncertainty is modeled by a probability space (Ω,F ,F, P )

with the filtration F = {Ft : t ≥ 0} satisfying the usual conditions.

We consider a firm with assets in place and a growth option to expand operations.5

Before investment, assets in place generate a continuous stream of cash flows dXt satisfying

dXt = µ0dt+ σdBt,

where the process Bt is a Brownian motion and (µ0, σ) are constant parameters representing

the mean and volatility of cash flows. The growth option allows the firm to increase cash

flows to dXt + (µ1 − µ0) dt, where µ1 > µ0.6 The firm has full flexibility over the timing of

5We show in the Supplementary Appendix that our results naturally extend to the case where the firm
has a finite number of growth options and pays both issuance and search costs.

6If mean cash flows increase and volatility decreases after investment, all our results and proofs go through.
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investment but needs to pay a lump sum cost K > 0 upon investment (see e.g. Doms and

Dunne (1998), Cooper, Haltiwanger, and Power (1999), or Caballero and Engel (1999) for

evidence on lumpy investment).7

Management acts in the best interest of shareholders and chooses not only the firm’s

investment policy but also its financing, payout, and liquidation policies. Notably, we allow

management to retain earnings inside the firm and denote by Ct the firm’s cash holdings

at any time t ≥ 0 (we use indifferently the terms cash holdings and cash reserves). Cash

holdings earn a constant rate of interest r < ρ inside the firm and can be used to fund

investment or to cover operating losses if other sources of funds are costly or unavailable.

The wedge δ = ρ− r > 0 represents a carry cost of cash.

The firm can increase its cash reserves either by retaining earnings or by raising funds

in capital markets. A key difference between our setup and previous contributions is that

we explicitly take into account capital supply frictions by considering that it takes time to

secure outside funding and that capital supply is uncertain. Specifically, we assume that the

firm needs to search for investors to raise funds and that, conditional on searching, it meets

investors at the jump times of a Poisson process Nt with arrival rate λ ≥ 0.8 Under these

assumptions, the cash reserves of the firm evolve according to

dCt =
(
rCt− + µ0 + 1{T≤t}(µ1 − µ0)

)
dt+ σdBt + ftdNt − dDt − 1{t=T}K, (1)

where T is a stopping time representing the time of investment, ft is a nonnegative predictable

However, if investment increases volatility sufficiently strongly, the optimal strategy will typically fail to be
of barrier type and there will be multiple disconnected intervals in which investment is optimal.

7Bolton, Chen, and Wang (2011) consider instead an AK−model in which capital is infinitely divisible,
firms can invest at a rate, and all frictions are proportional to the size of the firm (i.e. to its capital stock).
They then solve numerically for the optimal financing and payout barrier strategies. We show below that
the combination between financing constraints and lumpiness in investment produces interesting and unique
empirical implications on corporate behavior and may render barrier strategies suboptimal.

8A growing body of literature argues that assets prices are more sensitive to supply shocks than standard
asset pricing theory predicts. Search theory plays a key role in the formulation of models capturing this idea
(see Duffie, Garleanu, and Perdersen, 2005, Vayanos and Weill, 2008, or Lagos and Rocheteau, 2010).
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process representing the funds raised upon finding investors, and Dt is a non-decreasing

adapted process with D0− = 0 representing the cumulative dividends paid to shareholders.

Equation (1) shows that cash reserves grow with earnings, with outside financing, and with

the interest earned on cash holdings, and decrease with payouts to shareholders and with

the cost of investment. In our model, T , D, and f are endogenously determined.

As documented by a series of empirical studies, capital supply conditions are among

the key determinants of firms’ financing decisions, the level of cash holdings, and the level

of corporate investment (see Footnote 2). These studies also show that firms often face

uncertainty regarding their access to capital markets and that this uncertainty has important

feedback effects on their policy choices. Our model captures this important feature of capital

markets with the parameter λ, that governs the arrival rate of investors.9 A comparison with

some special cases to our setup illustrates how capital supply uncertainty affects corporate

policies. When λ = 0, firms cannot raise funds in the capital markets and have to rely

exclusively on internal funds to cover operating losses and to finance investment. This is the

environment considered in Radner and Shepp (1996), Décamps and Villeneuve (2007), and

Asvanunt, Broadie, and Sundaresan (2007). When λ → ∞, capital markets are frictionless

and firms can instantly raise funds from the financial markets. In that case, the firm has

no need for cash reserves and finances both operating losses and investment by (costlessly)

issuing new equity. This is the environment considered in Manso (2008), Tserlukevich (2008),

Morellec and Schuerhoff (2010), or Carlson, Fisher and Giammarino (2010).

Because capital supply is uncertain, new investors may be able to capture part of the

surplus generated at refinancing dates. That is, we consider that once management and

9The financial crisis of 2007-2008 has shown that the supply of external finance for non-financial firms
could be subject to significant shocks. Our model can be extended to consider capital supply shocks, thereby
allowing a study of the effects of capital supply uncertainty for large, publicly traded firms for which access
to outside funds may be limited only during a financial crisis or an economic downturn. Such shocks could
be introduced by assuming that the arrival rate of investors is governed by a two-state Markov chain. One
state would correspond to economic conditions in which capital is readily available and the cost of capital
is low while the other state would correspond to economic conditions in which capital is scarce and the cost
of capital is high. The value of cash would then be highest in the state with low capital supply.
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investors meet, they bargain over the terms of the new issue to determine the cost of capital

or, equivalently, the proceeds from the stock issue. We assume that the allocation of this

surplus between incumbent shareholders and new investors results from Nash bargaining.

Denoting the bargaining power of new investors by η ∈ [0, 1], the amount π∗ that new

investors can extract when the firm raises f ≥ 0 satisfies

π∗ = argmax
π≥0

πη [SfV (c)− π]1−η = η SfV (c),

where V (c) gives the value of the firm as a function of its cash holdings and

SfV (c) = V (c+ f)− f − V (c)

gives the financing surplus. Therefore, whenever η 6= 0 effective issuance costs are stochastic,

time varying, and depend on the financial health of the firm. In the model, the bargaining

power of investors can be related to the supply of funds in capital markets by assuming that

η = a
a+λ

for some a > 0. In this case, the fraction of the surplus captured by investors and

the cost of capital decrease with capital supply, consistent with Gompers and Lerner (2000).

The firm can be liquidated if its cash reserves reach zero following a series of negative cash

flow shocks. Alternatively, it can choose to abandon its assets at any time by distributing all

of its cash reserves. We consider that the liquidation value of the assets of a firm with mean

cash flow rate µi is given by `i = ϕµi
ρ

where 1−ϕ ∈ [0, 1) represents a haircut related to the

partial irreversibility of investment. In the analysis below, we denote by τ0 the stochastic

liquidation time of the firm, refer to ϕ as the tangibility of assets, and consider that ϕ < 1.

Because management can decide to pay a liquidating dividend at any point in time

and capital supply is uncertain, liquidation is automatically triggered when cash reserves

reach zero. The problem of management is therefore to maximize the present value of

future dividends by choosing the firm’s payout (Dt)t≥0, financing (ft)t≥0, and investment
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(T ) policies. That is, management solves:

V (c) = sup
(f,D,T )

Ec

[ ∫ τ0

0

e−ρt (dDt − (ft + ηSftV (Ct−))dNt) + e−ρτ0
(
`0 + 1{τ0>T}(`1 − `0)

)]
.

The first term in this expression represents the present value of payments to incumbent

shareholders until the liquidation time τ0, net of the claim of new (outside) investors on future

cash flows. The second term represents the present value of the cash flow to shareholders in

liquidation, which depends on whether liquidation occurs before or after investment.10

Since firm value appears in the objective function via the surplus generated at refinancing

dates, the above optimization problem is akin to a rational expectations problem: When

bargaining over the terms of financing, outside investors have to correctly anticipate the

strategy that the firm will use in the future. We show in the Supplementary Appendix that

introducing bargaining in the model and solving the corresponding rational expectations

equilibrium is equivalent to reducing the arrival rate of investors from λ to λ∗ ≡ λ(1− η) in

an otherwise similar model where outside investors have no bargaining power.

Before proceeding, it should be noted that we do not allow the firm to finance investment

with debt. Issuing debt at the time of investment would reduce the mean cash flow rate to

shareholders after investment and would increase the likelihood of inefficient liquidation.

In addition, if interest payments were tax deductible, debt financing would reduce the

effective cost of investment. As will be clear below, introducing debt financing does not have

any qualitative effect on our results and predictions as long as credit supply is uncertain.

In a related paper, Hugonnier, Malamud, and Morellec (2014) develop a dynamic capital

structure model with search frictions in debt markets. In their model, firms can raise equity

instantaneously and costlessly, so that cash holdings are irrelevant.

10We do not allow the firm to spin off its new assets when its cash balances hit zero after investment. Such
partial asset sales would allow the firm to reinvest the proceeds in its cash reserves and bring them back to
their optimal level. The firm would then be liquidated the next time that its cash reserves reach zero. That
is, the main effect of such asset sale would be to increase the life expectancy of the firm after investment.
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2 Model solution

2.1 Value of the firm with no growth option

To facilitate the analysis of shareholders’ optimization problem, we start by deriving the

value Vi(c) of a firm with mean cash flow rate µi and no growth option. When i = 1, this

function also gives the value of the firm after the exercise of the growth option.

When there is no growth option, management only needs to determine the firm’s payout,

liquidation, and financing policies. Because the marginal cost of cash holdings is constant

and their marginal benefit is decreasing, we conjecture that there exists some level C∗i for

cash reserves where the marginal cost and benefit of cash holdings are equalized and it is

optimal to start paying dividends. In addition, since there are no issuance costs other than

those generated by the bargaining friction, we expect that below C∗i it is optimal for the firm

to search for new investors so as to increase its cash reserves back to the target. Finally,

since the marginal value of cash is strictly higher than one below the target, our conjecture

implies that the firm only liquidates if its cash holdings reach zero.

Denote by vi(c; b) the value of a firm that follows a barrier policy as above with target

level b ≥ 0. Standard arguments show that in the region (0, b) where the firm retains earnings

and searches for investors, vi(c; b) satisfies

ρvi(c; b) = v′i(c; b)(rc+ µi) +
σ2

2
v′′i (c; b) + λ∗ [vi(b; b)− b+ c− vi(c; b)] , (2)

with λ∗ = λ(1− η) and the boundary condition

vi(0; b) = `i (3)

at the point where the firm runs out of cash. The left-hand side of equation (2) represents

the required rate of return for investing in the firm. The first and second terms on the right
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hand side capture the effects of cash savings and of cash flow volatility on firm value. The

third term reflects the effect of capital supply uncertainty. This last term is the product

of the instantaneous probability of meeting investors and the fraction of the surplus that

accrues to incumbent shareholders when raising cash reserves from c to the given target b.

Consider next the payout region [b,∞). In this region, the firm distributes all cash

holdings above b (with a specially designated dividend or a share repurchase) and we have

vi(c; b) = vi(b; b) + c− b, c ≥ b. (4)

Substracting vi(b; b) from both sides, dividing by c− b, and taking the limit as c tends to b

yields

lim
c↑b

v′i(c, b) = 1. (5)

Denote by Ci,t the uncontrolled cash reserves process associated with µi, let τi,x be the

stopping time at which this process reaches the level x ∈ R for the first time, and define

Li(c; b) = Ec
[
e−(ρ+λ∗)τi,01{τi,0≤τi,b}

]
, (6)

Hi(c; b) = Ec
[
e−(ρ+λ∗)τi,b1{τi,b≤τi,0}

]
, (7)

for all c ∈ [0, b]. The function Li(c; b) gives the present value of one dollar to be paid in

liquidation, should it occur before the uncontrolled cash reserves reach b > 0 or finding new

investors. Similarly, Hi(c; b) gives the present value of one dollar to be received when the

uncontrolled cash reserves reach b > 0, should this occur before liquidation or finding new

investors. Closed form expressions for these two functions are provided in the Appendix.

Using the above notation, together with basic properties of diffusion processes as found for

example in Stokey (2009, Chapter V), it can be shown that the unique solution to equations
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(2), (3), and (4) satisfies

vi(c; b) = vi(b; b)Hi(c; b) + `iLi(c; b) + Πi(c; b)− Πi(b; b)Hi(c; b)− Πi(0; b)Li(c; b) (8)

over the region (0, b) with

Πi(c; b) =
λ∗

ρ+ λ∗

(
vi(b; b)− b+ c+

µi + rc

ρ+ λ∗ − r

)
.

To better understand this solution, recall that over (0, b) the firm retains all earnings. This

implies that over this region firm value is the sum of the present value of the payments that

shareholders obtain if cash holdings reach either the payout trigger or the liquidation point

before external financing can be secured (first two terms), plus the present value of the claim

that they receive if the firm gets an opportunity to raise funds from outside investors before

its cash holding reach either endpoints of the region (last three terms).

Equations (2), (3), (4), and (5), or equivalently (5) and (8), characterize the value of

a given barrier strategy. To determine the optimal target level C∗i , we further impose the

high-contact condition (see e.g. Dumas (1991))

lim
c↑C∗i

v′′i (c;C∗i ) = 0 (9)

at the dividend distribution boundary.11 In the Appendix, we show that there exists a unique

target level that solves (9) and prove that the corresponding barrier strategy is optimal among

all strategies. This leads to the following result.

11Using equations (4), (5) and (8) in conjunction with the explicit expressions of the functions Hi(c, b)
and Li(c, b) (defined in equations (6) and (7)) given in Appendix B.2, it can be shown that the first order
condition with respect to the dividend barrier level, that is:

∂v

∂b
(c, b)

∣∣∣∣
b=C∗

i

= 0, c > 0,

is equivalent to the high contact condition (9). See the Supplementary Appendix for details.
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Proposition 1 (Firm value without growth option) The value of a firm with mean

cash flow rate µi and no growth option is concave and given by Vi(c) = vi(c;C
∗
i ), where

vi(c; b) is defined in equations (4) and (8) and C∗i is the unique solution to (9). The optimal

target C∗i increases with cash flow volatility σ2, decreases with capital supply λ and asset

tangibility ϕ, and is non-monotonic in the cash flow mean µi.

Note that given (2) and (5), the high contact condition implies

lim
c↑C∗i

vi(c;C
∗
i ) =

µi
ρ

+ C∗i −
(

1− r

ρ

)
C∗i . (10)

This equation shows that the value of a constrained firm at the target level of cash holdings

is equal to the value of an unconstrained firm (first two terms on the right hand side) minus

the present value of the cost of keeping cash inside the firm (last term). In this equation,

the volatility of cash flows and the arrival rate of investors only appear indirectly through

their effects on the dividend threshold C∗i .

2.2 Value of the firm with a growth option

We now turn to the analysis of corporate policies when the firm has the option to increase

its mean cash flow rate by paying a lump sum cost K. The growth option changes the firm’s

policy choices and value only if the project has positive net present value. The following

proposition provides a necessary and sufficient condition for this to be the case.

Proposition 2 The option to invest has positive net present value if and only if the cost of

investment is lower than K∗ defined by:

µ1 − µ0

ρ
= K∗ +

(
1− r

ρ

)
(C∗1 − C∗0) , (11)

where C∗i is the target cash level for a firm with mean cash flow rate µi and no growth option.
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The intuition for this result is clear. The left hand side of equation (11) represents the

expected present value of the increase in cash flows following the exercise of the growth

option. The right hand side represents the total cost of investment, which incorporates both

the direct cost of investment and the change in the carry cost of the optimal cash balance.

