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Abstract

We develop a novel class of time-changed Lévy models, which are tractable and
readily applicable, capture the leverage effect, and exhibit pure jump processes with
finite or infinite activity. Our models feature four nested processes reflecting market,
volatility and jump risks, and observation error of time changes. To operationalize
the models, we use volume-based proxies of the unobservable time changes. To es-
timate risk premia, we derive the change of measure analytically. An extensive time
series and option pricing analysis of sixteen time-changed Lévy models shows that
infinite activity processes carry significant jump risk premia, and largely outperform
many finite activity processes.
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Joint modeling of options and asset returns has proven to be a challenging task, as under-

scored by a voluminous literature that started in the 1970s. The non-normality and path de-

pendency of asset returns affect option prices through complex risk premia, which require

sophisticated models to describe their dynamics. Recently, time-changed Lévy processes

have emerged as highly flexible models for options and asset returns.1 While a number of
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1 Lévy processes are characterized by independent increments over nonoverlapping time periods.

Modeling asset returns as Lévy increments can easily generate non-normal returns, but cannot re-

produce the stochastic volatility. The latter can be captured by stochastic time changes, namely by
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studies analyze their theoretical properties, extensive empirical analysis of time-changed

Lévy models are scant. This gap in the literature is significant because, given their general-

ity, time-changed Lévy models can offer new insights on jump and volatility risk premia,

and inform asset pricing.

The objective of this article is to develop a novel class of time-changed Lévy models, and

to provide an extensive empirical analysis of these models and associated risk premia. Our

models are characterized by four nested processes, capturing market, volatility, and jump

risks, as well as observation error on the time change. Despite the apparent complexity, the

models retain a high degree of analytical tractability because all processes are independent

from each other. The key is to work with nested Lévy characteristic functions that have

analytical forms. To operationalize the models, we use simple volume-based proxies of the

time changes, exploiting the strong positive association between volume and volatility.2 To

study risk premia, we derive the change of measure explicitly. As it turns out, the condition-

al expectation of asset returns needs to feature a particular functional form of the time

change to allow flexible specifications of risk premia.

We investigate empirically sixteen time-changed Lévy models. We obtain twelve models

by combining three infinite activity Lévy subordinators (listed in Table 1) to generate jumps

in returns; one-factor or two-factor processes to generate stochastic volatility; with or with-

out observation error on our volume-based proxies of the time changes. We also consider

four finite activity models in which the Lévy subordinator follows a Cox process, which is a

Poisson-type process with stochastic intensity, combined with one-factor or two-factor

volatility processes, and with or without observation error on the volume-based proxies of

the time changes.

We begin the empirical analysis by fitting the time-changed Lévy models to daily

Standard & Poor’s 500 index returns from 1950 to 2019. Because time changes are not ob-

servable, time series fitting of time-changed Lévy models is challenging. Consequently, we

view the time series analysis of the models as an important empirical contribution of this

Table 1. Specification of the Lévy subordinators

st a c V½st � twðuÞ

Gamma 0 � t=� �tc logð1� iu=�Þ

Inverse Gaussian 1
2

ffiffiffiffiffiffiffiffi
�=p

p
t=ð2�Þ �tc2

ffiffiffi
p
p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� � iu
p

�
ffiffiffi
�
p
Þ

Tempered stable (0, 1) �1�a

�aCð�aÞ
ð1�aÞ
� t tcCð�aÞðð� � iuÞa � �aÞ

The Lévy measure of st is PðdxÞ ¼ c expð��xÞ=x1þadx in (4). The constant c is such that E½st � ¼ t. The variance

of st is V½st �. The characteristic exponent of st is wðuÞ ¼ logðE½eiust �Þ=t. The Gamma function is denoted as Cð�Þ
and i ¼

ffiffiffiffiffiffiffi
�1
p

.

stochastically changing the clock on which the Lévy process is run. Intuitively, stretching, and

compressing the stochastic time change generates low and high volatility periods.

2 Our method is reminiscent of the approach adopted by Corsi et al. (2013). They use the realized

volatility computed from high-frequency data as a proxy of the unobservable volatility driving their

conditionally Gaussian discrete time models. We use readily available volume-based proxies of the

time changes and embed these proxies in the characteristic function of time-changed Lévy

processes.
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article. We can summarize the main findings as follows. First, infinite activity models sub-

stantially outperform many finite activity and generalized autoregressive conditional heter-

oskedasticity (GARCH) models. The latter models are used as a benchmark, and known to

provide a good fit to daily market returns. We trace the high performance of infinite activ-

ity models to the flexibility of their Lévy measure. Second, taking into account the observa-

tion error on the volume-based proxies uniformly improves the model fitting of market

returns, irrespective of the Lévy model used. Third, among the sixteen time-changed Lévy

models, the best performing model features a tempered stable subordinator and a two-

factor volatility process, and allows for observation error on the volume-based proxies of

the time change. In terms of likelihood contributions, the tempered stable subordinator and

the observation error on the volume-based proxies are more important than the two-factor

volatility process to achieve accurate fitting.

Next, we study the option pricing performance of the time-changed Lévy models. To do

so, we derive a necessary and sufficient no-arbitrage condition, which appears to be novel

in the literature. This condition places a joint restriction on Brownian risk premium and

risk neutral Lévy measure, but does not involve volatility risk premia. To carry out the em-

pirical option pricing analysis, we consider weekly cross-sections of index options spanning

the sample period 1996–2019. Our main empirical findings from the option pricing ana-

lysis are as follows. First, time-changed Lévy models based on tempered stable subordina-

tors and two-factor volatility processes substantially outperform several other finite and

infinite activity models. Volume-based proxies of the time changes improve any model’s op-

tion pricing performance, even though measurement errors have no risk premium. Second,

infinite activity processes carry substantial jump risk premium (JRP). For most estimated

models, the risk neutral Lévy measure is nearly twice the physical Lévy measure. This dif-

ference is economically large. For example, in the best performing model, a one-standard

deviation increase in the Lévy jump under the physical and risk neutral measures induce an

annual log-return of �0.88% and �3.68%, respectively. Third, although we allow for the

most flexible specification of the volatility risk premium (VRP) that preserves the square-

root feature of the volatility process, simple affine specifications appear to approximate

well the estimated functional form of the VRP. This empirical finding suggests that jump

risk, and not volatility risk, largely drives the complex relation between physical and risk

neutral measures.

This article contributes to two strands of literature. There exists an extensive research

on fitting time series models to asset returns. Prominent examples include Eraker et al.

(2003) and Bates (2006). In this literature, there is nearly no time series study of time-

changed Lévy models. A notable exception is Bates (2012) who fits various time-changed

Lévy models to market returns to quantify crash risk. One impediment that may have

restrained empirical applications of time-changed Lévy models is that the stochastic time

change is not observable. We contribute to this literature by developing a novel class of

time-changed Lévy models, and analyzing empirically both the time series fitting and the

option pricing performance of our models.3

3 Carr et al. (2002) estimate Lévy models using the time series of stock returns, but their models do

not feature stochastic volatility. Bakshi et al. (2008) and Bakshi and Wu (2010) estimate time-

changed Lévy models using underlying asset prices and options. However, their analysis focuses

on a specific model and covers a short time period.
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Another strand of literature develops option pricing models and studies risk premia.

Recent contributions include Christoffersen, Jacobs, and Ornthanalai (2012), Andersen,

Fusari, and Todorov (2015b), Calvet et al. (2015), and Bardgett, Gourier, and Leippold

(2019). Many of the proposed models belong to the class of affine jump diffusion mod-

els of Duffie, Pan, and Singleton (2000) in which jumps are modeled as Poisson-type

processes. To allow for general jump structures and stochastic volatility, some theoretical

studies have developed option-pricing models based on time-changed Lévy processes.4

Carr et al. (2003) study several processes that feature explicit characteristic functions.

Carr and Wu (2004) introduce a novel technique to capture leverage effects in time-

changed Lévy processes. In their setting, Brownian increments and time changes can be

correlated, significantly complicating the analysis of the resulting models.5 We therefore

follow a different approach and capture the leverage effect by a suitable specification of

the return drift.

In the option pricing literature, the two most closely related studies to our work are

Huang and Wu (2004) and Ornthanalai (2014), which we discuss in turn. Huang and Wu

(2004) build on Carr and Wu (2004) and introduce a very general class of time-changed

Lévy models in which different time changes can drive diffusive and jump components.

However, their empirical option pricing analysis focuses only on the one-factor Heston

model as stochastic volatility process; see their Subsection E in Section II. In addition, their

calibrated risk neutral models are not informative about risk premia or time series dynam-

ics. We complement their work by developing time-changed Lévy models that feature

two-factor stochastic volatility processes, and we investigate their time series fitting, option

pricing performance, and risk premia.

Ornthanalai (2014) uses a GARCH setup to develop models of asset returns driven by

Brownian increments and Lévy jumps. His discrete time GARCH-Lévy models can generate

the equivalent effect of random time change on Lévy processes. We use a different approach

and fully specify time-changed Lévy models in continuous time. Importantly, time changes

induced by our models do not follow discrete time GARCH dynamics. This means that

using GARCH models to capture time changes would generate model inconsistencies in our

setting. Notice that using realized volatilities as in Corsi, Fusari, and La Vecchia (2013) or

Andersen, Fusari, and Todorov (2015a) would lead to similar problems. We therefore

introduced volume-based proxies of time changes, and formally embed these proxies in the

time-changed Lévy models via the characteristic functions. Finally, whereas Ornthanalai

focuses his analysis on the equity risk premium (ERP), we center our analysis on volatility

and jump risk premia.

The article is organized as follows. Section 1 introduces our novel class of time-changed

Lévy models. Section 2 presents the time series analysis of time-changed Lévy models and

other benchmark models. Section 3 studies risk neutralization and option pricing from a

theoretical perspective. Section 4 presents the empirical option pricing results and estimated

risk premia. Section 5 concludes.

4 Schoutens (2003) reviews derivative applications of classic time-changed Lévy models.

5 To develop their technique, Carr and Wu (2004) use the stopping time property of time changes.

However, none of the processes they propose as time changes satisfy this assumption, which

makes difficult the empirical application of their technique; see Fallahgoul and Nam (2020).
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1 Model

This section introduces our class of time-changed Lévy models and discusses how to make

the models operational. The price of the financial asset (e.g., index) under consideration

evolves in continuous time and is given by

St ¼ S0eðr�dÞtþXt

where r and d are constants that represent, respectively, the risk free rate of interest and the

dividend yield of the asset, and

Xt ¼ log ðedtSt=S0Þ � rt

models excess log-returns, under the usual assumption that dividends are continuously

reinvested. To reduce notational complexity, we use interchangeably Xt or X(t), and

likewise for any other process that we encounter. When no confusion arises, we omit

subscripts.

We model the log-return Xt as a time-changed Lévy process6

Xt ¼ csðYtÞ þ rWðsðYtÞÞ þ bYt (1)

where c, r, and b are constants, and W(t) is a standard Brownian motion under the physical

measure P. The processes s(t) and Y(t) are P-subordinators, that is, positive, non-decreas-

ing, right-continuous, with left limit processes and initial value zero, and model the stochas-

tic time changes. Intuitively, stochastic time changes reflect the “business time”, which is

influenced by trading activities and news arrivals, rather than the calendar time t. The two

subordinators s(t) and Y(t) reproduce jumps and stochastic volatility of asset returns, re-

spectively, which are ultimately a reflection of trading activities. As discussed below, the

parameter b allows for a flexible change of measure, while negative values of c induces the

leverage effect and conditional asymmetries of the return distribution, as increases in sðYtÞ
tend to produce negative returns. All processes in (3) are independent from each other,

which ensure a significant tractability of the model.

Time-changed Lévy processes are usually constructed by time changing once a Lévy pro-

cess; see, for example, Carr et al. (2003). We take a different, more flexible approach, and

use the two time changes s(t) and Y(t) to specify the dynamic of the log-return Xt. The pro-

cess s(t) is an infinite activity P-subordinator, which means that its expected number of

jumps is infinite in any finite time interval, induces jumps in Xt and is defined by its charac-

teristic exponent7

wðuÞ ¼ 1

t
logE½eiusðtÞ� ¼

ð1
0

ðeiux � 1ÞPðdxÞ (2)

6 A Lévy process is a continuous time stochastic process with independent increments over non-

overlapping time intervals. Lévy processes in finance are typically used to model log asset prices,

with the Brownian motion in the Black–Scholes model being a well-known example. Carr and Wu

(2004) and Bates (2012) provide concise reviews of Lévy processes.

7 Bertoin (1996) introduces the terminology of characteristic exponent, Carr et al. (2003) call w the

log characteristic function at unit time and Wu (2006) uses the terminology of cumulant exponent.
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where i ¼
ffiffiffiffiffiffiffi
�1
p

, u is real and PðdxÞ is its Lévy measure on ð0;1Þ, that is, the expected

number of jumps of size dx per unit of time. The process Y(t) is an absolutely continuous P-

subordinator that we model as

YðtÞ ¼
ðt

0

ysds (3)

for some non-negative, mean reverting process yt that is interpreted as the rate of time

change. The randomness of yt reproduces the stochastic volatility of the asset, and the mean

reversion of yt induces volatility persistence, which are well-documented empirical features

of asset returns. We follow the standard practice of normalizing the time change (Carr

and Wu, 2004), and impose that the two subordinators have P-expectation

E½YðtÞ� ¼ E½sðtÞ� ¼ t. That is, the stochastic time changes are an unbiased reflection of cal-

endar time t. The normalization is achieved through parameter restrictions, reducing the

number of parameters to estimate.

