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a b s t r a c t

This paper analyzes competition between mutual funds in a multiple funds version of the model of
Hugonnier and Kaniel (2010). We characterize the set of equilibria for this portfolio management game
and show that there exists a unique Pareto optimal equilibrium. The main result of this paper shows that
the funds cannot differentiate themselves through portfolio choice in the sense that they should offer the
same risk/return tradeoff in equilibrium. This result brings theoretical support to the findings of recent
empirical studies on the importance of media coverage and marketing in the mutual funds industry.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, the number of mutual funds offered to
investors has grown substantially and now exceeds the number of
traded assets in most exchanges (see Gruber, 1996; Massa, 1998),
while an increasing number of thesemutual funds are operating in
the same sector. Most of the funds charge a fraction of fund fees
whereby the manager receives a fixed fraction of the assets under
management (see Golec, 1999; Golec & Starks, 2004), but the level
of these fees varies greatly across funds (see Hortaçsu & Syverson,
2004). As a result, in any givenmarket segment various investment
vehicles are offered to the investor in the form of mutual funds
which differ in their management fees and, presumably, also in
their investment strategies.

The aimof this paper is to investigate ifmutual funds competing
on the same market can differentiate from each other through
portfolio management in a world where investors can move their
money in and out of mutual funds. To this end, we study a
generalization of the model of Hugonnier and Kaniel (2010) with
multiple mutual funds. Specifically, we consider a continuous-
time economy populated by a small investor and two mutual
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fund managers. The small investor implicitly faces high costs
that preclude her from trading directly in the equity market.
These implicit costs can be related, for example, to the fact
that the opportunity costs of spending her time in stock-trading
related activities are high. For example, one might think that
actively trading multiple risky securities requires considerably
more attention than trading in one or twomutual funds. While the
investor is precluded from holding equity directly, she is allowed
to dynamically allocate money between the twomutual funds and
a riskless asset. We impose the natural restriction that the investor
cannot short the funds and assume that both funds charge fraction-
of-fund fees, albeit at different rates.

To focus on the competition between the funds, while
maintaining a tractable setup, we make a few simplifying
assumptions. First, agents have complete information and observe
the actions of each other.1 Second, from the perspective of the
funds markets are complete. Third, the investor is assumed to
have a logarithmic utility function. Fourth, the fund managers
are strategic whereas the investor is not. Specifically, when the
investor determines her holdings in the funds, she takes the funds’
portfolios as given. On the other hand,when a fundmanager selects
the portfolio of his fund, he takes into account the portfolio of the
other and the investors’ reaction to the portfolios of the two funds.

1 This assumption is rather natural in the context of a continuous-time model.
Indeed, if one assumes thatmarket prices are perfectly observed and that the vector
of instantaneous risk premia is known to all, then the portfolio strategy of a given
fund is public knowledge as soon as its returns are continuously observed.
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In order to solve for the equilibria of the game, we start
by studying the investor’s utility maximization problem given
an arbitrary pair of fund portfolios. Since the investor has
logarithmic utility, her optimal strategy depends only on the
current characteristics of the funds. In this context, we show
that she will invest in both funds, in only one of them or not
at all depending on the relative excess returns of the funds with
respect to one another. Interestingly, we show that, contrary to
the monopolistic case considered in Hugonnier and Kaniel (2010),
the investor may find it optimal to invest in a fund whose net-of-
fees Sharpe ratio is currently negative. In other words, competition
for the investor’s money can lead to positive externalities between
mutual funds.

In a second step, we take the investor’s best response strategy
as given and study the Nash game that it induces between
the managers. Combining traditional optimization techniques
with a change of measure argument we characterize the set of
equilibria for this game and show that each of these gives rise
to an equilibrium for our delegated portfolio management game.
Furthermore, we show that among these equilibria there exists
a unique Pareto optimal equilibrium in which the funds offer
the same risk/return trade-off. This implies that the investor is
indifferent between the two funds in equilibrium and hence that
competition does not benefit the investor. In particular, we show
that the total fraction of her wealth that the investor will delegate
is independent of the funds characteristics, and that its allocation
among the funds is arbitrary. This indeterminacy creates a role
for marketing in the mutual fund industry and corroborates the
findings of recent empirical studies showing the importance of
advertising and media coverage, see Barber, Odean, and Zheng
(2005), Gallaher, Kaniel, and Starks (2006), Hortaçsu and Syverson
(2004), Jain and Wu (2000) and Kaniel, Starks, and Vasudevan
(2007) among others.

Fraction-of-fund fees are by far the predominant compensation
contract in the mutual fund industry. However, some funds have
a performance component in their compensation contract. Basak,
Pavlova, and Shapiro (2007), Carpenter (2000) and Grinblatt and
Titman (1989) among others, have studied the optimal portfolio
strategy of a manager receiving convex performance fees in a
setting where the manager receives an exogenous amount of
money to manage at the initial date. An analysis of the equilibrium
asset pricing implications of both fulcrum fees and asymmetric
performance fees is conducted in Cuoco and Kaniel (2001). In
that paper both fund managers and unconstrained investors trade
directly in equity markets, but investors who use the fund services
make allocation decisions only at the initial date. High water mark
fees, used in the hedge fund industry, are discussed in Goetzmann,
Ingersoll, and Ross (2003). Note however that all these models
consider the case of a single mutual fund, and hence abstract from
the strategic aspects of competition among mutual funds.

Since the focus of this paper is the impact of dynamic flows on
the competition between mutual funds, we take the fee structures
of the funds as given. However, it is important to emphasize
that we are not taking a stance on whether fraction-of-fund
fees is the optimal compensation contract, but instead rely on
its widespread use as the motivation for our analysis. Papers
that analyze these optimal contracting issues include Carpenter,
Dybvig, and Farnsworth (2010), Das and Sundaram (2002a,b),
Lynch and Musto (1997), Ou-Yang (2003) and Roll (1992) among
many others.

The remainder of the paper is organized as follows. In Section 2,
we describe the economic setting, the financial market and the
dynamics of the mutual funds. In Section 3, we introduce the
players and their objective functions. Section 4 describes the game
and defines the notion of equilibrium that we use in this paper. In
Section 5, we solve for the best responses of the investor and the
managers. In Section 6, we obtain the equilibrium and discuss the
impact of imperfect competition between mutual funds. Section 7
concludes. All proofs are deferred to the Appendix.

