
Econometrica, Vol. 80, No. 3 (May, 2012), 1249–1270

ENDOGENOUS COMPLETENESS OF DIFFUSION DRIVEN
EQUILIBRIUM MARKETS

BY J. HUGONNIER, S. MALAMUD, AND E. TRUBOWITZ1

We study the existence of dynamic equilibria with endogenously complete markets
in continuous-time, heterogenous agents economies driven by diffusion processes. Our
main results show that under appropriate conditions on the transition density of the
state variables, market completeness can be deduced from the primitives of the econ-
omy. In particular, we prove that a sufficient condition for market completeness is that
the volatility of dividends be invertible and provide higher order conditions that apply
when this condition fails as is the case in the presence of fixed income securities. In con-
trast to previous research, our formulation does not require that securities pay terminal
dividends, and thus allows for both finite and infinite horizon economies.

KEYWORDS: Continuous-time asset pricing, dynamic market completeness, general
equilibrium theory.

1. INTRODUCTION

EVER SINCE THE SEMINAL CONTRIBUTIONS of Kreps (1982), Duffie and Huang
(1985), and Duffie (1986), the standard way to construct securities market
equilibria in continuous-time economies with heterogenous agents has con-
sisted of three steps. First, compute an Arrow–Debreu equilibrium. Second,
define candidate prices for the traded risky securities by using the associated
consumption price process as a pricing kernel and, third, verify that these
prices give rise to dynamically complete markets. The last step in this pro-
gram is crucial in establishing the existence of an equilibrium. Otherwise one
cannot guarantee that the allocation of the Arrow–Debreu equilibrium can be
implemented by dynamic trading in the given set of securities. This last step is
also the most difficult one, since the candidate prices are given by conditional
expectations which can rarely be computed explicitly.

In representative agent economies, market completeness does not matter for
the existence of an equilibrium, but it is nonetheless important for two reasons.
First, the microeconomic justification for such economies relies on aggregation
results which require complete markets; see Constantinides (1982). Second, it
is now quite common in asset pricing to start from a representative agent econ-
omy and then use the resulting equilibrium pricing kernel outside the model
to price securities, such as derivatives, that were not included in the original
menu of traded assets. Such an approach requires complete markets, since
only in that case does the derived price give the amount necessary to replicate
the cash flows by trading in the primitive securities.

1We wish to thank Tony Berrada, Peter Bossaerts, Rodolfo Prieto, and Marcel Rindisbacher
for conversations on the topic of this paper. Financial support by the Swiss Finance Institute
and by the Swiss National Center of Competence in Research “Financial Valuation and Risk
Management” (NCCR FinRisk) is gratefully acknowledged by J. Hugonnier and S. Malamud.
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Despite its importance, the question of endogenous completeness has not
received much attention in the general equilibrium literature. In fact, most of
the papers that study multiasset equilibrium models assume in one form or
another that markets are complete, but do not actually prove it. A notable ex-
ception is Anderson and Raimondo (2008), who assumed that (i) the economy
has a finite horizon and all risky securities pay dividends at the terminal time
and (ii) the state variables are given by Brownian motions; they proved that the
candidate prices generate complete markets as soon as the volatility matrix of
the terminal dividends is nondegenerate.

Being the first of its kind, the result of Anderson and Raimondo (2008) is
obviously very important. However, their assumptions are often too strong to
be applicable in practice. In particular, (i) requires that all traded assets pay
terminal dividends and hence does not allow for securities that pay only contin-
uous dividends as is customary in the literature. Furthermore, this assumption
implies that the menu of traded securities cannot include an instantaneously
risk-free savings account.2 Another obvious, but nonetheless important, limi-
tation of (i) is that it does not allow for infinite horizon economies. While (ii)
is satisfied in the benchmark case where dividends are modeled as correlated
geometric Brownian motions, Anderson and Raimondo (2008) themselves re-
marked that this assumption is quite restrictive. In particular, this assumption
does not allow for mean reversion in the state variables and thus excludes all
of the standard equilibrium term structure models that assume mean reverting
affine state variables (see, e.g., Vasicek (1977) and Cox, Ingersoll, and Ross
(1985)).

In this paper, we extend the result of Anderson and Raimondo (2008) by re-
moving both of their key assumptions. Specifically, we provide conditions for
endogenous completeness in a continuous-time economy populated by het-
erogenous agents and driven by a multidimensional diffusion process that sat-
isfies appropriate regularity conditions. In our formulation, the traded secu-
rities do not need to pay terminal dividends. As a result, the horizon of the
economy can be either finite or infinite and we can include instantaneously
risk-free bonds in the menu of traded assets as is customary in the asset pric-
ing literature. In this setting, the main results of this paper show that dynamic
market completeness can be deduced from the primitives of the economy in
most standard continuous-time equilibrium models.

To highlight the intuition behind our results, consider a finite horizon econ-
omy and recall that, in continuous-time, market completeness is equivalent to
the invertibility of the price volatility. Using a first order expansion, we show
that this matrix is invertible in a neighborhood of the terminal time provided

2This restriction is not in itself unnatural, as one could use a zero coupon bond in zero net
supply in place of an instantaneously risk-free bond and then change the numéraire to obtain a
riskless asset. However, most continuous-time models use a savings account as primitive security
and it is therefore important to find conditions for completeness in such economies.
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that the exogenous volatility of dividends is invertible and, given this, the ques-
tion becomes that of knowing whether we may propagate this property to the
whole time interval. As observed by Anderson and Raimondo (2008), who
were the first researchers to use it in this context, the notion of real analyt-
icity is uniquely suited to answer this question because a real analytic function
is either identically equal to zero or almost everywhere different from zero.3
Under our assumptions, the determinant of the price volatility is indeed real
analytic as a function of time and the state variables, and combining this prop-
erty with our expansion shows that markets are endogenously complete as soon
as the exogenous volatility of dividends is invertible at least at one point of the
state space.

