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Abstract
We study the optimal design of a menu of funds by a
manager who is required to use linear pricing and does
not observe the beliefs of investors regarding one of the
risky assets. The optimal menu involves bundling of
assets and can be constructed from the solution to a cal-
culus of variations problem that optimizes over the indi-
rect utility that each type receives. We provide a com-
plete characterization of the optimal menu and show
that the need to maintain incentive compatibility leads
the manager to offer funds that are inefficiently tilted
towards the asset that is not subject to the informa-
tion friction.
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1 INTRODUCTION

One of the salient characteristics of the mutual fund industry is the proliferation of products that
results from the fact that each investment firm offers a large number of funds that often overlap
significantly.1 In this paper, we propose a novel, information-based theory of mutual fund fami-
lies that explains this proliferation. Our reasoning is simple. Consider a firm that provides invest-
ment services to a population of heterogenous investors and assume that the manager of the firm
knows the distribution of investors’ characteristics but does not observe the individual type of
each investor and thus faces an adverse selection problem. In such a setting, the manager needs
to design its offering to screen investors and we claim that under a linear pricing constraint, the
optimal strategy is to offer amenu of combinations of the risky assets – that is, funds – constructed
to be differentially attractive to different types of investors.

Mathematical Finance. 2022;32:455–516. © 2021 Wiley Periodicals LLC 455wileyonlinelibrary.com/journal/mafi

mailto:cvitanic@hss.caltech.edu
https://wileyonlinelibrary.com/journal/mafi
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmafi.12341&domain=pdf&date_stamp=2021-12-03


456 CVITANIĆ and HUGONNIER

To illustrate this mechanism, we consider a static model with one riskless asset and two risky
assets. The market is populated by a risk neutral investment firm/manager and a continuum of
mean-variance investors who can only access the risky assets through the firm. Investors agree on
the variances of returns as well as on the expected return of the first asset but differ in their beliefs
regarding the expected return on the second asset. The interpretation of this assumption is that
the first risky asset represents a familiar investment vehicle such a broad domestic index about
which information is freely available and widespread, whereas the second risky asset represents
a less familiar asset such as a foreign index about which information is less easily gathered.
The manager of the firm knows the distribution of investor beliefs, but does not observe the

type of each individual investor. As in a screening model with multiple goods (see, e.g., Wilson
(1993) and Armstrong (1996)), the manager is allowed to offer combinations of assets and a cor-
responding pricing scheme, but we depart from the canonical screening setting in two important
ways to take into account the specificities of the mutual fund market. First, we allow investors
to combine the funds offered by the manager subject to a noshort-selling constraint. Second, we
follow the US regulation of investment advisors by requiring the manager to use a linear pricing
rule that specifies the fees on each fund as a fraction of assets under management.2 Absent this
constraint the well-known screening solution applies and the optimal strategy is to let investors
trade the risky assets separately subject to a linear fee for the familiar asset and a nonlinear pricing
scheme with quantity discounts for the non-familiar asset.3 On the contrary, if pricing is required
to be linear then the only way to screen investors is to bundle assets into funds that each deliver a
specific exposure to the risk factors, and one of ourmain contributions is to showhow to construct
the optimal fund menu.
The solution method we develop consists of three steps. First, we establish that a version of

the revelation principle holds in our model. This allows us to restrict the manager to menus in
which funds are indexed by investor types and which have the property that each investor finds it
optimal to invest only in the fund targeted to his type. In the second step, we show that this incen-
tive compatibility constraint can be reduced to a family of differential inequalities and use this
formulation to establish that the optimal menu can be characterized in terms of the solution to a
constrained calculus of variations problem. In the third and last step, we provide a complete anal-
ysis of the Euler–Lagrange equations associated with this problem and use the unique solution to
these equations to explicitly construct the optimal menu.
The analysis of the optimal menu allows us to study the combined effect of the information