2. The model

We consider a continuous-time economy with a finite horizon
[0, T ]. The uncertainty is represented by a filtered probability
space (Ω, F , F, P) on which is defined a standard n-dimensional
Brownian motion represented by the column vector B. The
filtration F = {Ft : 0 ≤ t ≤ T } is the usual augmentation of the
filtration generated by the Brownian motion and we let F = FT .

In the sequel, all processes are assumed to be adapted to F and
all statements involving random quantities are understood to hold
either almost surely or almost everywhere.We shall alsomake use
of the following vectorial notation: a � denotes transposition, � · �
denotes the usual Euclidean norm in Rn and 1k is a k-dimensional
vector of ones.

2.1. Securities

There is a single perishable good (the numéraire) in units of
which all quantities are expressed. The financial market consists
of n + 1 long-lived securities. The first of these is a locally riskless
asset whose price S

0 is given by

S
0
t

= ert (1)

for some constant interest rate r . The remaining n assets are risky
and are referred to as the stocks. The price S
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for some drift ai and some volatility vector σi ∈ Rn which are both
assumed to be constant. We let a ∈ Rn denote the column vector
of stock drifts, σ ∈ Rn×n denote the square matrix obtained by
stacking up the individual stock volatilities and we assume that σ
is invertible.

The assumptions imposed on the coefficients of the model
imply that the relative risk premium, or market price of risk, ξ :=
σ−1(a − r1n) is well defined. As a result, the formula

dQ
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�
(3)

defines an equivalent risk-neutral probability measure. Since the
volatility matrix of the stocks is invertible this risk-neutral
probability measure is uniquely defined and it follows that the
financial market is dynamically complete in the absence of trading
constraints.

2.2. Mutual funds

We consider two mutual funds, indexed by i ∈ {1, 2}, both of
which have access to the n + 1 securities described above. The
management fees are assumed to bewithdrawn continuously from
fund i at the constant rate γi applied to the market value of the
assets under management and we denote by γ = (γ1, γ2)

� the
vector of instantaneous fee rates.

A trading strategy for fund i is a vector process θi specifying
the share of the fund’s assets invested in each of the stocks. Given
such a trading strategy, the return on investments in fund i evolves
according to

dFit =
�
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it
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it
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�
dt + Fitψ

�
it
dBt , (4)

where ψi = σ �θi is the corresponding fund-volatility process.
Since the volatility matrix is invertible there is a one-to-
one correspondence between fund trading strategies and fund
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volatilities and we will from now on identify the manager’s
strategy with the volatility of his fund.

In what follows we denote by Ψi the set of fund-volatility
processes ψi with the property that the solution to Eq. (4) is non-
negative.

3. Agents

3.1. The investor

We consider a small investor2 who has no direct access to the
risky assets, but is allowed to trade in the riskless asset and the two
mutual funds.3

A trading strategy for the investor is a two-dimensional vector
process π specifying the share of wealth invested in each of the
two mutual funds. Since investors cannot short actively managed
funds, we impose the constraint

πt ∈ R2
+, 0 ≤ t ≤ T .

Given a pair (ψ1, ψ2) of fund volatilities, and under the usual self-
financing condition, the investor’s wealth W = W (π , ψ1, ψ2)
evolves according to

dWt =
�
1 − π �

t
12

�
Wt

dS0
t

S
0
t

+
2�

i=1

Wtπit

dFit
Fit

= Wt

�
r + π �

t
(ψtξ − γ )

�
dt + Wtπ

�
t
ψtdBt (5)

with initial conditionW0 > 0whereψ = (ψ1, ψ2)
� represents the

volatility matrix of the two mutual funds.
Denote by Φit the process of cumulative management fees paid

by the investor to fund i, that is

Φit :=
�

t

0
γiπisWsds. (6)

In what follows we let Π(ψ) denote the set of processes π ∈ R2
+

such that, given ψ , the solution to Eq. (5) is a positive process and
2�

i=1

EQ

��
T

0
e−rtdΦit

�

= EQ

��
T

0
e−rtγ �πtWt(π , ψ1, ψ2)dt

�
< ∞. (7)

Since the market is dynamically complete, the above expectation
represents the market value of the future management fees to
an unconstrained investor and the constraint guarantees that this
value is finite for both mutual funds.

The investor is assumed to have logarithmic preferences over
terminal wealth. Given a fund-volatility matrix ψ , her objective is
thus to select a trading strategy π ∈ Π(ψ) so as to maximize the
expected utility

U(π , ψ1, ψ2) = E [log(WT (π , ψ1, ψ2))] .

The facts that the fund-value processes are driven by n indepen-
dent Brownian motions and that the investor is not allowed to

2 While it would be interesting to include heterogenous investors into themodel,
we focus on the case of a single investor for tractability. Indeed, the inclusion of
heterogenous investors would make our model similar to a general equilibrium
model with incomplete markets, a class of models which are known to be very
difficult to solve, even numerically.
3 The inability of the investor to trade stocks directly should be viewed as a

reduced form representing the fact that it is more costly for her to trade stocks
efficiently than it is for the funds.

short the funds imply that she effectively faces an incompletemar-
ket. The assumption of log utility is therefore critical because it is
the only utility function which allows for a closed-form solution of
the investor’s problem for all fund volatilities.

The model can also be solved under the assumption that the
investor has a constant relative risk aversion utility function but
in that case it has to be established ex-ante that the managers’
optimal strategies are deterministic, for otherwise one cannot
solve the investor’s problem given an arbitrary pair of fund
volatilities. The results in that case are very similar to those
obtained with a logarithmic utility function and hence do not
warrant the additional difficulty.

3.2. The fund managers

In exchange for his services, the manager of fund i receives
the fees that are generated by the investor’s trading of the fund.
Specifically, if the investor follows some strategy π then the
manager of fund i receives γiπitWt per unit of time and the
corresponding cumulative fee is given by the process Φi defined
in Eq. (6).