The model in (1) encompasses most models of asset returns in the literature. Varying the

specification of s(t) and Y(t) generate a wide range of processes. Absent any time change,

that is, imposing sðtÞ ¼ YðtÞ ¼ t, the log-return Xt would be a Brownian motion with drift,

and therefore St would follow a geometric Brownian motion as in the Black–Scholes model.

This model would generate random returns, but neither jumps nor stochastic volatility, and

would not be able to fit asset returns. Imposing that yt in (3) follows a square-root process,

c ¼ �1=2, r ¼ 1, b ¼ 0 and s(t) ¼ t, the model simplifies to the Heston model without le-

verage effect. Setting b ¼ 0, Y(t) ¼ t and s(t) to a Gamma process with mean rate t, the

model reduces to the Variance Gamma model (Madan and Seneta, 1990). Under the same

restrictions as above but letting s(t) be an inverse Gaussian process, reduces the model to

the Normal Inverse Gaussian model (Barndorff-Nielsen, 1997). Jump diffusion, stochastic

volatility models, such as the Bates model, cannot be reached by imposing parameter

restrictions to (1). These models can be easily obtained by changing the specification of the

log-return to Xt ¼ cst þ rWðYtÞ þ bt, where the three terms capture jump, diffusion, and

drift component, respectively. In a straightforward extension of the model in (1) and simi-

larly to Huang and Wu (2004), the terms csðYtÞ and WðsðYtÞÞ could be driven by two dif-

ferent subordinators. This extension would not hinder the analytical tractability of the

models, and the theory developed below could be easily adapted to such models. However,

this extension is not appealing for time series applications, as it could make the empirical

identification of time changes rather weak.

To allow for a general specification of the jump component in Xt, we construct the P-

subordinator st from the tempered stable Lévy measure8

PðdxÞ ¼ c
expð��xÞ

x1þa
dx; x 2 ð0;1Þ (4)

where c; � > 0, and a 2 ½0; 1Þ. Because E½st� ¼ t for all time t, we have that

E½s1� ¼
Ð1
0 xPðdxÞ ¼ 1, which implies that c ¼ �1�a=Cð1� aÞ, where Cð�Þ is the Gamma

function. The parameter a is the so-called tail exponent. As discussed in Carr et al. (2003),

Bates (2012) and others, a controls the activity of “small jumps” and the speed at which the

8 Rachev et al. (2011) and Fallahgoul and Loeper (2021) provide overviews of tempered stable

process.
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Lévy measure approaches zero as the jump size x increases. If a < 1, then st has infinite ac-

tivity. When a 2 f0; 1=2g, the Lévy measure in (4) specializes to the Lévy measure of

Gamma (Madan and Seneta, 1990) and Inverse Gaussian (Barndorff-Nielsen and

Shephard, 2001) processes, respectively. The function expð��xÞ with � > 0 is the so-called

tempering function and serves the purpose of dampening the Lévy measure to ensure that

the moments of st are finite. In our empirical analysis below, we find strong evidence

against infinite variation processes, which are characterized by �¼0 (and a > 1=2), and

therefore we do not consider such processes.

We estimate the Lévy subordinators that are most popular in the theoretical litera-

ture, namely Gamma (a¼ 0), Inverse Gaussian (a ¼ 1=2), and Tempered Stable

(a 2 ð0;1Þ). Table 1 summarizes their specifications. Column 3 reports the value of the

scaling parameter c, as a function of the other parameters in the Lévy measure, to en-

sure that E½st� ¼ t. Column 4 reports the variance V½st�, which is linear in time t.

Column 5 reports the characteristic exponent in (2) of st, which takes a relatively sim-

ple form.

A well-known empirical regularity of index return distributions is that the left tail is

higher than the right tail, that is, index returns exhibit negative skewness. Although we do

not directly model positive and negative return jumps, the model in (1) generates negatively

skewed return distributions when c < 0. For example, when st follows a Tempered Stable

subordinator, the centered third moment of Xt is

@3

@u3
logE½expðuXtÞ�ju¼0 ¼

ð1� aÞðð2� aÞc3 þ 3c�r2Þ
�2

t (5)

which is indeed a negative quantity according to our parameter estimates, as c is estimated

to be negative. Because �; r > 0 and 0 < a < 1, only when c¼ 0 the return distribution is

symmetric. Figure 5 shows the log density of Xt under P for a time-changed Lévy model

based on the Tempered Stable subordinator. The negative skewness of the density is

evident.

To determine the stochastic volatility of the log-return in (1), Appendix A proves the fol-

lowing proposition.

Proposition 1.1. The instantaneous variance vt is given by

vt ¼ lim
D!0

Vt½XtþD �Xt�
D

¼ ðr2 þ c2V½s1�Þyt (6)

where Vt denotes the time-t conditional variance.

Modeling the rate of time change yt is therefore equivalent to modeling the instantaneous

variance vt, up to the positive constant ðr2 þ c2V½s1�Þ. We consider two models for yt,

namely the one-factor and two-factor Heston models. The one-factor Heston model (SV1)

is given by

dyt ¼ jyð1� ytÞdt þ ry
ffiffiffiffi
yt
p

dWy
t (7)

while the two-factor Heston model (SV2) is given by
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dyt ¼ jyðmt � ytÞdt þ ry
ffiffiffiffi
yt
p

dWy
t

dmt ¼ jmð1�mtÞdt þ rm
ffiffiffiffiffiffi
mt
p

dWm
t

(8)

where jy, jm, ry, and rm are non-negative constant, and Wy
t and Wm

t are independent P-

Brownian motions. The SV2 model reduces to the SV1 model by imposing jm ¼ rm ¼ 0

and m0 ¼ 1. Because of its analytical tractability, SV1 is often used for modeling stochastic

volatility, as in Huang and Wu (2004). However, various studies have shown that two fac-

tors (one fast moving and one slow moving) as in SV2 are necessary to capture volatility dy-

namics.9 A straightforward model extension would be to add a jump component to (7) or

(8), as in Eraker (2004) or Broadie, Chernov, and Johannes (2007). Because the jump com-

ponent would not enter the characteristic function of the Xt as a conditioning variable, our

method (developed below) could be directly applied to such models as well. Given that SV2

already features two factors and is in line with empirical evidence, we leave such a model

extension to future work.

Because all processes in (1), namely W(t), s(t), and Y(t), are independent, it is not imme-

diately clear that the model would produce the so-called leverage effect, that is, the empiric-

al phenomenon that asset returns and volatility changes are often negatively correlated.10

Appendix A proves the following proposition.

Proposition 1.2. The leverage effect in the model in (1) is given by the covariance between

the asset return and the instantaneous variance change

Cov0½Xt �X0; vt � v0� ¼ ðbþ cÞðr2 þ c2V½s1�ÞCov0½Yt; yt�

where Cov0½Yt; yt� is positive for SV1 and SV2 models.

Therefore, whenever bþ c < 0, the model in (1) reproduces the leverage effect.11 In es-

sence, the leverage effect is induced by the terms bYt and csðYtÞ in (1). No additional model

requirements are necessary to reproduce the leverage effect. In the Carr and Wu (2004) set-

ting, the leverage effect is captured by correlating W(t) and Y(t). To accommodate this cor-

relation, they derive a complex-valued “leverage-neutral” measure to compute the

characteristic function of log-returns. This theoretical result would require the time change

9 The consensus in the literature is that two factors are necessary (and probably sufficient) to

model the volatility process; see Engle and Rangel (2008), Corradi et al. (2013), Filipovi�c et al.

(2016), and Aı̈t-Sahalia et al. (2020).

10 The leverage effect was introduced by Black (1976), who suggested that a large negative return

increases the financial and operating leverage, and raises equity return volatility; see also

Christie (1982). Alternative economic interpretations based on risk premia and volatility feedback

effects have been suggested. For example, an anticipated increase in volatility commands a

higher rate of return from the asset, which is achieved by a fall in the asset price; French et al.

(1987), and Campbell and Hentschel (1992). Bekaert and Wu (2000) provide a discussion of the le-

verage effect. More recently, Aı̈t-Sahalia et al. (2013) estimate the magnitude of the effect using

intraday data.

11 When bþ c < 0, the conditional expected excess return can be positive, E0½eXt � 1� > 0, which

is the case according to our model estimates, even though the conditional expected excess log-

return in (1) is negative, E0½Xt � ¼ ðbþ cÞE0½Yt � < 0.
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Y(t) to be a stopping time and adapted to the original filtration. However, none of the proc-

esses commonly used as time changes satisfy the assumption of being a stopping time,

which significantly complicates the empirical application of leverage-neutral measures.

A key feature of the model in (1) is that the characteristic function of Xt can be computed

in a relatively straightforward way. Denote by E0 the P-expectation conditional on X0 as

well as y0 or (y0, m0) depending on whether yt follows the SV1 or SV2 model, respectively.

Proposition 1.3. The characteristic function of Xt in (1) is given by

Uðu; XtÞ ¼ E0½expðiuXtÞ� ¼ E0 exp iubYt þ i ucþ iu2 r2

2

� �
sðYtÞ

� �� �

¼ E0 exp i ub� iw ucþ iu2 r2

2

� �� �
Yt

� �� �

¼ E0½exp
�

iqðuÞ
Ð t
0 ysds

�
�:

(9)

The second equality follows by subconditioning on the whole path of the processes Yt and

sðYtÞ; the third equality follows from the second equality by subconditioning on the whole

path of the process Yt with w denoting the characteristic exponent of st; the fourth equality

follows from (3) after setting

qðuÞ ¼ ub� iw ucþ iu2 r2

2

� �
: (10)

To calculate the characteristic function in (9), we note that this expression is reminis-

cent of a bond-type pricing formula, where iqðuÞys plays the role of an instantaneous

interest rate. To compute this expression, we use indeed tools developed in the fixed

income literature. Because SV1 and SV2 are affine models (Duffie et al., 2000),

the characteristic function of Xt is exponentially affine in the state variables, and is

given by

Uðu; XtÞ ¼ expðAjðt; iqðuÞÞ þ Bjðt; iqðuÞÞy0 þ Cjðt; iqðuÞÞm0Þ (11)

where j¼ 1, 2 for SV1 and SV2 models, respectively.

For the SV1 model, the functions A1ðt; iqðuÞÞ and B1ðt; iqðuÞÞ are available in closed

form and C1ðt; iqðuÞÞ ¼ 0, which is a well-known result from the fixed income literature;

see Appendix B. For the SV2 model, the characteristic function has no analytic solution

(Grasselli and Tebaldi, 2008). In Appendix C, we develop an efficient method to compute

the functions A2ðt; iqðuÞÞ; B2ðt; iqðuÞÞ and C2ðt; iqðuÞÞ. Our method delivers the unknown

functions as power series solutions of a system of first order differential equations.

Interestingly, the coefficients of the power series have analytic expressions in terms of the

model parameters and thus need to be derived only once, making computation time virtual-

ly zero in model estimation and option pricing calculations. In contrast, numerical solutions

of differential equations have to be re-computed for each set of the parameter values during
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a likelihood search. We conducted various numerical experiments that confirm the high ac-

curacy of our method; see end of Appendix C.12

Unfortunately, despite the analytical tractability of time-changed Lévy processes, the

model in (1) is not operational. The main reason is that the characteristic function of Xt in

(11) depends on the rate of time change y0 and possibly m0, which are both unobservable.

Furthermore, the models are spelled out in continuous time while in reality asset prices are

only observed at discrete times. To operationalize the models, we first derive the discrete

time dynamic of the log-returns induced by (1), and then introduce volume-based proxies

for the unobservable time changes.

Let D > 0 denote a fixed time step, for example one day that represents the frequency of

observations. The discrete time dynamics of the excess log-return Xðkþ1ÞD �XkD;

k ¼ 0; 1; 2; . . ., can be derived from (1) by noting that

Xðkþ1ÞD �XkD¼
D

csðY½kD;ðkþ1ÞD�Þ þ rWðsðY½kD;ðkþ1ÞD�ÞÞ þ bY½kD;ðkþ1ÞD� (12)

where ¼D denotes an equality in distribution and Y½kD;ðkþ1ÞD� ¼
Ð ðkþ1ÞD
kD ysds. Intuitively, it is

as if at each discrete date kD, the process Y accumulating the stochastic time change would

restart at zero because only the accumulated stochastic time change Y½kD;ðkþ1ÞD� over the

time interval ½kD; ðkþ 1ÞD� impacts the log-return volatility over that period.13 We note

that (12) can be easily extended to settings in which the discrete dates are not equally

spaced in time or D is a positive random variable describing the random arrival of market

prices, as is the case for intraday data; see Aı̈t-Sahalia and Mykland (2003) for a treatment

of random sampling in diffusive settings.

In discrete time, the characteristic function of Xðkþ1ÞD �XkD in (11) is thus

Uðu; Xðkþ1ÞD �XkDÞ ¼ expðAjðD; iqðuÞÞ þ BjðD; iqðuÞÞykD þ CjðD; iqðuÞÞmkDÞ (13)

where j¼1, 2 for SV1 and SV2 models, respectively. Because ykD and mkD are not observ-

able, this characteristic function is not operational. To avoid lengthy expressions, we dis-

cuss how to operationalize (13) for SV1 models in which C1ðD; iqðuÞÞ ¼ 0. The case of SV2

models can be handled in a similar way.