The requirement that the volatility of the dividends be nondegenerate is suf-
ficient for endogenous completeness, but it is not necessary. In particular, if
some of the traded assets are fixed income securities, such as bonds or annu-
ities, then this requirement fails, but markets may nonetheless be complete in
equilibrium. To obtain sufficient conditions for market completeness in such
cases, it is necessary to expand the price volatility to higher orders and we
provide complete details for the second order expansion. Since some of the
securities now draw their value solely from variations in the pricing kernel, the
second order condition that we obtain depends not only on the dividends, but
also on the agents’ preferences and endowments through the equilibrium pric-
ing kernel and might thus be difficult to apply. To circumvent this difficulty,
we show that, surprisingly, the validity of the condition for one arbitrary agent
in the economy is sufficient to guarantee the existence of equilibrium for a
generic set of initial endowments.

In an infinite horizon economy there is no terminal time close to which the
volatility of the candidate prices can be approximated. Instead, we expand the
volatility of prices as a function of the agents’ common discount rate and show
that its determinant can be computed from the primitives of the economy in a
neighborhood of infinity. Relying on this expansion, we show that an equilib-
rium exists as soon as the dividend volatility is invertible and provide a second
order condition that applies when dividends are degenerate. In contrast to the
finite horizon case, the existence result that we obtain holds for generic, rather
than fixed, initial endowments and discount rates. The reason for this is that
by varying the agents’ discount rate, we are changing the initial distribution of
wealth in the economy.

The rest of the paper is organized as follows. In Section 2, we present the
model, state our assumptions, and recall some basic results about Arrow–
Debreu equilibria. Section 3 contains our main conditions for endogenous
market completeness in finite or infinite horizon economies. In Section 4, we

3The observation that real analyticity is essential to prove dynamic completeness is also con-
tained in Herzberg and Riedel (2010), who considered the same setting with terminal dividends
as Anderson and Raimondo (2008), but allowed for diffusion state variables.
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provide examples of models in which our assumptions on the primitives are
satisfied. The proofs of our most important results are provided in the Ap-
pendix. More standard proofs as well as additional results are presented in the
Supplemental Material (Hugonnier, Malamud, and Trubowitz (2012)).

2. THE ECONOMY

Information Structure: We consider a continuous-time economy on the time
span [0�T ] for some horizon T that can be either finite or infinite. Uncertainty
is represented by a probability space (Ω� F�F�P) supporting a Brownian mo-
tion Z ∈ R

d . The filtration F = (Ft)t∈[0�T ] is the usual augmentation of the fil-
tration generated by the Brownian motion and we let F ≡ FT .

Securities Markets: The financial market is frictionless and consists of 1 + d
continuously traded securities: one locally riskless savings account in zero net
supply and d dividend-paying stocks in positive supply of unit each.4 The sav-
ings account pays no dividends and earns an endogenously determined rate of
interest on deposits.5 On the other hand, we assume that stock i pays dividends
at rate6 gi(Xt) for some nonnegative real analytic function gi, where Xt ∈ R

n

is a vector of state variables that evolves according to

Xt = X0 +
∫ t

0
μX(τ�Xτ)dτ +

∫ t

0
σX(τ�Xτ)dZτ(1)

for some X0 ∈ R
n, and some functions μX and σX with values in R

n and R
n×d .

The key conditions we impose on the state variables are summarized in the
following assumption.

ASSUMPTION A:
(a) n = d and rank(σX(t�x)) = d for all (t�x) ∈ [0�T ] × R

n.
(b) The functions μX and σX are jointly real analytic in (t�x) ∈ [0�T ] × R

n

and are time-independent if the economy has an infinite horizon.
(c) The unique solution to equation (1) takes values in X ⊆ R

d and admits a
transition density p(t�x� τ� y) that is smooth for t �= τ.

4The market structure that we consider is standard in continuous-time asset pricing; see, for
example, Duffie (2001, Chapter 9). While our analysis can be easily adapted to the setting of
Anderson and Raimondo (2008), where none of the securities is locally riskless, we choose to
focus on the standard formulation to facilitate the application of our results. The results for this
alternative setting are similar to those we present and are available on request.

5One should think of the savings account as a series of instantaneous risk-free bonds. If an
agent invests a at time t, then his investment grows to a(1 + rt dt) by time t + dt and this amount
is available for either consumption or reinvestment over the next infinitesimal time interval.

6The assumption that the stocks do not pay terminal dividends is adopted for simplicity and
can be relaxed at the cost of more involved notation. See the Supplemental Material for details.
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(d) There are locally bounded functions (K�L), a metric d that is lo-
cally equivalent to the Euclidean metric, and constants ε, α, φ > 0 such that
p(t�x� τ� y) is analytic with respect to t �= τ in the set

P 2
ε ≡ {

(t� τ) ∈ C
2 :�t ≥ 0�0 ≤ �τ ≤ T� and |	(τ − t)| ≤ ε�(τ − t)

}
and satisfies

|p(t�x� τ� y)| ≤K(x)L(y)|τ − t|−αeφ|τ−t|−d(x�y)2/|τ−t| ≡ p(t�x� τ� y)(2)

for all (t� τ�x� y) ∈ P 2
ε × X 2.

The most important part in Assumption A is condition (d). This condition
is meant to guarantee that the candidate equilibrium prices to be constructed
below are real analytic functions of time and can be shown to hold in many
different models. See Section 4 for various examples.

Preferences and Endowments: The economy is populated by A ≥ 1 agents in-
dexed by a. The preferences of agent a over lifetime consumption plans are re-
presented by an expected utility index of the form Ua(c)≡ E0

∫ T

0 e−ρτua(cτ)dτ,
where the constant ρ≥ 0 is a discount rate that is common to all agents and ua

is a utility function that is assumed to satisfy the following assumption.

ASSUMPTION B: The function ua : (0�∞)→ R is real analytic, increasing, and
strictly concave, and satisfies the Inada conditions u′

a(0)= ∞ and u′
a(∞) = 0.

Agent a is endowed with ηai ∈ [0�1] units of stock i and receives income
at rate �a(Xt) for some real analytic function �a : X → R+. We let η ∈ R

A×d

denote the matrix of initial endowments and assume that η
1A = 1d so that
markets clear.

Trading Strategies and Feasible Plans: A trading strategy is a predictable pro-
cess (α�π) ∈ R

1+d , where αt and πit denote the number of units of the riskless
asset and the number of units of stock i held in the portfolio at time t.