In the following, we consider that the cost of investment is below K∗. If this was not the

case, the firm would simply follow the barrier strategy described in Proposition 1.

2.2.1 Optimality of a barrier strategy

Following the logic of the previous section, it is natural to conjecture that for a firm with a

growth option there exists a cutoff level C∗U ≥ K for cash reserves such that it is optimal to

retain earnings and search for investors when c < C∗U and to invest when cash reserves reach

C∗U or upon obtaining outside funds. As before, the marginal value of cash is always above

one in the retention region and the firm is only liquidated if a sequence of losses depletes its

cash reserves.

To determine when such a barrier strategy is optimal, we start by deriving the value

u(c; b) of a firm that follows a barrier strategy with some investment trigger b ≥ K. Standard

arguments show that in the region (0, b) over which the firm retains earnings, u(c; b) satisfies

ρu(c; b) = u′(c; b)(rc+ µ0) +
σ2

2
u′′(c; b) + λ∗ [V1(C∗1)− C∗1 −K + c− u(c; b)] (12)

subject to the value matching conditions

u(0; b) = `0, (13)

u(c; b) = V1(c−K), c ≥ b, (14)

at the point where the firm runs out of cash and in the region where it uses its cash reserves

to invest. This equation is similar to that derived in the previous section for the value of
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the firm after investment. The only difference is that the financing surplus is now given

by V1(C∗1) − C∗1 −K + c − u(c; b) since, upon obtaining outside funds, the firm invests and

simultaneously readjusts its cash reserves to the level C∗1 that is optimal after investment.

The unique solution to (12), (13), and (14) is given by

u(c; b) = V1(b−K)H0(c; b) + `0L0(c; b) + Φ(c)− Φ(b)H0(c; b)− Φ(0)L0(c; b) (15)

where

Φ(c) =
λ∗

ρ+ λ∗

(
V1(C∗1)− C∗1 −K + c+

µ0 + rc

ρ+ λ∗ − r

)
. (16)

The interpretation of this solution is similar to that of (8). The first two terms give the

present value of the payments that incumbent shareholders receive if the firm invests with

internal funds or is liquidated before external funding can be secured. The other terms gives

the present value of the payments that shareholders receive if the firm invests with external

funds before its cash holdings reach either zero or the given investment trigger.

Equations (14) and (15) characterize firm value for a given barrier strategy. Since the

decision to invest with internal funds is an optimal stopping problem, we naturally expect

that the optimal trigger is determined by the smooth-pasting condition:

lim
c↑C∗U

u′(c;C∗U) = V ′1(C∗U −K). (17)

We show in the Appendix that this is indeed the case if the investment cost is not too small in

that K > K, for some threshold K < K∗ for which we provide an explicit characterization.

If the investment cost lies below this threshold, then the smooth-pasting condition no longer

characterizes the optimal investment trigger and we have the corner solution C∗U = K. In

this case, the growth option is so profitable that it becomes optimal to invest as soon as

possible and liquidate immediately thereafter if the cost of investment is financed internally.
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In either case, the barrier policy associated with the investment trigger C∗U is optimal in the

class of barrier policies but it is not necessarily optimal among all strategies. Notably, we

establish the following result in the Appendix.

Theorem 3 (Optimality of a barrier strategy) There exist two constants K ≤ K∗∗ <

K∗ such that a barrier strategy is optimal if and only if K ≤ K∗∗. In this case, firm value is

given by V (c) = u(c;C∗U), where u(c; b) is defined in equations (14) and (15) and C∗U is the

unique solution to (17) when K > K and C∗U = K otherwise.

Figure 1 represents the value of the firm as a function of its cash holdings when K ≤ K∗∗.

Insert Figure 1 Here

Firm value is equal to `0 when cash holdings reach zero and the firm liquidates. Investment

occurs at C∗U , where firm value before investment smooth-pastes with the value of the firm

after investment using internal funds V1(c − K). As shown by the figure, the value of the

firm may not always be globally concave, providing incentives for management to gamble in

financial markets (see section 3.1 below). Finally, the marginal value of cash is one at the

point C∗1 +K where the firm starts paying dividends.

2.2.2 Optimality of a band strategy

The function defined by U(c) = u(c;C∗U) gives the value of the firm under the optimal

barrier policy and can be constructed for any investment cost. However, Theorem 3 shows

that this barrier strategy is suboptimal if the investment cost is high, in which case the

smooth-pasting condition (17) is not sufficient to determine the globally optimal strategy.

The intuition for this finding is that with a sufficiently high investment cost, it becomes too

expensive for a firm with low cash holdings to accumulate the amount of cash necessary to

invest. Specifically, we show in the Appendix that with a high investment cost the barrier
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strategy fails to be optimal because there exists a level below C∗U where the marginal value

of cash U ′(c) drops to one. At that point, incumbent shareholders would rather abandon the

option of financing investment internally and receive dividends, than continue hoarding cash

inside the firm. Figure 2 provides an illustration of the marginal value of cash associated

with the optimal barrier strategy with high and low investment costs.

Insert Figure 2 Here

Following this line of argument, we conjecture and later verify that, when the investment

cost is high, the optimal strategy includes an intermediate payout region and can be described

in terms of thresholds C∗W ≤ C∗L ≤ C∗H as follows: When cash holdings are in (C∗L, C
∗
H),

the firm retains earnings and invests either upon obtaining outside funds or when its cash

holdings reach the level C∗H ≥ K. If cash holdings drop to the level C∗L following a sequence of

operating losses, the firm abandons the option of financing investment internally and makes

a lump-sum payment C∗L−C∗W to shareholders. Finally, if cash holdings are at or below the

level C∗W , the firm retains earnings, pays dividends to keep its cash reserves in (0, C∗W ), and

finances investment exclusively with outside funds. As in the case of a barrier strategy, the

firm is liquidated only if its cash reserves reach zero. Importantly, because the abandonment

of the option to invest from internal funds is irreversible, the optimal band policy has exactly

three bands when the firm has one growth option.

To verify our conjecture, we start by constructing the value v(c; b) of a firm that follows

a strategy as above with thresholds b = (b1, b2, b3) for some arbitrary constants b1 ≤ b2 ≤ b3

with b3 ≥ K. Standard arguments show that in the region (0, b1) ∪ (b2, b3) over which the

firm retains earnings and searches for investors, v(c; b) satisfies:

ρv(c; b) = v′(c; b)(rc+ µ0) +
σ2

2
v′′(c; b) + λ∗ [V1(C∗1)− C∗1 −K + c− v(c; b)] , (18)
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subject to the value matching conditions

v(0; b) = `0, (19)

v(c; b) = V1(c−K), c ≥ b3. (20)

Equation (18) is the same as equation (12), but the solutions we are looking for differ because

the strategy now includes an intermediate payout region [b1, b2] over which firm value does

not satisfy (18). Instead, the value of the firm is given by

v(c; b) = v(b1; b) + c− b1, b1 ≤ c ≤ b2. (21)

over this intermediate payout region and the fact that, once below b1, the firm distributes

dividends so as to maintain its cash holdings at or below this level implies that we have

lim
c↑b1

v′(c; b) = 1. (22)

From these boundary conditions, it is clear that since v(0; b) = U(0) = `0 we must necessarily

have v′(0; b) > U ′(0) for our candidate strategy to dominate the optimal barrier strategy.

We show in the Appendix that this condition is equivalent to the restriction K > K∗∗.

Proceeding as in the two previous cases, it is easily shown that the unique solution to

(18), (19), (20), (21), and (22) satisfies

v(c; b) = v(b1; b)H0(c; b1) + `0L0(c; b1) + φ(c; b)− Φ(0)L0(c; b1)− Φ(b1)H0(c; b1) (23)
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in the retention interval (0, b1), and

v(c; b) = V1(b3 −K)H0(c; b2, b3) + v(b2; b)L0(c; b2, b3) (24)

+ φ(c; b)− Φ(b2)L0(c; b2, b3)− Φ(b3)H0(c; b2, b3)

in the retention interval (b2, b3).

In these equations, the discount factors H0(c; b2, b3) and L0(c; b2, b3) are defined as in (6)

and (7), but with the first hitting time of the level b2 instead of the liquidation time, and

Φ(c) is defined as in (16). The first two terms in equation (23) give the present value of the

payments that incumbent shareholders receive if cash reserves reach either the liquidation

point or the payout trigger b1 before external financing can be secured. The last three

terms give the value of the payment that they receive if the firm finds new investors before

its cash reserves reach either zero or b1. Similarly, the first line in (24) gives the present

value of the payments that incumbent shareholders receive if cash reserves reach either the

intermediate payout trigger b2 or the internal investment trigger b3 before external financing

can be secured. The second line gives the present value of the claims that they receive if

external funds are raised before cash reserves reach either b2 or b3.

Equations (21), (23), and (24) characterize firm value for given thresholds b = (b1, b2, b3).

It remains to determine the triple C∗ = (C∗W , C
∗
L, C

∗
H) of optimal thresholds. As in the case

without growth option, we determine the point C∗W below which the firm invests exclusively

with outside funds by imposing the high-contact condition

lim
c↑C∗W

v′′(c;C∗) = 0 (25)

at the upper end of the lower payout region. In addition, since the decision to invest with

internal funds and the decision to make an intermediate dividend payment can be seen as

a joint optimal stopping problem, it is natural to expect that the two remaining thresholds
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are determined by the smooth-pasting conditions

lim
c↓C∗L

v′(c;C∗) = 1, (26)

lim
c↑C∗H

v′(c;C∗) = V ′1(C∗H −K). (27)

We show in the Appendix that these boundary conditions uniquely determine a triple of

thresholds C∗ and we prove that the corresponding band strategy is globally optimal when

the investment cost is above K∗∗. The following theorem summarizes our findings.

Theorem 4 (Optimality of a band strategy) If the investment cost is such that K ∈

(K∗∗, K∗), then the value of the firm with a growth option is given by V (c) = v(c;C∗) where

the thresholds C∗ = (C∗W , C
∗
L, C

∗
H) are the unique solutions to (25), (26), and (27).

These result shows that when the investment cost is high and cash reserves are below C∗W ,

the optimal strategy for shareholders is to finance investment exclusively with external funds

and to use cash reserves only to cover operating losses. When cash holdings are between C∗W

and C∗L, the firm abandons the option of investing with internal funds and pays a specially

designated dividend to lower its cash holdings. Finally, when cash holdings are above C∗L,

the firm finances investment using either internal or external funds and the optimal policy

is to retain earnings until the firm invests or its cash reserves drop to C∗L. The shape and

properties of the firm value under this band strategy are illustrated in Figure 3.

Insert Figure 3 Here

Interestingly, the change in the optimal financing and payout policies that occurs at C∗L

implies that V ′(C∗L) = 1. Since the marginal value of cash is constantly greater or equal to

one, it follows that firm value is never globally concave with a high investment cost. In fact,

we show in the Appendix that the value of the firm is strictly convex over the whole interval

23



(C∗L, C
∗
H) when the investment cost is high. To understand this feature, recall that in our

model cash holdings generally serve two purposes: Reducing the risk of inefficient closure

and financing investment. However, when the investment cost is high and cash reserves are

below C∗L, it is optimal to invest exclusively with outside funds and the value of cash holdings

only comes from their mitigating effect on liquidation risk. At the point C∗L the marginal

value of cash is equal to one and it is optimal to start paying dividends. Above this point,

the possibility to finance investment internally introduces a second motive for holding cash

that pushes the marginal value of cash above one, leading firm value to be convex. Figure

4 provides an illustration of the marginal value of cash under the globally optimal band

strategy when the cost of investment is high.

Insert Figure 4 Here

While the nature of the optimal policy of the firm with high investment costs is un-

expected, it is of universal nature for optimization problems with fixed costs and capital

supply frictions. In the Supplementary Appendix, we solve a model with N growth options,

issuance costs, and search costs, and show that this property of the model depends neither

on the number of growth options available to the firm nor on the absence of search and

issuance costs. We also show that for a firm with N growth options, there exist up to N

dividend distribution intervals. Finally, we show that with fixed issuance costs, firms only

raise funds when cash reserves are below some threshold C∗F , where the net present value of

raising funds equals 0.

3 Convexity and gambling

An important result of section 2 is that the interplay between lumpiness in investment and

capital supply frictions can give rise to local convexity in firm value. This naturally raises
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the question of whether this convexity may lead to gambling behavior, in which management

engages in zero NPV investments with random returns in an attempt to improve firm value.

In this section, we investigate two alternative gambling specifications. In the first one, we

follow BCW (2011) and assume that the firm has access to a futures contract and can alter

the volatility of cash flows by investing in this contract. In the second one, we follow Makarov

and Plantin (2014) or DeMarzo, Livdan, and Tchistyi (2014) and assume that the firm can

invest in lotteries at the jump times of a Poisson process.

3.1 Continuous gambling

As a clean and stylized way of incorporating gambling in the model, we first follow BCW

(2011) and assume that the firm has access to a futures contract whose price is a Brownian

motion Zt, uncorrelated with the Brownian motion Bt driving the firm’s cash flows. A

position πt in the futures contract thus implies that the firm’s cash flows change from dXt

to dXt + πtdZt. Hedging positions are generally constrained by margin requirements. To

capture these requirements and make our results easily interpretable, we consider that the

size of the firm’s futures position |πt| cannot exceed some fixed size G and study the effects

of varying G on optimal policies and firm value.

Assuming frictionless trading in the futures contract, the value-maximizing gambling

policy is always of a bang-bang type. Indeed, standard arguments show that in the region

where the firm retains earnings and searches for investors, the value of the firm satisfies:

ρV (c;G) = V ′(c;G)(rc+ µ0) +
1

2
σ2V ′′(c;G) (28)

+ λ∗ [V1(C∗1)− C∗1 −K + c− V (c;G)] +
1

2
max
|π|≤G

π2V ′′(c;G).

where the last term captures the effects of gambling on firm value. In the region where

firm value is concave, we have V ′′(c;G) ≤ 0, the firm does not gamble and π = 0. In the
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region where firm value is convex, we have V ′′(c;G) > 0 and it is optimal to choose the

maximal possible position in futures contracts, so that π = G. Clearly, since the function

V1(c) is concave, gambling is not optimal after investment and, hence, neither V1(c;G) nor

the critical investment cost K∗ depend on G. This justifies the fact that the last term in

(28) is the same as in the base case.

We start our analysis by determining when gambling may be optimal.

Theorem 5 (Optimality of gambling) For any G ≥ 0, there exist two critical invest-

ment costs 0 ≤ K (G) ≤ K∗∗ (G) ≤ K∗ such that

a) If K ≤ K∗∗ (G), then there exists a threshold C∗U (G), with C∗U(G) = K if K ≤ K(G),

such that it is optimal to follow a barrier strategy as in Theorem 3 but with threshold

C∗U (G). In addition, when U ′′ (C∗U) > 0, there exists an additional threshold C∗g (G)

such that it is optimal for the firm to gamble at the maximal rate on
[
C∗g (G) , C∗U (G)

]
.

b) If K > K∗∗ (G), then there exist two thresholds C∗L (G) ≤ C∗H (G) such that it is

optimal for the firm to follow a band strategy as in Theorem 4 but with thresholds

(C∗W , C
∗
L (G) , C∗H (G)) and to gamble at the maximal rate on [C∗L (G) , C∗H (G)].