We propose to construct proxies of y using trading volume, given that the rate of time

change y controls the stochastic volatility as shown in (6). Trading activity is a natural

proxy for stochastic time changes as it represents the “business” clock rather than the

“calendar” clock. In fact, an extensive research has documented the strong positive

12 For example, the function B2ðt ; iqðuÞÞ in the SV2 model solves an autonomous differential equa-

tion, and has an analytic expression. For a wide range of model parameters, the analytic expres-

sion and the series approximation of B2ðt ; iqðuÞÞ based on three or more terms, are virtually

indistinguishable. In our empirical analysis, we use five terms to implement the series solution of

the functions A2ðt ; iqðuÞÞ; B2ðt ; iqðuÞÞ and C2ðt ; iqðuÞÞ.
13 The equality in distribution in (12) is based on the so-called infinite divisibility property of Lévy

processes. Because Lévy processes have independent increments over non-overlapping inter-

vals, it holds that sðkþ1ÞD¼D skD þ sD. Therefore, the distribution of Xðkþ1ÞD � XkD depends on sD,

and not on past skD.
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association between volume and volatility.14 Because trading volume is not stationary over

long time spans, we use volume changes to proxy for the activity rate y of log-returns.

Specifically, we fit a GARCH(1,1)-type model to daily changes of log trading volume, com-

pute the GARCH variance to obtain the proxy ~ykD of ykD at the discrete dates

kD; k ¼ 0; 1;2; . . ., and scale the ~ykD’s to have sample mean one because E½ykD� ¼ 1. The

proxy ~ykD is therefore a weighted average of past volume changes. We then assume that ~ykD

is related to ykD through the equation ykD ¼ ~ykDekD, where ekD is a non-negative multiplica-

tive observation error. There are two reasons for using GARCH models. The first reason is

to reduce the noise in the raw volume data. The second is to disentangle slow- and fast-

moving components in the volume process to obtain proxies of yt and mt for SV2 models.

While volume-based proxies of time changes can be easily constructed, it is unclear

which properties these proxies should have or how to use them in a theoretically consistent

way to make time-changed Lévy models operational. Appendix D formally addresses these

issues. Below we summarize the discussion. The observed filtration OkD, collecting observ-

able variables, is discrete and given by the r-algebra generated by the random variables

fðXjD; ~yjDÞ : j ¼ 0;1; . . . ; kg. Our key assumption is that the observation error satisfies the

following Markovian-type property

P½fekD 2 AgjOkD� ¼ P½fekD 2 Agj~ykD� (14)

where A 2 BðRþÞ and BðRþÞ is the Borel sets of Rþ. This assumption ensures that the distri-

bution of the observation error ekD does not depend on the whole history of the proxy vari-

able, which appears to be a reasonable condition to impose on observation errors. We can

state the following proposition.

Proposition 1.4. Using the assumption in (14) and substituting ykD ¼ ~ykDekD in (13), the

characteristic function of the discrete time log-return Xðkþ1ÞD �XkD is given by

EOkD
½Uðu; Xðkþ1ÞD �XkDÞ� ¼ EOkD

½expðAðD; iqðuÞÞ þ BðD; iqðuÞÞykDÞ�

¼ expðAðD; iqðuÞÞÞ
Ð1
0 exp ðBðD; iqðuÞÞ~ykDeÞf ðej~ykDÞde

(15)

where f ðej~ykDÞ is the conditional density of the observation error ekD.

Specifying an observation error with known characteristic function, the integral in (15)

can be readily computed by plugging �iBðD; iqðuÞÞ~ykD in the characteristic function of ekD

conditional on ~ykD. In our empirical analysis, we assume that the observation error ekD fol-

lows a Gamma distribution, Gðdy;1=ðdy � 1ÞÞ.15 Two reasons motivate this choice. First,

the error term ekD has to be positive to ensure that the time change is positive, and the

Gamma distribution is a rather flexible positive distribution. Second, when ekD follows a

Gamma distribution, 1=ekD follows an Inverse Gamma distribution. This result is useful to

impose E½1=ekD� ¼ 1 via a parameter restriction in the Gamma distribution, which in turn

14 This line of research goes back at least to Gallant et al. (1992). Bollerslev et al. (2018) provide a re-

cent empirical analysis of the volume-volatility relation using intraday data.

15 We also experimented with an Inverse Gaussian distribution and the empirical results were

unchanged.
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ensures that E½~ykD� ¼ ykD, that is, the volume-based proxy ~ykD is an unbiased reflection of

the rate of time change ykD. The integral in (15) is then given by

ð1
0

exp ðBðD; iqðuÞÞ~ykDeÞf ðej~ykDÞde ¼ ð1� BðD; iqðuÞÞ~ykD=ðdy � 1ÞÞ�dy :

Using (15) a large class of time-changed Lévy models can be made operational. The char-

acteristic function of the discrete time log-return Xðkþ1ÞD �XkD now depends only on ob-

servable quantities and model parameters, and time-changed Lévy models can be readily

implemented. When ykD follows the SV2 process in (8), we fit the two-component GARCH

model of Christoffersen et al. (2008) to daily changes of log trading volume, and compute

the short-run and long-run GARCH variance components to obtain the proxies ~ykD and

~mkD of ykD and mkD, respectively, assuming that the observation errors satisfy the

Markovian-type property in (14).

In the next section, we begin the empirical analysis by fitting time-changed Lévy models

to index returns. The objective is to assess the time series performance of the models, inde-

pendently from their option pricing performance and the specification of risk premia.

Proper time series fitting is important for example when computing risk measures of equity

portfolios. Subsequently, we analyze option pricing and risk premia.16

2 Time Series Analysis

This section presents the time series data, the estimation method, and the empirical per-

formance of time-changed Lévy models.

2.1 Time Series Data

For the time series analysis, we use the daily log-returns and trading volumes of the

Standard & Poor’s 500 index (S&P 500). Our sample consists of 17,538 daily data from

February 28, 1950 to November 6, 2019. The trading volume is the total daily trading vol-

ume of stocks that constitute the S&P 500 index. The in-sample tests use 11,592 observa-

tions, until March 25, 1996, that is about 2/3 of the full sample. The remaining

observations are used for out-of-sample tests. Several episodes of financial market turmoil,

such as the global financial crisis (2007–2009) or the European debt crisis (2010–2012), be-

long to the out-of-sample period. It will be interesting to assess which time-changed Lévy

models capture the large negative returns associated with these events, given that the model

parameters are estimated without those returns.

2.2 Model Estimation

We estimate the time-changed Lévy models by maximum likelihood, using the volume-

based proxy of the time change as in (15). Because the probability density of the log-return

16 An alternative approach would be to fit the models jointly to index returns and option prices. To

keep the amount of empirical work manageable, we leave this exercise to future work. Notice,

however, that this exercise would not allow to clearly assess the time series performance of the

models.
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in (1) is not available in closed-form, we first calculate the characteristic function and then

recover the probability density via numerical Fourier inversion of the characteristic

function.

There are various approaches to recover probability densities from characteristic func-

tions, with the Fast Fourier transform (FFT) or fractional FFT being popular methods.

However, probability densities of Lévy increments typically have large kurtosis, which may

lead to numerical errors when applying classic Fourier inversion techniques. This issue is

particularly severe for probability densities over short time horizons, as is the case in our

time series analysis. The problem stems from the slow decay of the real part of the charac-

teristic function, which is known as the Gibbs phenomenon. To achieve high accuracy in

the computation of the probability density, and thereby overcome the Gibbs phenomenon,

we enrich the Fourier-cosine series (COS) method of Fang and Oosterlee (2008) with a

damping function. Appendix E explains our method in detail.

2.3 Empirical Findings

To label the time-changed Lévy models that we investigate empirically, we use three blocks

of letters, B1;B2;B3. The first block B1 is F or empty depending on whether the model im-

plementation takes into account or not the observation error in the volume-based proxy of

the time change as in (15). When the implementation does not rely on (15), unobservable

variables are set equal to their proxies, assuming that observation errors are absent. The se-

cond block B2 is VG, NIG or NTS, depending on whether st is the Gamma, Inverse

Gaussian or Tempered Stable subordinator. The third block B3 is SV1 or SV2 depending on

whether the stochastic volatility is the one-factor (7) or two-factor (8) process. For ex-

ample, VGSV1 denotes the Variance Gamma model with the one-factor process driving the

stochastic volatility, and FVGSV1 is the same model but implemented taking into account

the observation error in the volume-based proxy as in (15).

We estimate sixteen time-changed Lévy models. We construct twelve models by combin-

ing the three Lévy subordinators st in Table 1; one-factor (SV1) or two-factor (SV2) process

for the stochastic volatility; with or without taking into account the observation error in

the volume-based proxy as in (15). All these twelve models are of infinite activity. As an il-

lustrative example, Appendix B presents the VGSV1 model in detail. We also consider four

finite activity models in which st follows a Poisson process time-changed with the SV1 or

SV2 process, with or without using (15).17 For the finite activity models, the block B2 of let-

ters in the model labels is given by P. We impose the Feller condition while estimating the

models.

We consider various benchmarks. To assess the overall time series fitting of time-

changed Lévy models, we consider the GJR GARCH model of Glosten, Jagannathan, and

Runkle (1993) and the two-component GARCH model of Christoffersen et al. (2008),

which are known to fit well daily index returns. To gage the usefulness of our volume-

based proxy, we estimate eight models imposing that the time change is equal to the

volume-based proxy, that is, the observation error is absent.

Tables 2 and 3 show the in-sample estimation results for time-changed Lévy models,

when the stochastic volatility is driven by the one-factor (SV1) or two-factor (SV2) process,

17 In these models, st follows a so-called Cox process as its intensity is not constant and given by Yt.

Upon a jump occurring, the size of the return jump is normally distributed.
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respectively. Various findings emerge from these estimates. First, going from finite to infin-

ite activity models sharply improves the fitting of index returns. Vuong (1989) Likelihood

Ratio (LR) tests soundly reject the null hypothesis that either FPSV1 or FPSV2 are equiva-

lent to any infinite activity model. Second, using the volume-based proxy as in (15) uni-

formly improves time series fitting across all time-changed Lévy models. LR tests strongly

reject the null hypothesis that models that allow for the observation error are equivalent to

models that do not allow for the observation error, for one- and two-factor and for any

Lévy measure. Third, the best performing model is FNTSSV2. This model features a flexible

tempered stable Lévy subordinator and has by far the largest log-likelihood value across all

the sixteen models that we estimate. Fourth, estimates of the tempering parameter � in the

Lévy measure (4) are largely different from zero, which provides statistical evidence against

stable infinite variation subordinators, characterized by �¼0. Finally, estimates of the tail

parameter a in (4) point to tempered stable subordinators for index returns. Estimates of a

range between 0.83 and 0.90, and are statistically away from both 1/2 and 1 (see Table 1).

A closer inspection of the best performing model, FNTSSV2, allows us to gage the sour-

ces of its fitting accuracy. Taking the classic VGSV1 as a baseline time-changed Lévy

model, we can decompose the log-likelihood increment from VGSV1 to FNTSSV2 as

follows:

Table 2. Parameter estimates for time-changed Lévy models with one-factor stochastic volatility

Model lnL Jump Drift Bm Stochastic Volatility

� a c b r jy ry dy

PSV1 33,492 –0.260 0.033 0.274 1.492 0.849

[14,025] (0.007) (0.000) (0.000) (0.027) (0.011)

FPSV1 33,715 –0.601 0.264 0.422 1.980 1.047 46.39

[14,241] (0.007) (0.009) (0.015) (0.010) (0.007) (3.029)

VGSV1 39,726 110.23 –0.103 0.094 0.173 1.491 0.129

½18,102] (1.991) (0.000) (0.000) (0.000) (0.209) (0.000)

FVGSV1 39,739 128.01 –0.112 0.101 0.186 2.509 0.48 12.91

[18,133] (3.083) (0.000) (0.007) (0.000) (0.000) (0.006) (2.073)

NIGSV1 39,729 52.84 –0.134 0.129 0.188 8.024 0.195

[18,099] (3.095) (0.000) (0.006) (0.000) (0.068) (0.000)

FNIGSV1 39,741 40.87 –0.128 0.113 0.208 3.470 0.072 25.18

[18,116] (1.038) (0.000) (0.008) (0.000) (0.000) (0.017) (2.305)

NTSSV1 39,745 55.48 0.860 –0.131 0.114 0.198 1.206 0.166

[18,121] (2.228) (0.009) (0.000) (0.000) (0.007) (0.018) (0.000)

FNTSSV1 39,757 50.40 0.900 –0.109 0.099 0.182 1.850 0.387 7.19

[18,135] (4.007) (0.005) (0.000) (0.000) (0.000) (0.014) (0.000) (1.085)

Time-changed Lévy models (1) are obtained from the Poisson (P) subordinator and the three Lévy subordina-

tors in Table 1 (VG, NIG, NTS), combined with the one-factor (SV1) process (7) for the stochastic volatility,

with (F) or without the volume based proxy of the time change as in (15). The observation error of the proxy

of y follows a Gðdy; 1=ðdy � 1ÞÞ. Model labels are described at the beginning of Section 2.3. Standard errors

are in parenthesis. lnL is in-sample [out-of-sample] Log-likelihood. Bm is Brownian motion. Data are daily