A consumption plan is an adapted process c that is almost surely locally in-
tegrable with respect to Lebesgue measure on [0�T ). A trading strategy (α�π)
is said to finance the consumption plan c at cost w if the associated wealth
process Wt ≡ αtBt +π


t St satisfies the dynamic budget constraint

Wt = w+
∫ t

0
ατ dBτ +

∫ t

0
π


τ d(S +D)τ −
∫ t

0
cτ dτ�

where D and (B�S) denote, respectively, the vector of cumulative dividends
and the endogenous securities price processes.
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A consumption plan c is feasible for agent a given a consumption price pro-
cess m if there exists a trading strategy that finances the net plan c − �a at an
initial cost of wa ≡ η


a S0 and is such that the process

mtWt +
∫ t

0
mτ(cτ − �a(Xτ))dτ

is a martingale with WT ≥ 0 if the horizon is finite and lim inft→T E[mtWt] ≥ 0
otherwise. The martingale property is a standard admissibility condition that
excludes doubling strategies from the feasible set (see, e.g., Duffie (2001,
Chapter 6)). On the other hand, the requirement on the behavior of wealth
as the horizon approaches is meant to prevent agents from borrowing without
ever paying back. Indeed, agents in the model are allowed to borrow against
their future labor income and may therefore have negative wealth over some
periods of time, but these interim debts must be repaid before the horizon of
the model.

In what follows, we let Ca(m�B�S) denote the set of consumption plans
that are feasible for agent a given the consumption and securities prices m,
B, and S.

Equilibrium: The concept of equilibrium that we use is that of equilibrium of
plans, prices, and expectations introduced by Radner (1972):

DEFINITION 1: An equilibrium is a set of price processes (m�B�S), a con-
sumption allocation (ca)

A
a=1, and a set of strategies (αa�πa)

A
a=1 such that the

following statements hold:
(a) The plan ca maximizes Ua over Ca(m�B�S) and is financed by (αa�πa).
(b) All markets clear.

An equilibrium with consumption price m has dynamically complete markets
if any plan c such that wc ≡E

∫ T

0 mτcτ dτ < ∞ can be financed at cost wc .

The rest of the paper is devoted to finding conditions under which there
exists an equilibrium with dynamically complete markets. The starting point of
our analysis is a static Arrow–Debreu equilibrium defined as a consumption
price process m and a consumption allocation (ca)

A
a=1 such that ca maximizes

Ua over the set of consumption plans which satisfy the static budget constraint

E

∫ T

0
mτ(cτ − �a(Xτ)−η


a g(Xτ))dτ ≤ 0�

and the consumption good market clears. To guarantee that such an equilib-
rium exists, we impose the following assumption.7

7Alternative sets of sufficient conditions for the existence of an Arrow–Debreu equilibrium in
a setting similar to ours can be found in Dana (1993).
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ASSUMPTION C: There are constants R≤ ρ and ν > 1 such that

∫ T

0

A∑
a=1

(∫
X
e−Rτu′

a(g(y)/A)g(y)p(0�x� ντ� y)dy
)
dτ <∞

for all x ∈ X , where p is defined as in equation (2) and g ≡ g
1d + �
1A denotes
the aggregate consumption.

Our first result establishes the existence of an Arrow–Debreu equilibrium
and characterizes the corresponding consumption price process:

PROPOSITION 1: The set of Arrow–Debreu equilibria is nonempty. In any such
equilibrium, the consumption price process is given by

mt = m(t�Xt) ≡ e−ρt ∂u

∂c
(λ�g(Xt))

for some λ ∈ S+, where u(λ� c) = maxs∈S
∑A

a=1 λaua(sac) and S ⊆ R
A denotes the

unit simplex. In particular, the equilibrium consumption price function is jointly
real analytic in (t�λ�x) ∈ (0�T )× S++ × X .

REMARK 1: We focus on a formulation with homogenous discount rates and
time-independent aggregate consumption because it covers most of the cases
of interest and allows us to guarantee that equilibrium prices are real analytic
under simple conditions. While it is possible to find conditions on the primi-
tives of the model under which that property holds with heterogenous discount
rates and/or time-dependent aggregate consumption, these conditions are a lot
more involved and become very difficult to interpret. See Appendix 2 for de-
tails.

3. ENDOGENOUS COMPLETENESS

To find conditions under which our economy admits an equilibrium with dy-
namically complete markets, we follow the path set by Kreps (1982), Duffie
and Huang (1985), Duffie (1986), and Huang (1987). Namely, we start from
an Arrow–Debreu equilibrium, then construct candidate prices for the traded
securities by using the consumption price process as a state price deflator, and
finally check whether these prices deliver complete markets.

3.1. Candidate Price Functions

Fix an Arrow–Debreu equilibrium and let mt ≡ m(t�Xt) denote the cor-
responding consumption price. Appealing to Proposition 1 for the required



1256 J. HUGONNIER, S. MALAMUD, AND E. TRUBOWITZ

smoothness and applying Itô’s lemma shows that

−At ≡
∫ t

0
Eτ

[
dmτ

mτ

]
=

∫ t

0

D(m(τ�Xτ))

m(τ�Xτ)
dτ�

where the second order differential operator

D ≡ ∂

∂t
+ A = ∂

∂t
+μX(t�x)


 ∂

∂x
+ 1

2
Tr

[
σX(t�x)σX(t�x)


 ∂2

∂x2

]

denotes the extended infinitesimal generator of the state variables. Accord-
ingly, we take Bt ≡ exp(At) as our candidate for the price of the riskless asset.
On the other hand, a natural candidate for the stock price is the fundamental
value of dividends computed at the equilibrium consumption price, namely

St = S(t�Xt)≡Et

∫ T

t

m(τ�Xτ)

m(t�Xt)
g(Xτ)dτ�(3)

The following result establishes some properties of this candidate price func-
tion that prove crucial for the existence of an equilibrium.

PROPOSITION 2: The function S is jointly real analytic in (t�x) ∈ (0�T ) × X
and belongs to C∞((0�T ] × X ).