Theorem 5 shows that, if gambling is optimal, it happens at the maximal rate and only

for large levels of cash holdings, all the way to the investment boundary. That is, the firm

gambles to invest from internal funds. In the limit where G goes to infinity, the firm gambles

in an all or nothing fashion: Either go all the way to the exercise boundary C∗H(G), or lose

cash, make a lump-sum dividend payment, and abandon the option to invest from internal

funds (see the Supplementary Appendix for an analysis of this limiting case).

The following proposition characterizes the effect of gambling on optimal policies.

Proposition 6 (Optimal strategies with gambling)

a) The investment triggers C∗U(G) and C∗H(G) are increasing in G while the lumpy divi-

dend trigger C∗L(G) is decreasing in G.
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b) The critical investment cost K∗∗ (G) is monotone increasing in G and, for any given

investment cost K, there exists a finite threshold Ḡ(K) such that band strategies are

suboptimal for all G ≥ Ḡ(K).

c) The constant G∗ = supK≥0 Ḡ(K) is finite and satisfies K∗∗ (G∗) = K∗, so that band

strategies are suboptimal for all G ≥ G∗ irrespective of the investment cost.

Proposition 6 delivers two main results. First, relaxing hedging constraints increases both

cash flow volatility and the threshold for investing from internal funds. This may therefore

increase or decrease investment rates from internal funds. Second, sufficiently weak hedging

constraints eliminate band strategies. That is, when G is sufficiently large, the firm never

abandons the option to invest from internal funds. In section 4, we investigate the empirical

predictions of the model and show that the minimum gambling Ḡ required to eliminate band

strategies is unrealistically large in most economic environments.

3.2 Lottery gambling

To study the robustness of our results, we now briefly investigate an alternative form of

gambling that is based on discrete opportunities to participate in lotteries rather than on

infinitely frequent bets on the increment of a Brownian motion.

Suppose that the firm has access to a full set of instantaneous lotteries at the jump times

of a Poisson process with arrival rate Λ, and that these lotteries have a payoff x such that

E[x] ≤ 0. Each time that such a gambling opportunity arises, the firm solves

max
x:E[x]≤0

E[Ṽ (c+ x; Λ)− Ṽ (c; Λ)]

where the function Ṽ (c; Λ) denotes the value of the firm in this new environment. Following

Makarov and Plantin (2014), it can be shown that the solution to this problem is given by a

binary lottery that can be constructed as follows. Denote by C[Ṽ ](c; Λ) the concave envelope
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of the function Ṽ (c; Λ), that is the smallest concave function dominating Ṽ (c; Λ) from above,

and denote by Cg,1(c) (resp. Cg,2(c)) the largest point (resp. the smallest point) below c

(resp. above c) at which these two functions are equal. Then the optimal gamble x∗(c) is

given by a binary random variable taking values Cg,1(c)− c and Cg,2(c)− c with probabilities

calculated in such a way that

E[Ṽ (c+ x∗(c); Λ)− Ṽ (c; Λ)] = C[Ṽ ](c; Λ)− Ṽ (c; Λ). (29)

If the function Ṽ (c; Λ) is globally concave then the optimal lottery x∗(c) ≡ 0 is degenerate

for all c ≥ 0, and gambling is never optimal. Notably, because the function V1(c) is globally

concave, gambling is never optimal after investment, and it follows that neither the post-

investment firm value nor the critical investment cost K∗ depend on the arrival rate of

gambling opportunities.

Standard arguments together with equation (29) show that in the region where the firm

retains earnings and searches for investors, the value of the firm satisfies:

ρṼ (c; Λ) = V ′(c; Λ)(rc+ µ0) +
σ2

2
Ṽ ′′(c; Λ)

+ λ∗[V1(C∗1)− C∗1 −K + c− Ṽ (c; Λ)] + Λ(C[Ṽ ](c; Λ)− Ṽ (c; Λ)).

Comparing this equation with (28) shows that the arrival rate of gambling opportunities

Λ plays in this specification the same role as the parameter G in the continuous gambling

specification. When the arrival rate is sufficiently small, the value of the firm remains close

to the one that prevails absent gambling opportunities and, as a result, a band strategy may

be optimal. On the contrary, when the arrival rate of gambling opportunities is sufficiently

large, the marginal value of cash remains constantly above one so that a barrier strategy is

always optimal. The following proposition confirms this intuition.

Proposition 7 If U ′′(C∗U) ≤ 0 then gambling is suboptimal for any Λ ≥ 0. Otherwise, there
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exists Λ∗ > 0 and three thresholds C∗g,1(Λ) ≤ C∗U,`(Λ) ≤ C∗g,2(Λ) such that, for all Λ > Λ∗,

it is optimal for the firm to follow a barrier strategy as in Theorem 3, but with investment

threshold C∗U,`(Λ), and to gamble using the binary lottery associated with C∗g,1(Λ) and C∗g,2(Λ)

whenever an opportunity arises and c ∈ [C∗g,1(Λ), C∗U,`(Λ)].

Proposition 7 and Theorem 5 offer similar conclusions regarding the impact of gambling

but there are some notable differences. First, while the continuous gambling of Theorem 5

is optimal at a point if and only if the value of the firm is convex at that point, the lottery

gambling of Proposition 7 can be optimal at a point even if the firm value is locally concave

around that point. Second, when the firm uses a lottery gamble, it does so to invest and

always overshoots its target in that a successful gamble takes it to a level of cash holdings

C∗g,2(Λ) that exceeds the investment threshold C∗U,`(Λ). That is, while the formal gambling

interval is given by [C∗g,1(Λ), C∗g,2(Λ)], the firm only gambles for c ∈ [C∗g,1(Λ), C∗U,`(Λ)] (that

is, before investment) because investment is irreversible.

The following proposition shows that these differences only exist for finite values of the

parameters G and Λ that govern the extent of the firm’s gambling, and that the two gambling

specifications lead to the same value function, investment trigger, and gambling intervals in

the limit where either continuous gambling is unconstrained or lottery gambling is constantly

available. Importantly, this proposition establishes that the value of the firm is robust to

the specification of the gambling mechanism.12

Proposition 8 In the limit Λ, G → ∞ the continuous and lottery gambling specifications

12Note that the function V (c;∞) = Ṽ (c;∞) in Proposition 8 is only defined in the limit and does not
correspond to the value function of an actual control problem. This function is concave and lies above the
value function V (c) = V (c; 0) = Ṽ (c; 0) that prevails in the absence of gambling opportunities but it does
not coincide with the concave envelope of this function.
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coincide in the sense that

lim
Λ→∞

C∗g,1(Λ) = lim
G→∞

C∗g (G),

lim
Λ→∞

C∗g,2(Λ) = lim
Λ→∞

C∗U,`(Λ) = lim
G→∞

C∗U(G),

lim
Λ→∞

Ṽ (c; Λ) = lim
G→∞

V (c;G), ∀c ≥ 0.

4 Model implications

4.1 General properties of the model

While our model pertains to the literature analyzing the effects of financing constraints on

corporate policies, its predictions regarding payout and financing decisions differ significantly

from those of prior contributions (e.g. BCW (2011) or DMRV (2011)). Indeed, in this

literature firms always follow a barrier policy. In addition, firms either never raise external

funds (when the cost of external finance is high) or are never liquidated (when the cost is

low). Finally, when the cost of external finance is low, firms only raise funds when their cash

reserves are completely depleted. That is, firms never simultaneously hold cash and raise

external funds and they only tap capital market following a series of negative shocks.

Our paper considers an environment in which capital supply is uncertain and investment

is lumpy and shows that firms only follow a barrier policy when the cost of investment is low

or, equivalently, when the net present value of the project is high. In our model, firms may

raise outside funds before exhausting internal resources, some firms may be liquidated even

with low issuance costs, and the optimal payout policy may feature several payout regions,

with both incremental and lumpy dividend payments. Our analysis also demonstrates that

constrained firms with low cash holdings will not finance investment internally and may

decide to pay dividends early. By contrast, constrained firms with high cash holdings may

finance investment internally and will retain earnings. These results are in sharp contrast
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with those of standard models of financing constraints, imply that investment and payout

do not always increase with slack, and challenge the use of investment-cash flow sensitivities

or payout ratios as measures of financing constraints.

Another prediction of our model is that, when financing investment with external funds,

the optimal policy is to raise enough funds to finance both the capital expenditure and the

potential gap between current cash holdings and the optimal level after investment, consistent

with Kim and Weisbach (2008) and McLean (2010). Also, while in prior contributions the

size of equity issues is constant, there exists some time series variation in our model since

the amount raised depend on the cash reserves of the firm when it meets investors.

Lastly, another key contribution of our model is to show that, with capital supply

uncertainty, the choice between internal and external funds for financing investment does not

follow a strict pecking order, in that any firm can use both internal and external funds. This

is in sharp contrast with the financing policy in prior contributions, in which firms exhaust

internal funds before issuing securities and finance investment exclusively with internal funds.

4.2 Additional implications

4.2.1 Characterizing the firm’s optimal strategy

This section provides additional results using numerical examples. Table 1 reports the

parameter values used in our numerical analysis as well as the values of the implied variables,

such as the investment and payout thresholds, the critical investment costs K∗ and K∗∗, the

fraction of firm value accounted for by the growth option, the minimum gambling Ḡ required

to eliminate band strategies, or the value gain from using a band strategy when K > K∗∗.

Insert Table 1 Here

A key feature of our model is that firms only follow a barrier policy when the cost of

31



investment is low (i.e. K < K∗∗). To better understand this feature, Figure 5, Panel A,

plots the zero−NPV threshold K∗ and the threshold K∗∗ that triggers a change in corporate

policies, as functions of capital supply λ, asset tangibility ϕ, cash flow volatility σ, and the

carry cost of cash δ = ρ−r. Figure 5, Panel B, plots the internal rate of return of the project

when K = K∗∗ (solid line) and K = K∗ (dashed line) defined as the solution to

µ1 − µ0

R
= K +

(
1− r

R

)
(C∗1(R)− C∗0(R))

where C∗i (R) is the optimal level of cash reserves when shareholders’ discount rate is R.

Firms with projects that fall below the solid line in panel B are firms for which K > K∗∗.

Insert Figure 5 Here

Figure 5 shows that only projects with very high internal rates of return (or very low

cost of investment) will lead to a barrier policy that mirrors those in prior contributions. In

our base case environment, in which the cost of capital is ρ = 6%, only projects with an

internal rate of return above 13.53% will induce the firm to follow barrier policies (i.e. will

correspond to the low investment cost case). As shown by the figure, the cutoff level for the

internal rate of return increases with capital supply and the carry cost of cash and decreases

with cash flow volatility and asset tangibility.

Insert Table 2 Here

Table 2 reports the value gain associated with a switch from a barrier to a band strategy

when K > K∗∗. In our base case, firm value increases by 1.04%. As shown by Table 2, this

value gain increases with capital supply frictions, the bargaining power of investors, and the

carry cost of cash and decreases with volatility. Table 2 also shows that during crisis times,

i.e. when λ is low and/or η is high, the gain in value can reach 2-3%.
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To understand whether band strategies can be eliminated with realistic futures positions,

we also compute the value of the threshold Ḡ that gives the minimum exposure to the

Brownian shock Zt eliminating these strategies. In our base case environment, we find

that the threshold Ḡ is 12.4 larger than the cash flow volatility. That is, restoring barrier

strategies requires the firm to multiply cash flow volatility by at least 13.4. To put this

number in perspective, it should be noted that a recent study by Duchin, Gilbert, Harford,

and Hrdlicka (2014) shows, using a firm-by-firm analysis of the composition of cash reserves

for industrial firms in the S&P 500 index, that the value of risky securities is on average

26.8% of that of corporate cash holdings. In addition, they find that most of these risky

investments are made in debt securities and that the average beta of these risky assets is

50% higher than the beta of the firms’ productive assets. Therefore, our results imply that

while it is theoretically possible to eliminate the convexity in firm value and make barrier

strategies optimal, this may require gambling strategies that are infeasible or unrealistic.

4.2.2 Determinants of cash holdings

Proposition 1 provides an analytical characterization of the properties of target cash holdings

after investment, C∗1 . This section examines instead the determinants of target cash holdings

before investment. In our base case, we have K∗∗ = 0.349 and K∗ = 0.849. Therefore, we

consider two cases: one in which the cost of investment is low in that K = 0.15 and the

firm follows a barrier strategy and one in which it is high in that K = 0.75 and the firm

follows a band strategy. Figure 6, Panel A, plots target the cash holdings C∗U of the low

investment cost case as a function of capital supply λ, asset tangibility ϕ, cash flow volatility

σ, and agency costs δ. Panel B plots the target cash holdings C∗W and C∗H as well as the

intermediate payout threshold C∗L of the high investment cost case.

Insert Figure 6 Here
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The figure shows that the three target cash buffers C∗U , C∗W , and C∗H decrease with the

arrival rate of investors, except for very low values of λ. That is, as λ increases, the likelihood

of finding outside investors increases and the need to hoard cash within the firm decreases.

This result is consistent with the evidence in OPSW (1999) and BKS (2009), who find that

firms hold more cash when their access to external capital markets is more limited. For low

λ, the firm benefits from increasing its cash holdings to have more time to raise funds from

investors and thereby avoid inefficient closure. This effect fades off as λ increases.

Another prediction of the model is that target cash holdings should increase with cash

flow volatility (since the risk of closure increases with σ), consistent with Harford (1999) and

BKS (2009). Interpreting δ = ρ− r as an agency cost of free cash in the firm, the model also

predicts that target cash holdings decrease with the severity of agency conflicts, consistent

with Harford, Mansi, and Maxwell (2008). Lastly, the model predicts that cash holdings

decrease with asset tangibility ϕ (since liquidation becomes less inefficient as ϕ increases),

consistent with Almeida and Campello (2007).

4.2.3 Financing investment

An important question is whether capital supply uncertainty affects investment and the

source of funds used by firms when financing investment. To answer this question, we

examine the determinants of the probability of investment with internal funds (PI(c)).

Appendix J shows how to compute this probability.

The top four panels of Figure 7 plot the average probability of investment with internal

funds for a cross-section of firms with cash reserves uniformly distributed between 0 and C∗U

(K < K∗∗; dashed line) and between 0 and C∗H (K > K∗∗; solid line) as a function of the

arrival rate of investors λ, asset tangibility ϕ, cash flow volatility σ, and the carry cost of

cash δ. The two lower panels plot the total probability of investing over a one-year (solid

line) and over a three-year (dashed line) horizon as functions of the arrival rate of investors
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λ for a firm with low investment cost (left) and high investment cost (right).

Insert Figure 7 Here

Consider the probability of investment with internal funds (top four panels). In our

base case environment, the probability that the average firm invests with internal funds is

20.31% when the cost of investment is low and 1.06% when the cost of investment is high.

This suggests that cash holdings are mostly used to cover operating losses and that firms

will wait until external financing arrives before investing, consistent with the large sample

studies by OPSW (1999) and BKS (2009) and the survey of Lins, Servaes, and Tufano (2010).

Another property of the model illustrated by the figure is that the probability of financing

investment with internal funds decreases with the arrival rate of investors and increases with

asset tangibility. This last feature follows from the fact that C∗U decreases with ϕ and implies

that the investment-cash flow sensitivity increases with the tangibility of assets, consistent

with Almeida and Campello (2007).

Lastly, the bottom panels of Figure 7 show that the overall probability of investment

before a fixed horizon decreases as λ decreases. In the figure, we assume that c = K so that

firms have enough cash to finance investment internally. Thus, our model predicts that a

negative shock to the supply of capital may hamper investment even if firms have enough

financial slack, consistent with Gan (2007), Becker (2007), Lemmon and Roberts (2007), and

Campello, Graham, and Harvey (2010).