S&P 500 log-returns over 1950–1996, (in-sample period). Out-of-sample period is 1996–2019.
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é

v
y

m
o

d
e

ls
w

it
h

tw
o

-f
a

ct
o

r
st

o
ch

a
st

ic
v

o
la

ti
li
ty

M
o
d
el

ln
L

Ju
m

p
D

ri
ft

B
m

S
to

ch
a
st

ic
v
o
la

ti
li
ty

�
a

c
b

r
j y

r y
d y

j m
r m

d m

P
S
V

2
3
8
,1

1
2

–
0
.2

0
7

0
.1

6
6

0
.1

8
6

1
.0

9
0

0
.1

6
3

0
.5

9
3

0
.0

2
2

[1
7
,0

0
8
]

(0
.0

0
0
)

(0
.0

0
2
)

(0
.0

0
0
)

(0
.0

0
7
)

(0
.0

0
9
)

(0
.0

0
0
)

(0
.0

0
0
)

F
P
S
V

2
3
8
,1

2
6

–
0
.2

3
9

0
.2

0
4

0
.1

8
1

1
.9

0
5

0
.2

3
0

5
.0

9
9

1
.0

3
0

0
.2

1
9

4
.9

1
4

[1
7
,0

5
0
]

(0
.0

0
9
)

(0
.0

0
3
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

1
7
)

(0
.0

8
4
)

(0
.0

1
3
)

(0
.0

0
0
)

(1
.0

0
6
)

V
G

S
V

2
3
9
,7

4
6

1
0
9
.4

4
–
0
.1

3
5

0
.1

1
7

0
.1

9
4

0
.8

7
5

0
.1

3
1

0
.7

1
1

0
.0

8
6

[1
8
,1

4
8
]

(6
.3

0
9
)

(0
.0

0
0
)

(0
.0

0
5
)

(0
.0

0
9
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

F
V

G
S
V

2
3
9
,7

5
5

1
0
6
.0

3
–
0
.1

1
7

0
.1

0
3

0
.1

8
8

0
.8

8
3

0
.1

3
9

6
.3

9
5

0
.5

9
1

0
.0

8
2

3
.1

1
0

[1
8
,1

5
3
]

(3
.0

7
3
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(1
.0

8
3
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.5

5
8
)

N
IG

S
V

2
3
9
,7

4
9

3
7
.0

3
–
0
.1

9
1

0
.1

8
2

0
.2

0
9

0
.8

9
0

0
.1

4
2

0
.6

9
1

0
.1

2
3

[1
8
,1

4
9
]

(4
.7

2
8
)

(0
.0

0
6
)

(0
.0

0
0
)

(0
.0

0
9
)

(0
.0

2
2
)

(0
.0

0
1
)

(0
.0

0
7
)

(0
.0

0
0
)

F
N

IG
S
V

2
3
9
,7

6
1

4
3
.2

8
–
0
.1

8
3

0
.1

7
2

0
.1

9
7

0
.8

7
0

0
.1

5
3

7
.0

3
0

0
.7

0
5

0
.1

1
1

3
.9

0
9

[1
8
,1

5
6
]

(3
.0

9
2
)

(0
.0

0
2
4
)

(0
.0

0
0
)

(0
.0

0
5
)

(0
.0

0
0
)

(0
.0

0
0
)

(1
.0

4
4
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.2

7
4
)

N
T

S
S
V

2
3
9
,7

6
0

5
2
.0

0
0
.8

7
1

–
0
.1

4
7

0
.1

4
0

0
.1

8
7

0
.8

9
0

0
.1

6
1

0
.6

7
5

0
.1

2
0

[1
8
,1

5
0
]

(2
.8

4
0
)

(0
.0

0
8
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
9
)

(0
.0

0
0
)

(0
.0

0
5
)

(0
.0

0
0
)

F
N

T
S
S
V

2
3
9
,7

7
0

4
6
.0

7
0
.8

3
0

–
0
.1

4
5

0
.1

3
6

0
.1

8
3

0
.8

9
3

0
.1

4
2

9
.0

1
5

0
.6

8
9

0
.1

0
8

5
.2

2
0

[1
8
,1

6
3
]

(1
.8

2
5
)

(0
.0

1
1
)

(0
.0

0
9
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
8
)

(0
.0

0
0
)

(2
.3

0
7
)

(0
.0

0
0
)

(0
.0

0
0
)

(1
.0

8
4
)

S
ee

th
e

n
o
te

s
to

T
a
b
le

2
fo

r
p
a
ra

m
et

er
d
efi

n
it

io
n
s

a
n
d

sa
m

p
le

d
a
ta

.
T

im
e-

ch
a
n
g
ed

L
év

y
m

o
d
el

s
(1

)
a
re

b
a
se

d
o
n

th
e

tw
o
-f

a
ct

o
r

(S
V

2
)

p
ro

ce
ss

(8
)

fo
r

th
e

st
o
ch

a
st

ic
v
o
la

ti
li
ty

.
T

h
e

o
b
se

r-

v
a
ti

o
n

er
ro

rs
o
f

th
e

p
ro

x
ie

s
o
f

y
a
n
d

m
fo

ll
o
w

a
G
ðd

y
;1
=
ðd

y
�

1
ÞÞ

a
n
d

G
ðd

m
;1
=
ðd

m
�

1
ÞÞ

,
re

sp
ec

ti
v
el

y
.

Fallahgoul et al. j Risk Premia and Lévy Jumps 15
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FNTSSV2� VGSV1 ¼ ðFNTSSV2�NTSSV2Þ þ ðNTSSV2�NTSSV1Þ

þ ðNTSSV1� VGSV1Þ

where the equality is in log-likelihood units. The log-likelihood increment from VGSV1 to

FNTSSV2 can be broken down as follows: 23% of the increment is due to the usage of the

volume-based proxy that allows for observation error as in (15) (comparing FNTSSV2 and

NTSSV2); 34% to the second volatility factor (comparing NTSSV2 and NTSSV1); 43% to

the flexible tempered stable jump specification (comparing NTSSV1 and VGSV1). The

above likelihood decomposition confirms that moving from one- to two-factor volatility

process yields a sharp increase in the fitting of index returns, as is well-known from prior

literature. Interestingly, the decomposition also indicates that allowing for a flexible Lévy

subordinator is even more important. Using a suitable volume-based proxy that allows for

observation error of the time change accounts for a sizable 1/4 of the log-likelihood increase

from VGSV1 to FNTSSV2.

The benchmark GJR and two-component GARCH models substantially underperform

any infinite activity model in terms of log-likelihood values.18 This finding is relevant be-

cause GARCH models tend to fit well daily index returns. As an additional exercise, we

treat the time change as a latent process, and jointly determine model parameters and time

series trajectory of the time change using the Unscented Kalman Filter (UKF) and index

returns only; see Appendix F. Although a thorough comparison of time-changed Lévy mod-

els estimated using the UKF or volume-based proxy is beyond the scope of this article, esti-

mation results indicate that log-likelihood based on the UKF values are lower, which

underscores the importance of using volume-based proxy.19

Tables 2 and 3 also report the out-of-sample log-likelihood values for the sixteen esti-

mated models. The rankings of the models based on their in-sample and out-of-sample like-

lihood values are nearly identical. This finding indicates that the FNTSSV2 model is

capturing intrinsic features of index returns, and not just overfitting in-sample data.

Table 3 also confirms that the FNTSSV2 model is the most accurate model out-of-sample

according to likelihood values.

To visualize the model fitting, Figure 1 shows the out-of-sample conditional normal

probability plots of four selected models: the VGSV1 model, the best performing FNTSSV2

model, and the GJR and two-component GARCH models. The plots are based on the vari-

able zkD ¼ FðXðkþ1ÞD �XkDjOkDÞ; k ¼ 1; 2; . . ., where Fð�jOkDÞ is the conditional cumula-

tive distribution function of the daily log-return Xðkþ1ÞD �XkD, estimated using a specific

model. Comparing Panels (A) and (B) shows the benefit of going from a one-factor infinity

activity process to a more general two-factor infinity activity process, which is estimated

taking into account the observation error in the volume-based proxy as in (15). Major

improvements are visible in the fitting of the left tail of the index return distribution.

Comparing Panels (A) and (B) with Panels (C) and (D) confirms the substantially superior

18 The log-likelihood values of the GJR and two-component GARCH models are 16,326 and 16,407, re-

spectively, and are about half the log-likelihood values of any infinite activity model in Tables 2

and 3.

19 For example, the log-likelihood values of VGSV1 and NTSSV2 are 39,158 and 39,627, respectively,

and are well below the log-likelihood values of the corresponding models estimated using the

volume-based proxy; see Tables 2 and 3.
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performance of infinite activity time-changed Lévy models relative to GARCH models. The

lack of fit of the latter models is evident throughout the entire index return distribution.

Finally, we carry out the conditional density forecast evaluation in Diebold, Gunther,

and Tay (1998) and Diebold, Hahn, and Tay (1999) of the time-changed Lévy models and

GARCH models. To save space, we do not report detailed results, and only summarize the

main findings. The out-of-sample autocorrelations of the first four moments of zkD are ap-

proximately zero for most models, indicating that the models can accommodate the tem-

poral dependence in index returns. However, only the most flexible models, in particular

the FNTSSV2, capture well the conditional density of index returns, confirming the finding

in Figure 1.

In sum, infinite activity time-changed Lévy models substantially outperform finite activ-

ity or GARCH models in the time series fitting of index returns. Besides making models op-

erational, using the volume-based proxy of the time change as in (15) improves the time

series fitting of any model. Among the sixteen time-changed Lévy models that we estimate,

the best performing model features the tempered stable Lévy subordinator, the two-factor

volatility process, and is estimated using the volume-based proxy allowing for observation

error.

3 Option Pricing: Theoretical Analysis

This section presents the risk neutralization, the risk neutral characteristic function, and the

option pricing formula for the time-changed Lévy models in (1).

Figure 1. Out-of-sample normal probability plots for normalized returns for VGSV1, FNTSSV2, and

benchmark GARCH models. Out-of-sample daily S&P 500 log-returns span 1996–2019. Labels of time-

changed Lévy models are described at the beginning of Section 2.3. Diagonal dotted lines are the the-

oretical quantiles conditional upon correct specification. (a) VGSV1, (b) FNTSSV2, (c) GJR GARCH, (d)

Two-component GARCH.
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3.1 Risk Neutralization

The discrete time market at dates kD; k ¼ 0; 1; . . ., which consists in the risky asset and a

riskless asset, is intrinsically incomplete. Therefore, the set of risk neutral measures consists

in infinitely many elements. As usual with incomplete models, we pin down the risk neutral

measure chosen by market participants by minimizing the distance between market and

model-based option prices. We consider equivalent risk neutral probability measures Q

with the following properties:

1. There exists a risk premium h such that

WQ
t ¼Wt þ ht (16)

is a standard Brownian motion under Q.

2. The Q-subordinator st is a Lévy process in the same family of the P-subordinator with

characteristic exponent given by

wQðuÞ ¼
1

t
logEQ½eiust � ¼

ð1
0

ðeiux � 1ÞPQðdxÞ

and Lévy measure PQðdxÞ ¼ cQ expð��QxÞ=x1þaQdx for x 2 ð0;1Þ; cQ; �Q > 0, and

aQ 2 ½0; 1Þ.
3. The processes yt and mt remain affine under Q, that is, either yt follows the SV1 process

or (yt, mt) follow the SV2 process.
No additional conditions are imposed on the risk neutral measures. For example, the tail

exponents a and aQ are allowed to be different. Using the first two restrictions above, and

arguments similar to those of Section 1, shows that the discrete time martingale condition

E
Q

OkD
e�ðr�dÞD Sðkþ1ÞD

SkD

� �
¼ 1 (17)

can be equivalently stated as

1 ¼ E
Q

OkD
½expðXðkþ1ÞD �XkDÞ�

¼ E
Q
OkD
½expððb� /Qðrh� r2=2� cÞÞ

�
Yðkþ1ÞD � YkD

�
Þ�

(18)

where /QðkÞ ¼ �wQðikÞ is the Laplace exponent of the non-decreasing Lévy process st

under Q and k ¼ rh� r2=2� c. The martingale condition in (17) is a discrete time condi-

tion in that it only considers the observed price process at discrete dates kD;k ¼ 0;1; . . .

Importantly, since
�

Yðkþ1ÞD � YkD

�
is non-negative, from (18) we can state the following

proposition.

Proposition 3.1. A necessary and sufficient condition for Q to be a risk neutral measure is

that

b ¼ /Qðrh� r2=2� cÞ: (19)

The condition above places a joint constraint on the Brownian risk premium h and the Lévy

measure PQðdxÞ determining the Laplace exponent /Q. We emphasize that if a time-

changed Lévy model fails to satisfy the condition above, then the discrete time model

admits arbitrage opportunities. Furthermore, condition (19) explains why the term bYt

18 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbab020/6357324 by EPF Lausanne user on 10 N

ovem
ber 2021



enters the model specification in (1). Setting b ¼ 0 would impose a very tight constraint on

the risk neutralization of Xt. In fact, the Laplace transform of s(t) under Q is

EQ½e�ksðtÞ� ¼ e�/QðkÞt ¼ e�bt, where the last equality is due to (19) when k ¼ rh� r2=2� c.

If b ¼ 0 like in traditional time-changed Lévy models, then it must be the case that ksðtÞ ¼
0 and therefore k ¼ 0, given that st � 0 with probability one under Q. That is, if b ¼ 0

then rh� r2=2� c ¼ 0. Because r and c are estimated from the time series of index returns,

the last equality would determine the Brownian risk premium h, which would impair the

ability of time-changed Lévy models to fit option prices.

Beyond the requirement of equivalence in (19), the risk neutralization of time-changed

Lévy processes in (1) does not require any additional constraint on the risk premia carried

by the activity rate yt or the observation error ekD. For simplicity, we assume that observa-

tion errors carry no risk premia, and hence follow the same distribution under Q and satisfy

the same Markovian-type property in (14) as under P.