and pricing frictions at play in our model. Consider first the impact of the linear pricing con-
straint when taking as given the information friction. We show that linear pricing reduces the
amount of fees collected by the manager, increases the participation of investors as well as their
aggregate welfare, and even results in strict Pareto improvements for all investors if the informa-
tion friction is not too intense. Therefore, our results provide a justification for regulations, such
as the 1970 Amendment to the Investment Advisors Act, that restrict the price setting ability of
investment firms. Imposing linear pricing prevents themanager from using prices to discriminate
among investors and instead leads him to rely on bundling as a screening device. Specifically, we
show that the familiar asset is part of the menu – because it is not affected by the information
friction – but that it is never optimal to offer the two assets separately. Our findings therefore con-
tribute to the literature on asset bundling (see, e.g., Adams and Yellen (1976), Spence (1980), and
McAfee et al. (1989)) by providing conditions under which linear pricing makes mixed bundling
optimal.
Consider next the impact of the information friction taking the linear pricing constraint as

given. We show that given linear pricing and complete information, it is also optimal to offer a
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menu of funds. Comparing this menu to the optimal menu of the asymmetric information case
allows to elicit the effects of the information friction. In particular, we show that the need tomain-
tain incentive compatibility leads the manager to propose funds that are more titled towards the
familiar asset than those he would have offered under complete information. Our theory of fund
families thus provides an alternative, information-based explanation for the well-known home
bias according to which investors tend to over-invest in domestic/familiar assets.4 To provide
intuition for this result, we show that, if the full information menu was offered in the asymmet-
ric information case, investors would have an incentive to underreport their beliefs to benefit
from the better conditions offered to more pessimistic investors. To prevent this from happen-
ing the manager needs to make the funds that target more pessimistic investors less attractive to
more optimistic investors, and this is achieved by increasing the share of the familiar asset in all
the funds.
Our base case includes a single investment firm that faces a population of investors, as would

be the case when considering the provision of retirement accounts to the employees of a company.
To introduce a form of competition, we study an extension in which investors can also access the
familiar asset through an outside fund at some exogenous fee rate. We show that three cases may
occur. If the exogenous fee rate is higher than the fee rate the manager would have offered for the
familiar asset absent competition, then the outside fund is dominated. If the outside rate is lower
than the optimal rate but still sufficiently high then competition leads the manager to exclude
a fringe of pessimistic investors from the non-familiar asset market. Despite this exclusion, all
investors benefit from the presence of the outside fund because its lower fee rate more than com-
pensates for the lack of exposure to the non-familiar asset. As the outside fee rate decreases,
investors become less willing to acquire exposure to the familiar asset otherwise than through
the outside fund. This makes it harder for the manager to screen by bundling, and we show that
there is a threshold below which the optimal strategy is to unbundle the assets. In this case, the
optimal menu still excludes a fringe of pessimistic investors but can be implemented by offering
the familiar asset at the market fee rate and the non-familiar asset at a constant fee rate that we
determine in closed form.
While the tractability of our model rests on stark assumptions, we believe that the qualitative

message of our paper is likely to remain valid in other settings. Instead of differing in their beliefs,
investors couldwell differ along one ormore other important dimension such as risk aversion, ini-
tial endowments, the assets they are willing to hold, or the risks they are exposed to. Furthermore,
preferences need not be quadratic and there may exist more than two risky assets. These impor-
tant extensions make the model less tractable because they lead to multidimensional screening
problems (see, e.g., Rochet and Choné (1998)) but we believe that our solution method and the
mechanismwe highlight would play a important role in the solution. In particular, it is likely that
linear pricing would still lead to asset bundling as a screening device.
Our paper relates to a large theoretical literature on delegated portfolio management.

Hugonnier and Kaniel (2010) study a model close to ours but in which the fund manager faces
a single investor about whom he has full information. Breton et al. (2010) extend the model of
Hugonnier andKaniel (2010) to the casewhere twomanagers compete and show that competition
does not benefit investors because, in equilibrium, the funds offered by the two managers are col-
inear. In our model, we take as given that the pricing of funds must be linear. By contrast, Admati
and Pfleiderer (1997), Carpenter (2000), Das and Sundaram (2002), Basak et al. (2007), Cuoco and
Kaniel (2011), and Basak and Pavlova (2013) study the effects of different exogenous fee structures
on allocations, social welfare, risk-taking, market efficiency, and asset prices, while Bhattacharya
and Pfleiderer (1985), Ou-Yang (2003), Dybvig et al. (2010), and Cvitanić and Xing (2018) among
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others, adopt an optimal contracting perspective in which investors control the compensation of
the fund manager. Our model focuses on the design of an optimal fund menu in a static setting
where the customer base is fixed. Therefore, it abstracts from some important dynamic consider-
ations such as learning about managerial skill and its implications for the relation between past
performance and fund flows. Examples of papers that examine the impact of investors’ learn-
ing about managerial skills and/or technology include Lynch and Musto (2003), Dangl et al.
(2008), Carlin and Manso (2011), Pastor and Stambaugh (2012), and Brown andWu (2016) among
others.
There are a few papers thatmodel fund families.Mamaysky and Spiegel (2002) propose amodel