As is well known, to assert that the candidate prices give rise to an equi-
librium, it suffices to prove that, given these prices, markets are dynami-
cally complete. In a continuous-time model, the latter is closely related to
the properties of the stock volatility. Specifically, it can be shown that mar-
kets are complete if and only if the stock volatility is almost everywhere in-
vertible (see Duffie (2001, Chapter 6)). Since S is smooth, an application of
Itô’s formula shows that the volatility of the candidate stock prices is given by
σS(t�Xt)= ∂S

∂x
(t�Xt)σX(t�Xt)� Combining this with the fact that a real analytic

function is either identically zero or almost everywhere different from zero de-
livers the following proposition.8

PROPOSITION 3: If det(σS(t�x)) �= 0 for some (t�x) ∈ (0�T )× X , then there
exists an equilibrium with dynamically complete markets.

The main obstacle one encounters when trying to apply Proposition 3 is that
unless d ≡ 1 or the candidate price function can be computed in closed form,
it is in general very difficult to check that the price volatility is invertible even

8See Riedel (2001) for a related result in a single stock economy with incomplete information.
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at a single point.9 To circumvent this difficulty, we show in the next section that
it may be sufficient to check that the volatility of the intermediate dividends,
rather than that of the candidate prices, is nondegenerate.

3.2. Conditions for Market Completeness

In this section, we present conditions that are sufficient to guarantee that
the price volatility is invertible and, hence, that there exists an equilibrium
with complete markets. To highlight the intuition behind our approach, we
start by considering the finite horizon case before we turn to infinite horizon
economies.

3.2.1. Finite Horizon Economies

Let T < ∞, fix an Arrow–Debreu equilibrium, and denote by S the cor-
responding candidate price function. Using equation (3) in conjunction with
Proposition 2 and standard martingale arguments shows that the candidate
prices solve the partial differential equation

− ∂

∂t
(m(t�x)S(t�x)) = A(m(t�x)S(t�x))+m(t�x)g(x)(4)

subject to S(T�x) = 0d , where A denotes the infinitesimal generator of the
state variables. Differentiating with respect to x on both sides and using the
continuity of derivatives established in Proposition 2 then gives

∂S

∂x
(t�x) = (T − t)g′(x)+ o(T − t)�

and it follows that

σS(t�x) = (T − t)σg(T�x)+ o(T − t)�

where the matrix-valued function σg(t�x) denotes the volatility of dividends.
This simple expansion shows that the determinant of the price volatility is pro-
portional to the determinant of the dividend volatility in a neighborhood of the
terminal time and leads to the following theorem.

THEOREM 1: If det(σg(T�x)) �= 0 for at least one x ∈ X , then there exists an
equilibrium with dynamically complete markets.

9An important case in which this property can be checked quite easily is that of finite horizon
economies where all risky securities pay terminal dividends as in Anderson and Raimondo (2008).
Indeed, in such a case, the price volatility coincides with that of the terminal dividends at time T
and it suffices to assume that the latter is nondegenerate to obtain the existence of a complete
markets equilibrium. See the Supplemental Material for details.
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The conclusion of Theorem 1 is quite intuitive. Indeed, it simply states that
under our assumptions, nondegeneracy of the exogenous volatility of dividends
is automatically transmitted to the endogenous volatility of the prices and thus
ensures market completeness. A striking feature of this result is that it only
depends on the dividends: Changing the utility functions, initial endowments,
and/or labor income has no effect on the existence of an equilibrium.

The condition of Theorem 1 is sufficient, but it is not necessary. In particular,
if some of the traded assets are fixed income securities, then this condition fails
but markets may nonetheless be complete as illustrated by Example 1 below.
To find sufficient conditions for market completeness in such cases, we perform
a second order expansion of the volatility. Differentiating equation (4) with
respect to (t�x) and using the continuity of the derivatives of the candidate
prices shows that

σS(t�x) = (T − t)σg(T�x)+ 1
2
(T − t)2H(x)+ o(T − t)2�(5)

where we have set

H(x)≡ ∂

∂x

( D(m(T�x)g(x))

m(T�x)

)
σX(T�x)− 2

∂σg

∂t
(T�x)�(6)

Combining this expansion with well known results on determinants then leads
to a second order condition for the existence of an equilibrium with dynami-
cally complete markets. Specifically, defining

Bi(x)= σg(T�x)+ eie

i (H(x)− σg(T�x))�

where ei is the ith vector in the orthonormal basis of Rd , it can be shown
that an equilibrium with dynamically complete markets exists provided that
det(B1(x))+ · · · + det(Bd(x)) �= 0 for some x ∈ X . In contrast to that of The-
orem 1, this condition depends not only on dividends, but also on preferences
through the pricing kernel and might thus be difficult to apply since m can
rarely be computed in closed form. To circumvent this difficulty, we show below
that an equilibrium exists for generic initial endowments if the above condition
holds when m is replaced by the marginal utility of a single agent. The reason
why we need to consider generic endowments is that to get the result, we have
to further expand the price volatility around the case where the economy is
populated by a single agent.

To state the result, let ma(t�x) ≡ e−ρtu′
a(g(x)) denote the discounted

marginal utility of agent a evaluated at the aggregate consumption and set

Ba�i(x)= σg(T�x)+ eie

i (Ha(x)− σg(T�x))�(7)

where the vector ei ∈ R
d is defined as before and the function Ha is defined as

in equation (6), but with the function m replaced by ma.
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THEOREM 2: Assume that the relative risk aversion of all agents is bounded
between γ1 and γ2 for some 0 < γ1 ≤ γ2. If det(Ba�1(x)) + · · · + det(Ba�d(x)) �=
0 for some a and some x ∈ X � then an equilibrium with dynamically complete
markets exists for all matrix η of initial endowments outside of a closed set of
measure zero.

The following example illustrates how one can apply Theorem 2 to establish
the existence of a complete markets equilibrium in an economy where Theo-
rem 1 fails due to the presence of a fixed income security.