To specify the VRP, we use the most general form of risk premium that preserves the af-

fine property of yt in SV1, and (yt, mt) in SV2, when changing measure from P to Q. This

form of risk premium is called the extended affine market price of risk specification; see

Cheridito, Filipovic, and Kimmel (2007). For the SV1 process in (7), the VRP is such that

dWy
t ¼ dWQ;y

t þ ay
ffiffiffiffi
yt
p

dt þ byffiffiffiffi
yt
p dt (20)

where ay and by are constants, and WQ;y
t is a Q-Brownian motion. The SV1 process under

Q is therefore

dyt ¼ jQ;yðhQ;y � ytÞdt þ ry
ffiffiffiffi
yt
p

dWQ;y
t

where jQ;y ¼ jy � ryay and hQ;y ¼ ðjy þ rybyÞ=ðjy � ryayÞ. The risk premium can alter the

speed of mean reversion jQ;y and the long run mean hQ;y of yt under Q.20

For the SV2 model in (8), the extended affine risk premium specification is such that

dWy
t ¼ dWQ;y

t þ ay
ffiffiffiffi
yt
p

dt þ byffiffiffiffi
yt
p dt

dWm
t ¼ dWQ;m

t þ am
ffiffiffiffiffiffi
mt
p

dt þ bmffiffiffiffiffiffi
mt
p dt

(21)

where WQ;m is a Q-Brownian motion. The SV2 model under Q is thus given by

dyt ¼ jQ;yðhQ;y;c þ hQ;y;dmt � ytÞdt þ ry
ffiffiffiffi
yt
p

dWQ;y
t

dmt ¼ jQ;mðhQ;m �mtÞdt þ rm
ffiffiffiffiffiffi
mt
p

dWQ;m
t

(22)

where jQ;m ¼ jm � rmam,

20 Because we impose the Feller condition when fitting SV1 models to index returns under P, we im-

pose this condition under Q as well when pricing options.
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hQ;m ¼
jm þ rmbm

jm � rmam
; hQ;y;c ¼

ryby

jy � ryay
; hQ;y;d ¼

jy

jy � ryay
:

The extended affine specification provides a high degree of flexibility for modeling the

VRP. This specification is rarely estimated in practice, perhaps because accurate estimation

is challenging in small datasets. It is therefore interesting to assess the shape of the VRP in a

large panel of options, which is one of the empirical contributions of our option pricing

analysis in Section 4.

3.2 The Q-Characteristic Function and Option Pricing Formula

To compute option prices, we use the risk neutral characteristic function

E
Q
OkD
½UQðu; XnD �XkDÞ� ¼ E

Q
OkD
½expðiuðXnD �XkDÞÞ�

where ðn� kÞD is the time to maturity of the option. The same arguments as in the compu-

tation of the P-characteristic function show that

E
Q

OkD
½UQðu; XnD �XkDÞ� ¼ E

Q

OkD
½exp

�
iqQðuÞ

ðnD

kD
ysds

�
� (23)

where

qQðuÞ ¼ ub� iwQ uðc� rhÞ þ iu2 r2

2

� �
:

To calculate the above Q-characteristic function, we use the volume-based proxy of the

time change as in (15), obtaining ~ykD for SV1 models and ð~ykD; ~ykDÞ for SV2 models, and

assuming that the observation errors carry no risk premium. As usual, when pricing options

via Fourier inversion, we rewrite the time-kD forward price of a call option with strike price

K and expiring at time nD, as

E
Q
OkD
½maxðSnD � K; 0Þ� ¼ SkDE

Q
OkD
½maxðexpððr� dÞðn� kÞDþXnD �XkDÞ � K=SkD; 0Þ�:

(24)

Using the COS method with the damping function in Appendix E, we invert the Q-char-

acteristic function of XnD �XkD in (23) to compute the option price in (24).

We close this section by discussing the leverage effect under Q. Calculations similar

to those we performed under P in Section 1 show that the Q-instantaneous variance is

given by

vQt ¼ lim
D!0

VQ
t ½XtþD �Xt�

D
¼
�
r2EQ½s1� þ ðc� rhÞ2VQ½s1�

�
yt:

Therefore, the leverage effect under Q depends on the sign of

CovQ0 ½Xt �X0; v
Q
t � vQ0 � ¼

�
bþ ðc� rhÞEQ½s1�

��
r2EQ½s1� þ ðc� rhÞ2VQ½s1�

�
CovQ0 ½Yt; yt�:

The same calculations as under P in Appendix A show that in the SV1 model, and in the

SV2 model when hQ;y;d > 0 in (22), the sign of the constant term bþ ðc� rhÞEQ½s1�
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determines the sign of the Q-leverage. The primary reason for accommodating the leverage

effect in an option pricing model is to capture skewed implied volatilities. To illustrate this

point, Figure 2 shows thirty-day market implied volatilities of European options on the

S&P 500 index observed on August 31, 2015, and model-based implied volatilities gener-

ated by two VGSV1 models. The first VGSV1 model features the leverage effect as dis-

cussed above, and captures the skewed implied volatilities quite well. The second VGSV1

model has no leverage effect because we set b ¼ c ¼ h ¼ 0. As a result, this model can only

produce a symmetric implied volatility smile, and cannot fit observed volatilities.

4 Option Pricing: Empirical Results

This section describes the option data, the empirical pricing performance, and the estimated

risk premia of time-changed Lévy models.

4.1 Option Data

We consider European options on the S&P 500 index (symbol: SPX) which are among the

most actively traded options, and have been investigated in a number of empirical studies

including Christoffersen, Jacobs, and Mimouni (2010), Ornthanalai (2014), Andersen,

Fusari, and Todorov (2017), and Bardgett et al. (2019). Since out-of-the-money (OTM)

options are more actively traded than in-the-money options, we consider mid closing prices

of OTM puts and calls on each Wednesday from January 1996 to December 2019. We

apply the usual screening criteria on raw option contracts; see, for example, Barone-Adesi

et al. (2008).21 All option data are downloaded from OptionMetrics. The final dataset

Figure 2. Implied volatilities of 30-day SPX options on August 31, 2015 (Market). Model-based implied

volatilities of Variance Gamma (Madan and Seneta, 1990) time-changed with a Heston process, with

leverage effect (VGSV1: b 6¼ 0; c 6¼ 0; h 6¼ 0) and without leverage effect (VGSV1: b ¼ c ¼ h ¼ 0).

21 Specifically, options with time to maturity less than 10 days or more than 360 days, prices less

than $0.05, or zero trading volume are discarded. We also compute the implied volatility of each
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contains 1,428,352 option contracts, with the number of put and call options being

1,005,133 (70.37%) and 423,219 (29.63%), respectively. The large number of put options

reflects the increased demand of those options during and after the 2007–2009 financial

crisis.

We define moneyness as the ratio of the strike price over the index price, that is, K/S. A

put option is said to be deep OTM if K=S < 0:95, and OTM if 0:95 � K=S < 1. A call

option is said to be OTM if 1 � K=S < 1:10, and deep OTM if 1:10 � K=S. An option

contract with time to maturity T days has short maturity if 10 � T < 80, intermediate

maturity if 80 � T < 180, and long maturity if 180 � T.

Table 4 reports descriptive statistics for the 1,428,352 option contracts. The number of

deep OTM put (call) options is 823,438 (128,178), which corresponds to 57.65% (8.97%)

of the option contracts (Panel A). Short and long maturity options account for 62.22% and

Table 4. S&P 500 index option data

Option characteristics 10 � T < 80 80 � T < 180 180 � T

Panel A: Number of option contracts

K=S < 0:95 498,464 198,821 126,153

0:95 � K=S < 1 133,580 34,008 14,107

1 � K=S < 1:10 208,095 59,697 27,249

1:10 � K=S 48,605 38,832 40,741

Panel B: Average option prices

K=S < 0:95 3.64 11.25 20.19

0:95 � K=S < 1 21.46 56.11 88.38

1 � K=S < 1:10 10.10 30.96 61.38

1:10 � K=S 0.73 2.51 9.35

Panel C: Standard deviation option prices

K=S < 0:95 5.51 13.67 23.20

0:95 � K=S < 1 14.92 21.70 30.85

1 � K=S < 1:10 13.36 25.32 3.27

1:10 � K=S 1.96 4.69 12.83

Panel D: Average implied volatility

K=S < 0:95 0.31 0.31 0.30

0:95 � K=S < 1 0.15 0.16 0.18

1 � K=S < 1:10 0.12 0.13 0.15

1:10 � K=S 0.21 0.16 0.16

Panel E: Standard deviation implied volatility

K=S < 0:95 0.14 0.13 0.11

0:95 � K=S < 1 0.05 0.04 0.04

1 � K=S < 1:10 0.04 0.04 0.04

1:10 � K=S 0.13 0.07 0.05

Out-of-the-money put and call options on the S&P 500 index from January 1996 to December 2019.

Moneyness is defined as the ratio of the strike price over the index price, that is, K/S. Time to maturity T is in

days.

option, and eliminate those options whose implied volatility differs by >5% from the implied vola-

tility reported in OptionMetrics.
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14.58%, respectively, of the total sample. The average put (call) price ranges from $3.64

($0.73) for short maturity, deep OTM options to $88.34 ($61.38) for long maturity, OTM

options (Panel B). Call option prices tend be more volatile than put options in relative terms

(Panel C). For each maturity bucket, the implied volatility smile across moneyness is evident

(Panel D). When the time to maturity increases, the implied volatility smile tend to become

flatter, but the standard deviation of implied volatilities remain high especially for deep

OTM puts (Panel E).

4.2 Option Pricing and Risk Premia

We split the option sample into an in-sample part from January 1996 to mid-January

2013 and an out-of-sample part from mid-January 2013 to December 2019. For each of

the sixteen time-changed Lévy models in Section 2.3, we use in-sample option data to

calibrate risk premia parameters, enforcing the no-arbitrage condition (19). Specifically,

we calibrate the VRP parameters ay, by in (20) and ay; by; am;bm in (21) for SV1 and

SV2 models, respectively, the Lévy measure parameter �Q and for NTS models aQ as

well. To restrict the number of parameters needed to calibrate for the Lévy measure, we

impose EQ½st� ¼ t. Throughout the calibration procedure, we set the value of h such that

the no-arbitrage condition (19) holds, given the model parameters estimated from index

returns.22 We achieve parameter calibration as usual, namely by minimizing the sum of

squared pricing errors across all Wednesdays in our in-sample period, and treat this

minimization as a nonlinear least squares problem to obtain standard errors for the cali-

brated parameters. The procedure above pins down the risk neutral measure implicit in

market option prices.

4.2.1 Jump and volatility risk premia.

Table 5 shows the calibrated parameters for the infinite activity models.23 The Lévy meas-

ure under Q is substantially different from the Lévy measure under P across all models.

Values of �Q and aQ are systematically lower than their counterparts under P. Low values

of �Q mean that the tempering function expð��QxÞ in the Lévy measure decays slowly to

zero when the jump size increases, and implies that large jumps are likely to occur under Q.

Low values of aQ indicate high jump activity especially near zero. For example, in the best

performing FNTSSV2 model, VQ½s1� ¼ 0:069 whereas VP½s1� ¼ 0:004.24 To gage the eco-

nomic magnitude of these values, consider the following. In (1), set Yt ¼ t and Wt ¼ 0,

which are their respective P-expectations, and t¼1 year. A one-standard deviation increase

in s1 under P would induce a c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VP½s1�

q
¼ �0:88% drop in the annual log-return. A corre-

sponding increase in s1 under Q would induce a c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VQ½s1�

q
¼ �3:68% drop in the log-

return, which is a far more negative return. These values indicate that going from P to Q a

substantial amount of probability mass is shifted to the left tail of the return distribution

22 Equation (19) can be solved for h explicitly. For example, when st is a Gamma subordinator,

h ¼ ðexpðb=�QÞ � 1þ c=�Q þ r2=ð2�QÞÞ�Q=r.

23 To save space and given their inferior time series performance, we do not report the calibrated

parameters for the finite activity models.

24 From Supplementary Table 1, V½s1� ¼ ð1� aÞ=� for tempered stable subordinators.
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because of the infinite activity process s(t). In other words, the risks captured by the Lévy

process s(t) carry a significant risk premium.

To further illustrate the JRP in s(t), Figure 3 shows the Lévy measure in (4) estimated

under Q and under P for the tempered stable processes in the FNTSSV2 model, for a select

range of jump sizes. The Q-Lévy measure is systematically higher than the P-Lévy measure.

For example, jumps of size larger than 0.01 are expected to occur about six times per year

under P, while their frequency doubles under Q.25 Also, jumps larger than 0.05 have nearly

zero measure under P, but their frequency is still around 2.5 jumps per year under Q.

Table 5. Parameters and option pricing performance of time-changed Lévy models.