that explains the existence of many different fund families, while we focus on why there are many
funds inside one family. In theirmodel, each investment company gathers information that is spe-
cific and offers portfolios aimed at the subset of the population to which that information is most
useful. In our model, the funds inside a given family adapt to the beliefs among its population of
investors, but our finding is not necessarily at odds with those of Mamaysky and Spiegel (2002).
In particular, they empirically document that when an investment firm introduces a new fund, it
typically uses a strategy that places this fund in a different Morningstar category than its existing
ones, which is in line with the fact that in ourmodel, a new fundwould only be introduced follow-
ing a change in the customer base.Our findings are also in agreementwithGruber (1996), Khorana
and Servaes (2012), and Massa (2000) who show both empirically and theoretically that product
differentiation is an effective strategy for investment firms to maximize revenues. In recent work,
Brown and Wu (2016) follows the approach of Berk and Green (2004) to develop a continuous-
timemodel in which the performance of the funds offered by a sponsor carries information about
the common skills and resources shared across the whole family, while Berk et al. (2017) pro-
pose a model of an investment firm that allocates its investors’ capital to a population of het-
erogenous fund managers who can each add value to the firm subject to decreasing returns to
scale.
Our paper also contributes to the industrial organization literature on screening and asset

bundling, see for example Adams and Yellen (1976), Spence (1980), McAfee et al. (1989), Wilson
(1993), Armstrong (1996), and Stole (2001) among others. In particular, our paper can be seen as
multiple goods extension of the model of Mussa and Rosen (1978) in which the monopolist is
required to use linear pricing. Because of this constraint, the monopolist cannot resort to non-
linear pricing as a mean of discriminating among his customers. Instead, she will use product
bundling and our contribution is to show how the optimal menu of linearly priced bundles can
be constructed. In a related contribution Rothschild (2015) also considers a screening problem
with linear pricing, but his graphical analysis is limited to qualitative properties of the optimum.
To the best of our knowledge, this paper is the first to analytically derive a solution to a screening
problem with multiple goods and a linear pricing constraint.
The remainder of the paper is organized as follows. In Section 2, we present the model. In

Section 3, we show how the design of an optimal fund menu can be reduced to the solution of
a calculus of variations problem and provide a complete description of the optimal fund menu.
In Section 4, we analyze the most salient properties of the optimal menu. Finally, in Section 5,
we extend the base case model to allow investors a direct access to an outside fund that offers
the familiar asset. Section 6 concludes. Appendix A derives the solution to our model in three
important benchmark cases: the frictionless case where investors can freely access all assets, the
asymmetric information case where the manager is allowed to use any pricing scheme, and the
full information case where he is required to use linear pricing. Appendices B and C gather all
the proofs.
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2 THEMODEL

We consider a static model of a financial market that consists in three assets: a riskless asset with
gross return 𝑟 and two risky assets whose excess returns are given by a vector 𝜀 ∈ ℝ2 of inde-
pendent random variables with unit variances. We interpret the first risky asset as representing a
widely familiar asset, such as a broad domesticmarket index, aboutwhich investors have homoge-
nous beliefs and the second one as being a less familiar asset about which investors have dis-
persed beliefs.
The market is populated by a single risk-neutral investment manager and a unit measure of

risk-averse investors. All market participants agree that returns have unit variances and that the
expected gross excess return on the familiar asset, or equivalently its risk premium, is given by 𝜉
for some constant 𝜉 > 0, but investors differ in their beliefs regarding the expected return on the
other asset. Specifically, we assume that each investor is associated with a type 𝜃 ∈ Θ ∶= [0, 𝜃𝐻]

that represents her perception of the expected gross excess return on the non-familiar asset.
Each investor knows her own type but the only information available to the manager is that the
investors’ types are uniformly distributed over Θ.
Investors have initial wealth 𝑤0 and mean-variance preferences over terminal wealth. Specifi-

cally, we assume that the utility that an investor of type 𝜃 ∈ Θ derives from terminal wealth 𝑤1 is
given by