We assume that the manager of fund i chooses the volatility of
his fund in order to maximize the initial market value

Vi(π , ψ1, ψ2) = EQ

��
T

0
e−rtγiπitWt(π , ψ1, ψ2)dt

�
(8)

of the future fees generated by the investor’s trading of the fund.4
This assumption is similar to those of Boudoukh, Richardson,
Stanton, and Whitelaw (2004) and Hugonnier and Kaniel (2010)
and can be justified as follows. Each of the mutual funds should be
viewed as being part of a different financial services firm. In this
case, Eq. (8) represents the contribution of the given fund to the
market value of the firm that owns it and our specification implies
that the manager of fund i acts in order to maximize the value of
the firm.5 The simplifying assumption we make is that we ignore
agency conflicts between the manager and the shareholders of the
financial services firm that employs him.

4. The game

We assume that the investor is a small agent who does
not realize that her decisions have an impact on the managers’
strategies.6 On the other hand, we assume that the managers act
independently and non-cooperatively and take into account the
reaction function of the investor in choosing their strategy. The
3-player game is thus a Nash game between the two managers,
and a Stackelberg game between each manager and the investor.
Notice that, even if they have access to the same market, the
Nash players are not symmetrical, because they have potentially
different management fees.

The sequence of events is as follows. At the initial time,
the managers announce simultaneously their portfolio strategies
through the fund-volatility processesψ1 andψ2. The investor then
reacts by dynamically allocating herwealth between the two funds
and the riskless asset. Accordinglywe have the following definition
of an equilibrium for our delegated portfolio management game.

4 It is important to note that maximizing the market value of the fees is different
from assuming that the manager is risk neutral. In particular, if the manager is
risk averse and can trade in the market without constraint then his value function
depends positively on the market value of the future fees and it follows that the
optimal fund volatilitymaximizes Eq. (8). This striking equivalence only holds under
the assumption that markets are dynamically complete and this is the sense in
which this assumption is crucial to our results.
5 If both funds belongs to the same financial services firm then themanagers will

cooperate in order to maximize the total value of the fees paid by the investor.
6 An equivalent assumption is that the investor does not have to commit in

advance to her allocation strategy.
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Definition 1. An equilibrium is a fund-volatility matrix ψ∗ =
(ψ∗

1 , ψ∗
2 )� with ψ∗

i
∈ Ψi and an investor trading strategy π∗ ∈

Π(ψ∗) such that
1. Given the fund volatility ψ∗, the trading strategy π∗ is optimal

for the investor in the sense that

U

�
π∗, ψ∗

1 , ψ∗
2
�

≥ U

�
π , ψ∗

1 , ψ∗
2
�

for all trading strategies π ∈ Π(ψ∗).
2. The fund volatility ψ∗

i
is optimal for manager i in the sense that
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π∗, ψ∗

i
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�
π̂(ψi, ψ

∗
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), ψi, ψ
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�

for all ψi ∈ Ψi where the trading strategy π̂(ψi, ψ
∗
j
) ∈ Π(ψi,

ψ∗
j
) is the investor’s reaction to the pair (ψi, ψ

∗
j
) of fund

volatilities.

In order to solve for the equilibrium of the game we will
proceed in two steps. First we will solve the investor’s problem
given a pair of admissible fund volatilities in order to obtain her
reaction function. Second,wewill solve theNash game obtained by
plugging this reaction function into the objective functions of the
managers. Since the coefficients of the market are deterministic,
we expect that there exist equilibria of the game in open-loop
strategies. This intuition will be confirmed in Section 6.

5. Optimal strategies

5.1. The investor’s reaction function

We first characterize the investor’s best response to a given
fund-volatility matrix ψ . To simplify the interpretation of the
optimal strategy in terms of the relative performances of funds, we
start by introducing some notation. We denote by

λit = ψ �
it
ξ − γi

�ψit�2

the net-of-fees Sharpe ratio of fund i ∈ {1, 2}, that is the instanta-
neous net excess return on fund i per unit of risk. If the funds are
not collinear, that is if det[ψtψ

�
t
] �= 0, then we denote by

Λt =
�
ψtψ

�
t

�−1
(ψtξ − γ ) = 1

det[ψtψ
�
t ]

�
A1t�ψ2t�2

A2t�ψ1t�2

�

the vector representing the relative risk premia of the funds with
respect to each other. In the above equation, the scalar process

Ait = Ai(ψt) =
�
ψ �

it
ξ − γi

�
− ψ �

it
ψjt

�ψjt�2

�
ψ �

jt
ξ − γj

�

represents the risk-adjusted instantaneous net excess return of
fund i with respect to fund j �= i, i.e. its ‘‘alpha’’ with respect to
fund j.

The following proposition characterizes the solution to the
investor’s optimization problem.

Proposition 2. For a fund-volatility matrix ψ = (ψ1, ψ2)
�
with

ψi ∈ Ψi the investor’s optimal strategy π̂t = π̂t(ψ1, ψ2) is given

by

1. If ψt ∈ C1 = {x : A1(x) > 0, A2(x) > 0} then π̂t = Λt .

2. If ψt ∈ C2 = {x : A1(x) > 0, A2(x) ≤ 0} then π̂t = (λ+
1t , 0)

�
.

3. If ψt ∈ C3 = {x : (A1(x), A2(x)) ∈ R2
− \ (0, 0)} then π̂t =

(λ+
1t , λ

+
2t)

�
.

4. If ψt ∈ C4 = {x : A1(x) ≤ 0, A2(x) > 0} then π̂t = (0, λ+
2t)

�
.

Finally, if ψt ∈ C0 = {x : A1(x) = A2(x) = 0} so that γ2ψ1t
= γ1ψ2t , then the investor is indifferent between the funds and her

optimal strategy is given by π̂1t = ελ+
1t and π̂2t = (1− ε)λ+

2t for any
ε ∈ [0, 1].

Fig. 1. Investor’s optimal strategy as a function of the relative excess rates of return
on the funds.

The result of Proposition 2 is illustrated by Fig. 1 which shows
the investor’s best response in the (A1, A2) space. At any time, four
cases may arise depending on the fund-volatility matrix ψ which
is announced by the managers. The first case happens when the
investor allocates all herwealth to the bond andnone to themutual
funds. This solution occurs when the funds are dominated by the
riskless asset in the sense that the net-of-fees Sharpe ratio λit is
negative for both funds. This can happen in any of the three regions
C1, C2 or C3, at the intersection with the set of fund volatilities for
which both λ1t and λ2t are negative.