EXAMPLE 1: Consider a finite horizon economy where at least one agent,
say agent 1, has constant relative risk aversion γ > 0 and let d ≡ 2. Assume
that

dX1t = (X2t − ‖σ1‖2/2)dt + σ

1 dZt�

dX2t = κ(θ−X2t) dt + σ

2 dZt

for some constants (κ�θ�σi) such that det(σ1�σ2) �= 0, and that the dividends
rates are given by g1(x) ≡ 1 and g2(x) for some real analytic function g2.

Using Proposition 4 in conjunction with well known results on Gaussian pro-
cesses we have that Assumptions A, B, and C hold. However, Theorem 1 can-
not be used here because the dividend volatility is degenerate. To circumvent
this difficulty, we use Theorem 2. Since agent 1 has power utility, a direct cal-
culation shows that

2∑
i=1

det(B1�i(x))= γg′
2(x)g

′(x)
g(x)

det(σ1�σ2)

is nonzero as soon as g′ �= 0 and it follows from Theorem 2 that an equilibrium
with dynamically complete markets exists for generic initial endowments.

REMARK 2: (a) Theorems 1 and 2 show that in the finite horizon case, com-
pleteness can be deduced from the primitives of the economy provided that the
prices are real analytic functions of both time and the state variables. We prove
in the Supplemental Material that real analyticity in space can be dispensed
with provided that the conditions of the theorems hold for almost every x ∈ X
rather than for at least one x ∈ X . We also show there that the requirement of
real analyticity in time cannot be relaxed by providing examples of representa-
tive agent economies that fail to admit a complete markets equilibrium despite
nondegenerate dividends because the candidate prices are not real analytic.

(b) Herzberg and Riedel (2010) showed that in the setting of Anderson and
Raimondo (2008), real analyticity of the candidate price function is sufficient to
establish the existence of a complete markets equilibrium if the volatility matrix
of terminal dividends is invertible. However, the conditions they impose are
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not sufficient for the candidate prices to be real analytic. Indeed, to guarantee
that this property holds, it is necessary to impose bounds on the transition
density in a complex neighborhood of [0�T ] as in equation (2).

3.2.2. Infinite Horizon Economies

In an infinite horizon economy, there is no terminal time close to which the
price volatility can be approximated and, as result, the approach of the previous
section cannot be used. Instead, we expand the volatility of the candidate prices
as a function of the agents’ common discount rate and use this expansion to
derive conditions for the generic existence of a complete markets equilibrium.

Using equation (3), it can be shown (see Lemmas 4, 5, and 6 in the Ap-
pendix) that the volatility matrix of the candidate prices is real analytic in ρ
and satisfies10

σS(x�ρ)= 1
ρ
σg(x)+ 1

2ρ2
H(x)+ o(1/ρ)2�

which is the direct analog of equation (5) for the infinite horizon case. Com-
bining this expansion with some generic determinacy arguments then delivers
the following counterpart to Theorems 1 and 2.

THEOREM 3: Assume that the relative risk aversion of all agents is bounded be-
tween γ1 and γ2 for some 0 < γ1 ≤ γ2. If either det(σg(x)) �= 0 or det(Ba�1(x))+
· · ·+ det(Ba�d(x)) for some a and some x ∈ X , then an equilibrium with dynami-
cally complete markets exists for all η and ρ >R outside of a closed set of measure
zero.

REMARK 3: A close inspection of the proof shows that Theorem 3 remains
valid if we only require equation (2) to hold for real, rather than complex, val-
ues of the time arguments. The reason for this important simplification is that
with an infinite horizon, the volatility of the candidate prices is automatically
real analytic as a function of ρ and this is all that is needed to deduce the
generic existence of an equilibrium with complete markets from the primitives
of the model. The result of Theorem 3 also extends to the case of heterogenous
discount rates, provided that we make appropriate changes in Assumption C.

REMARK 4: To facilitate the presentation, we have assumed that there are as
many risky assets as Brownian motions, but this assumption is not necessary for
the validity of our main results. In particular, the conclusions of Theorems 1,
2, and 3 remain valid if there are more risky securities than Brownian motions
provided that the stated conditions hold for a fixed set of d risky securities.

10In the infinite horizon case, the drift and diffusion of the state variables are assumed to
be time-independent. As a result, the volatility of dividends is also time-independent and the
expressions in equations (6) and (7) simplify.
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4. APPLICATIONS

In this section, we provide examples of classes of models that satisfy the
conditions of Assumption A.

Vector Autoregressive Processes: Assume that the state variables follow a vec-
tor autoregressive process of the form

dXt = (b(t)−A(t)Xt)dt + σX(t)dZt�

where Z ∈ R
d is a Brownian motion, and b ∈ R

d , A ∈ R
d×d , and σX ∈ R

d×d are
real analytic functions. This class of models includes as a special case the model
studied by Anderson and Raimondo (2008), where the state variables coincide
with the underlying Brownian motions, but it is significantly more flexible as it
allows for arbitrary mean reverting Gaussian processes.

PROPOSITION 4: If rank(σX(t)) = d for all t ≥ 0, then Assumption A holds
provided that the economy has a finite horizon.11

Autonomous Diffusion Processes: Assume that each of the coordinates of the
vector of state variables follows an autonomous diffusion process of the form

dXit = μi(Xit) dt + σi(Xit) dZit(8)

for some real analytic drift and volatility functions. Let Xi ≡ (li� ri) with −∞ ≤
li < ri ≤ ∞ denote the state space of the ith coordinate and assume that the
solution to equation (8) does not reach the boundaries of Xi in finite time.
For this class of models, the existence of a transition density follows from well
known results (see, e.g., Itô and McKean (1965, Paragraph 4.11) and we have
the following proposition:

PROPOSITION 5: Assume that equation (2) holds for real values of t �= τ. Then
Assumption A holds.

Since the bound only needs to hold for real, rather than complex, values of
time, it is much easier to check. For example, relying on the above result it can
be shown that Assumption A holds, provided that each coordinate follows an
arithmetic Brownian motion or a square root process

dXit = (μi − κiXit) dt + ξi

√|Xit |dZit

for some ξ2
i < 2μi, or a constant elasticity of variance process

dXit = μiXit dt + ξi|Xit |βi dZit

11If the economy has an infinite horizon, then we assume that the coefficients of the driving
process are time-independent and, in that case, additional conditions on the eigenvalues of the
matrix A are required for the validity of the result. See the Supplemental Material for details.
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for some βi ≥ 1, or a general one-dimensional diffusion whose drift and volatil-
ity coefficients μi and σi ≡ 1/φ′

i are such that Gi(y)≡ (μiφ
′
i + 1

2σ
2
i φ

′′
i )◦φ−1

i (y)
satisfies a linear growth condition (see Quian and Zheng (2004, Theorem 3.2)).