𝑢(𝜃, 𝑤1) ∶= 𝑎(𝐸𝜃[𝑤1] − 𝑟𝑤0) −
𝑎2

2
var𝜃[𝑤1], (1)

where 𝑎 > 0 captures the investors’ risk-aversion and the subscript indicates that the computa-
tion of the mean and variance is performed under the probability measure 𝑃𝜃 associated with the
investor’s beliefs.5 Investors can trade the riskless asset but can only access the risky assets through
themanager.6 In line with the regulation of investment advisors, we assume that themanager can
only use linear price schedules that charge investors a constant fraction of the initial investment.
Accordingly, a fund is specified by a pair (𝛾, 𝜙) where 𝛾 ∈ ℝ+ is the fee that the manager collects
at the terminal time per dollar invested in the fund and 𝜙 ∈ ℝ2 represents the amounts invested in
the two risky assets per dollar of assets under management.7 When offered, each such pair gives
rise to a composite asset that investors can allocate capital to and which provides an excess return
given by

(𝛾, 𝜙) ∶= 𝜙⊤𝜀 − 𝛾 ≡
2∑
𝑖=1

𝜙𝑖𝜀𝑖 − 𝛾. (2)

Because the pricing of funds is constrained to be linear, the manager cannot rely on quantity dis-
counts to screen investors as he would in the standard model of monopoly pricing under asym-
metric information.8 Instead, he will exploit the fact that investors have different preferences for
the risky assets by offering a menu of linearly priced funds that represent different combinations
of exposures to these assets.

Definition 2.1. A fundmenu is a collection𝐦 = (𝛾, 𝜙,)where is a set that indexes the funds
and (𝛾, 𝜙) ∶  → ℝ+ × ℝ2 are functions that represent the fee rate and the vector of loadings of
the funds on the risky assets.
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Let𝐦 be a givenmenu. In addition to linear pricing, another key feature of ourmodel compared
to a standard screening environment is that investors are not constrained to pick a single fund
and can in fact combine funds to achieve their preferred exposure subject to a no short selling
constraint. We capture this non exclusivity by taking the space 𝜇+() of nonnegative measures
on as the action set of investors. If the investor allocates capital to the funds according to some
measure 𝑞 then

𝑤0 − ∫ 𝑞(𝑑𝑚) = 𝑤0 − 𝑞(), (3)

is invested in the riskless and the induced terminal wealth is given by

𝑤1 = 𝑤1(𝑞,𝐦) ∶= (𝑤0 − 𝑞())𝑟 + ∫ (𝑟 +(𝛾(𝑚), 𝜙(𝑚)))𝑞(𝑑𝑚)

= 𝑟𝑤0 + ∫(𝛾(𝑚), 𝜙(𝑚))𝑞(𝑑𝑚). (4)

The optimization problem of an investor of type 𝜃 ∈ Θ who takes the fund menu 𝐦 as given is
then defined by

𝑣𝑖(𝜃,𝐦) ∶= sup
𝑞∈𝜇+()

𝑢(𝜃, 𝑤1(𝑞,𝐦)), (5)

and the aggregation of individual portfolio decisions generates a total amount of management
fees given by

𝑣𝑚(𝐦) ∶=
1

𝜃𝐻 ∫
Θ×

𝛾(𝑚)𝑞∗(𝑑𝑚; 𝜃,𝐦) 𝑑𝜃, (6)

where the measure 𝑞∗(⋅; 𝜃,𝐦) is the best response of an investor of type 𝜃 ∈ Θ to the menu𝐦. In
accordance with the above definitions, a menu𝐦∗ is optimal if it maximizes the total amount of
fees in Equation (6).