Model IS �Q aQ ay by am bm h OOS

Panel A

VGSV1 [0.009] 15.74 3.130 0.890 0.036 [0.010]

(1.009) (0.382) (0.000)

FVGSV1 0.904 12.09 1.830 0.831 0.036 0.938

(1.388) (0.375) (0.007)

NIGSV1 0.932 6.10 10.929 1.077 0.071 0.947

(0.194) (1.099) (0.005)

FNIGSV1 0.899 3.84 7.555 1.040 0.036 0.939

(0.153) (1.004) (0.022)

NTSSV1 0.883 5.08 0.792 2.940 0.303 0.014 0.911

(0.137) (0.048) (0.064) (0.000)

FNTSSV1 0.871 3.99 0.691 3.574 0.215 0.038 0.903

(0.050) (0.006) (0.404) (0.000)

Model IS �Q aQ ay by am bm h OOS

Panel B

VGSV2 0.874 11.04 3.60 0.301 0.250 0.091 0.007 0.909

(1.073) (0.022) (0.009) (0.006) (0.000)

FVGSV2 0.870 13.72 2.990 0.308 1.700 0.097 0.022 0.899

(1.374) (0.055) (0.004) (0.000) (0.000)

NIGSV2 0.894 7.95 4.088 0.319 0.987 0.250 0.066 0.918

(1.105) (0.329) (0.011) (0.009) (0.005)

FNIGSV2 0.879 9.07 5.704 0.470 0.848 0.150 0.047 0.908

(2.004) (0.922) (0.019) (0.001) (0.000)

NTSSV2 0.875 3.84 0.681 3.330 0.107 1.739 0.082 0.083 0.903

(0.008) (0.000) (0.818) (0.000) (0.004) (0.000)

FNTSSV2 0.806 3.74 0.759 4.505 0.273 1.900 0.088 0.046 0.894

(0.099) (0.005) (0.138) (0.000) (0.000) (0.000)

Risk neutral and risk premium parameters are calibrated to in-sample option data as described in Section 4.2.

Risk-neutral parameters �Q and aQ determine the Lévy jump measure (Table 1); volatility risk-premiums ay, by

for SV1 models, and ay; by; am; bm for SV2 models are defined in (20) and (21), respectively; Brownian risk pre-

mium h is defined in (16). Model labels are described at the beginning of Section 2.3. Model pricing perform-

ance is measured as the price RMSE. IS (OOS) is the in-sample (out-of-sample) RMSE of the corresponding

model divided by the RMSE of VGSV1 (benchmark) model. For VGSV1 IS and OOS in square brackets are the

RMSE. Option data spans January 1996 to December 2019. In-sample period is from January 1996 to mid-

January 2013. Out-of-sample period is from mid-January 2013 to December 2019.
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Higher-order moments of the Lévy subordinator under P and Q are also quite differ-

ent.26 In the FNTSSV2 model, the skewness of s(t) under P is 0.42, while under Q is 1.31,

that is three times larger. For the other models, risk premia attached to Lévy subordinators

are somewhat different but always substantial. For example, in the VGSV1 model, VP½s1� ¼
0:009 and VQ½s1� ¼ 0:064, which correspond to a �0.98% and �2.60% drop in the annual

log-return when s(t) increases by a one-standard deviation under P and Q, respectively.

Turning our attention to volatility risk premia, Table 5 reports estimates of the extended

affine risk premium specifications. The coefficients ay, by, am, and bm are estimated to be

positive across all models, meaning that volatility risk premia are negative, which is in line

with the extant literature.27 In the SV2 model, the level of risk premia is controlled by ay

and am when yt and mt increase. Because estimates of ay are substantially larger than esti-

mates of am, the fast moving factor yt commands a larger risk premium than the slow mov-

ing factor mt. Aı̈t-Sahalia, Karaman, and Mancini (2020) reach a similar conclusion

analyzing variance swap data.

Most studies in the literature consider the affine VRP specification (by ¼ bm ¼ 0),

whereas the extended affine specification is rarely estimated. An advantage of extended af-

fine over affine specifications is the large flexibility afforded by the former and thus its abil-

ity to uncover potential non-linearities in risk premia. A relevant question is therefore to

what extent such non-linearities are actually present in the data. Figure 4 shows the esti-

mated extended affine risk premia of yt and mt in the FNTSSV2 model. Non-linearities in

risk premia become very pronounced when yt and mt are close to zero. However, inspecting

Figure 3. Lévy measures of tempered stable processes. The Lévy measure PðdxÞ in (4) is the expected

number, per unit time, of jumps of size dx. The graph shows the Lévy densities under Q and P esti-

mated in the FNTSSV2 model. Tables 3 and 5 show the estimates of the parameters in the Lévy

measures.

25 Recall that
Ð

APðdxÞ is the expected number of jumps, per unit time, whose size lies in A.

26 The j-th centered moment of s1 can be computed differentiating j times with respect to ~u the log

moment generating function wð�i ~uÞ from Table 1 and evaluating it at ~u ¼ 0.

27 Recall that the risk premium per unit of volatility of yt and mt is given by �ay
ffiffiffiffi
yt
p � by=

ffiffiffiffi
yt
p

and

�am
ffiffiffiffiffiffi
mt
p � bm=

ffiffiffiffiffiffi
mt
p

, respectively.
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the estimated parameters controlling the dynamic of the SV2 process reveals that the real-

izations of yt and mt virtually never approach zero. To illustrate this point, superimposed in

Figure 4 are the estimated unconditional P probability densities of yt and mt.
28 While yt is

more volatile than mt, their probability densities are essentially zero for values of yt and mt

in the range from 0 to 0.2, where non-linearities of risk premia are pronounced.

Figure 4 also displays the VRP obtained by setting by ¼ bm ¼ 0 in the extended risk pre-

mium specifications, which can be interpreted as the restricted affine specifications of the

risk premium. These affine specifications appear to approximate quite closely the shape of

the extended specifications for a wide range of values of yt and mt, where their probability

densities are concentrated, and non-linearities are almost absent.

Figure 5 visualizes the impact of risk premia on the log-return density. In the FNTSSV2

model, we set v0 ¼ m0 ¼ 1, which are their unconditional values, and we consider the hori-

zon of one week. As expected, the density under P is negatively skewed, reflecting the nega-

tive skewness of log-returns as in (5). When we allow for the VRP only, the density changes

marginally relative to the P density, meaning that the VRP is modest over the one-week

horizon. When instead we allow for the JRP only, the resulting density is close to the Q

density, especially in the left tail, underscoring the relevance of the JRP over the one-week

horizon.

Finally, we consider the conditional ERP defined as

Figure 4.VRP. Extended affine market price of risk specification in (21) for the SV2 process with Q dy-

namic in (22) in the FNTSSV2 model. Table 5 reports estimates of the risk premia parameters in (21).

Dotted lines are affine approximations of the extended affine specifications. Probability densities of y

and m are shown at the bottom of the graph (density of y is more spread out than density of m).

28 Because mt follows an autonomous SV1 process, from the Cox–Ingersoll–Ross model, it is known

that the unconditional density of mt is a Gamma distribution with probability density

f ðmÞ ¼ x�=Cð�Þm��1 expð�xmÞ, where Cð�Þ is the Gamma function evaluated at �, and

x ¼ � ¼ 2jm=r2
m . The unconditional density of yt in the SV2 model can be computed by numerical

integration f ðyÞ ¼
Ð1

0 f ðy jmÞf ðmÞdm, where f ðy jmÞ ¼ ~x~� =Cð~�Þy ~��1 expð�~xyÞ with parame-

ters ~x ¼ 2jy=r2
y and ~� ¼ 2jy m=r2

y .
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ERPkD ¼ EP
OkD

SnD � SkD

SkD

� �
� E

Q
OkD

SnD � SkD

SkD

� �
(25)

where ðn� kÞD is one year. The dynamic of the ERP is determined by the rate of time

changes ykD and mkD through their volume-based proxy ~ykD and ~mkD. The time-change

Lévy models produce an ERP of about 5%, which is in line with historical estimates; see,

for example, Mehra (2006). To assess the impact of jump and volatility risks on the ERP,

we define two “hybrid measures”, PJ and PSV . The first measure PJ is equal to P except that

the Lévy jump parameters are the risk neutral ones. This measure reflects the risk premium

due to Lévy jumps only, and we define ERP
J
kD replacing P by PJ in (25). The second meas-

ure PSV is equal to P but the parameters controlling the stochastic volatility process are the

risk neutral parameters. The measure PSV reflects the risk premium due to stochastic vola-

tility only, and we define ERPSV
kD replacing P by PSV in (25). We compute ERPJ

kD and ERPSV
kD

throughout the entire sample period, from 1950 to 2019, using the estimated time-change

Lévy models. In line with the findings in Ornthanalai (2014), for most models the relative

magnitude of ERP
J
kD and ERPSV

kD indicates that almost 50% of the ERP is due to infinite ac-

tivity Lévy jumps.

In sum, infinite activity processes appear to carry a large JRP, while the VRP is well

approximated by affine specifications at least over the bulk of the volatility distribution.

These findings are based on the FNTSSV2 model, which outperforms many competing

models in fitting index returns and, as discussed next, in pricing options.

4.2.2 Option pricing performance.

As is customary in the literature, we evaluate the option pricing performance of each model

using the root mean square error (RMSE)

Figure 5. Log-return density. Log density of the log-return in the FNTSSV2 model (i) under the P meas-

ure, (ii) when the VRP only is present, (iii) when the JRP only is present, and (iv) under the Q measure.

The time horizon t is one week and v0 ¼ m0 ¼ 1.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ð ~Pmkt

i � ~P
mod

i Þ2
vuut

where N is the number of options, ~P
mkt ¼ Pmkt=S and ~P

mod ¼ Pmod=S are the observed and

model-based option prices divided by the level of the S&P 500 index, respectively. Prior

empirical option pricing applications of time-changed Lévy models, such as Huang and Wu

(2004), have focused on the VGSV1 model, and therefore we use this model as a bench-

mark. In these applications, unobservable variables driving the time change are recovered

from option prices as if they were model parameters, every time the model is calibrated.

This approach simplifies the application of time-changed Lévy models but can generate

time series trajectories of time changes that are inconsistent with the assumed model. We

do not follow this approach and use instead the volume-based proxy of the time change as

in (15).

Table 5 reports the RMSE, averaging across all moneyness and maturity options, for

each model relative to the RMSE of the VGSV1 model. We can summarize the empiric-

al findings as follows. First, the FNTSSV2 model consistently outperforms all other

models and often by a large extent. The FNTSSV2 has an in-sample RMSE almost 20%

lower than VGSV1 and a similar performance out-of-sample. Second, models that take

into account the observation error in the volume-based proxy of the time change as in

(15) always outperform models that do not. This finding indicates that our volume-

based proxy of the time change is effective also for pricing options, even though obser-

vation errors carry no risk premium. Third, comparing the RMSE of models with the

same number of volatility factors allows us to gage the importance of infinite activity

Q-subordinators for pricing options. For example, in-sample RMSE of FVGSV2,

FNIGSV2, and FNTSSV2 relative to VGSV1 are 0.870, 0.879, and 0.806, respectively.

While Gamma and Inverse Gaussian subordinators tend to perform similarly, the

Normal Tempered Stable subordinator stands out and induces a sizable 20% improve-

ment in RMSE.

Table 6 shows the in-sample pricing performance of selected models across moneyness

and maturities. To save space we consider only four models, namely PSV1, VGSV1,

FVGSV1, and FNTSSV2. Panel A reports the RMSE of the benchmark VGSV1 model. The

pricing performance of this model is rather uniform across moneyness but deteriorates

when the time to maturity increases. As the VGSV1 model has only one volatility factor, it

cannot accommodate the term structure of option prices. The ratios of RMSE of PSV1 to

VGSV1 (Panel B) are nearly always larger than one, underscoring the benefits of using in-

finite rather than finite activity models. Given that improvements in RMSE tend to be larg-

est for short maturity and out-of-the-money put options, infinity activity subordinators

appear to be particularly important for modeling the left tail of the risk neutral return dis-

tribution. The ratios of RMSE of FVGSV1 to VGSV1 (Panel C) are nearly always smaller

than one, which highlight the benefits of allowing for the observation error in the volume-

based proxy of time changes as in (15). Fitting improvements are largest for options around

the moneyness as these options are most sensitive to volatility. The ratios of FNTSSV2 to

VGSV1 (Panel D) are substantially smaller than one in most cases. Using a flexible Lévy

measure and a two-factor stochastic volatility process appear to be key for pricing options.
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Table 6. In-sample option pricing performance across moneyness and maturitiesPanel A:

VGSV1

T < 30 30 � T < 80 80 � T < 180 180 � T < 250 250 � T

K=S < 0:95 0.005 0.008 0.016 0.015 0.019

0:95 � K=S < 0:975 0.005 0.008 0.016 0.018 0.017

0:975 � K=S < 1 0.004 0.008 0.014 0.018 0.018

1 � K=S < 1:025 0.004 0.007 0.012 0.016 0.017

1:025 � K=S < 1:05 0.003 0.007 0.011 0.016 0.017

1:05 � K=S < 1:10 0.003 0.008 0.013 0.015 0.019

1:10 � K=S 0.001 0.007 0.015 0.014 0.020

Panel B: PSV1/VGSV1

K=S < 0:95 1.115 1.109 1.118 1.094 1.001

0:95 � K=S < 0:975 1.092 1.095 1.094 1.080 1.055

0:975 � K=S < 1 1.081 1.088 1.079 1.084 1.080

1 � K=S < 1:025 1.062 1.093 1.073 1.060 1.029

1:025 � K=S < 1:05 1.094 1.075 1.066 1.038 0.990

1:05 � K=S < 1:10 1.097 1.090 1.082 1.071 1.041

1:10 � K=S 1.090 1.085 1.086 1.079 1.063

Panel C: FVGSV1/VGSV1

K=S < 0:95 0.984 0.992 0.963 0.997 1.052

0:95 � K=S < 0:975 0.976 0.944 0.947 0.981 1.009

0:975 � K=S < 1 0.925 0.991 0.919 0.942 0.955

1 � K=S < 1:025 0.911 0.871 0.895 0.905 0.939

1:025 � K=S < 1:05 0.920 0.954 0.940 0.937 0.964

1:05 � K=S < 1:10 0.951 0.968 0.955 0.959 0.986

1:10 � K=S 0.998 0.983 0.959 0.981 1.003

Panel D: FNTSSV2/VGSV1

K=S � 0:95 0.805 0.811 0.819 0.827 0.991

0:95 � K=S < 0:975 0.795 0.796 0.804 0.821 0.988

0:975 � K=S < 1 0.784 0.775 0.793 0.796 0.990

1 � K=S < 1:025 0.770 0.742 0.758 0.772 0.960

1:025 � K=S < 1:05 0.779 0.804 0.781 0.785 1.004

1:05 � K=S < 1:10 0.802 0.817 0.794 0.791 1.011

1:10 � K=S 0.814 0.839 0.827 0.849 1.016

Panel A: Price RMSEs of VGSV1 across moneyness and maturity of out-of-the-money options on the S&P 500

index. Panel B: Ratio of RMSEs of PSV1 to VGSV1. Panel C: Ratio of RMSEs of FVGSV1 to VGSV1. Panel D:

Ratio of RMSEs of FNTSSV2 to VGSV1. Maturity T is in days. Moneyness is K/S, where K and S are the strike

and underlying price, respectively. Model parameters are from Tables 2, 3 and 5. In-sample period is from

January 1996 to mid-January 2013.
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Improvements in RMSE can be as large as 25% when pricing around the moneyness

options with intermediate maturities.29

We now compare the pricing performance of the time-changed Lévy models to existing

models in the literature. The comparison should be interpreted cautiously as different stud-

ies rely on different SPX option data and sample periods. We consider the RMSE of implied

volatilities in percentage from in-sample analyses, as some studies do not provide out-of-

sample analyses. Gruber, Tebaldi, and Trojani (2021; Table 3 in their online Appendix) re-

port RMSE from 0.68% to 1.32% for their matrix affine jump diffusion models, but their

(in-sample) option data is relatively short and spans only January 1996 to December 2002.

Andersen et al. (2015b; their Table 6) report a RMSE of 1.71% for their best performing

three-factor model, and RMSE up to 3.14% for their benchmark models. Their option sam-

ple spans January 1996 to July 2010. Corsi et al. (2013; their Table 4) report a RMSE of

3.82% for their HARGL model, for an option sample spanning January 1996 to December

2004. The RMSE of the VGSV1 model and the best performing model (FNTSSV2) are

2.83% and 1.97%, respectively. The latter RMSE is of similar magnitude to the lowest

RMSE reported in the literature. We note that our (in-sample) data is largest and spans

January 1996 to January 2013, challenging the time-changed Lévy models to fit such a

large sample.

As a robustness check, to understand how “erratic” OTM puts could impact the calibra-

tion exercise, we re-calibrated selected models excluding deep OTM options. The model

parameters were almost unaffected and the pricing performance of most models improved

somewhat relative to the RMSE reported in Tables 5 and 6. The model ranking and overall

pricing performance remain the same.

We close this section with an additional out-of-sample analysis. Israelov and Kelly

(2017) report that affine models cannot predict future option returns. To understand

whether time-changed Lévy models have any forecasting power for option returns, we carry

out the following simple exercise. In the out-of-sample period (January 2013 to December

2019), we consider OTM options with maturity between one week and one month, about

203,000 options. At each date kD, we forecast the terminal payoff of each option. For ex-

ample, we compute EP
OkD
½maxðSnD � K;0Þ� for a call option with strike price K and maturity

nD > kD. The forecast is straightforward to compute and obtained via Fourier inversion.

As in Israelov and Kelly (2017), to evaluate the forecast accuracy we run Mincer–

Zarnowitz regressions. That is, we regress the realized payoff maxðSnD � K;0Þ on a con-

stant and the forecast EP
OkD
½maxðSnD � K;0Þ�. If the forecast is accurate, the intercept is zero

and the slope is one, in a statistical sense. The R2 of the regression provides an overall meas-

ure of the forecast accuracy. Across the various time-changed Lévy models, regression

results indicate that the intercepts are around –0.00004 and slopes around 1.0001, and are

only occasionally statistically away from zero and one, respectively. The models have a ten-

dency to overestimate the (zero) payoff of options that expire OTM, and to underestimate

the payoff of options that expire in-the-money. These two effects tend to cancel out, which

produces slopes of the Mincer–Zarnowitz regressions close to one. The R2’s are however

quite large and around 20%, indicating that time-changed Lévy models have forecasting

power of option payoffs.

29 Out-of-sample pricing errors across moneyness and maturities largely confirm the in-sample pric-

ing results and are not reported.
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5 Conclusion

We develop a novel class of time-changed Lévy models that are characterized by four nested

processes, capturing market, volatility, and jump risks as well as observation error of time

change. To study risk premia, we derive the change of measure analytically. To operational-

ize the models, we propose to use volume-based proxies for the unobservable time changes,

taking advantage of the strong positive relation between volume and volatility. An exten-

sive time series and option pricing analysis shows that infinite activity models largely out-

performs many finite activity models. The best performing model exhibits a flexible

tempered stable Lévy subordinator, a two-factor volatility process, and allows for observa-

tion error of the volume-based proxy. Infinite activity processes appear to carry substantial

JRP, while the VRP seems to follow relatively simple affine dynamics.

In future work, our time-changed Lévy models could be used to investigate whether op-

tion and volatility markets are truly segmented or instead flexible models can actually rec-

oncile the empirical regularities of both markets, following a similar analysis as in Bardgett

et al. (2019). Moreover, because the characteristic function of asset returns is readily avail-

able, our models could be used to study exotic derivatives, such as caps and swaptions as in

Leippold and Stromberg (2014). Another direction for future research would be to study

the link between time changes and different trading frequencies of various agents.

Appendix A: The Leverage Effect

To facilitate readability of lengthy expressions we use a light notation, omitting subscripts

whenever possible. The SV2 family of models in (8) is defined by the system of stochastic

differential equations

dYt ¼ ytdt

dyt ¼ jyðmt � ytÞdt þ ry
ffiffiffiffi
yt
p

dWy
t

dmt ¼ jmð1�mtÞdt þ rm
ffiffiffiffiffiffi
mt
p

dWm
t

where Wy and Wm are independent Brownian motions.

Define the instantaneous variance of the return process by

vt � lim
D!0

V½XtþD �XtjF t�
D

where F t is the time-t information set. Irrespective of the model used for the process yt in

(5) we have that

V½XtþD �XtjF t� ¼ ðbþ cÞ2V½YtþD � YtjF t� þ ðr2 þ c2V½s1�ÞE½YtþD � YtjF t�

and it immediately follows that

vt ¼ ðr2 þ c2V½s1�Þyt:

To prove this relation we start by observing that
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V½XtþD �XtjF t� ¼ b2V½YtþD � YtjF t� þ c2V½sYtþD � sYt
jF t�

þr2V½WðsYtþDÞ �WðsYt
ÞjF t�

þ2rbCov½YtþD � Yt;WðsYtþDÞ �WðsYt
ÞjF t�

þ2cbCov½YtþD � Yt; sYtþD � sYt
jF t�

þ2crCov½sYtþD � sYt
;WðsYtþD Þ �WðsYt

ÞjF t�:

Then, using the properties of the Lévy process st and the fact that Wt is a Brownian mo-

tion we deduce that

V½sYtþD � sYt
jF t� ¼ V½YtþD � YtjF t� þ V½s1�E½YtþD � YtjF t�

V½WðsYtþDÞ �WðsYt
ÞjF t� ¼ E½sYtþD � sYt

jF t� ¼ E½YtþD � YtjF t�

Cov½YtþD � Yt;WðsYtþD Þ �WðsYt
ÞjF t� ¼ 0

Cov½YtþD � Yt; sYtþD � sYt
jF t� ¼ V½YtþD � YtjF t�

Cov½sYtþD � sYt
;WðsYtþDÞ �WðsYt

ÞjF t� ¼ 0

and the result follows.

All expected values, variances, and covariances below are conditional on time-0 informa-

tion set. For simplicity, we omit such a dependence. To compute the leverage effect implied

by the model, we need to calculate

Cov½vt;Xt� ¼ ðr2 þ c2V½s1�ÞCov½yt;Xt�

¼ ðbþ cÞðr2 þ c2V½s1�ÞCov½yt;Yt�

where the second equality follows from the fact that

E½ytXt� ¼ E½bytYt þ cytsYt
þ rytWðsYt

Þ�

¼ E½bytYt þ cytYt� ¼ ðbþ cÞE½ytYt�

E½yt�E½Xt� ¼ E½yt�E½bYt þ csYt
þ rWðsYt

Þ� ¼ E½yt�E½bYt þ cYt�

¼ ðbþ cÞE½yt�E½Yt�:

Since

Cov½yt;Yt� ¼ E½yt

Ð t
0 yudu� � E½yt�E½

Ð t
0 yudu�

¼
Ð t
0 E½yuyt�du�

Ð t
0 E½yu�E½yt�du ¼

Ð t
0 Cov½yu; yt�du

we have that

Cov½vt;Xt� ¼ ðbþ cÞðr2 þ c2V½s1�Þ
ðt

0

Cov½yu; yt�du

and it follows that, irrespective of the model that is used for yt, the leverage effect is deter-

mined by the sign of

ðbþ cÞCov½yu; yt�:

In the SV1 model, we have that
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ðbþ cÞCov½yu; yt� ¼ ðbþ cÞe�jyðt�uÞV½yu�

so that the leverage effect is entirely determined by the sign of bþ c.

In the SV2 model, the situation is slightly more complex. Using the fact that

yt ¼ e�jyðt�uÞyu þ jy

ðt

u

e�jyðt�sÞmsdsþ
ðt

u

e�jyðt�sÞry
ffiffiffiffi
ys
p

dWy
s

it can be shown that

Cov½yu; yt� ¼ e�jyðt�uÞV½yu� þ jy

ðt

u

e�jyðt�sÞCov½yu;ms�ds

and a further calculation gives

Cov½yu;ms� ¼ Cov½yu;E½msjF u��

¼ Cov½yu; e
�jmðs�uÞmu þ

�
1� e�jmðs�uÞ

�
�

¼ e�jmðs�uÞCov½yu;mu�

for all u � s so that the same result as in SV1 will hold provided that Cov½yu;mu� � 0. The

specification of the model implies that

yu � E½yu� ¼ e�jyuðMy
u þ Au � E½Au�Þ

mu � E½mu� ¼ e�jmuMm
u ¼ mu � e�jmum0 � jm

Ð u
0 e�jmðu�sÞds

where

Au ¼ jy

ðu

0

ejyxmxdx

and the processes ðMy
u;M

m
u Þ are orthogonal martingales with initial value zero. Using these

expressions to compute the covariance, we obtain that

Cov½yu;mu� ¼ E½ðyu � E½yu�Þðmu � E½mu�Þ�

¼ E½e�ðjyþjmÞuMm
u ðMy

u þ Au � E½Au�Þ�

¼ e�jyuE½e�jmuMm
u Au� ¼ e�jyuE½Auðmu � E½mu�Þ�

¼ jyE½
Ð u
0 e�jyðu�xÞmxðmu � E½mu�Þdx�

¼ jyE½
Ð u
0 e�jyðu�xÞðmx � E½mx�Þðmu � E½mu�Þdx�

¼ jy

Ð u
0 e�jyðu�xÞCov½mx;mu�dx ¼ jy

Ð u
0 e�ðjyþjmÞðu�xÞV½mx�dx

where the last equality follows from the fact that

Cov½mx;mu� ¼ Cov½mx;E½mujF x��

¼ Cov½mx; e
�jmðu�xÞmx þ

�
1� e�jmðu�xÞ

�
�

¼ e�jmðu�xÞCov½mx;mx� ¼ e�jmðu�xÞV½mx�

for all x � u.
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Appendix B —Example: Variance Gamma SV1 Model

As an illustrative example of the time-changed Lévy model in (1), we describe the Variance

Gamma SV1 model. In this model, st is a Gamma subordinator (see Table 1) and yt follows

the SV1 process in (7). The time-t instantaneous variance is given by

vt ¼ ðr2 þ c2V½s1�Þyt ¼ ðr2 þ c2=�Þyt

as V½s1� ¼ 1=� from Table 1. In contrast to models based on SV2 processes, the characteris-

tic function of Xt can be computed explicitly, and is given by

Uðu; XtÞ ¼ expðA1ðt; iqðuÞÞ þ B1ðt; iqðuÞÞy0Þ (26)

with the functions

A1ðt; iqÞ ¼ � jy

r2
y

2 log
2g� ðg� jyÞð1� e�gtÞ

2g

� �
þ ðg� jyÞt

� �

B1ðt; iqÞ ¼ 2iqð1� e�gtÞ
2g� ðg� jyÞð1� e�gtÞ

and g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

y � 2iqr2
y

q
. The characteristic exponent wðuÞ of the Gamma subordinator st is

given in Table 1 and the function q(u) in (10), which enters A1ðt; iqÞ and B1ðt; iqÞ above, is

given by

qðuÞ ¼ ubþ i� log 1� iðucþ iu2 r2

2

� �
=�Þ:

Appendix C: Series Solution for the Characteristic Function

We use the light notation in Appendix A and write the SV2 model as

dyt ¼ jyðhy;c þ hy;dmt � ytÞdt þ ry
ffiffiffiffi
yt
p

dWy
t

dmt ¼ jmðhm �mtÞdt þ rm
ffiffiffiffiffiffi
mt
p

dWm
t :

The specification above encompasses both P- and Q-dynamics. For example, hy;c ¼ 0 and

hy;d ¼ hm ¼ 1 under P. The parameter specification under Q is in (22).