The second case happens when the investor invests in the
riskless asset and in only one of the two funds, say fund 1. This
solution occurs when fund 1 dominates fund 2 in the sense that
either A1t > 0 and A2t ≤ 0, which corresponds to region C2,
or A1t ≤ 0, A2t < 0 and λ2t ≤ 0, which corresponds to the
intersection of region C3 with the set of fund volatilities for which
λ2t is negative.7 In that case the proportion of her wealth that the
investor allocates to each fund is equal to the positive part of the
fund’s net-of-fees Sharpe ratio.

The third case happenswhen the investor invests in both funds.
This occurs when none of the funds dominates the other, that is
when both have strictly positive risk-adjusted net excess return
relative to the other. This corresponds to region C1 where the
proportion of her wealth that the investor allocates to each of
the two funds is given by the vector Λt of relative risk premia.
Interestingly, in this case the investor may allocate a positive
proportion of her wealth to a fund which offers a negative net-of-
fees Sharpe ratio as long as both funds have strictly positive risk-
adjusted net excess return relative to the other. An examination of
the optimal investment strategy shows that the fees charged by
fund i have a direct impact on the amount invested in the rival
fund j. This indirect impact of the fees can be positive or negative
depending on the correlation between the funds returns.

The fourth and last case happens when the investor is
indifferent between the two mutual funds. This occurs when both
funds have vanishing risk-adjusted net excess return relative to
the other and corresponds to the region C0. In that case, the
funds are equivalent because they both offer the same investment

7 Note that in the region int(C3), where both A1t and A2t are strictly negative, the
individual Sharpe ratios λ1t and λ2t cannot be strictly positive at the same time.
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opportunity in net terms.8 As a result, the optimal volatility of the
investor’s wealth

ψ �
t
π̂t = λ1tψ1t = λ2tψ2t

is uniquely defined but, as shown by the proposition, there are
infinitely many trading strategies which attain the investor’s
maximal level of expected utility.

5.2. The managers’ best responses

In this section we turn to the characterization of the managers’
best responses. Specifically, we now determine the optimal course
of action of manager i given the volatility of fund j and the reaction
function of the investor to the fund volatilities announced by the
two managers.

Fix i ∈ {1, 2} and assume that the manager of fund j �= i

announces a fund volatility ψj. If the manager of fund i announces
a fund volatility ψi then the investor will respond by playing the
trading strategy π̂(ψi, ψj) prescribed by Proposition 2 and this
determines the present value

Ri(ψi, ψj) = Vi

�
π̂(ψi, ψj), ψi, ψj

�

= EQ

��
T

0
e−rtγiπ̂it(ψi, ψj)Ŵt(ψi, ψj)dt

�

of the future fees to be received by the manager of fund i. In the
above equation, the process Ŵ = Ŵ (ψi, ψj) is the wealth process
generated by the investor’s reaction function, that is the solution
to

dŴt = Ŵt

�
r − γ �π̂t(ψi, ψj)

�
dt + Ŵt π̂t(ψi, ψj)

�ψtdZt , (9)

where the process Z is an n-dimensional standard Brownian
motion under the risk-neutral probability measure defined by
Eq. (3).

As a result of the above discussion, the best response ofmanager
i to the fund volatility ψj is the solution to the stochastic control
problem

R̂i(ψj) = sup
p∈Ψi

Ri(p, ψj)

subject to the dynamics in Eq. (9). In order to simplify the study of
this problemwe start by showing that themanager’s best response
cannot be such that, over a time interval of positive length, both
funds offer strictly positive risk-adjusted net excess return relative
to the other.

Proposition 3. Fix ψj ∈ Ψj and let ψi ∈ Ψi be a fund volatility such

that for some u ∈ [0, T ) and ε ∈ (0, T − u] the matrix ψt belongs

to C1 for all t ∈ [u, u + ε]. Then ψi cannot be the best response of

manager i.

As a result of the above proposition we have that the manager’s
best response is equivalent to the maximization of Ri(·, ψj) over
the set

Ψ ∗
i
(ψj) =

�
p ∈ Ψi : (pt , ψjt) �∈ C1, ∀t ∈ [0, T ]

�
. (10)

In order to simplify this problem further, we now introduce an
equivalent change ofmeasure. Using Lemma 9 in the Appendix, we
have that for each ψi ∈ Ψ ∗(ψj) the non-negative process

M̂t = M̂t(ψi, ψj) = e
�
t

0 (r+γ �π̂s(ψi,ψj))ds Ŵt(ψi, ψj)

W0

8 In the region C0 the fund portfolios are related byψ1t/γ1 = ψ2t/γ2. As a result,
we have that in C0 the individual Sharpe ratios λ1t and λ2t have the same sign.

is a martingale with initial value one under the risk-neutral
probability measure and it follows that the formula

dQ̂ (ψi)

dQ
= M̂T (ψi, ψj)

defines an equivalent probability measure. Using this family of
equivalent probability measures, we have that the problem of
manager i can be written as

Ĵi(ψj) = R̂i(ψj)

W0
= sup

p∈Ψi

Ji(p, ψj)

= sup
p∈Ψi

E
Q̂ (p)

��
T

0
γixt(p, ψj)π̂it(p, ψj)dt

�

where the new state variable x is defined by

xt = xt(ψi, ψj) = exp
�

−
�

t

0
γ �π̂s(ψi, ψj)ds

�
.

Now, if we assume that the manager of fund j restricts his
choice to the set Ψ d

i
of deterministic fund volatilities, then the

above problem is no longer stochastic since the investor’s reaction
function π̂it only depends on time and the market coefficients. As
a result, it follows that if ψj is deterministic then the best response
of manager i is also deterministic.

Fix an arbitrary, but deterministic, fund volatility ψj ∈ Ψ d

j
. In

order to proceed towards a solution to manager i’s optimization
problem we now show that his best response cannot be such that
his fund is excluded by the investor over some time interval of
strictly positive length.

Proposition 4. Fix ψj ∈ Ψ d

j
and let ψi ∈ Ψ d

i
be such that for some

u ∈ [0, T ) and ε ∈ (0, T − u] the investor’s best response satisfies

π̂it(ψi, ψj) = 0 for all t ∈ [u, u + ε]. Then ψi cannot be manager i’s

best response.