Remark 2.2 (Fund composition and leverage). We do not require the fund loadings 𝜙1 and 𝜙2 to
be positive or to sum up to one. As a result, the funds offered by the manager may in principle
include short risky asset positions as well as long or short positions in the riskless asset. We show
below that this assumption is without loss of generality as long as asset returns are independent.
In particular, the offered funds are never short in any of the risky assets and, since linearly priced
funds are defined up to constant, there always exist an all-equity implementation of the optimal
menu in which none of the funds invest in the riskless asset.

Remark 2.3 (Investor leverage). Investors are not allowed to short the funds offered by the
manager but we do not impose any constraint on the total amount 𝑞() that each investor
allocates to the funds. In particular, investors in our model can borrow at the risk-free rate
if their preferred portfolio is such that 𝑞() ≥ 𝑤0. This assumption may seem counterfac-
tual but is without loss of generality if leverred funds are allowed since any borrowing can
then be done through the funds. Even if the funds cannot use leverage, this assumption still
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remains without loss of generality as long as the investors’ initial wealth 𝑤0 and/or risk aver-
sion 𝑎 is large enough since our preference specification implies that the capital optimal-
ity invested in risky assets is independent of initial wealth and inversely proportional to risk
aversion.

Remark 2.4 (Specification of returns). The assumption that returns are independent and have
unit variance simplifies the presentation of the results but does not entail any loss in generality
as long as leverred funds are allowed. Indeed, a direct calculation shows that in our model invest-
ing through a fund (𝛾, 𝜓) in two correlated risky assets with non-unit variances is equivalent to
investing in two uncorrelated risky assets with unit variances through the adjusted fund defined
by

(𝛾, 𝜙) =

(
𝛾,

[
𝜎1 𝜌𝜎2
0 𝜎2

√
1 − 𝜌2

]
𝜓

)
, (7)

where the constants 𝜎1, 𝜎2 > 0 and 𝜌 ∈ [−1, 1] denote, respectively, the standard deviations of
asset returns and their correlation coefficient.

Remark 2.5 (Performance fees). Under specific conditions, the 1970 Amendment to the Invest-
ment Advisors Act of 1940 also allows the use of performance fees provided that they are symmet-
ric around a benchmark. In our model, the imposition of a symmetric performance fee on a fund
𝜙(𝑚) would correspondant to charging

𝛾(𝑚) + 𝛿(𝑚)(𝜙(𝑚) − 𝑏(𝑚))
⊤
𝜀, (8)

per dollar initially invested in the fund where 𝑏(𝑚) represents a benchmark portfolio and
(𝛾(𝑚), 𝛿(𝑚)) are nonnegative constants. Our main model does not include the possibility of such
fees but this restriction is without loss of generality. Indeed, we show in Appendix B.4 that in our
setting it is not optimal for the manager to use such fees.

3 SOLUTION

3.1 The revelation principle

Let 𝜉(𝜃) ∶= (𝜉, 𝜃)⊤ be the vector of expected gross excess returns (i.e., risk premia) perceived by
an investor of type 𝜃 ∈ Θ and denote by

𝜋(𝜃, 𝜙) ∶= argmax
𝑞∈ℝ+

𝑢(𝜃, 𝑟𝑤0 + 𝑞(1, 𝜙)) =
1

𝑎‖𝜙‖2 (𝜙⊤𝜉(𝜃) − 1)+, (9)

the amount that this investor would optimally invest in the fund (1, 𝜙)when allocating his wealth
between the riskless asset and that fund. Our first result is a version of the revelation principle,
which shows that the manager can restrict her attention to the set of menus such that funds are
indexed by types, fee rates are normalized to one, and each investor finds it optimal to only invest
in the fund targeted to his type.
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Proposition 3.1. Given any menu𝐦, there exists a menu𝐦 = (𝛾, 𝜙,) such that:

(1)  = Θ;
(2) 𝛾(𝜃) = 1 for all 𝜃 ∈ Θ;
(3) 𝑞∗(𝜎; 𝜃,𝐦) = 𝟏{𝜃∈𝜎}𝜋(𝜃, 𝜙(𝜃)) for all 𝜃 ∈ Θ and 𝜎 ⊆ Θ.
(4) 𝑣𝑚(𝐦) = 𝑣𝑚(𝐦);
(5) 𝑣𝑖(𝜃,𝐦) = 𝑣𝑖(𝜃,𝐦) for all 𝜃 ∈ Θ.