5 Concluding remarks

We develop a model of investment, financing, and cash management decisions in which

investment is lumpy and firms face uncertainty regarding their ability to raise funds in capital

markets. We characterize optimal policies explicitly and demonstrate that the interplay
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between lumpiness in investment and capital supply frictions may lead firm value to be locally

convex and barrier strategies to be suboptimal. We also investigate whether this convexity

may lead management to gamble by engaging in zero NPV investments with random returns.

We show that while it is theoretically possible to restore the optimality of barrier strategies,

this may require gambling strategies that are infeasible or unrealistic.

Turning to the predictions of the model, we show that firms with high investment costs

are qualitatively as well as quantitatively different in their behaviors from firms with low

investment costs. In addition, we show that firms may raise outside funds before exhausting

internal resources and that the optimal payout policy may feature several payout regions.

The analysis in the paper also reveals that investment and payout do not always increase

with slack and that the choice between internal and external funds does not follow a strict

pecking order. Finally, the paper generates a number of new predictions relating the use of

inside and outside cash to capital supply and firm characteristics.
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Appendix

A Bargaining with outside investors

In the Supplementary Appendix, we show that management’s optimization problem in an environ-

ment with outside bargaining power η > 0 and meeting intensity λ is equivalent to an auxiliary

problem in which there is no bargaining power but a reduced meeting intensity λ∗ = λ(1− η).

On the basis of this result we will assume throughout the appendices that there is no bargaining

so that we only need to consider the firm’s optimization problem with η = 0.

B Proofs of the results in Section 2.1

B.1 Intuition and road map

To facilitate the proofs, we start by introducing some notation that will be of repeated use

throughout the appendix. Let Li denote the differential operator defined by

Liφ(c) := φ′(c)(rc+ µi) +
σ2

2
φ′′(c)− ρφ(c),

set

Fφ(c) := max
f≥0

λ (φ(c+ f)− φ(c)− f) ,

and denote by Θ the set of dividend and financing strategies such that

Ec

[∫ τ0

0
e−ρs(dDs + fsdNs)

]
<∞

for all c ≥ 0 where τ0 is the first time that the firm’s cash holdings fall to zero and Ec[·] denotes

an expectation conditional on the initial value C0− = c.

Let V̂i(c) denote the value of a firm with no growth option when the mean cash flow rate is µi.

In order to apply dynamic programming techniques, we will proceed in four steps.

1. Derive the Hamilton-Jacobi-Bellmamn (HJB) equation.

2. Show that any smooth solution φ(c) to the HJB equation dominates the value function.

3. Conjecture an optimal policy and derive the corresponding firm value.

4. Show that the value of the firm associated with the conjectured optimal policy of Step 3 is

indeed a smooth solution to the HJB equation.
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In accordance with the theory of singular stochastic control (see Fleming and Soner (1993)),

the HJB equation for the value of a firm with no option is given by

max{Liφ(c) + Fφ(c), 1− φ′(c), `i(c)− φ(c)} = 0, (30)

where `i(c) = `i + c denotes the liquidation value of the firm. Thus, we are done with Step 1.

Lemma B.1 below accomplishes Step 2. In order to proceed to Step 3, we conjecture that the

optimal policy is of a threshold form and show that the system defined by (2)-(5) and (9) has a

unique smooth solution that is given by (Vi(c), C
∗
i ) = (vi(c;C

∗
i ), C∗i ) for some C∗i > 0. Finally, to

complete Step 4, we will show that this function solves (30), i.e. that

(a) V ′i (c) ≥ 1 for all c ≥ 0,

(b) φ(c) = `i(c) satisfies Liφ(c) + Fφ(c) ≤ 0 for all c ≤ C∗i ,

(c) Vi(c) ≥ `i(c) for all c ≥ 0.

As we show below, Vi(c) is concave and therefore items (a) and (c) easily follow.13 Item (b) follows

by direct calculation. Finally, Step 4 is proved in Lemma B.9. Thus, it remains to implement Step

3 and show that a solution exists and that it is concave. To this end, we will introduce another

function w(c; b) defined as the unique solution to (2) satisfying (5) and (9). As we note in the main

text, (2) implies that (9) is equivalent to (10), that is

wi(b; b) = (rb+ µi)/ρ.

Thus, for any fixed b, equation (2) turns into a standard ordinary differential equation that can

be explicitly solved via special functions as we show below in Lemma B.2. Lemma B.4 proves the

concavity of wi(c; b). The value function vi(c; b) satisfies (4)–(5). Thus, in order to determine the

optimal threshold it remains to find a b such that wi(0; b) = `i(0). This is done in Lemma B.8.

Obviously, wi(c;C
∗
i ) = vi(c;C

∗
i ) and the proof is complete.

B.2 Proofs

Lemma B.1 If φ ∈ C2(0,∞) is a solution to (30) then φ(c; b) ≥ V̂i(c).

Proof. Let φ be as in the statement, fix a strategy (D, f) ∈ Θ and consider the process

Yt := e−ρtφ(Ct) +

∫ t

0+
e−ρs(dDs − fsdNs).

Using the assumption of the statement in conjunction with Itô’s formula for semimartingales (see

Dellacherie and Meyer (1980, Theorem VIII.25)), we get that dYt = dMt − e−ρtdAt where the

13Concavity is a rare and useful property for this class of models. As we show below, firm value is no
longer globally concave when the firm has a growth option and, without this property, the verification of
property (a) above become a lot more difficult.
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process M is a local martingale and

dAt = (φ(Ct− + ft)− φ(Ct−)− ft −Fφ(Ct−))dt

+ (∆Dt − φ(Ct− −∆Dt) + φ(Ct−)) + (φ′(Ct−)− 1)dDc
t .

where ∆Dt and Dc
t denote respectively the jump and the continuous components of the dividend

policy under consideration, i.e.

∆Dt = Dt − lim
s↑t

Ds = Dt −Dt−

Dc
t = Dt −

∑
s≤t

∆Ds.

The definition of F and the fact that φ′ ≥ 1 then imply that A is nondecreasing and it follows that

Y is a local supermartingale. The liquidation value being nonnegative, we have

Zt := Yt∧τ0 ≥ −
∫ τ0

0
e−ρsfsdNs

and since the random variable on the right hand side is integrable by definition of the set Θ, we

conclude that Z is a supermartingale. In particular,

φ(C0−) = φ(C0)−∆φ(C0) = Z0 −∆φ(C0) ≥ Ec[Zτ0 ]−∆φ(C0)

= Ec

[
e−ρτ0φ(Cτ0) +

∫ τ0

0+
e−ρs(dDs − fsdNs)

]
−∆φ(C0)

= Ec

[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dDs − fsdNs)

]
−∆D0 −∆φ(C0)

≥ Ec
[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dDs − fsdNs)

]
(31)

where the first inequality follows from the optional sampling theorem for supermartingales, the

fourth equality follows from Cτ0 = 0, and the last inequality follows from

∆D0 + ∆φ(C0) = ∆D0 + φ(C0− −∆D0)− φ(C0−) =

∫ C0−

C0−−∆D0

(1− φ′(c))dc ≤ 0

The desired result follows by taking supremum over (D, f) ∈ Θ on both sides of (31). Q.E.D.

Lemma B.2 Let b ≥ 0 be fixed. Then, the unique continuously differentiable solution to

Liφ(c; b) + λ(φ(b)− b+ c− φ(c; b)) = 0, c ≤ b, (32)

φ(c; b)− φ(b) + b− c = 0, c ≥ b, (33)
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satisfies

φ(c; b) = φ(b)Hi(c; b) + φ(0)Li(c; b) (34)

+ Πi(c; b)−Πi(b; b)Hi(c; b)−Πi(0; b)Li(c; b).

In this equation, we have

Πi(c; b) =
λ

ρ+ λ

(
φ(b)− b+ c+

µi + rc

ρ+ λ− r

)
,

and

Li(c; b) = Ec

[
e−(ρ+λ)τi,01{τi,0≤τi,b}

]
=
Gi(b)Fi(c)− Fi(b)Gi(c)
Gi(b)Fi(0)− Fi(b)Gi(0)

,

Hi(c; b) = Ec

[
e−(ρ+λ)τi,b1{τi,b≤τi,0}

]
=
Fi(0)Gi(c)−Gi(0)Fi(c)

Gi(b)Fi(0)− Fi(b)Gi(0)
,

with

Fi(x) = M
(
ν, 1/2;−(rx+ µi)

2/(σ2r)
)
, (35)

Gi(x) =
rx+ µi
σ
√
r
M
(
ν + 1/2, 23/2;−(rx+ µi)

2/(σ2r)
)
, (36)

where ν = −(ρ+λ)/2r and M(a, b; z) is the confluent hypergeometric function defined by (see Dixit

and Pindyck, 1994, pp.163):

M (a, b; z) = 1 +
a

b
z +

a (a+ 1)

b (b+ 1)

z2

2!
+
a (a+ 1) (a+ 2)

b (b+ 1) (b+ 2)

z3

3!
+ · · ·

The first claim of Lemma B.2 (i.e., formula (34)) follows by standard arguments. The proof of

the second claim (i.e., representation via the hypergeometric functions) is based on the following

auxiliary result.

Lemma B.3 The general solution to the homogenous equation

λφi(c) = Liφi(c) (37)

is explicitly given by φi(c) = γ1Fi(c) + γ2Gi(c) for some constants γ1, γ2 where the functions Fi,

Gi are defined as in equations (35) and (36).

Proof. The change of variable φ(c; b) = g(−(rc+µi)
2/(rσ2)) transforms (37) for φ into Kummer’s

ODE for g and the conclusion now follows from standard results. Q.E.D.
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Let wi(c; b) be the unique continuously differentiable solution to (32) and (33) with the boundary

conditions w′i(b; b)− 1 = w′′i (b; b) = 0.14

Lemma B.4 The function wi(c; b) is increasing and concave with respect to c ≥ 0 and strictly

monotone decreasing with respect to b.

In order to prove Lemma B.4, we will rely on the following three useful results.

Lemma B.5 Suppose that k is a solution to

Lik(c) + φ(c; b) = 0 (38)

for some φ. Then, k does not have negative local minima if φ(c; b) ≥ 0 and does not have positive

local maxima if φ(c; b) ≤ 0.

Proof. At a local minimum we have k′(c) = 0, k′′(c) ≥ 0 and the claim follows from (38) and the

nonnegativity of φ. The case of a non-positive φ is analogous. Q.E.D.

Lemma B.6 Suppose that k is a solution to (38) for some φ(c; b) ≤ 0 and that k′(c0) ≤ 0, k(c0) ≥ 0

and |k(c0)|+ |k′(c0)|+ |φ(c0)| > 0. Then, k(c) > 0 and k′(c) < 0 for all c < c0.

Proof. Suppose on the contrary that k′(c) is not always negative for c < c0 and let z be the largest

value of c < c0 at which k′(c) changes sign. Then, z is a positive local maximum and the claim

follows from Lemma B.5. Q.E.D.

Lemma B.7 Suppose that k is a solution to (38) for some φ such that φ′(c) ≤ 0 and that k′(c0) ≥ 0,

k′′(c0) ≤ 0 and |k′(c0)| + |k′′(c0)| + |φ′(c0)| > 0. Then, k′(c) > 0 and k′′(c) < 0 for all c < c0.

Furthermore, if k′′(c0) = 0, then k′′(c) > 0 for c > c0 and k′(c0) = minc≥0 k
′(c).

Proof. Differentiating (38) shows that m = k′ is a solution to Lim(c) + rm(c) + φ′(c) = 0 and the

conclusion follows from Lemma B.6. The case c > c0 is analogous. Q.E.D.

Proof of Lemma B.4. As is easily seen, the function

k(c) = wi(c; b)−
λ

λ+ ρ

(
wi(b; b)− b+

(ρ+ λ)c+ µi
λ+ ρ− r

)
is a solution to (37) and satisfies k′(b) = 1 > 0 as well as k′′(b) = 0. Together with Lemma B.7

this implies that k(c), and hence also wi(c; b), is increasing and concave for c ≤ b. To establish the

required monotonicity, let b1 < b2 be fixed and consider the function m(c) = wi(c; b1) − wi(c; b2).

Using the first part of the proof it is easily seen that m solves

Lim(c)− λm(c)− λ(1− r/ρ)(b1 − b2) = 0

14Imposing these boundary conditions immediately pins down the value wi(b; b) at the boundary, and then
existence and uniqueness follows from standard results for linear ODEs.
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with the boundary conditions m′(b1) = 1 − w′i(b1; b2) < 0, m′′(b1) = −w′′i (b1; b2) ≥ 0. Thus, it

follows by a straightforward modification of Lemma B.7 that m is monotone decreasing and it only

remains to show that m(b1) > 0. To this end, observe that

m(b1) = wi(b1; b1)− wi(b1; b2)

= wi(b1; b1)− wi(b2; b2) +

∫ b1

b2

w′i(c; b2)dc

≥ wi(b1; b1)− wi(b2; b2) + b2 − b1 = (r/ρ− 1)(b1 − b2) > 0

where the first inequality follows from w′i(b; b) = 1 and the first part of the proof, and the last

inequality follows from the fact that by assumption ρ > r. Q.E.D.

Lemma B.8 There exists a unique solution C∗i to wi(0;C∗i ) = `i(0) and the function Vi(c) =

wi(c;C
∗
i ) = vi(c;C

∗
i ) is a twice continuously differentiable solution to (30).

Proof. By Lemma B.2 we have that Vi(c) is twice continuously differentiable, solves (2) subject

to (4), (5) and (9) so we only need to show that

wi(0;C∗i ) = `i(0) (39)

has a unique solution C∗i . By Lemma B.4, we have that wi(0; b) is monotone decreasing in b. On

the other hand, a direct calculation shows that wi(0; 0) = µi/ρ > `i(0), wi(0;∞) < 0 and it follows

that (39) has a unique solution.

To complete the proof, it remains to show that Vi is a solution to the HJB equation. Using

the concavity of Vi(c) = wi(c;C
∗
i ) in conjunction with the smooth pasting condition we obtain that

1− V ′i (c) is negative below the threshold C∗i and zero otherwise so that

`i(c)− Vi(c) =

∫ c

0
(1− V ′i (x))dx ≤ 0.

On the other hand, using the concavity of Vi(c) in conjunction with Lemma B.2 and the smooth

pasting condition we obtain

(Li + F)Vi(c) = LiVi(c) + 1{c<C∗i }λ(Vi(C
∗
i )− b+ c− Vi(c)) = 1{c≥C∗i }LiVi(c)

= (r − ρ)(c− C∗i )+ ≤ 0

and combining the above results shows that Vi(c) is a solution to (30). Q.E.D.

Lemma B.9 We have V̂i(c) ≥ Vi(c) for all c ≥ 0.

Proof. Combining the results of Lemmas B.1 and B.8 shows that Vi(c) ≥ V̂i(c) for all c ≥ 0. In

order to establish the reverse inequality, consider the dividend and financing strategy defined by

D∗t = Lt and f∗t = (C∗i − Ct−)+ where the process C evolves according to

dCt = (rCt− + µi)dt+ σdBt − dD∗t + f∗t dNt
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with initial condition C0− = c ≥ 0 and Lt = sups≤t(bt − C∗i )+ where

dbt = (rbt− + µi)dt+ σdBt + (C∗i − bt−)+dNt.