The characteristic function of the time change ðT � tÞ7!
Ð T
t ysds is defined by

f ðt; yt;mt; uÞ ¼ Et½eu
Ð T

t
ysds� ¼ eAðT�t;uÞþBðT�t;uÞytþCðT�t;uÞmt

for a given u 2 C and some unknown functions (omitting subscripts) A, B, and C such that

Að0; uÞ ¼ Bð0; uÞ ¼ Cð0; uÞ ¼ 0: (27)

Combining the fact that the process

e
u
Ð t

0
ysds

f ðt; yt;mt; uÞ

is a martingale with a standard separation of variables argument shows that these functions

must solve the system of ordinary differential equations given by
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A0ðs; uÞ ¼ jyhy;cBðs; uÞ þ jmhmCðs; uÞ

B0ðs; uÞ ¼ u� jyBðs; uÞ þ 1

2
r2

yBðs; uÞ2

C0ðs; uÞ ¼ jyhy;dBðs; uÞ � jmCðs; uÞ þ 1

2
r2

mCðs; uÞ2

subject to (27). With the exception of the function Bðs; uÞ, which actually solves an autono-

mous equation, it is not possible to derive an explicit solution to this system. Instead, we

construct a power series solution by postulating that

Hðs; uÞ ¼
X1
k¼0

hkðuÞsk; ðh;HÞ 2 fða;AÞ; ðb;BÞ; ðc;CÞg:

To determine the sequence ðakðuÞ;bkðuÞ; ckðuÞÞ1k¼0 of unknown coefficients, we start by

observing that the boundary condition (27) implies

a0ðuÞ ¼ b0ðuÞ ¼ c0ðuÞ ¼ 0; u 2 C:

Substituting the conjectured series solution into the system of differential equations,

using Cauchy’s product formula

�X1
k¼0

hkðuÞsk
�2

¼
X1
k¼0

�Xk

‘¼0

h‘ðuÞhk�‘ðuÞ
�
sk

to compute the squares, and matching terms shows that the unknown coefficients can be

computed recursively as follows:

a1ðuÞ ¼ u� b1ðuÞ ¼ c1ðuÞ ¼ 0

bkþ1ðuÞ ¼
1

1þ k
�jybkðuÞ þ

1

2
r2

y

Xk

‘¼0

b‘ðuÞbk�‘ðuÞ

2
4

3
5

ckþ1ðuÞ ¼
1

1þ k
jyhy;dbkðuÞ � jmckðuÞ þ

1

2
r2

m

Xk

‘¼0

c‘ðuÞck�‘ðuÞ

2
4

3
5

and

akþ1ðuÞ ¼
1

1þ k
½jyhy;cbkðuÞ þ jmhmckðuÞ�:

We confirm the accuracy of our series solution by running two main sanity checks. First,

we consider the function Bðs; uÞ that solves an autonomous differential equation and has an

analytic solution. This differential equation appears in both SV1 and SV2 models. Second,

we consider the characteristic function of SV1 models that has the analytic solution given

by (26). We compare the two analytic solutions with their corresponding series solutions.

For the range of estimated or calibrated parameter values, the analytic solutions and the

series solutions are virtually identical when the number of terms in the series solution is at

least three and the time horizon s is less than one year. In our empirical analysis, we imple-

mented the series solution using five terms. We also experimented with ten and fifteen

terms, and results were unchanged.
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Appendix D: Theoretical Aspects of the Proxy of the Time Change

Let ðXt; ytÞt�0 be a Markov process, modeling excess log-return and rate of time change.

Assume that we observe ðXkD; ~ykDÞ at discrete dates kD; k ¼ 0; 1; . . ., where ~ykD ¼
SðekD; ykDÞ is a signal for the unobservable ykD and S is some function invertible in ykD.30

Denote the r-algebras as F t ¼ rfðXs; ysÞ : s � tg and OkD ¼ rfðXjD; ~ykDÞ : j ¼ 0; 1; . . . ;kg.

Assumption. The observation error ekD is independent of fXðkþjÞD : j > 0g given F kD.

Lemma. For any bounded function g : R! C, we have that

E½gðXðkþjÞDÞjOkD� ¼ E½/gðj;XkD; ykDÞjOkD� ¼
ð

/gðj;XkD;S�1ðe; ~ykDÞÞP½ekD 2 dejOkD�

for some function /g : N� R� Rþ ! C.

Proof. Let g be a bounded function. Then

E½gðXðkþjÞDÞjOkD� ¼ E½E½gðXðkþjÞDÞjF kD _ rfeuD : u ¼ 0; . . . ; kg�jOkD�

¼ E½E½gðXðkþjÞDÞjF kD�jOkD�

¼ E½/gðj;XkD; ykDÞjOkD�

¼ E½/gðj;XkD;S�1ðekD; ~ykDÞÞjOkD�

where the first equality follows from the tower law; the second equality follows from our

assumption on ekD; the third equality follows from the Markov property of (Xt, yt); the last

equality follows from the invertibility of the signal Sðe; yÞ with respect to y.

When the rate of time change depends on two unobservable variables, y and m,

the lemma above can be extended to cover this situation by introducing an additional signal

for m.

Appendix E: Fourier Inversion: COS Method with Damping Function

This section presents the method we use to recover probability density functions of time-

changed Lévy processes from their characteristic functions. To achieve high accuracy and

overcome the so-called Gibbs phenomenon, namely the slow decay of the real part of the

characteristic function, we enrich the COS Method (Fang and Oosterlee, 2008) with a

damping function.

Because the probability density function f(x) of X has not an analytic form, it is approxi-

mated by a discrete series that involves its characteristic function Uð�; XÞ. The approxima-

tion of f(x) via the COS method using N terms is given by

f ðxÞ ¼
XN�10

k¼0

Fk cos kp
x� a

b� a

� �
(28)

30 In our empirical investigation, we set SðekD; ykDÞ ¼ ykD=ekD.

36 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbab020/6357324 by EPF Lausanne user on 10 N

ovem
ber 2021



where
P0

indicates that the first term in the summation is weighted by one-half, ½a; b� 2 R

is the support over which f(x) is approximated, and denoting with Re the real part of a

complex number

Fk ¼
2

b� a
Re U

kp
b� a

; X

� �
exp �i

kap
b� a

� �	 

:

To overcome the Gibbs phenomenon, we scale the terms in the discrete series via the

damping function gðzÞ ¼ ð1þ cosðpzÞÞ=2 and obtain

Fk ¼ g
k

N

� �
2

b� a
Re U

kp
b� a

; X

� �
exp �i

kap
b� a

� �	 

:

These new Fk terms are plugged in the discrete series (28), which is used for maximum

likelihood estimation of time-changed Lévy models.

To price a European option, the probability density function of the log-price is approxi-

mated via the COS method. Let C0ðK;TÞ denote the time-0 price of a call option with strike

price K and maturity T, and ~K ¼ e�ðr�dÞTK=S0. Then,

C0ðK;TÞ ¼ e�rTE
Q
O0
½maxðST � K; 0Þ� ¼ e�dTS0E

Q
O0
½maxðeXT � ~K;0Þ�

¼ e�dTS0

Ðþ1
�1 maxðex � ~K; 0Þf ðxÞdx

	e�dTS0

XN�10

k¼0

ReU
kp

b� a
; X

� �
exp �i

kpa

b� a

� �
 Vk

where the approximation 	 uses the discrete series (28) and

Vk ¼ g
k

N

� �
2

b� a

ðb

a

maxðex � ~K;0Þ cosðkp
x� a

b� a
Þdx:

Appendix F: Estimation of Time-changed Lévy Models with UKF

This section describes our implementation of the UKF to estimate time-changed Lévy mod-

els and to recover the time change from index returns without using any volume-based

proxy. To spare lengthy expression, we focus on the VGSV1 model. The other models can

be estimated in a similar way.

We cast the VGSV1 model in state space form, which consists of a transition equation

and a measurement equation. The transition equation describes the discrete time dynamic

of the state process x which is given by the SV1 process y. The transition equation is

obtained from an Euler discretization of (7) at daily frequency

xkþ1 ¼ /0 þ /1xk þwk

where /0 ¼ jyD; /1 ¼ ð1� jyDÞ, wk 
 Nð0;QkÞ; Qk ¼ r2
yDxk, and D ¼ 1=252.31 The

measurement equation provides the relation between index returns and the state process,

and is given by

31 In SV2 models, the state process is two-dimensional x ¼ ½y m�0, where 0 denotes transposition,

and the transition equation is obtained from discretizing (8).
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zk ¼ hðxkÞ þ vk

where vk 
 Nð0;RÞ. We obtain the function hðxkÞ from the first two conditional moments

of daily log-returns

hðxkÞ ¼
ðbþ cÞDxk

ðbþ cÞ2ðDxkÞ2 þ ðc2=� þ r2ÞDxk

� �

which gives a nonlinear function h, hence the necessity to use the UKF. To simplify the

functional form of hðxkÞ, we approximate the first two moments of the log-returns up to D2

which is of the order 10�5, resulting in an accurate approximation at daily frequency.

Below we provide a brief discussion of the UKF, starting with the classic Kalman filter.

If the function hðxkÞ were linear, that is, hðxkÞ ¼ h0 þ h1xk, the Kalman filter would pro-

vide efficient estimates of the conditional mean and variance of the state vector. Let

x̂kjk�1 ¼ Ek�1½xk� and ẑkjk�1 ¼ Ek�1½zk� denote the expectation of xk and zk, respectively,

using information up to and including time k–1, and let Pkjk�1 and Fkjk�1 denote the corre-

sponding error covariance matrices. Furthermore, let x̂k ¼ Ek½xk� denote the expectation of

xk including information at time k, and let Pk denote the corresponding error covariance

matrix. The Kalman filter consists of two steps: prediction and update. In the prediction

step, x̂kjk�1 and Pkjk�1 are given by

x̂kjk�1 ¼ /0 þ /1x̂k�1

Pkjk�1 ¼ /1Pk�1/
0
1 þQk

where 0 denotes transposition, and ẑkjk�1 and Fkjk�1 are given by

ẑkjk�1 ¼ h0 þ h1x̂kjk�1 (29)

Fkjk�1 ¼ h1Pkjk�1h01 þ R: (30)

In the update step, the estimate of the state vector is refined based on the difference be-

tween observed and predicted quantities, with x̂k ¼ Ek½xk� and Pk given by

x̂k ¼ x̂kjk�1 þ Kkðzk � ẑkjk�1Þ (31)

Pk ¼ Pkjk�1 � KkFkjk�1K0k (32)

where the so-called Kalman gain Kk ¼ Pkjk�1h01F�1
kjk�1.

In our setting, the function hðxkÞ is nonlinear, and the Kalman filter has to be modified.

Nonlinear state space models have traditionally been handled with the extended Kalman fil-

ter, which effectively linearizes the measure equation around the predicted state. In recent

years, the UKF has emerged as a superior alternative. Rather than approximating the meas-

urement equation, it uses the true nonlinear measurement equation and approximates the

distribution of the state vector with a deterministically chosen set of sample points, called

“sigma points” that capture the true mean and covariance of the state vector. When propa-

gated through the nonlinear function hðxkÞ, the sigma points capture the mean and covari-

ance of the data accurately to the second order (third order for Gaussian states) for any

nonlinearity.

Specifically, a set of 2Lþ 1 sigma points and associated weights are selected according to

the following scheme
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v̂0
kjk�1 ¼ x̂kjk�1; x0 ¼ j

Lþ j

v̂ i
kjk�1 ¼ x̂kjk�1 þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ jÞPkjk�1

p �
i
; xi ¼ 1

2ðLþ jÞ ; i ¼ 1; . . . ;L

v̂ i
kjk�1 ¼ x̂kjk�1 �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ jÞPkjk�1

p �
i
; xi ¼ 1

2ðLþ jÞ ; i ¼ Lþ 1; . . . ;2L

where L is the dimension of x̂kjk�1, j is a scaling parameter, xi is the weight associated with

the ith sigma point, and
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ jÞPkjk�1

p �
i

is the ith column of the matrix square root.

Then, in the prediction step, (29) and (30) are replaced by

ẑkjk�1 ¼
X2L

i¼0

xihðv̂ i
kjk�1Þ

Fkjk�1 ¼
X2L

i¼0

xiðhðv̂ i
kjk�1Þ � ẑkjk�1Þðhðv̂ i

kjk�1Þ � ẑkjk�1Þ0 þ R:

The update step is still given by (31) and (32), but with the Kalman gain Kk computed as

Kk ¼
X2L

i¼0

xiðv̂ i
kjk�1 � x̂kjk�1Þðhðv̂ i

kjk�1Þ � ẑkjk�1Þ0F�1
kjk�1:

Finally, the log-likelihood function is given by

Xn

k¼1

� 1

2
2 logð2pÞ þ log jFkjk�1j þ ðzk � ẑkjk�1Þ0F�1

kjk�1ðzk � ẑkjk�1Þ
h i

where n is the sample size of daily log-returns. We maximize the log-likelihood with respect

to the model parameters except �, which is not well estimated. In sum, the procedure above

jointly returns parameter estimates and the filtered trajectory of the latent time change x̂k

using solely index returns.
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