Property 3 is the analogue in our setting of the incentive compatibility constraint in clas-
sical screening problems. Properties 4 and 5 mean that the manager and the investors are
indifferent between the original menu and the new menu, which satisfies properties 1–3. The
normalization of the fee is without loss of generality because funds are only defined up to
a multiplicative constant. In the context of our model, this normalization serves two pur-
poses: it reduces the choice of the manager to that of a fund loading function 𝜙 ∶ Θ → ℝ2 and
allows to easily compare the funds in a given menu by comparing the risk exposures that they
offer.
Our next result provides a variational characterization of incentive compatibility that will be

instrumental in our construction of the fund menu.

Proposition 3.2. A loading function 𝜙 ∶ Θ → ℝ2 is incentive compatible if and only if

𝜙(𝜃′)⊤𝜉(𝜃) − 1 −
𝜙(𝜃)⊤𝜙(𝜃′)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)+ ≤ 0, (10)

for all (𝜃, 𝜃′) ∈ Θ2.

To understand the result, assume that the manager offers a loading function 𝜙. If an investor
of type 𝜃 ∈ Θ perceives that the risk premium

𝐸𝜃[(1, 𝜙(𝜃))] = 𝜙(𝜃)⊤𝜉(𝜃) − 1, (11)

on the fund targeted to him is nonpositive, then Equation (10) requires that this investor also per-
ceives all the other funds in themenu as offering negative risk premia and, thus, finds it optimal to
only invest in the riskless asset. On the other hand, if the investor perceives that the risk premium
on the fund targeted to him is strictly positive, then Equation (10) requires that, for any 𝜃′ ∈ Θ,
the alpha

𝛼(𝜃, 𝜃′) ∶= 𝐸𝜃[(1, 𝜙(𝜃′))] −
cov𝜃[(1, 𝜙(𝜃)),(1, 𝜙(𝜃′))]

var𝜃[(1, 𝜙(𝜃))]
𝐸𝜃[(1, 𝜙(𝜃))]

=
(
𝜙(𝜃′)⊤𝜉(𝜃) − 1

)
−
𝜙(𝜃)⊤𝜙(𝜃′)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1), (12)

of fund (1, 𝜙(𝜃′)) relative to fund (1, 𝜙(𝜃)) be negative, so that including any other fund in his
portfolio does not improve his risk-adjusted performance.
To elicit the nature of the information friction, it is useful to briefly consider the first best case

in which the manager knows the type of each investor, but is still required to use linear pricing.
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In this case, we show in Appendix A.3 that it is optimal to offer investors of type 𝜃 ∈ Θ a single
fund with loading function

𝜙◦(𝜃) =
2𝜉(𝜃)‖𝜉(𝜃)‖2 , (13)

and fee rate equal to one. Substituting this loading function into the incentive compatibility con-
dition (10) shows that

𝜙◦(𝜃′)⊤𝜉(𝜃) − 1 −
𝜙◦(𝜃)⊤𝜙◦(𝜃′)‖𝜙◦(𝜃)‖2 (

𝜙◦(𝜃)⊤𝜉(𝜃) − 1
)
=

𝜃′
(
𝜃 − 𝜃′

)
‖𝜉(𝜃′)‖2 , (14)

is nonnegative for any pair (𝜃, 𝜃′) ∈ Θ2 such that 𝜃′ ≤ 𝜃. This shows that the first best fund menu
is not incentive compatible and reveals that the adverse selection problem facing the manager is
that, when offered the first best menu, any given investor has an incentive to pretend to be less
optimistic than he really is.