In order to show that the strategy (D∗, f∗) is admissible, we start by observing that

Ec

[∫ ∞
0

e−ρtf∗t dNt

]
≤ Ec

[∫ ∞
0

e−ρtC∗i dNt

]
=
λC∗i
ρ

where the inequality follows from the definition of f∗. Using this bound in conjunction with Itô’s

lemma and the assumption that r < ρ we then obtain

Ec

[∫ t

0
e−ρsdD∗s

]
= C0 + Ec

[∫ t

0
e−ρs((r − ρ)Cs− + µi)ds+

∫ t

0
e−ρsf∗s dNs

]
≤ C0 + Ec

[∫ ∞
0

e−ρsµids+

∫ ∞
0

e−ρsf∗s dNs

]
≤ C0 +

1

ρ
(µi + λC∗i )

for any t < ∞ and it now follows from Fatou’s lemma that (D∗, f∗) ∈ Θ. Applying Itô’s formula

for semimartingales to

Yt = e−ρ(t∧τ0)Vi(Ct∧τ0) +

∫ t∧τ0

0+
e−ρs(dD∗s − f∗s−dNs)

and using the definition of (D∗, f∗) in conjunction with the fact that Vi(c) solves the HJB equation

we obtain that Y is a local martingale. Now, using the fact that Ct ∈ [0, C∗i ] for all t ≥ 0 together

with the increase of Vi we deduce that

|Yθ| ≤ |Vi(C∗i )|+
∫ ∞

0
e−ρt(dD∗t + f∗t−dNt)

for any stopping time θ and, since the right hand side is integrable, we conclude that Y is a

uniformly integrable martingale. In particular, we have

Vi(c) = Y0− = Y0 −∆Y0 = Y0 + ∆D∗0 = Ec[Yτ0 ] + ∆D∗0

= Ec

[
e−ρτ0Vi(Cτ0) +

∫ τ0

0+
e−ρs(dD∗s − f∗s dNs)

]
+ ∆D∗0

= Ec

[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dD∗s − f∗s dNs)

]
where the third equality follows from the definition of Vi and the fourth from the martingale

property of Y . This shows that Vi(c) ≤ V̂i(c) and establishes the desired result. Q.E.D.

Lemma B.10 The level of cash holdings C∗i that is optimal for a firm with no growth option is

monotone decreasing in λ and ϕ and increasing in σ2.

Proof. Monotonicity in ϕ follows from the definition of C∗i and the monotonicity of `i. To establish

the required monotonicity in λ, it suffices to show that wi(0; b, λ) is monotone decreasing in λ.
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Indeed, in this case we have

`i(0) = wi(0;C∗i (λ1), λ1) ≤ wi(0;C∗i (λ1);λ2)

for all λ1 < λ2 and therefore C∗i (λ2) ≤ C∗i (λ1) due to the fact that wi(0; b, λ) is decreasing in b.

To establish the required monotonicity observe that wi(b; b, λ) = rb+µi
ρ does not depend on λ. As

a result, it follows from Lemma B.2 that the function

k(c) = wi(c; b, λ1)− wi(c; b, λ2)

for some λ1 < λ2 satisfies

k(b) = k′(b) = k′′(b) = k(3)(b) = k(4)(b) = 0

and solves the ODE

Lik(c)− λ1k(c) = (λ2 − λ1)(wi(b; b, λ2)− wi(c; b, λ2)− (b− c)). (40)

Since, by Lemma B.4, wi(c; b, λ2) is concave in c and w′i(b; b, λ2) = 1, the right hand side of (40)

is nonnegative for all c ≤ b and it follows by a slight modification of Lemma B.5 that k(c) cannot

have a positive local maximum. Since

k(5)(b) =
2

σ2
(λ1 − λ2)w

(3)
i (b; b, λ2) =

2

σ2
(λ1 − λ2)(ρ− r) < 0,

we conclude that k is decreasing in a small neighborhood of b. Therefore, it is decreasing for all c ≤ b
and hence k(c) > k(b) = 0 for all c ≤ b. Similarly, if σ2

1 > σ2
2, then k(c) = wi(c; b;σ

2
1)− wi(c; b;σ2

2)

satisfies

Li(σ2
1)k(c)− λk(c) = 0.5(σ2

2 − σ2
1)w′′i (c; b;σ2

2) > 0

for c ≤ b and the required monotonicity follows by the same arguments as above. Q.E.D.

C Proof of Proposition 2

The proof of Proposition 2 will be based on a series of lemmas. To facilitate the presentation, let

V̂ denote the value of the firm and Π denote the set of triples π = (τ,D, f) where τ is a stopping

time and (D, f) ∈ Θ is an admissible dividend and financing strategy.

Our first result shows that for any fixed policy π, the value of the firm is equal to the present

value of all dividends net of issuing costs, up to the time τ of investment, plus the present value of

the value of the firm at the time of investment.
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Lemma C.1 The value of the firm satisfies

V̂ (c) = sup
π∈Π

Ec

[∫ τ∧τ0

0
e−ρt (dDt − ftdNt) + 1{τ≥τ0}e

−ρτ0`0(0) + 1{τ<τ0}e
−ρτV1(Cτ )

]
.

If V0(c) ≥ V1(c−K) for all c ≥ K then it is optimal to abandon the growth option.

Proof. The proof of the first part follows from standard dynamic programming arguments and

therefore is omitted. To establish the second part assume that V0(c) ≥ V1(c − K) for all c ≥ K

and observe that ∆Cτ = −K + 1{τ∈N}fτ where N denotes the set of jump times of the Poisson

process. Using this identity in conjunction with the first part, we obtain

V (c) ≤ sup
π∈Π

Ec

[∫ τ∧τ0

0
e−ρt(dDt − ftdNt)

+ 1{τ≥τ0}e
−ρτ0`0(0) + 1{τ<τ0}e

−ρτV0(Cτ− + 1{τ∈N}fτ )

]
.

and the desired result follows since the right hand side of this inequality is equal to V0(c) by standard

dynamic programming arguments. Q.E.D.

By Lemma C.1, the option has a non-positive net present value if and only if V0(c) ≥ V1(c−K)

for all c ≥ 0. Thus, in order to establish Proposition 2 it now suffices to show that this condition is

equivalent to the inequality K ≥ K∗. This is the objective of the following:

Lemma C.2 The constant K∗ is nonnegative and the following are equivalent:

(a) K ≥ K∗

(b) K ≥ V1(C∗1 )− V0(C∗0 )− (C∗1 − C∗0 )

(c) V0(c) ≥ V1(c−K) for all c ≥ K.

Proof. The equivalence of (a) and (b) follows from the definition of K∗ and the fact that

Vi(C
∗
i ) = (rC∗i + µi)/ρ.

In order to show that the constant K∗ is nonnegative we argue as follows: Since µ0 < µ1, the set of

feasible strategies for V0 is included in the set of feasible strategies for V1. It follows that V0 ≤ V1

and combining this with the definition of C∗i shows that

K∗ = V1(C∗1 )− V0(C∗0 )− (C∗1 − C∗0 ) = max
C≥0
{V1(C)− C} −max

C≥0
{V0(C)− C} ≥ 0.

To establish the implication (a)⇒(c) it suffices to show that under (a) we have V1(c−K∗) ≤ V0(c)

for all c ≥ K∗. Indeed, if that is the case then (b) also holds since

V1(c−K) ≤ V1(c−K∗), c ≥ K ≥ K∗,
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due to the increase of the function V1. For c ≥ K∗ ∨C∗0 the concavity of V1 and the fact that V0 is

linear with slope one above the level C∗0 jointly imply that

V1(c−K∗) ≤ V1(C∗1 ) + (c−K∗ − C∗1 ) = V0(c) + C∗0 − V0(C∗0 )−K∗ − C∗1 = V0(c)

and it remains to prove the result for c ∈ [K∗, C∗0 ]. Consider the function k(c) = V0(c)−V1(c−K∗).
Using Lemma B.2 in conjunction with the fact that C∗0 < C∗1 +K∗ by Lemma C.3 below we have

that the function k is a solution to

L0k(c)− λk(c) + (µ0 − µ1 + rK∗)V ′1(c−K∗) = 0

on the interval [K∗, C∗0 ]. Combining Lemma C.3 below with the increase of V1 shows that the last

term on the left hand side is positive and since

k(C∗0 ) = V0(C∗0 )− V1(C∗0 −K∗) ≥ V0(C∗0 )− V1(C∗)− (C∗0 −K∗ − C∗1 ) = 0,

k′(C∗0 ) = V ′0(C∗0 )− V ′1(C∗0 −K∗) = 1− V ′1(C∗0 −K∗) ≤ 0

by the concavity of V1, we can apply Lemma B.6 to conclude that k(c) ≥ 0 for all c ≤ C∗0 . Finally,

the implication (c)⇒(b) follows by taking c > C∗0 ∨ (C∗1 +K). Q.E.D.

The optimal cash levels before and after investment are given by C∗0 and C∗1 +K respectively.

By Lemma C.2, we have that V0(c) ≥ V1(c−K∗) for all c ≥ K. Therefore, it is natural to expect

that the better-off firm will have a lower optimal cash level, that is C∗0 ≤ C∗1 + K∗. Similarly, it

is natural to expect that the increase in the mean cash flow rate net of cost is nonnegative for

K ≤ K∗, that is (µ1 − µ0)/r ≤ K. It turns out that both of these intuitive results are indeed true,

as is shown by the following lemma.

Lemma C.3 We have C∗0 < C∗1 +K∗ and µ1 − µ0 − rK∗ > 0.

Proof. The definition of K∗ implies that the first inequality is equivalent to the second which is

in turn equivalent to

r(C∗1 − C∗0 ) > µ0 − µ1. (41)

Denote by C∗(µ) the optimal cash holdings for a firm with mean cash flow rate µ and no growth

option. In order to prove the validity of (41) it suffices to show that

1

r
+
∂C∗(µ)

∂µ
> 0 (42)

Let w(c; b, µ) stand for the function wi(c; b) with µi = µ and use a similar notation for the

hypergeometric functions Fi(c), Gi(c) and the liquidation value `i(c). Combining the result of
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Lemma B.2 with (10) and Abel’s identity

G′(c;µ)F (c;µ)− F ′(c;µ)G(c;µ) = e−
(rc+µ)2

rσ2

√
r

σ

we get that

w(c; b, µ) = q(c; b, µ) +
λ

ρ+ λ

(
µ+ br

ρ
− b+ c+

µi + rc

ρ+ λ− r

)
where the function on the right hand side is defined by

q(c; b, µ) = α(b;µ)F (c;µ)− β(b;µ)G(c;µ) (43)

with

α(c;µ) =
(r − ρ)σ3G′′ (c;µ)

2
√
r (ρ+ λ− r) (ρ+ λ) e−(σ2r)−1(rC+µ)2

,

β(c;µ) =
(r − ρ)σ3F ′′ (c;µ)

2
√
r (ρ+ λ− r) (ρ+ λ) e−(σ2r)−1(rC+µ)2

.

In this notation, we have that the equation which defines the optimal level of cash holdings for a

firm with no growth option is given by

q(0;C∗(µ), µ) +
λ

λ+ ρ

(
µ+ (r − ρ)C∗(µ)

ρ
+

µ

λ+ ρ− r

)
= `(0).

Using equations (35) and (36) in conjunction with the definition of the functions α(c;µ) and β(c;µ)

we obtain

rqµ(0; b, µ) = qc(0; b, µ) + qb(0; b, µ),

where a subscript denotes a partial derivative, and it thus follows from the implicit function theorem

that

∂C∗(µ)

∂µ
=
ϕ/ρ− qb(0;C∗(µ), µ)/r − qc(0;C∗(µ);µ)/r −B

qb(0;C∗(µ), µ)−A

where we have set

A =
λ

λ+ ρ

(
1− r

ρ

)
, B =

λ

λ+ ρ

(
1

ρ
+

1

λ+ ρ− r

)
.

By Lemma B.4 we have that the function q(c; b, µ) is decreasing in b and since A > 0 it follows that

the validity of inequality (42) is equivalent to

−qb(0;C∗(µ), µ)− qc(0; b;µ)− r (B − ϕ/ρ) < A− qb(0;C∗(µ), µ),
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which in turn follows from

qc(0; b;µ) + r(B − 1/ρ) > 0. (44)

Since the difference q−w is a linear function of c we have from Lemma B.4 that q(c; b, µ) is concave

in c and it follows from the smooth pasting condition that

qc(0;C∗(µ), µ) ≥ qc(C∗(µ);C∗(µ), µ)

= wc(C
∗(µ);C∗(µ), µ)− λ

λ+ ρ− r
=

ρ− r
λ+ ρ− r

.

Combining this with a straightforward calculation shows that (44) holds. Q.E.D.

D Optimality of barrier strategies

D.1 Intuition and road map

In this section we construct the function u(c;C∗U ) that fits V1(c−K) at some cash level C∗U . Whether

this fit is smooth will depend on the size of the investment cost K.

Let us first consider the function u(c;K) associated to the following policy: Search for external

investors to raise funds and invest when c < K; otherwise invest from internal funds when c =

K and liquidate immediately thereafter to receive `1(c). When c = K the firm will just invest

and immediately liquidate, so that u(c;K) satisfies the boundary conditions u(0;K) = `0(0) and

u(K;K) = `1(0). This policy can be optimal even though the function u(c;K) does not satisfy the

smooth fit principle if the marginal value of cash is higher slightly below the investment cost than

slightly above, that is if u′(K;K) > V ′1(0). Lemma D.2 confirms this intuition by showing that

u′(K;K) ≤ V ′1(0) is both necessary and sufficient for the existence and uniqueness of a solution

to (12), (13) and (14) with the smooth pasting condition (17). When u′(K;K) > V ′1(0) we let

C∗U = K so that u(c;C∗U ) = u(c;K) and the fit to the post-investment firm value is non-smooth.

D.2 Proofs

Lemma D.1 Let F0, G0 be as in (35)-(36) . Let q denote an arbitrary function and define q̂

implicitly through

q(c) = F0(c)q̂(Z(c)) = F0(c)q̂

(
G0(c)

F0(c)

)
.

Then we have:

(a) The function Z is monotone increasing and q̂(y) = q(Z−1(y))/F0(Z−1(y)),

(b) The function q solves (37) if and only if the function q̂ is linear,
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(c) For an arbitrary c ≥ 0,

min{q̂′(y)(q(c)/F0(c))′, q̂′′(y)(L0q(c)− λq(c)))} ≥ 0

with y = Z(c).

Proof. The first two claims follow by direct calculation using the definition of q̂, F0 and G0. The

third claim is formula (6.2) in Dayanik and Karatzas (2003). Q.E.D.

Lemma D.2 If the condition u′(K;K) ≤ V ′1(0) holds then there exists a unique solution (C∗U , u(c;C∗U ))

to (12), (13), (14), (17) and this solution is such that u(c;C∗U ) ≥ V1(c−K) for all c ≥ K.

Proof. Consider the function defined by

v1(c−K) = V1(c−K)− Φ(c)

with Φ(c) as in (16). To prove the result, we start by observing that thanks to Lemma D.1, finding

a solution to the system (12), (13), (14), (17) is equivalent to finding a linear function φ that is

tangent to the graph of the function v̂1 defined by15

v1(c−K) = F0(c)v̂1(Z(c)) = F0(c)v̂1

(
G0(c)

F0(c)

)
(45)

and such that φ(Z(0))F0(0) = `0−Φ(0). A direct calculation using the results of Lemmas B.8 and

C.3 shows that

L0v1(c−K)− λv1(c) = (r − ρ)(c− C∗1 −K)+ + (µ0 − µ1 + rK)V ′1(c−K) ≤ 0

for all c ≥ K and it now follows from Lemma D.1 that v̂1(y) is concave for all y ≥ Z(K). On the

other hand, since V1 is concave we obtain

v′1(c−K) = V1(c−K)− λ

λ+ ρ− r
≥ V ′1(C∗1 )− λ

λ+ ρ− r
=

ρ− r
λ+ ρ− r

> 0

and it follows v1(c − K) is positive for sufficiently large values of c. Since F0 is nonnegative and

decreasing, this implies that the ratio v1(c −K)/F0(c) is increasing for large c and it now follows

from Lemma D.1 that v̂1(y) is increasing for large values of y and is therefore globally increasing

in y ≥ Z(K) since it is concave in that region.