Using the results of the above propositions, we deduce that the
best response of manager i must belong to the set

Bi(ψj) =
�
p ∈ Ψ d

i
: p�

t
ξ > γi and Ajt(p, ψjt) ≤ 0, ∀t ∈ [0, T ]

�
.

(11)

Combining the definition of this set with Proposition 2 and
footnote 7 we have that on the set Bi(ψj) the investor’s reaction
function is given by π̂it = λit and π̂jt = 0. As a result, the objective
of manager i can be equivalently written as

Ji(p, ψj) =
�

T

0
γiλite−

�
t

0 γiλisdsdt = 1 − e−
�
T

0 γiλitdt

and it follows that his best response can be obtained by solving

sup
p∈Bi(ψj)

λit = sup
p∈Bi(ψj)

p
�
t
ξ − γi

�p�2

for each t ∈ [0, T ]. The solution to this nonlinear constrained op-
timization program is characterized by the following proposition.

Proposition 5. The best response ψ̂i = ψ̂i(ψj) ∈ Bi(ψj) of manager

i �= j to a given ψj ∈ Ψ d

j
is characterized by the following conditions:

1. If ψ �
jt
ξ < 2γj then ψ̂it = 2γiξ/�ξ�2

.

2. If ψ �
jt
ξ ≥ 2γj and ψjt is collinear to ξ then ψ̂it = γi(ψjt/γj).

3. If ψ �
jt
ξ ≥ 2γj and ψjt is not collinear to ξ then (ψ̂it , ψjt) �∈ C0.
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6. Equilibrium

We now aggregate the results of the previous section to
characterize the Pareto dominant equilibrium for the 3-player
game.

Applying Propositions 3 and 4 successively to both managers
we deduce that if an equilibrium exists it must be such that the
fund volatilities belongs to

B =
�
(ψ1, ψ2) ∈ Ψ d

1 × Ψ d

2 : ψ1 ∈ B1(ψ2) and ψ2 ∈ B2(ψ1)
�

where the sets B1(ψ2) and B2(ψ1) are defined as in Eq. (11).
Using the definition of (λ1, λ2) in conjunction with footnote 7 and
straightforward algebra it can be shown that B reduces to the
set of fund volatilities such that (ψ1t , ψ2t) lies in C0 at all times.
As a result, an equilibrium can only be such that the investor is
indifferent between the funds in the sense that
ψ∗

1t

γ1
= ψ∗

2t

γ2
, 0 ≤ t ≤ T ,

where we assume that, in case the investor is indifferent between
the funds, each manager hopes to obtain the entire share of
the total amount invested in the funds. Now, the fixed points
of the managers’ reaction functions yield an infinite number of
equilibrium paths given by:

ψ∗
1t = γ1

γ2
ctξ , (12)

ψ∗
2t = ctξ , (13)

π∗
1t = ε

γ2

γ1

�
ct�ξ�2 − γ2

�ctξ�2

�
, (14)

π∗
2t = (1 − ε)

�
ct�ξ�2 − γ2

�ctξ�2

�
, (15)

where ε ∈ [0, 1] and ct ≥ c
∗ = 2γ2�ξ�−2. Plugging these expres-

sions into the players’ objective functions, we obtain that the mar-
ket values of the fees and the investor’s expected utility are given
by

R̂2(ε, c)

(1 − ε)W0
= R̂1(ε, c)

εW0

= 1 − exp
�

−
�

T

0
γ2

ct�ξ�2 − γ2

2�ctξ�2 dt
�

, (16)

U(ε, c) = log
�
erTW0

�
+

�
T

0

1
2

�
ct�ξ�2 − γ2

�ctξ�

�2

dt. (17)

Differentiating these expressions with respect to ct shows that the
investor’s expected utility is strictly increasing while the present
value of the fees to the managers are strictly decreasing. Since the
managers act in order to maximize the present value of their fees,
theywill choose the smallest possiblemultiplier and it follows that
the Pareto dominant equilibrium is obtained by setting ct = c

∗ in
Eqs. (12)–(15). We summarize the above discussion by the follow-
ing theorem.

Theorem 6. There exists a unique dominant equilibrium for the Nash

game between the managers. In this equilibrium, the fund volatilities

are given by:

ψ
�
1t = 2γ1

�ξ�2 ξ , (18)

ψ
�
2t = 2γ2

�ξ�2 ξ . (19)

The corresponding trading strategy of the investor is given by

π
�
1t = ε

�ξ�2

4γ1
, (20)

π
�
2t = (1 − ε)

�ξ�2

4γ2
, (21)

where ε is an arbitrary constant in [0, 1]. Finally, the investor’s

equilibrium expected utility is given by

U
� = log

�
erTW0

�
+ �ξ�2

8
T , (22)

and the initial market value of the fees satisfy

R̂
�
1

ε
= R̂

�
2

1 − ε
= W0

�
1 − e− �ξ�2

4 T

�
(23)

where W0 is the investor’s strictly positive initial wealth.

Eqs. (18)–(19) show that in equilibrium the equity components
of the funds are proportional to the fee rate. Thus, our model
predicts that funds with higher management fees will invest more
in equities and hence will have more volatile returns. On the
other hand, the investor’s holdings in a given fund are inversely
proportional to its fee rate and, as a result, her effective equity
portfolio weight

�
σ ��−1

�
π

�
1tψ

�
1t + π

�
2tψ

�
2t

�
= 1

2
�
σ ��−1

ξ

is independent of the fee rates. Furthermore, multiplying Eqs. (20)
and (21) by the corresponding fee rates and summing the results
shows that the fraction of the investor’swealth that is being paid as
management fees is also independent of the fee rates. Combining
these properties yields that, in equilibrium, the investor’s wealth
process, the cumulative fees processes and the players’ value
functions are independent of the fee rate. As in Hugonnier and
Kaniel (2010), the managers’ ability to select the volatility of their
fund and the investor’s ability to adjust her holdings compensate
each other so that, as shown by Eqs. (22)–(23), the players’ welfare
is independent of the fee rates in equilibrium.