General Diffusion Processes: To obtain a general class of models in which
the conditions of Assumption A are satisfied, assume that the drift μX and
volatility σX are bounded real analytic functions with bounded derivatives, and
that the volatility is uniformly elliptic in the sense that

sup
(t�x)∈(0�T )×X

‖σX(t�x)

ξ‖2 ≥ ε‖ξ‖2

for all ξ ∈ R
d and some ε > 0. Under these assumptions, it follows from the

general theory of heat kernel bounds that the state variables admit a transition
density which satisfies Assumption A(d). See, for example, Eidelman (1969,
Theorem 8.1), Lunardi (1995, Chapters 3, 5, 6, and 8), and Auscher (1996).

Analytic Semigroups: Relying on the semigroup approach to diffusion pro-
cesses, it can be shown that the bound of Assumption A(d) holds with d(x� y)=
C

∑
i |xi −yi|1/2 for some C > 0� provided that the operator A generates an an-

alytic semigroup on an appropriate space of functions. Very general sufficient
conditions that cover many important cases can be found in Lunardi (1995),
Gozzi, Monte, and Vespri (2002), and Grigor’yan (1994, 2003, 2006), among
others.

APPENDIX 1: PROOFS

PROOF OF PROPOSITION 1: The existence result follows by a slight modifica-
tion of the arguments in Malamud (2008) and is reported in the Supplemental
Material. The characterization of the consumption price and its real analyticity
follow from Huang (1987, Propositions 3.1 and 3.2), the market clearing condi-
tion and the real analytic implicit function theorem (see, e.g., Krantz and Parks
(2002, Section 2.3)). Q.E.D.

LEMMA 1: The transition density p(t�x� τ� y) is jointly real analytic in (t�x)
for τ �= t. Furthermore, for any constant ε > 0 and any vector k ∈ N

d
+, there exists

a locally bounded function A(x) = A(x;ε� |k|) > 0 such that∣∣∣∣∂k0+|k|p(t�x� τ� y)

∂tk0 ∂x
k1
1 · · · ∂xkd

d

∣∣∣∣ ≤ A(x)L(y)|τ − t|−(α+k0+|k|)

× eφ|τ−t|(1+ε)−(d(x�y))2/(2(1+ε)|τ−t|)

for all k0 ∈ N and (t� τ�x� y) ∈ P 2
ε × X 2 such that d(x� y) > ε.
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PROOF: Since the transition density is smooth for τ �= t� it follows from stan-
dard results that it solves the backward Kolmogorov equation

D(p(t�x� τ� y))= ∂p(t�x� τ� y)

∂t
+ A(p(t�x� τ� y))= 0

for t �= τ. Combining this property with Eidelman (1969, Theorem 6.2) shows
that p is real analytic in x ∈ X for τ �= t� Furthermore, its radius of analyticity
is bounded away from zero when (t�x) vary in a compact subset of [0� τ)× X
by Assumption A(d), and joint real analyticity follows from Siciak (1969); see
also Eidelman (1969, Theorem 8.1).

The second part follows from Assumption A and estimates for solutions of
parabolic partial differential equations. See Davies (1997), Eidelman (1969,
pp. 23–28), and the Supplemental Material for details. Q.E.D.

LEMMA 2: We have 0 < m(x) < Cm

∑A

a=1 u
′
a(ḡ(x)/A)) for some constant

Cm > 0 where m(x) ≡ eρtm(t�x).

For the proof, see the Supplemental Material.

LEMMA 3: The function S is well defined and real analytic in t ∈ (0�T ).

PROOF: Fix an arbitrary t0 ∈ (0�T ). By Proposition 1 and Lemma 2, we
know that the function m is strictly positive and real analytic with respect to
t ∈ [0�T ]� so it suffices to prove that for each i, the function

Qi(z�x) ≡ m(z�x)Si(z�x) =
∫ T

z

∫
X
p(z�x�θ� y)m(θ� y)gi(y)dy dθ(9)

is well defined and analytic in a complex neighborhood P0 ⊃ t0. Choosing
the neighborhood appropriately, we may assume that any segment connecting
points z ∈ P0 with T lies in the set P 2

ε of Assumption A. Therefore, it follows
from Lemma 2 and the second part of Assumption C that the integrand in (9)
has an integrable majorant and it follows that Qi is well defined in P0. Further-
more, the integrand being analytic in z by Assumption A and Proposition 1, it
follows from the Morera theorem (see, e.g., Shabat (1992, Theorem 2) and Ei-
delman (1969, p. 223)) that Qi is analytic with respect to z ∈ P , and the proof
is complete. Q.E.D.

PROOF OF PROPOSITION 2: Let πi(t�x� τ) ≡ Et[m(Xτ)g(Xτ)]. By Proposi-
tion 1 and Lemma 2, we know that the function m is strictly positive and real
analytic with respect to x ∈ X , so it suffices to show that the result holds for
the function

Qi(t�x) ≡ m(t�x)Si(t� x) =
∫ T

t

e−ρτπi(t� x� τ)dτ�
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Fix an x ∈ X , pick two open sets X1 ⊂ X2 ⊆ X , such that x ∈ X1, and let hi ≡
nmgi, where n : X → [0�1] is a smooth function that is equal to 1 on X1 and to
0 outside of X2. Using this notation, we have πi = Fi +Hi, where

Fi(t�x� τ)≡
∫

X c
1

p(t�x� τ� y)(mgi − hi)(y)dy�

Hi(t�x� τ)≡
∫

X2

p(t�x� τ� y)hi(y)dy�

and X c
1 = X \ X1. A direct calculation based on Lemmas 1 and 2, Assump-

tion C, and the fact that d(x� y) > ε for some ε > 0 and all y ∈ X c
1 shows that

for every k ∈ Nd , there exists an integrable function fk�x such that∣∣∣∣∂kp(t�x� t + θ� y)