3.2 The relaxed problem

Propositions 3.1 and 3.2 imply that the manager’s optimization problem reduces to the maximiza-
tion of the integral

𝐼(𝜙) ∶= (1∕𝜃𝐻)∫
Θ

𝜋(𝜃, 𝜙(𝜃))𝑑𝜃, (15)

over the setΦ0 of fund loading functions that satisfy Equation (10). To solve this problem, we fur-
ther restrict themanager’s choice set by imposing the technical requirement that the fund loading
function belongs to the intersectionΦ ∶= Φ0 ∩ 𝐴𝐶(Θ;ℝ2) ofΦ0 with the space of absolutely con-
tinuous functions onΘwith values inℝ2. The optimization problem that we consider is therefore
given by

𝑀 ∶= sup
𝜙∈Φ

𝐼(𝜙). ()

The main difficulty in solving this problem arises from the fact that Equation (10) cannot be dealt
with using standard techniques because it involves the values of the unknown vector valued func-
tion at all points of the type space. To overcome this difficulty, we follow the first-order approach
(see, e.g., Mirrlees (1971), Rochet (1987), and Rochet and Choné (1998)), which exploits the first-
order condition induced by the incentive compatibility constraint (10) to show that, instead of
optimizing over loading functions, the manager can optimize over the indirect utility

𝑣(𝜃) ∶= 𝑢(𝜃, 𝑟𝑤0 + 𝜋(𝜃, 𝜙(𝜃))(1, 𝜙(𝜃))) =
1

2

(
𝜙(𝜃)⊤𝜉(𝜃) − 1‖𝜙(𝜃)‖

)2

+

, (16)

and marginal utility 𝑣̇(𝜃) that her menu of funds delivers to each type of investor. Our first result
in this direction relates incentive compatible loading functions to the indirect utility functions
they induce.
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Lemma 3.3. Assume that 𝜙 ∈ Φ is incentive compatible. Then the indirect utility function defined
in Equation (16) belongs to the space 𝐴𝐶(Θ;ℝ). Furthermore,

2𝑣(𝜃) ≥ [𝑣̇(𝜃)]2, (17)

and the corresponding optimal investment can be expressed as

𝜋(𝜃, 𝜙(𝜃)) = 𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) ∶=
1

𝑎

(
𝜃𝑣̇(𝜃) − 2𝑣(𝜃) + 𝜉

√
2𝑣(𝜃) − [𝑣̇(𝜃)]2

)
, (18)

for almost every 𝜃 ∈ Θ.

Let 𝜙 ∈ Φ be an incentive compatible fund loading function. Relying on the above lemma, we
have that the total amount of fees generated by the investors’ best responses to the corresponding
menu is given by

𝜃𝐻𝐼(𝜙) = ∫
Θ

𝜋(𝜃, 𝜙(𝜃))𝑑𝜃 = ∫
Θ

𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃, (19)

where 𝑣 is the indirect utility function associated to 𝜙 through Equation (18). It follows that the
manager’s value function satisfies

𝜃𝐻𝑀 = sup
𝜙∈Φ

(𝜃𝐻𝐼(𝜙)) ≤ 𝑉 ∶= sup
𝑣∈ ∫

Θ

𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃, ()

where  denotes the set of functions 𝑣 ∈ 𝐴𝐶(Θ;ℝ) that satisfy Equation (17). Following the ter-
minology of screening models, we refer to () as the relaxed problem because it only takes into
account the first-order condition induced by the incentive compatibility constraint (10). Our goal
will be to show that at the optimum of the relaxed problem, this first-order condition is sufficient
for incentive compatibility so that the solution to () can be constructed from the solution to ().
The relaxed problem () is a scalar calculus of variations problem that can be solved using stan-

dard techniques (see, e.g., Mesterton-Gibbons (2009)). Specifically, using subscripts to denote par-
tial derivatives, we have that a necessary condition for optimality is given by the Euler–Lagrange
equation

𝐹𝑣(𝜃)(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) −
𝑑

𝑑𝜃
𝐹𝑣̇(𝜃)(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ Θ, (20)

and, because the boundary values of 𝑣 are free, this second-order differential equation should be
solved subject to the boundary conditions

𝐹𝑣̇(𝜃)(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ {0, 𝜃𝐻}. (21)

Calculating the derivatives involved in these expressions and simplifying the result leads to the
boundary value problem

𝑣(𝜃)(1 + 𝑣(𝜃)) − [𝑣̇(𝜃)]2 =
3

2𝜉

(
2𝑣(𝜃) − [𝑣̇(𝜃)]2

) 3

2 , 𝜃 ∈ Θ (22)
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subject to

𝑣̇(0) = 0, (23)

𝜃𝐻 = 𝜉𝑣̇(𝜃𝐻)
(
2𝑣(𝜃𝐻) − [𝑣̇(𝜃𝐻)]

2
)−1

2 . (24)

Our next result establishes the existence of a unique solution to this problem and verifies that it
attains the supremum in the relaxed problem.