Since by assumption u′(K;K) ≤ V ′1(0) we have that the line passing through the points

(Z(0), (`0 − Φ(0))/F0(0)) and (Z(K), (`1 − Φ(0))/F0(0))

15Namely, Lemma D.1 shows that the map v 7→ v̂ transforms solutions to the homogeneous ODE into
linear functions that are solutions to the homogeneous ODE for the case where the underlying stochastic
process is a Brownian motion, and there is no time discounting.
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has a higher slope at y = Z(K) than v̂1. Using the concavity and increase of v̂1, it is then immediate

that there exists a unique line passing through (Z(0), (`0 − Φ(0))/F0(0)) that is tangent to v̂1 at

some y∗ > Z(K). Setting C∗U = Z−1(y∗) proves the existence of a unique solution to the value

matching and smooth pasting conditions. Since v̂1 is concave, it lies below its tangent line at y∗

and, transforming back to V1(c−K) and u(c;C∗U ), we get u(c;C∗U ) ≥ V1(c−K). Q.E.D.

Lemma D.3 We have u(c;C∗U ) ≤ V̂ (c) where V̂ (c) denotes the value function of the firm’s

optimization problem.

Proof. Consider the investment, dividend and financing strategy πU defined by τ = τN ∧ τ∗U ,

DU = 0 and

fUt = (C∗1 +K − Ct−)+ (46)

where τN denotes the first jump time of the Poisson process and τ∗U denotes the first time that the

firm’s cash reserves reach the level C∗U . As is easily seen, we have

Ec

[∫ τ0

0
e−ρt

(
dDU

t + fUt dNt

)]
≤ Ec

[∫ ∞
0

e−ρt(C∗1 +K)dNt

]
=
λ

ρ
(C∗1 +K)

and it follows that πU ∈ Π. On the other hand, using an argument similar to that of the proof of

Proposition 1 it can be shown that

Yt = e−ρt∧τ0∧τ
∗
Uu(Ct∧τ0∧τ∗U ;C∗U ) +

∫ t∧τ0∧τ∗U

0
e−ρt

(
dDU

s − fUs dNs

)
is a uniformly integrable martingale. An application of the optional sampling theorem at the finite

stopping time τN then implies

u(c;C∗U ) = Y0 = E[YτN ] = Ec

[
e−ρτ∧τ0u(Cτ∧τ0 ;C∗U ) +

∫ τ∧τ0

0
e−ρt

(
dDU

s − fUs dNs

)]
= Ec

[
1{τ<τ0}e

−ρτV1(Cτ ) + 1{τ0≤τ}e
−ρτ0`0 +

∫ τ∧τ0

0
e−ρt

(
dDU

s − fUs dNs

)]
and the desired result now follows from Lemma C.1. Q.E.D.

E Value of a firm that only invests with external funds

E.1 Intuition and road map

The goal of this section is to construct and derive useful properties of the value W (c) of a firm that

accumulates cash up to an optimally determined target level C∗W = C∗W (K) and invests exclusively

from external funds as soon as financing can be secured. The formal existence and basic properties

of this function are provided in Lemma E.1.
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By Lemma C.2, the option has a positive net present value for K < K∗ in which case V0(c) is

smaller than V1(c −K) for some values of c > 0. We expect the same to be true for the function

W (c). Clearly, we have that V1(c) > W (c) and so we expect that W (c) < V1(c−K) for high levels

of cash holdings when the effect of the fixed investment cost is smaller. By definition we have that

W (c) = W (C∗W ) + (C −C∗W ) and V1(c) = V1(C∗1 ) + (c−C∗1 ) for c ≥ max{C∗W , C∗1 +K}. Therefore,

our conjecture can be confirmed by showing that W (C∗W ) − C∗W < V1(C∗1 ) − (C∗1 + K). This is

accomplished by Lemma E.3 whose proof is in turn based on Lemma E.2. Having established this

important result, we naturally expect that the inequality V1(c −K) > W (c) can be violated only

at low cash holdings levels and this intuition is confirmed by Lemma E.4.

E.2 Proofs

Denote the value of the firm by V̂ (c) as before. The following lemma establishes existence of the

function W (c) and shows that it is concave. In order to state the result let w(c; b) be the twice

continuously differentiable solution to

0 = L0w(c; b) + λ(V1(C∗1 )− C∗1 −K + c− w(c; b)) = w′(b; b)− 1 = w′′(b; b).

The same argument as for the function Vi(c) implies that

w(b; b) =
rb+ µ+ λ(V1(C∗1 )− C∗1 −K + b)

ρ+ λ
,

and the optimal target level C∗W for the firm’s cash holdings can then be determined by imposing

the value matching condition

w(0;C∗W ) = `0(0) (47)

at the point where the firm runs out of cash.

Lemma E.1 There exists a unique solution C∗W to (47) and the function W (c) = w(c;C∗W ) is

increasing, concave and satisfies W (c) ≤ V̂ (c).

Proof. The results follow by arguments similar to those we used in the proof of Proposition 1. We

omit the details. The fact that W (c) ≤ V̂ (c) follows from the fact that the policy corresponding to

the value function W (c) is a priori suboptimal. Q.E.D.

By Lemma C.2, the constant K∗ is the investment cost for which the net present value of

the growth option is identically zero. Therefore, as K increases to K∗ the firm following the

strategy associated with W (c) will gradually reduce its target cash holding level and for K = K∗

the difference between the functions V0(c) and W (c) should vanish at which point we should have

C∗W (K∗) = C∗0 . The following lemma shows that this intuition is correct.

Lemma E.2 The threshold C∗W = C∗W (K) is decreasing in K and satisfies C∗W (K∗) = C∗0 .
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Proof. Using the same arguments as in the case without growth options we have that that solving

(47) is equivalent to solving for b in

w(0; b) = q(0; b;µ0) +
λ

λ+ ρ

(
(r/ρ− 1)C∗1 −K +

µ1

ρ
+

µ0

λ+ ρ− r

)
= `0(0)

where the function q(c; b, µ0) is defined as in (43). As shown in the proof of Lemma B.4 the function

q(c; b;µ0) is monotone decreasing in b, so that w(0; b) is monotone decreasing. On the other hand,

a direct calculation shows that w(0; 0) = µ0/ρ > `0(0) and w(0;∞) < 0 and it follows that there

exists a unique solution C∗W to the value matching condition.

Since the function q(c; b;µ0) is decreasing in b the monotonicity of C∗W with respect to K follows

from the implicit function theorem. To show that the target C∗W converges to C∗0 as the investment

cost converges to K∗ we argue as follows. By definition we have

V1(C∗1 )− C∗1 −K∗ = V0(C∗0 )− C∗0 .

Thus, it follows from Lemma B.8 that the function V0(c) solves

0 = L0V0(c) + λ[V0(C∗0 )− C∗0 + c− V0(c)] = L0V0(c) + λ[V1(C∗1 )− C∗1 −K∗ + c− V0(c)]

on the interval [0, C∗0 ] with the boundary conditions V ′0(C∗0 ) = 1, V ′′(C∗0 ) = 0 and the desired result

follows from the uniqueness part of Lemma E.1. Q.E.D.

By definition, we have that K < K∗ if and only if V0(C∗0 ) − C∗0 < V1(C∗1 ) − (C∗1 + K). The

following lemma shows that a similar inequality holds true for the function W (c).

Lemma E.3 The following are equivalent:

(a) K > K∗,

(b) W (C∗W (K))− C∗W (K) > V1(C∗1 )− (C∗1 +K).

Proof. Evaluating the ODE

L0W (c) + λ[V1(C∗1 )− C∗1 −K + c−W (c)] = 0

at the point c = C∗W and using the definition of K∗ we obtain that

(λ+ ρ) (W (C∗W )− C∗W − (V1(C∗1 )− C∗1 −K)) = ρ(K −K∗) + (ρ− r)(C∗0 − C∗W )

and the desired equivalence now follows from Lemma E.2. Q.E.D.

Lemma E.4 The following statements hold:

(a) If K ≥ K∗ then W (c) ≥ V1(c−K) for all c ≥ K.
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(b) If K < K∗ then either V1(c − K) ≥ W (c) for all c ≥ K or there exists a unique crossing

point K ≤ C̃ ≤ C∗1 +K such that V1(c−K) < W (c) if and only if c < C̃.

Proof. We only prove part (b) as both claims follow from similar arguments. Since the function

W (c) = w(c;C∗W ) is concave by Lemma E.1 and W ′(C∗W ) = 1, we have

W (c) ≤W (C∗W ) + c− C∗W

and it now follows from Lemma E.3 that

k(c) = W (c)− V1(c−K) ≤W (C∗W )− C∗W − (V1(C∗1 )− C∗1 −K) ≤ 0.

for all c ≥ C∗1 + K. In order to complete the proof of the first part we distinguish three cases

depending on the location of the threshold C∗W .

Case 1: C∗W ≤ K. In this case the function W (c) is linear for c ≥ K. Since V1(c) is concave, the

functions V1(c−K) and W (c) can have at most two crossing points. But, since V1(c−K) >

W (c) for large c as shown above there can be at most one crossing point.

Case 2: C∗W ≥ C∗1 +K. Suppose towards a contradiction that the function k has more than one

zero and denote by z0 ≤ z1 its two largest zeros in the interval [K,C∗1 +K]. Then, k(c) > 0

for c ∈ (z0, z1) due to the above inequality and it follows that the function k has a positive

local maximum in the open interval (z0, z1). Since C∗W ≥ C∗1 + K it follows from Lemmas

B.8 and E.1 that the function k(c) satisfies

L0k(c)− λk(c) + (µ0 − µ1 + rK)V ′1(c−K) = 0 (48)

in the interval [0, C∗1 +K] and the required contradiction now follows from Lemma B.5 and

the fact that µ1 − µ0 − rK > 0 whenever K ≤ K∗ as a result of Lemma C.3.

Case 3: K ≤ C∗W ≤ C∗1 +K. If z1 ≤ C∗W then the same argument as in Case 2 still applies so

assume that k(c) has zeros in the interval [C∗W , C
∗
1 + K]. Since V1(c − K) is concave and

k(C∗1 +K) ≤ 0 we know that it can have at most one zero there. Denote the location of this

zero by z̄ so that k(c) > 0 for c ∈ [C∗W , z̄) and k(c) ≤ 0 for c ≥ z̄. Since k(c) solves (48) on

[0, C∗W ] and satisfies k(C∗W ) > 0 as well as k′(C∗W ) = 1 − V ′1(C∗W − K) < 0 it follows from

Lemma B.6 that k(c) > 0 for all c ≤ C∗W .

Q.E.D.

F Proof of Theorems 3 and 4

F.1 Intuition and road map

In order to prove Theorems 3 and 4, we need to proceed with the following four steps.
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1. The HJB equation now takes the form

max{L0φ(c; b) + Fφ(c; b); 1− φ′(c);V1(c−K)− φ(c; b), `0(c)− φ(c; b)} ≤ 0. (49)

The only difference between this equation and the HJB equation (30) without the option

is that since the firm may invest as soon as it has enough cash the value function needs to

satisfy the additional condition φ(c; b) ≥ V1(c−K) for all c ≥ K.

2. This step consists in establishing a verification result for the HJB equation and is accom-

plished by Lemma F.1 below.

3. To proceed with Step 3 we need to conjecture the form of the optimal policy to (49). The

first candidate for this is the barrier policy associated with u(c;C∗U ). For this strategy to

be optimal it should be that its value dominates that of any other policy. In particular,

it is necessary that u(c;C∗U ) ≥ W (c) for all c ≥ 0 and, since u(0;C∗U ) = W (0) = `0(0) by

construction it is also necessary that u′(0;C∗U ) ≥ W ′(0). Lemma F.2 shows this condition is

in fact both necessary and sufficient for the function u(c;C∗U ) to be the value function and

for the global optimality of the corresponding barrier policy.

Suppose now that W ′(0) > u′(0;C∗U ) and consider the function W̄ (c) that solves equation

(2) and coincides with the function W (c) for all c ≤ C∗W . Since the functions U(c) and

W̄ (c) solve the same equation subject to the same initial value our assumption about the

derivatives of these functions at the origin allows us to show that W̄ (c) > u(c;C∗U ) for all

c > 0. By construction, the function W̄ (c) touches the linear part of the function W (c) at

the point C∗W . Pick a cash level C∗L that we will vary between C∗W and the threshold C̃ of

Lemma E.4 and for each such level denote by S(c;C∗L) the unique solution to (2) satisfying

value matching and smooth pasting with W (c) at the point C∗L. By continuity, there exists a

unique C∗L ∈ (C∗W , C̃) such that S(c;C∗L) touches the graph of the function V1(c −K) from

above at some point C∗H and we will take the function

V (c) = 1{c≤C∗L}W (c) + 1{C∗L<c≤C
∗
H}S(c;C∗L) + 1{c>C∗H}V1(c−K)

as the value of our candidate optimal policy. A rigorous implementation of this construction

is provided below.

4. Step 4 consists in proving that the value of our candidate optimal strategy solves the HJB

equation (49) and is accomplished by Lemma F.5.

Once these four steps are complete, it will remain to show that u(c;C∗U ) is the value function if and

only if the investment cost is below a threshold K∗∗ and that C∗U = K if and only if K is below

another threshold K < K∗∗. This is done in Lemmas F.6 and F.8.
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F.2 Proofs

We start this appendix with a standard verification result for the HJB equation associated with

the firm’s problem:

Lemma F.1 If φ(c) is a continuous and piecewise twice continuously differentiable function such

that

max{L0φ(c) + Fφ(c); 1− φ′(c);V1(c−K)− φ(c), `0(c)− φ(c)} ≤ 0

and

φ′(c−) ≥ φ′(c+)

at each point of discontinuity of φ′(c) then φ(c) ≥ V̂ (c) for all c ≥ 0.

Proof. Fix an arbitrary strategy π ∈ Π, denote by Ct the corresponding cash buffer process and

consider the process

Yt = e−ρt∧τ0φ(Ct∧τ0) +

∫ t∧τ0

0+
e−ρs(dDs − fsdNs).

Using the Ito-Tanaka formula (see Karatzas and Shreve (1991, Chapter 3.6)) together with argu-

ments similar to those of the proof of Lemma B.1 it can be shown that Yt is a local supermartingale

and since

Yt ≥ −
∫ τ0

0
e−ρsfsdNs

where the right hand side is integrable by definition of Π we conclude that Yt is a supermartingale.