∂x
k1
1 · · · ∂xkd

d

(mgi − hi)(y)

∣∣∣∣ ≤ fk�x(θ� y)(10)

for all (t� θ� y) ∈ [0�T ] × [0�T − t] × X c
1 . Therefore, it follows from the domi-

nated convergence theorem that Fi is smooth in x and satisfies

∂kFi(t� x� τ)

∂x
k1
1 · · · ∂xkd

d

=
∫

X c
1

∂kp(t�x� τ� y)

∂x
k1
1 · · · ∂xkd

d

(mgi − hi)(y)dy(11)

for all (t� τ) ∈ [0�T ]. On the other hand, since the function hi is smooth and
compactly supported, it follows from Eidelman (1969, Theorem 5.3) that Hi is
smooth with respect to x and satisfies

∂kHi(t�x� τ)

∂x
k1
1 · · · ∂xkd

d

=
∫

X1

∂kp(t�x� τ� y)

∂x
k1
1 · · · ∂xkd

d

hi(y)dy�(12)

as well as

lim
t→T

∫ T

t

e−ρτ ∂
kHi(t�x� τ)

∂x
k1
1 · · · ∂xkd

d

dτ = 0�(13)

Adding (11) and (12) shows that πi is smooth with respect to x� and it imme-
diately follows that Qi is smooth with respect to x and satisfies

∂kQi(t�x)

∂x
k1
1 · · · ∂xkd

d

=
∫ T

t

e−ρ(τ−t) ∂
kπ(t�x� τ)

∂x
k1
1 · · · ∂xkd

d

dτ(14)

as well as

lim
t→T

∂kQi(t�x)

∂x
k1
1 · · · ∂xkd

d

= 0�
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where the limit follows from (13), (10), and the monotone convergence theo-
rem. Since Qi is real analytic in time by Lemma 3, we know that it is smooth
with respect to t and it thus follows from standard martingale arguments that

−∂Qi(t�x)

∂t
= A(Qi(t�x))+m(t�x)gi(x)�(15)

As a result, any mixed derivative of Qi can be expressed in terms of derivatives
with respect to x and it follows that Qi ∈ Ck((0�T ] × X ). Finally, since the co-
efficients of (15) are real analytic in x, we know from Eidelman (1969, Theo-
rem 6.2) that Qi is real analytic in x with a radius of analyticity that is uniformly
bounded away from zero when (t�x) vary in compact subsets of (0�T ) × X �
and joint real analyticity now follows from Lemma 3 and the results of Siciak
(1969). Q.E.D.

PROOF OF THEOREMS 1 AND 2: The validity of (5) follows by differentiating
(4) and using the smoothness of S, which is provided by Proposition 2. Further-
more, a direct but tedious calculation provided in the Supplemental Material
shows that

det(σS(t�x)) = θd det(σg(t�x))+ θ1+d

2

d∑
i=1

det(Bi(x))+ o(θ)1+d�(16)

where θ = T − t. Under the assumption of Theorem 1, this shows that the
function det(σS(t�x)) is not identically zero. Since it is real analytic by Propo-
sition 2 and Krantz and Parks (2002, Proposition 2.2.3), it follows from An-
derson and Raimondo (2008, Theorem B.3) that det(σS(t�x)) is almost every-
where nonzero on (0�T ) × X . Combining this with Proposition 3 shows that
an equilibrium with complete markets exists and completes the proof of Theo-
rem 1.

To prove Theorem 2, we argue as follows: By the real analytic implicit func-
tion theorem, we have that m(t�x�λ) is real analytic in (t�x�λ) ∈ [0�T ] ×
X × S++ and satisfies m(t�x� ea) = ma(t�x). Since the drift and volatility of
the state variables are real analytic, this implies that det(Bi(x�λ)) is real ana-
lytic in (x�λ) ∈ X × S++ and satisfies det(Bi(x� ea))= det(Ba�i(x)). Combining
this with (16) shows that under the assumption of Theorem 2, the function
det(σS(t�x�λ)) is almost everywhere nonzero on (0�T )× X × S++ and it only
remains to prove that generic Pareto weights λ correspond to generic initial
endowments η. As we show in the proof of Theorem 3, our assumptions guar-
antee that the equilibrium is determinate for almost every η. Therefore, in a
small ball B(η′) around a generic initial endowment η′, there exists a C1 bijec-
tion between η and λ� and the desired result follows. Q.E.D.

Consider now an infinite horizon economy and let S(x�ρ�λ) denote the can-
didate prices of the risky assets, which are seen as functions of the state vari-
ables, the agents’ common discount rate, and the Pareto weights.
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LEMMA 4: Under the assumptions of Theorem 3, we have

0 = lim
ρ→∞

(
ρ
∂S

∂x
(x�ρ�λ)− g′(x)

)

= lim
ρ→∞

(
ρ2 ∂S

∂x
(x�ρ�λ)− ρg′(x)−H(x)

)
�

PROOF: Since the coefficients of the state variables are time-independent,
we have that πi(t�x� t + θ) = π̄i(x�θ) depends only on (x�θ)� It follows from
the proof of Proposition 2 that π̄i ∈ C∞(X × [0�∞)). Standard martingale ar-
guments imply that π̄i is a solution to (∂/∂θ)π̄i = A(π̄i) with the initial condi-
tion π̄i(x�0) = m(x)gi(x)� and the desired result now follows from Lemma 5
(below), the definition of the candidate price function, and (14). Q.E.D.

LEMMA 5: If f ∈ C�(R+) is a function such that e−ρtf (t) is integrable for all
k≤ � and some ρ > 0, then we have

lim
ρ→∞

ρk

(
ρ

∫ ∞

0
e−ρtf (t)dt −

k∑
i=0

ρ−if (i)(0)
)

= 0� k ≤ �− 1�

The proof follows from a standard induction argument based on the domi-
nated convergence theorem and is presented in the Supplemental Material.

LEMMA 6: Under the assumptions of Theorem 3 and for almost every vector of
Pareto weights λ ∈ S++� we have that the volatility matrix of the candidate prices
is almost surely nondegenerate for almost every ρ >R.