A salient feature of the above result is that the volatilities of
the funds divided by their respective fee rates are the same in
equilibrium. As a result, the funds offer the same risk/return trade-
off and it follows that the investor is indifferent between having
access to one or more funds.9 In particular, the total proportion of
her wealth that the investor delegates to the funds is independent
of the funds’ characteristics and its allocation among the funds is
arbitrary. This creates a role for marketing and corroborates the
findings of recent empirical studies on the importance of media
coverage and advertising in the mutual fund industry, see Barber
et al. (2005), Gallaher et al. (2006), Hortaçsu and Syverson (2004)
and Kaniel et al. (2007).

Finally, we note that the outcome of the Pareto dominant
equilibrium is the same as that which would be reached if the
managers decided to cooperate so as tomaximize the present value
of the total amount of fees paid by the investor.

9 A similar conclusion was reached independently by Cetin (2006) in a model
with mean–variance preferences and a single risky asset.
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7. Conclusion

In this paper we analyzed strategic competition between
mutual funds in a dynamic settingwhere both the funds’ portfolios
and the fund flows are determined endogenously in equilibrium.

We first studied the investor’s optimal reaction to the
announced investment strategies of the mutual funds. We showed
that the investor will choose to invest in both funds only in two
cases: when both funds offer an equivalent risk/return trade-off,
or when none dominates the other. In the second case, we showed
that the interaction between the funds is such that, at any time,
one of the fund managers can exclude the other from the market
and thus increase the present value of the fees he collects, without
changing the investor’s welfare. As a result, we obtain that in
equilibrium the funds offer the same risk/return trade-off. This
implies that in equilibrium the investor is indifferent between the
funds andwould be equallywell-off if therewere only one of them.
In particular, the investor’s welfare and the market value of the
total fees paid by the investor is the same in our model and in the
single-fund model of Hugonnier and Kaniel (2010).

The model considered in this paper can be extended in various
directions. First, it would be interesting to extend the framework
in order to incorporate stochastic market coefficients. In this case,
the optimal allocation of the mutual funds could be different and
would probably incorporate a flow hedging component which
might break the competition-irrelevance result stated above.
Second, it would be natural to consider the case where mutual
funds have access to different assets or face different investment
constraints. In particular, it would be very interesting to study
the case in which the funds are restricted from investing in the
bond. Such a constraint would limit the ability of a fund to exclude
the other from the investor’s portfolio and is likely to change
the competition-irrelevance result. We leave these challenging
extensions to future research.

Appendix. Proofs

Proof of Proposition 2. Fix a pair (ψ1, ψ2) ∈ Ψ1 × Ψ2 of fund
volatilities and let π̂ be as in the statement. Furthermore, denote
by Ŵ the wealth process associated with (π̂ , ψ1, ψ2) and by W

the wealth process associated with (π , ψ1, ψ2) for some arbitrary
trading strategy π ∈ Π(ψ).

Applying Itô’s Lemma to Eq. (5) we obtain

d
�
Wt

Ŵt

�
= 1

Ŵt

dWt + Wtd
�

1

Ŵt

�
+ d

�
W ,

1

Ŵ

�

t

= Wt

Ŵt

(dYt − dGt − dHt)

where Y is a stochastic integral with respect to the Brownian
motion, hence a local martingale, and the processes (G,H) are
defined by

Gt =
�

t

0

�
π �
t
ψtψ

�
t
π̂t − π �

t
(ψtξ − γ )

�
dt,

Ht =
�

t

0

�
π̂ �
t
(ψtξ − γ ) − �ψ �

t
π̂t�2� dt.

We claim that dHt is identically equal to zero while dGt is non-
negative. If π̂t = 0 then the result is obvious so assume that π̂t �= 0.
Three cases may arise depending on the fund volatilities. In region
∪4

i=2 Ci it follows from footnote 7 that one of components of π̂t is
zerowhile the other equalsλit . In regionC1 the vector π̂t equals the
vectorΛt and in regionC0 both components of π̂t are proportional
to λ1t . In all three cases the result follows upon inspection of G and
H; we omit the details.

Since both W and Ŵ are non-negative, the above decomposi-
tion shows that their ratio is a non-negative local supermartingale
and hence a true supermartingale by Fatou’s lemma. In particular,
we have

E

�
WT

ŴT

�
≤ W0

Ŵ0
= 1.

Now, using this expression in conjunction with Jensen’s inequality
and the concavity of the investor’s utility function we obtain that

U (π , ψ1, ψ2) − U

�
π̂ , ψ1, ψ2

�

= E

�
log

WT

ŴT

�
≤ log

�
E

�
WT

ŴT

��
≤ 0

and the optimality of π̂ will follow once we have shown that it
satisfies Eq. (7). This is established in Lemma 8 below. �

Proof of Proposition 3. Let (ψ1, ψ2) ∈ Ψ1 × Ψ2 be such that for
some u ∈ [0, T ) and ε > 0 we have

Ak (ψ1t , ψ2t) = akt��ψjt

��2 > 0, k �= j ∈ {1, 2},

for all t ∈ S = [u, u + ε]. This implies that ψtψ
�
t
is non-singular

on S and it thus follows from Proposition 2 that the corresponding
reaction function of the investor is given by

π̂t (ψ1, ψ2) = 1
∆t (ψ1, ψ2)

�
a1t
a2t

�

where ∆t (ψ1, ψ2) is the determinant of the matrix ψtψ
�
t
. Now, let

�t := γiait

γiait + γjajt

∈ (0, 1) ,

and consider the fund volatility ψ�
i
defined by

ψ�
it

=
�

�tψit + (1 − �t)
γi

γj

ψjt , if t ∈ S,

ψit , otherwise.