In particular, for any stopping time τ, we have

φ(c) = φ(C0)−∆φ(C0) = Y0 −∆φ(C0) ≥ Ec[Yτ ]−∆φ(C0)

= Ec

[
e−ρτ∧τ0φ(Cτ∧τ0) +

∫ τ∧τ0

0+
e−ρs(dDs − fsdNs)

]
−∆φ(C0)

= Ec

[
e−ρτ∧τ0φ(Cτ∧τ0) +

∫ τ∧τ0

0
e−ρs(dDs − fsdNs)

]
−∆D0 −∆φ(C0)

≥ Ec
[
1{τ0≤τ}e

−ρτ0`0(0) + 1{τ0>τ}e
−ρτV1(Cτ )

]
+ Ec

[∫ τ∧τ0

0
e−ρs(dDs − fsdNs)

]
−∆D0 −∆φ(C0)

≥ Ec
[
1{τ0≤τ}e

−ρτ0`0(0) + 1{τ0>τ}e
−ρτV1(Cτ ) +

∫ τ∧τ0

0
e−ρs(dDs − fsdNs)

]
(50)
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where the first inequality follows from the optional sampling theorem, the second follows from the

assumptions of the statement, and the third follows from

∆D0 + ∆φ(C0) = ∆D0 + φ(C0− −∆D0)− φ(C0−) =

∫ C0−

C0−−∆D0

(1− φ′(c))dc ≤ 0.

Taking the supremum over π ∈ Π on both sides of (50) then gives

φ(c) ≥ sup
π∈Π

Ec

[
1{τ0≤τ}e

−ρτ0`i(0) + 1{τ0>τ}e
−ρτV1(Cτ ) +

∫ τ∧τ0

0
e−ρs(dDs − fsdNs)

]
and the desired result now follows from Lemma C.1. Q.E.D.

Lemma F.2 If the condition u′(0;C∗U ) ≥ W ′(0) holds then the function u(c;C∗U ) satisfies the

conditions of Lemma F.1 and we have C∗U ≤ C∗1 +K.

Proof. If u′(K;K) ≥ V ′1(0) then C∗U = K and we only need to show that u′(c;K) ≥ 1 for c ≤ K.

To this end, let the function W̄ (c) be the unique solution to

L0W̄ (c)− λW̄ (c) + λ(V1(C∗1 )− C∗1 −K + c) = 0, c ≥ 0,

which coincides with W (c) on the interval [0, C∗W ]. Since this function satisfies W̄ ′(C∗W ) = 1 as well

as W̄ ′′(C∗W ) = 0 it follows from Lemma B.7 that W̄ ′(c) ≥ W̄ ′(C∗W ) = 1 for all c ≥ 0. Then, the

difference m(c) = u(c;K)− W̄ (c) satisfies

L0m(c)− λm(c) = 0, c ∈ [0,K]. (51)

Furthermore, we have m(0) = 0 as well as m′(0) ≥ 0 since u′(0;K) ≥ W ′(0) by assumption and

it now follows from the result of Lemma B.6 that m′(c) ≥ 0 or equivalently u′(c;K) ≥ W̄ ′(c) ≥ 1,

which is what had to be proved.

Now assume that u′(K;K) < V ′1(0) so that C∗U > K. In order to show that u′(c;C∗U ) ≥ 1 for

all c ≥ 0 consider the function defined by

φ(c) = u(c;C∗U )− W̄ (c)

with the function W̄ (c) as above. By Lemmas E.1 and D.2 we know that φ(c) solves (51) and, since

φ(0) = 0 < φ′(0) by assumption it follows from Lemma B.5 that we have

u′(c;C∗U ) ≥ W̄ ′(c) ≥ 1, c ≤ C∗U . (52)

Using equation (52) in conjunction with the definition of the liquidation value, it is immediate to

show that the function u(c;C∗U ) satisfies

u(c;C∗U ) = u(0;C∗U ) +

∫ c

0
u′(x;C∗U )dx = `0(0) +

∫ c

0
u′(x;C∗U )dx ≥ `0(0) + c = `0(c),
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and, since the inequality u(c;C∗U ) ≥ V1(c −K) follows from Lemma D.2, the proof that u(c;C∗U )

satisfies the conditions of Lemma F.1 will be complete once we show that

L0u(c;C∗U ) + Fu(c;C∗U ) ≤ 0.

A direct calculation using the definition of the functions u(c;C∗U ) and V1(c) together with the fact

that, as shown below, C∗U ≤ C∗1 +K gives

L0u(c;C∗U ) +Fu(c;C∗U ) =


0, c ≤ C∗U ,
(rK − µ1 + µ0)V ′1(c−K), C∗U ≤ c ≤ C∗1 +K,

(r − ρ)(c− (C∗1 +K)) + µ0 − µ1 + rK, c ≥ C∗1 +K.

.

and the desired result now follows from the increase of the function V1(c) and the fact that we have

µ0 − µ1 + rK < 0 for all K ≤ K∗ by Lemma C.3.

In order show that C∗U ≤ C∗1 +K assume that u′(K;K) < V ′1(0) for otherwise there is nothing to

prove and suppose that the desired inequality does not hold. In this case we have that u′(C∗U ;C∗U ) =

1 and since u(c;C∗U ) > V1(c − K) for c < C∗U we get that u(c;C∗U ) is strictly convex in a small

neighborhood to the left of the point C∗U . This implies that u′(c;C∗U ) < u′(C∗U ;C∗U ) = 1 in this

small neighborhood, which is impossible by (52).

Q.E.D.

Having dealt with the case in which the firm uses exclusively the barrier strategy associated

with the value function u(c;C∗U ) we now turn to the case in which it combines this strategy with

the strategy associated with the function W (c). In order to state the result let

Li(c; a, b) = Ec

[
e−(ρ+λ)τi,a1{τi,a≤τi,b}

]
Hi(c; a, b) = Ec

[
e−(ρ+λ)τi,a∧τi,b

]
− Li(c; a, b) = Ec

[
e−(ρ+λ)τi,a1{τi,b≤τi,a}

]
where the stopping time τi,x denotes the first time that the uncontrolled cash buffer process of a

firm with mean cash flow rate µi reaches the level x. Closed form expressions for these two functions

are provided in Appendix J.

Lemma F.3 Assume that u′(0;C∗U ) < W ′(0). Then the unique piecewise twice continuously

differentiable solution to the free boundary problem (18)–(22) is given by

V (c) =


W (c), c ≤ C∗L,
S(c), C∗L ≤ c ≤ C∗H ,
V1(c−K), c ≥ C∗L,

for some constants C∗W ≤ C∗L ≤ C∗H with C∗L > C∗U where

S(c) = Φ(c) + (W (C∗L)− Φ(C∗L))L0(c;C∗L, C
∗
H) + (V1(C∗H −K)− Φ(C∗H))L0(c;C∗L, C

∗
H)

Furthermore, max{W (c), V1(c−K)} ≤ V (c) for all c ≥ 0.
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Proof. By Lemma D.1, finding a solution to (18)–(22) is equivalent to finding a linear function

that is tangent to the graph of the functions p̂(c) and v̂1(c) defined by

p(c) = W (c)− φ(c; b) = F0(c)p̂(Z(c)) = F0(c)p̂

(
G0(c)

F0(c)

)
.

and (45). A direct calculation using the results of Lemma E.1 shows that

L0p(c)− λp(c) = (r − ρ)(c− C∗W )+

and it now follows from Lemma D.1 that the function p̂(c) is linear for y ≤ Z(C∗W ) and strictly

concave otherwise. Since W (c) is concave by Lemma E.1, we get

p′(c) = W ′(c)− λ

λ+ ρ− r
≥W ′(C∗W )− λ

λ+ ρ− r
=

ρ− r
λ+ ρ− r

> 0.

Since F0 is nonnegative and decreasing, the ratio p(c)/F0(c) is positive and strictly increasing for

sufficiently large c. Therefore, Lemma D.1 implies that ŵ is increasing for sufficiently large values

of y and, since p̂(y) is concave, it is globally increasing.

Since u(0;C∗U ) = W (0) = `0, we have that ŵ(c) and the function

û(y) = (u(Z−1(y);C∗U )− Φ(Z−1(y)))/F0(Z−1(y))

are both linear on [Z(0), Z(C∗W ) ∧ Z(C∗U )] and coincide at the point Z(0). On the other hand, the

inequality u′(0;C∗U ) < W ′(0) implies that û(y) ≤ p̂(y) for all y ∈ [Z(0), Z(C∗W )∧Z(C∗U )]. It follows

that C∗W ≤ C̃ < C∗U because p̂ is a linear function that crosses the graph of the concave function

v̂1(y) at Z(C̃) and, by the definition of C̃, we have p̂(y) < v̂1(y) for all y > Z(C̃).

Since we know that u(c;C∗U ) ≥ V1(c−K) for all c ≤ C∗U by Lemma D.2, we get that the linear

function defined by

p̄(y) =
p̂(Z(C∗W ))− p̂(Z(0))

Z(C∗W )− Z(0)
y +

p̂(Z(0))Z(C∗W )− p̂(Z(C∗W ))Z(0)

Z(C∗W )− Z(0)

is tangent to the concave function p̂(y) and lies strictly above the concave function v̂1(y) for all

y ≥ Z(C̃). On the other hand, since

v̂1(Z(C̃)) = p̂(Z(C̃)) and v̂′1(Z(C̃)) > p̂′(Z(C̃))

as a result of Lemma E.4, we have that the tangent line to p̂ at the point y = Z(C̃) lies strictly

below v̂1 for y > Z(C̃). By continuity, this implies that there exists a unique y∗L ∈ (Z(C∗W ), Z(C̃))

such that the tangent line to p̂ at y∗L is also tangent to v̂1 at some y∗H > y∗L. Setting

C∗W = Z−1(Z(C∗W )) ≤ C∗L = Z−1(y∗L) < Z−1(y∗H) = C∗H

produces the unique solution to value matching and smooth pasting conditions. Since p̂(c) is
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increasing and concave its tangent line at the point y∗L crosses the vertical axis above the level

p̂(Z(0)). Therefore, if the target C∗U were greater or equal to C∗H then this tangent would have to

cross the vertical axis below û(Z(0)) = p̂(Z(0)) thus leading to a contradiction.

To complete the proof it now only remains to show that V (c) ≥ max{W (c), V1(c−K)} but this

follows immediately from the fact that since the functions p̂(c) and v̂1(c) are both concave we have

v̂(c) ≥ max{p̂(c), v̂1(c)} for all c ≥ 0. Q.E.D.

Lemma F.4 If u′(0;C∗U ) < W ′(0), then the function V (c) of Lemma F.3 satisfies the conditions

of Lemma F.1 and we have C∗H < C∗1 +K.

Proof. To show that V ′(c) ≥ 1 for all c ≥ 0 we start by observing that this inequality holds in

the region [0, C∗L] ∪ [C∗H ,∞) as a result of the definition and Lemmas B.8, E.1, D.2. On the other

hand, since we know that C∗H ≥ C∗L ≥ C∗W we have V ′(C∗L) = W ′(C∗L) = 1 and

V (c) ≥W (c) = W (C∗W ) + c− C∗W , C∗L ≤ c ≤ C∗H .

This immediately implies that V ′′(C∗L) ≥ 0 and since J(c) = V ′(c) is a solution to

L0J(c) + λ− (λ− r)J(c) = 0,

it follows from Lemma B.5 that J ′(c) = V ′′(c) can have at most one zero in the interval I =

[C∗L, C
∗
H ]. If no such zero exists then V ′′(c) ≥ 0 in I and consequently V ′(c) ≥ V ′(C∗L) = 1 for

all c ∈ I. If on the contrary V ′′(c) has one zero located at some c∗ ∈ I then we have that V ′(c)

reaches a global maximum over I at the point c∗ and since V ′(C∗H) = V ′1(C∗H −K) ≥ 1 due to the

concavity of V1(c) we conclude that V ′(c) ≥ 1 holds for all c ∈ I.

Let us now show that C∗H < C∗1 +K. If not then we have V ′(C∗H) = 1 and since V (c) > V1(c−K)

for all c ≥ K we have that V (c) is convex in a neighborhood of C∗H . This in turn implies that

V ′(c) < V ′(C∗H) = 1 in this neighborhood, which is impossible. Using the fact that V ′(c) ≥ 1 in

conjunction with the definition of the liquidation value, we obtain

V (c) = V (0) +

∫ c

0
V ′(x)dx = `0(0) +

∫ c

0
V ′(x)dx ≥ `0(0) + c = `0(c).

Finally, since C∗W ≤ C∗L ≤ C∗H ≤ C∗1 +K by the first part of the proof it follows from the definition

and concavity of the functions W (c) and V1(c) that

L0V (c) + FV (c) =


0, c ≤ C∗W ,
(r − ρ)(C − C∗W ), C∗W ≤ c ≤ C∗L,
0, C∗L ≤ c ≤ C∗H ,
AV ′1(c−K) + (r − ρ)(c− C∗1 −K)+, c ≥ C∗H ,

where we have set A = µ0 − µ1 + rK. By Lemma C.2 we know that A < 0 whenever K ≤ K∗.

Therefore it follows from the increase of the function V1(c) that we have

L0V (c) + FV (c) ≤ 0, c ≥ 0.
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and the proof is complete. Q.E.D.

Lemma F.5 We have V (c) ≤ V̂ (c) for all c ≥ 0 where V̂ (c) denotes the value function of the

firm’s optimization problem.

Proof. Let τ∗L = τ0,C∗L
(resp. τ∗H = τ0,C∗H

) denote the first time that the uncontrolled cash buffer

of a firm with mean cash flow rate µ0 falls below C∗L (resp. increases above C∗H). Using arguments

similar to those of the proof of Lemma F.2 it can be shown that

V (c) = Ec

[
1{τ∗H<τN∧τ

∗
L}e
−ρτ∗HV1(C∗H −K) + 1{τ∗L<τN∧τ

∗
H}e
−ρτ∗LW (C∗L)

+1{τN<τ∗L∧τ
∗
H}e
−ρτN (V1(C∗1 )− C∗1 −K + CτN−)

]
.

On the other hand, using arguments similar to those of the proof of Proposition 1 it can be shown

that the function W (c) satisfies

W (c) = Ec

[
1{τ0<τN}e

−ρτ0`0 + 1{τ0≥τN}e
−ρτNV1(C∗1 ) +

∫ τ0∧τN

0
e−ρs(dLs − fUs dNs)

]
where Lt = sups≤t(bt − C∗W )+ with

dbt = (rbt− + µi)dt+ σdBt + (C∗W − bt−)+dNt,

and the process fUt is defined as in equation (46). Combining these two equalities and using the

law of iterated expectations then gives

V (c) = Ec

[
1{τ0<τ}e

−ρτ0`0 + 1{τ0≥τ}e
−ρτV1(Cτ ) +

∫ τ0∧τ

0
e−ρs(dDs − fUs dNs)

]
where we have set τ = τN ∧ τ∗H and the cumulative dividend process is defined by

Dt =

∫ t

0
1{Cs−≤C∗L}dLs.

The same arguments as in the proof of Lemma D.3 then show that strategy (τ,D, fU ) is admissible

and the desired result now follows from the result of Lemma C.1. Q.E.D.

Lemma F.6 There exists a unique K∗∗ ∈ (0,K∗) such that u′(0;C∗U ) > W ′(0) if and only if

K < K∗∗.

Proof. We will use the notation P (c;K) = u(c;C∗U (K);K) and W (c;K) to show the dependence

of these functions on the investment cost. From the proof of Lemma F.8 we know that P ′(0;K) >

W ′(0;K) for sufficiently small values of K. Similarly, we know that the function V1(c − K∗)

touches the function W (c;K∗) from below at C∗1 +K∗ so that C∗L(K∗) = C∗H(K∗) = C∗1 +K∗ and
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P ′(0;K∗) < W ′(0;K∗). Therefore, it suffices to show that there exists a unique critical investment

cost such that we have

P ′(0;K∗∗) = W ′(0;K∗∗).