PROOF: Combining the result of Lemma 5 with an argument similar to that
which we used in the proof of Theorems 1 and 2 shows that

det(σS(x�ρ�λ))

= 1
ρd

det(σg(x))+ 1
2ρ1+d

d∑
i=1

det(Bi(x�λ))+ o(1/ρ)1+d�

Since S is automatically real analytic in ρ > R� we have that det(σP(x�ρ�λ))
is also real analytic in ρ > R� It follows that the required assertion holds for
those λ ∈ S+� for which |detσg(x)| + |det(Bi(x�λ)) + · · · + det(Bd(x�λ))|
is not identically equal to zero. Since det(Bi(x� ea)) = det(Ba�i(x)) and the
function det(Bi(x�λ)) is real analytic in (x�λ)� the assumption of the state-
ment guarantees that this holds for generic λ ∈ S+ and the proof is complete.

Q.E.D.
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PROOF OF THEOREM 3: Fix the initial endowments for all but the first stock
and consider the vector-valued mapping defined by

Ga(ρ�λ) ≡ E

∫ ∞

0

e−ρtm(Xt�λ)

S1(x�ρ�λ)

×
(
Ia(λ

−1
a m(Xt�λ))− �a(Xt)−

d∑
i=2

ηaigi(Xt)

)
dt�

where Ia denotes the inverse marginal utility of agent a. With this notation,
we have that the Negishi equation that allows us to determine the equilibrium
Pareto weights from the agents’ initial endowments is

G(ρ�λ)= (η11� � � � �ηA1)

 ≡ η1 ∈ S�(17)

By the existence part of Proposition 1, we know that G is onto. Since the rela-
tive risk aversions are bounded from above and away from zero, it can be shown
(see the Supplemental Material for details) using Assumption C and Lemma 2
that G is C1 with respect to (ρ�λ) ∈ (R�∞) × S++. Therefore, by Sard’s the-
orem (see, e.g., Sternberg (1964, Theorem II.3.1)), we get that for each fixed
ρ > R, almost every η1 ∈ S is regular for G in the sense that any solution λ

to (17) satisfies det ∂G(ρ�λ)

∂λ
�= 0� Fix such a regular (ρ�η∗

1), let λ∗ be a solution
to (17), and let B be a small open neighborhood of (ρ�λ∗) such that the map
(ρ�λ) → (ρ�G(ρ�λ)) is C1 bijection from B to some B′. By Lemma 6, the can-
didate prices volatility matrix is nondegenerate for almost every (ρ�λ) ∈ B and
the standard change of variables formula implies that the image of such (ρ�λ)
has full measure in B′. As a result, an equilibrium with dynamically complete
markets exists for all (ρ�η1) in this image and the desired conclusion now fol-
lows from the arbitrariness of the initial endowments in stocks 2� � � � � d. Q.E.D.

The proofs of Propositions 3, 4, and 5 are provided in the Supplemental
Material.

APPENDIX 2: TIME-DEPENDENT CONSUMPTION AND HETEROGENOUS
DISCOUNT RATES

In this Appendix, we provide conditions on the dividends, labor income
rates, and preferences that allow us to extend the validity of our finite hori-
zon results to cases in which the aggregate consumption g(t�x) = ∑

i gi(t� x)+∑
a �a(t�x) is time-dependent and the discount rates can be heterogenous

across agents. The main difficulty in dealing with such cases is that to define
the candidate price

Si(t�x) =
∫ T

t

∫
X
p(t�x� τ� y)m(τ� y)gi(τ� y)dy dτ
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for complex values of t, we need the radius of complex analyticity of the inte-
grand p(t�x� τ� y)m(τ� y)gi(τ� y) to be bounded away from zero uniformly in y�
When discount rates are homogeneous and dividends are time-independent,
this is not a problem, as in this case m(τ� y) = e−ρτm(y) for some time-
independent function m. Otherwise, showing the uniform analyticity of m be-
comes a highly nontrivial problem. In particular, in that case the conditions
imposed by Anderson and Raimondo (2008) are not sufficient to guarantee
this uniform analyticity even in their simpler setting. To solve this problem,
one needs to impose the following stringent conditions:

ASSUMPTION D: Consider a finite horizon economy and make the following
assumptions:

(a) For any ε > 0, there exists a complex neighborhood O ⊃ [0�T ] such that
g(t�x) can be analytically continued to O,

|	(g(t�x))| ≤ ε�(g(t�x)) and

K−1g(�t� x)≤ �(g(t�x))≤ Kg(�t� x)

for all (t�x) ∈ O × X and some constant K =K(ε� O) > 0.
(b) There exists a constant ε > 0 such that the inverse marginal utilities Ia(z)

are analytic in the sector {z ∈ C : |	z|< ε�z} and

lim
z∈Cε�|z|→∞

(
zb∞

a Ia(z)− c∞
a

) = lim
z∈Cε�|z|→0

(
zb0

aIa(z)− c0
a

) = 0

for each a≤A and some constants b0
a� b

∞
a > 0 and c0

a� c
∞
a > 0.

(c) There are constants R ≤ mina ρa and ν > 1 such that

∫ T

0

∫
X

A∑
a=1

e−Rτu′
a(g(τ�x)/A)g(τ�x)p̄(0�x� ντ� y)dy dτ <∞

for all x ∈ X , where the function p is defined as in Assumption A.

REMARK 5: A simple case where condition (a) holds is gi(t�x) = eδitgi(x)
and �a(t�x) = eκat�a(x) for some real analytic gi� �a ≥ 0 and some constants
δi�κa. Condition (b) requires that the utility functions behave like power func-
tions close to zero and infinity, and can be shown to hold for most standard
utility functions.

The following theorem shows that our results remain valid in this more gen-
eral setting and concludes this Appendix.

THEOREM 4: Assume that the aggregate consumption is time-dependent and
that the agents’ discount rates are heterogenous. Then Propositions 1, 2, and 3
and Theorems 1 and 2 remain valid, provided that Assumption C is replaced by
Assumption D.
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See the Supplemental Material for the proof.
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