For this fund volatility we have

Ai

�
ψ�

it
, ψjt

�
= �t ait��ψjt

��2 > 0

Aj

�
ψ�

it
, ψjt

�
= �t��ψ�

it

��2

�
�t ajt − (1 − �t)

γi

γj

ait

�
= 0,

�
ψ�

it

��
ξ − γi = �t

ait

�a1tψ1t + a2tψ2t�2

∆t (ψ1, ψ2)
> 0,

∆t

�
ψ�

i
, ψj

�
= �2

t
∆t (ψ1, ψ2) �= 0

for all t ∈ S while Akt

�
ψ�

i
, ψj

�
= Akt

�
ψi, ψj

�
for k ∈ {1, 2} and

all t �∈ S. Therefore, if manager i uses the fund volatility ψ�
i
, then

Proposition 2 implies that the investor’s reaction changes to

π̂it

�
ψ�

i
, ψj

�
= 1

�t
π̂it

�
ψi, ψj

�
,

π̂jt

�
ψ�

i
, ψj

�
= 0

on S. Since 0 < � < 1, this implies that on S the fund volatility ψ�
i

produces a higher instantaneous fee to manager i than ψi. On the
other hand,

γ �π̂t(ψ1, ψ2) = γ1a1t + γ2a2t

∆t (ψ1, ψ2)

= γiait

�t∆t (ψ1, ψ2)
= γiπ̂it

�
ψ�

i
, ψj

�
,

π̂it(ψ
�
i
, ψj)ψ

�
i

+ π̂jt(ψ
�
i
, ψj)ψjt
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= ait

∆t(ψ1, ψ2)

�
ψit +

�
γi

γj

� �
1 − �t

�t

�
ψjt

�

= aitψit + ajtψjt

∆t(ψ1, ψ2)

= π̂it(ψi, ψj)ψit + π̂jt(ψi, ψj)ψjt ,

so that the total fees paid by the investor and the volatility of
her wealth are the same under both (ψi, ψj) and (ψ�

i
, ψj). In

conjunction with Eq. (9), this implies that the investor’s wealth
process is the same under both strategies and it follows that we
have

Ri

�
ψ�

i
, ψj

�
− Ri

�
ψi, ψj

�

= EQ

��

S

γie−rt
Wt(ψi, ψj)

�
π̂ �
it

− π̂it

�
dt

�

= EQ

��

S

γi

�
1
�t

− 1
�
e−rt

Wt(ψi, ψj)π̂it(ψi, ψj)dt
�

> 0

which completes the proof. �

Corollary 7. For any (ψ1, ψ2) ∈ Ψ1 × Ψ2 the non-negative process

π̂i(ψi, ψj) is uniformly bounded from above by ηi = �ξ�2/4γi.

Proof. Combining the proof of the previous proposition with the
definition of π̂ we have that for any

�
ψi, ψj

�
there exists an x such

that

π̂it

�
ψi, ψj

�
≤ π̂it

�
x, ψj

�
= x

�ξ − γi

�ψ�2 = fi(x).

The desired result now follows by observing that the global
maximizer of the function fi is given by x

∗
i

= 2γiξ/�ξ�2 with
fi(x

∗
i
) = ηi, see Lemma 10 below for details. �

Lemma 8. The portfolio process π̂ = π̂(ψ1, ψ2) belongs to the set

Π(ψ1, ψ2) for any (ψ1, ψ2) ∈ Ψ1 × Ψ2.

Proof. Let Ŵ ≥ 0 be the wealth process associated with (π̂ ,
ψ1, ψ2). Using Girsanov’s theorem in conjunction with the non-
negativity of π̂ and Fatou’s lemma we deduce that e−rt

Ŵt is a
supermartingale under Q . Combining this property with Fubini’s
theorem and Corollary 7 we obtain

EQ

��
T

0
γ �π̂te−rt

Ŵtdt
�

≤ (γ1η1 + γ2η2)

�
T

0
EQ

�
e−rt

Ŵt

�
dt

= �ξ�2

2

�
T

0
EQ

�
e−rt

Ŵt

�
dt ≤ �ξ�2

2
W0T

and the proof is complete. �

Lemma 9. Fix a pair (ψi, ψj) ∈ Ψi × Ψj of fund volatilities such that

ψi ∈ Ψ ∗
i
(ψj). Then the process

M̂t = M̂t(ψi, ψj) = e
�
t

0 γ �π̂s(ψi,ψj)ds Ŵt(ψi, ψj)

W0S
0
t

is a strictly positive, uniformly integrable martingale under the risk-

neutral probability measure.

Proof. Using Girsanov’s theorem in conjunction with Eq. (3) we
have that the process Zt = Bt + ξ t is a standard Brownian motion
under the risk-neutral probability measure. Using this property in
conjunction with Eq. (5) and Itô’s lemma we obtain

dM̂t = M̂t π̂t(ψi, ψj)ψtdZt

and it follows that M̂ is a non-negative local martingale under the
risk-neutral measure. On the other hand, since (ψ1t , ψ2t) �∈ C1it

follows from Proposition 2 that

0 ≤ π̂it(ψi, ψj) ≤ (ψ �
it
ξ − γi)

+

�ψit�2 .

Using this property in conjunction with the Cauchy–Schwartz
inequality and the fact that �x + y�2 ≤ 4�x�2 + 4�y�2 we obtain
��ψ �

t
π̂t(ψi, ψj)

��2 =
��π̂it(ψi, ψj)ψit + π̂jt(ψi, ψj)ψjt

��2

≤
2�

k=1

4�π̂ktψkt�2 ≤
2�

k=1

4
�

(ψ �
kt
ξ − γk)

+

�ψkt�

�2

≤
2�

k=1

4
�

ψ �
kt
ξ

�ψkt�

�2

≤
2�

k=1

4
�ψkt�2�ξ�2

�ψkt�2 = 8�ξ�2.

This shows that the volatility of the localmartingale M̂ is uniformly
bounded and hence satisfies Novikov’s condition. �

Proof of Proposition 4. Let (ψ1, ψ2) ∈ Ψ d

1 × Ψ d

2 be such that for
some u ∈ [0, T ) and ε > 0 we have

π̂it (ψ1, ψ2) = 0

for all t ∈ S = [u, u + ε]. According to Proposition 2, this implies
that λjt is non-negative and combining this property with the
Cauchy–Schwartz inequality we conclude that

bt =






γi

2γjλjt�ξ�2

�
�ξ� +

�
�ξ�2 − 4γjλjt

�
, if λjt > 0,

0, otherwise,

is well defined and non-negative for all t ∈ S. Now define a fund
volatility by setting

ψυ
it

=
�
υtξ , if t ∈ S,
ψit , otherwise,

for some arbitrary υ such that

υt ≥ max
�
bt ,

γi

�ξ�2 ,
γi

γj

ψ �
jt
ξ

�ξ�2

�
> 0.