Assume towards a contradiction that this is not the case so that there exist K1 < K2 such that

P ′(0;Ki) = W ′(0;Ki). Let the function W̄i(c) denote the unique solution to

L0W̄i(c)− λW̄i(c) + λ(V1(C∗1 )− C∗1 −Ki + c) = 0, c ≥ 0,

which coincides with the function W (c;Ki) on the interval [0, C∗W (Ki)]. From the proof of Lemmas

F.2 and B.7 we know that this function is concave for c ≤ c∗i = C∗W (Ki) and convex for c ≥ c∗i
so that W̄ ′i (c) > W̄ ′(c∗i ) = 1 for all c 6= c∗i . Since P (0;Ki) = W̄i(0) by definition, the equality

U ′(0;Ki) = W ′(0;Ki) implies that the two functions coincide for c ≤ C∗U (Ki). Consider the function

defined by

m(c) = W̄i(c)− V1(c−Ki)

and which satisfies (48). If C∗U (Ki) > Ki, then m(C∗U (Ki)) = m′(C∗U (Ki)) = 0. On the other

hand, it follows from the proof of Lemma F.2 that m(c) ≥ 0 for all c ≥ Ki. If C∗U (Ki) = Ki

then W̄ ′i (C
∗
U (Ki)) ≥ V ′1(0) implies that m(C∗U (Ki)) = 0 as well as m′(C∗U (Ki)) ≥ 0 and therefore

m(c) ≥ 0 for c ≥ Ki by Lemma B.6. Now consider the function

k(c) = W̄ ′2(c)− W̄ ′1(c)

which is a solution to

L0k(c)− (λ− r)k(c) = 0, c ≥ 0,

and satisfies k(c∗2) < 0, k(c∗1) > 0. Since k(c) cannot have negative local minima by Lemma B.5 we

have that there exists a unique point c∗ ∈ (c∗2, c
∗
1) such that k(c∗) = 0, k′(c∗) > 0 and k(c) > 0 for

all c > c∗ and k(c) < 0 for c < c∗. That is, W̄2(c) − W̄1(c) attains a global minimum at the point

c∗ and (W̄2 − W̄1)′′(c∗) > 0. Evaluating the differential equation

L0(W̄2 − W̄1)− λ(W̄2 − W̄1)(c) + λ(K1 −K2) = 0

at the point c = c∗ we get

W̄2(c∗)− W̄1(c∗) >
λ

ρ+ λ
(K1 −K2),

and therefore

W̄1(c)− W̄2(c) <
λ

ρ+ λ
(K2 −K1)
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for all c ≥ 0. However, since W̄1(c) ≥ V1(c−K1) for c ≥ K1 and V ′1(c) ≥ 1 for all c ≥ 0 we finally

conclude that

λ

ρ+ λ
(K2 −K1) ≥W1(C∗H(K2))−W2(C∗H(K2)) = W1(C∗H(K2))− V1(C∗H(K2)−K2)

≥ V1(C∗H(K2)−K1)− V1(C∗H −K2) ≥ K2 −K1,

which establishes a contradiction. Q.E.D.

Lemma F.7 We have

u(c;K) = Φ(c,K) +
G0(K)(`0 − Φ(0;K))−G0(0)(`1 − Φ(K;K))

G0(K)F0(0)− F0(K)G0(0)
F0(c)

− F0(K)(`0 − Φ(0;K))− F0(0)(`1 − Φ(K;K))

G0(K)F0(0)− F0(K)G0(0)
G0(c)

where the function Φ(c) = Φ(c;K) is defined as in equation (16).

Proof. The proof follows by direct calculation and thus is omitted. Q.E.D.

Lemma F.8 There exists a unique K ∈ (0,K∗∗) such that, for K ∈ (0,K∗∗), we have u′(K,K) <

V ′1(0) if and only if K > K.

Proof. First of all, we claim that limK↓0 u
′(K;K) =∞. Indeed, up to a first order approximation,

we have that

G0(K)F0(0)− F0(K)G0(0) ≈ (G′0(0)F0(0)− F ′0(0)G0(0))K = αK

with α > 0. Therefore, it follows from Lemma F.7 that

u′(K;K) ≈ (G0(0)(`0 − `1)F ′0(0)− F0(0)(`0 − `1)G′0(0))

αK
=
`1 − `0
K

and the required assertion follows from the fact that `1 ≥ `0. Since u′(K;K) is continuous in K

it remains to show that u′(K;K) = V ′1(0) can have at most one solution. Suppose to the contrary

that K1 < K2 ≤ K∗∗ are two solutions, let gi(c) = u(c;Ki) so that

L0gi(c)− λgi(c) + λ(V1(C∗1 )− C∗1 −Ki + c) = 0, c ≥ 0.

and observe that since Ki ≤ K∗∗ we have that g′i(c) ≥ 1 for all c ≤ Ki by Lemma F.2. Now, a

direct calculation using the above differential equation shows that the functions hi(y) = gi(y+Ki).

satisfy

σ2

2
h′′i (y) + (ry + rKi + µ0)h′i(y)− (ρ+ λ)hi(y) + λ(V1(C∗1 )− C∗1 + y) = 0 ,
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and it follows that the function m(c) = h1(c)− h2(c) solves

σ2

2
m′′(y) + (ry + rK1 + µ0)m′(y)− (ρ+ λ)m(y) + r(K1 −K2)h′2(y) = 0

subject to m(0) = m′(0) = 0. Since h′2(y) > 0, we know from from Lemma B.6 that the function

m(c) is positive and monotone decreasing and it follows that h1(c) > h2(c) for c < 0. Since the

function h2(c) is monotone increasing this in turn implies that we have

`0 = h1(−K1) > h2(−K1) > h2(−K2) = `0,

which provides the required contradiction. Q.E.D.

G Additional proofs

The proofs of all the additional results are gathered in a supplementary appendix.

References

Almeida, H., and M. Campello, 2007, Financial Constraints, Asset Tangibility, and Corpo-
rate Investment, Review of Financial Studies 20, 1429-1460.

Anderson, R., and A. Carverhill, 2012, Corporate Liquidity and Capital Structure, Review
of Financial Studies 25, 797-837.

Alvarez, F., and F. Lippi, 2009, Financial Innovation and the Transactions Demand for
Cash, Econometrica 77, 363-402.

Bar-Ilan, A., D. Perry, and W. Stadje, 2004, A Generalized Impulse Control Model of Cash
Management, Journal of Economic Dynamics and Control 28, 1013-1033.

Bates, T., K. Kahle, and R. Stulz, 2009, Why Do U.S. Firms Hold so Much More Cash
Than They Used To? Journal of Finance, 64, 1985-2021.

Baumol, W., 1952, The Transactions Demand for Cash: An Inventory Theoretic Model,
Quarterly Journal of Economics 66, 545-556.

Becker, B., 2007, Geographical Segmentation of US Capital Markets, Journal of Financial
Economics 85, 151-178.

Bolton, P., H. Chen, and N. Wang, 2011, A Unified Theory of Tobin’s q, Corporate
Investment, Financing, and Risk Management, Journal of Finance, 66, 1545-1578.

Bolton, P., H. Chen, and N. Wang, 2013, Market Timing, Investment, and Risk Manage-
ment, Journal of Financial Economics Forthcoming.

63



Busaba, W., L. Benveniste and R.-J. Guo, 2001, The Option to Withdraw IPOs during the
Premarket: Empirical Analysis, Journal of Financial Economics 60, 73-102.

Caballero, R., and E. Engel, 1999, Explaining Investment Dynamics in the U.S. Maufac-
turing: A Generalized (S,s) Approach, Econometrica 67, 783-826.

Campello, M., J. Graham, and C. Harvey, 2010, The Real Effects of Financial Constraints:
Evidence from a Financial Crisis, Journal of Financial Economics 97, 470-487.

Carlson, M., A. Fisher, and R. Giammarino, 2010, SEO Risk Dynamics, Review of Financial
Studies 23, 3966-3995.

Cooper, R., J. Haltiwanger, and L. Power, 1999, Machine Replacement and the Business
Cycle: Lumps and Bumps, American Economic Review 89, 921-946.

Dayanik, S., and I. Karatzas, 2003, On the Optimal Stopping Problem for One-Dimensional
Diffusions, Stochastic Processes and Their Applications 107, 173-212.

Décamps, J.P., T. Mariotti, J.C. Rochet, and S. Villeneuve, 2011, Free Cash Flow, Issuance
Costs, and Stock Price Volatility, Journal of Finance 66, 1501-1544.

Décamps, J.P., and S. Villeneuve, 2007, Optimal Dividend Policy and Growth Option,
Finance and Stochastics 11, 3-27.

Dellacherie, C., and P.A. Meyer, 1980, Probabilité et Potentiel: Théorie des Martingales,
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Benchmark parameters:

Discount rate ρ 0.06
Interest rate on cash r 0.0055
Mean cash flow rate µ0 0.05
Mean cash flow rate after investment µ1 0.1
Volatility of cash flow σ 0.1
Asset tangibility ϕ 0.0
Bargaining power of incumbents η 0.25
Arrival rate of investors λ 2.0

Benchmark thresholds:

Target cash holding before investment C∗0 0.2971
Target cash holding after investment C∗1 0.2794

Critical investment costs:

Minimal investment cost K 0.0
Switching point K∗∗ 0.3490
Zero NPV investment cost K∗ 0.8494

Low cost environment (Growth firm):

Investment cost K 0.15
Investment threshold C∗U 0.3133

Share of the growth option in value 1− V0(C∗0 )
U(C∗0 ) 44.4264%

High cost environment (Value firm):

Investment cost K 0.75
Dividend distribution threshold C∗W 0.3037
Lumpsum dividend threshold C∗L 0.9177
Investment threshold C∗H 0.9372

Share of the growth option in value 1− V0(C∗0 )
V (C∗0 ) 9.9720%

Gambling required to rule-out the band strategy G/σ 12.4039

Gain from using a band strategy maxs
V (s)
U(s) − 1 1.0432%

Table 1. Benchmark parameters and implied variables



Share of growth option Gain from Gambling to rule-out
in value (%) the band strategy (%) the band strategy

1− V0(C∗0 )
V (C∗0 ) maxs

V (s)
U(s) − 1 G/σ

Benchmark 9.9720 1.0432 12.4039

Meeting intensity (Benchmark: λ = 2.00)
λ = 0.50 10.1757 2.5364 5.2090
λ = 1.00 10.2919 1.7076 8.0175
λ = 3.00 9.7091 0.7574 15.9484

Bargaining power of incumbents (Benchmark: η = 0.25)
η = 0.00 9.7868 0.8387 14.8328
η = 0.50 10.1931 1.4054 9.6132
η = 0.75 10.2977 2.1836 6.2162

Asset tangibility (Benchmark: ϕ = 0.00)
ϕ = 0.25 9.6899 1.0492 12.5850
ϕ = 0.50 9.3067 1.0567 12.8213
ϕ = 0.75 8.7391 1.0663 13.1421

Carry cost of cash (Benchmark: δ = 0.0545)
δ = 0.01 7.0375 0.1869 5.2889
δ = 0.02 7.8510 0.3092 7.5069
δ = 0.04 9.1832 0.7095 10.5898

Volatility of cash flows (Benchmark: σ = 0.10)
σ = 0.08 10.6686 1.1114 12.1385
σ = 0.15 7.2724 0.9132 14.5789
σ = 0.20 3.4994 0.8535 22.2102

Table 2. Characteristics of the optimal strategy
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Figure 1. Value of the firm under the optimal barrier strategy

This figure represents the value of a firm with a growth option as a function of its cash

holdings when K < K ≤ K∗∗. In the shaded area below the investment trigger C∗U , the

optimal policy is to retain earnings and search for investors. In the unshaded area between

C∗U and C∗1 + K, the optimal policy is to invest in the growth option from internal funds.

In the hatched area above C∗1 + K, the optimal policy is to invest with internal funds and

distribute dividends to decrease cash holdings to the target level C∗1 after investment.
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Figure 2. Marginal value of cash under the optimal barrier strategy

This figure plots the marginal value of cash U ′(c) under the optimal barrier strategy in an

environment where the investment cost is low (dashed line) and in an environment where

the costs of investment is high (solid line). In the latter case the marginal value of the cash

drops to one at the point C↓ and remains below one over the interval (C↓, C↑) indicating that

shareholders would rather abandon the option of investing from internal funds and receive

dividends than continue hoarding cash in side the firm.
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Figure 3. Value of the firm under the optimal strategy

This figure represents the value of a firm with a growth option as a function of its cash

holdings when K∗∗ ≤ K < K∗. In the shaded areas the optimal policy is to retain earnings

and search for investors. In the first hatched area, the optimal policy is to distribute dividends

to decrease the level of cash holdings to C∗W . In the unshaded area between C∗H and C∗1 +K

the optimal policy is to invest in the growth option with internal funds. In the second

hatched area, the optimal policy is to invest with internal funds and distribute dividends in

order to decrease cash holdings to the target level C∗1 after investment.
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Figure 4. Marginal value of cash for a firm with a growth option

This figure plots the marginal value of cash V ′(c) under the globally optimal strategy (dashed

line) and the marginal value of cash U ′(c) under the optimal barrier strategy (solid line) in

an environment where the investment cost is high. In the latter case the failure of global

optimality is due to the fact that the marginal value of the cash drops below one indicating

that shareholders would rather abandon the option of investing from internal funds and

receive dividends than continue hoarding cash in side the firm.



0 12 24

0.0

0.5

1.0

Intensity λ

C
os

t

A: Investment costs

0 12 24

6

18

30

42

Intensity λ

R
et

u
rn

(%
)

B: Internal rates of return

0 0.5 1

0.0

0.5

1.0

Asset tangibility ϕ

C
os

t

0 0.5 1

6

10

14

Asset tangibility ϕ
R

et
u

rn
(%

)

0.01 0.03 0.06

0.0

0.5

1.0

Cost of carry δ

C
os

t

0.01 0.03 0.06

6

10

14

Cost of carry δ

R
et

u
rn

(%
)

0.01 0.1 0.2

0.0

0.5

1.0

Volatility σ

C
os

t

0.01 0.1 0.2

6

18

30

42

Volatility σ

R
et

u
rn

(%
)

Figure 5. Critical investment costs and internal rates of return

Panel A plots the critical investment costs K (dotted), K∗∗ (solid) and K∗ (dashed) as

functions of the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash

δ and the volatility of cash flows σ. Panel B plots the internal rate of returns associated

with K∗∗ (solid) and K∗ (dashed) as functions of the same parameters. In each panel the

vertical line indicates the base value of the parameter.
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Figure 6. Cash holdings for a firm with a growth option

Panel A plots the investment threshold C∗U for a firm with a low investment cost as a function

of the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash δ and

the volatility of cash flows σ. Panel B plots the investment threshold C∗H (solid) and the

payout thresholds C∗L (dashed) and C∗W (dotted) for a firm with a high investment cost as

functions of the same parameters. In each panel the vertical line indicates the base value of

the parameter.
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Figure 7. Probabilities of investment

The top four panels plot the average probability of investment with internal funds for a firm

with a low investment cost (dashed line) and a high investment cost (solid line) as functions

of the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash δ and the

volatility of cash flows σ. The lower panels plot the total probability of investment at an

horizon of one year (solid line) and three years (dashed line) for a firm with cash holdings

C = K < K∗∗ (left) and C = K > K∗∗ (right) as functions of the arrival rate of investors λ.

In each panel the vertical line indicates the base value of the parameter.
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