Using these definitions we readily deduce that
�
ψυ

it

��
ξ − γi = υt �ξ�2 − γi > 0,

Aj

�
ψυ

it
, ψjt

�
=

γiψ
�
jt
ξ − γjυt �ξ�2

υt �ξ�2 < 0,

hold for all t ∈ S so that, according to Proposition 2, π̂it(ψ
υ
i
, ψj) >

0 and π̂jt(ψ
υ
i
, ψj) = 0 on the set S. As a consequence, the

instantaneous fees compare as follows on S

γ � �π̂t

�
ψi, ψj

�
− π̂t

�
ψυ

i
, ψj

��

= γj

�
ψjtξ − γj��ψjt

��2

�

− γi

�
υt �ξ�2 − γi

υ2
t
�ξ�2

�

= 1
(υt�ξ�)2

�
γjυ

2
t
λjt − γiυt�ξ�2 + γ 2

i

�
≥ 0

where the last equality follows from the fact that υt ≥ bt . This
implies that the state variable x is larger under the pair of fund
volatilities (ψυ

i
, ψj). Combining this with the definition of the

objective function yields

Ji(ψ
υ
i
, ψj) − Ji(ψi, ψj) =

�

S

γixt(ψ
υ
it
, ψjt)π̂it(ψ

υ
it
, ψjt)dt

+
�

T

u+ε

γi(xt(ψ
υ
it
, ψjt) − xt(ψit , ψjt))π̂it(ψit , ψjt)dt ≥ 0

and the proof is complete. �
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Lemma 10. The function fi(x) = (x�ξ − γi)/�x�2
is strictly quasi-

concave on Di = {x ∈ Rn : x
�ξ > γi} and admits a maximum at

x
∗
i

= 2γiξ/�ξ�2

Proof. Consider (x, z) ∈ D
2
i
such that fi (z) ≥ fi (x) or equivalently,

�x�2 �
z
�ξ − γi

�
≥ �z�2 �

x
�ξ − γi

�
.

Then we have

∇fi (x) · (z − x) = �x�2 ξ � − 2
�
x
�ξ − γi

�
x
�

�x�4 · (z − x)

= �x�2 �
z
�ξ − γi

�
+ �x�2 �

x
�ξ − γi

�

�x�4 − 2
�
x
�
z

� �
x
�ξ − γi

�

�x�4

≥ �z�2 �
x
�ξ − γi

�
+ �x�2 �

x
�ξ − γi

�

�x�4 − 2
�
x
�
z

� �
x
�ξ − γi

�

�x�4

=
�
x
�ξ − γi

�

�x�2

��z�2 + �x�2 − 2
�
x
�
z

��

=
�
x
�ξ − γi

� �z − x�2

�x�2 > 0

which proves the strict quasiconcavity of fi. As is easily seen we
have that x∗

i
∈ Di satisfies ∇fi(x

∗
i
) = 0 and the desired result now

follows from the first part of the proof. �
Proof of Proposition 5. Fix an arbitrary ψj ∈ Ψ d

j
. Combining the

results of Propositions 3 and 4 we have that the manager’s best
response can be restricted to the set Bi(ψj) of Eq. (11). Now, for an
arbitrary fund volatility ψi in this set we have from Proposition 2
that

π̂it

�
ψi, ψj

�
= εfi(ψit) = ε

ψ �
it
ξ − γi

�ψit�2 ,

π̂jt

�
ψi, ψj

�
= (1 − ε)

γi

γj

fi(ψit) = (1 − ε)
γi

γj

ψ �
it
ξ − γi

�ψit�2 ,

γ �π̂t(ψi, ψj) = γifi(ψit) = γi

ψ �
it
ξ − γi

�ψit�2

for some constant ε ∈ (0, 1] where the function fi is defined as in
Lemma 10. As a result, the objective function of manager i is given
by

Ji

�
ψi, ψj

�
= ε

�
1 − xT (ψi, ψj)

�

= ε
�
1 − e−γi

�
T

0 fi(ψit )dt
�

and it follows that his best response can be obtained bymaximizing
the function fi(p) on the set

Xit(ψjt) =
�
p ∈ Rn : p�ξ > γi and Ajt(p, ψjt) ≤ 0

�
⊆ Di

for each t ∈ [0, T ]. Lemma10 implies that fi is strictly quasiconcave
on Xit(ψjt) and it follows that the Kuhn–Tucker conditions are
both necessary and sufficient to characterize its maximum. We
now prove the three assertions of the statement.
Assertion 1. If ψ �

jt
ξ < 2γj then it is easy to check that the uncon-

strainedmaximum given by Lemma 10 belongs to the set
Xit(ψjt).

Assertion 2. If ψjt = ctξ for some ct ≥ 2γj/�ξ�2 then the Kuhn–
Tucker conditions

∇fi(p) = −µ
∂

∂p
Aj(p, ψjt)

= µ
�
−ctξ fi(p) − ctp

�ξ∇fi(p)
�
,

0 = Aj(p, ψjt)

=
�
ct�ξ�2 − γj

�
− ct

p
�ξ

�p�2

�
p

�ξ − γi

�
,

hold for p = γi(ψjt/γj) and the multiplier µ = (ψ �
jt
ξ −

2γj)/(γi�ψjt�2). Using the definition of ct allows to check
that this solution lies in the set Xit(ψjt).

Assertion 3. Assume thatψ �
jt
ξ ≥ γj andψjt is not collinear with ξ .

If the best response of manager i is such that (ψit , ψjt)
∈ C0 then it must be the case that ψit = γi(ψjt/γj)
and plugging this into the Kuhn–Tucker conditions we
obtain
�

1
��ψjt

��2 + µ

�

ξ

= ψjt

�
ψ �

jt
ξ − γj

�



2

�
γj
γi

�3

��ψjt

��4 +
µ

�
γj
γi

�2

��ψjt

��2





for some Lagrangemultiplierµ. This implies that the fund
volatility ψjt is collinear with ξ and yields the desired
contradiction.

Proof of Proposition 6. Among the available equilibria, the man-
agers will choose the one allowing them to extract the highest ini-
tial value of fees, which corresponds to choosing ct = c

∗ at all
times. Applying this value to Eqs. (12)–(15) and (16)–(17) yields
the result. �
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