Proposition 3.4. There exists a unique solution 𝑣∗ ∈ 𝐶2(Θ;ℝ) to the boundary value problem
defined by Equations (22)–(24). This solution is strictly increasing, strictly convex, and attains the
supremum in the relaxed problem.

3.3 The optimal fund menu

By definition, we have that the value of the relaxed problem () gives an upper bound on the
value of the manager’s problem (). To show that these values coincide, and thus characterize
the optimal menu, we need to construct a loading function 𝜙∗ ∈ Φ that delivers to each investor
the indirect utility prescribed for his type by the solution to the relaxed problem. The following
theorem provides such a construction.

Theorem3.5. Denote by 𝑣∗ ∈ 𝐶2(Θ;ℝ) the solution to the relaxed problem () as defined in Propo-
sition 3.4. Then,

𝐹∗(𝜃) ∶= 𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃)) > 0, 𝜃 ∈ Θ, (25)

and the loading function defined by

𝜙∗(𝜃) ∶=
1

𝑎𝐹∗(𝜃)

(√
2𝑣∗(𝜃) − 𝑣̇∗(𝜃)2, 𝑣̇∗(𝜃)

)⊤

, (26)

attains the supremum in (). In particular, every investor allocate a strictly positive amount in the
fund targeted to his type.

Our last result in this section provides basic comparative statics for the optimal fundmenu and
the amount of fees that the manager receives from each type of investor.

Proposition 3.6. The function 𝜙∗1(𝜃) is decreasing in 𝜃 while the functions 𝐹∗(𝜃) and 𝜙∗2(𝜃)

are increasing.

The proposition shows that the funds in the optimal menu become more tilted towards the
non-familiar asset as 𝜃 increases and that the manager receives more fees from more optimistic
investors. These results are intuitive. Indeed, investors with higher 𝜃 are more interested in the
non-familiar asset. Knowing this, themanager gradually tilts the exposure of his funds towards the
non-familiar risk to extract more fees frommore optimistic investors. To guarantee that investors
do not have any incentive to deviate from the fund targeted to them, the manager needs to
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provide more optimistic investors with a disproportionately larger indirect utility than less opti-
mistic investors. This is why the indirect utility function 𝑣∗(𝜃) induced by the optimal menu is
not only strictly increasing, but also strictly convex in the investor’s type.

Remark 3.7. Theorem 3.5 also characterizes the unique stationary optimal fund menu in a
dynamic model with iid normal returns and CARA investors who do not update their beliefs.
The assumption that investors do not learn seems somewhat stark in a dynamic setting but may
be justified if the proportion of investors with the same beliefs remains constant over time even
if the investors do change beliefs at the individual level, or if the manager keeps changing the
features of the funds to roll back the learning of investors as in the obfuscation model of Carlin
and Manso (2011).

4 ANALYSIS

4.1 Comparative statics

The comparative statics of equilibriumoutcomeswith respect to the risk premium 𝜉 of the familiar
asset and the range 𝜃𝐻 of perceived risk premia on the non-familiar asset are a lot more difficult to
derive analytically. As shown by the following lemma, a notable exception concerns themanager’s
welfare.

Proposition 4.1. The manager always prefers to face more optimistic investors in the sense that his
value function𝑀 is increasing in both 𝜉 and 𝜃𝐻 .

The mechanism behind the above result is clear: as 𝜉 or 𝜃𝐻 increase investors become more
eager to invest in the risky assets and thus are willing to pay the manager a larger amount to get
access to those assets through the funds.
The right panel of Figure 1 shows that the indirect utility of investors depends positively on

the risk premium 𝜉 of the familiar asset and negatively on the range 𝜃𝐻 of perceived risk premia
on the non-familiar asset. The first result is partly due to the fact that an increase in 𝜉 implies
a reduction in the relative importance of the information friction and, thus, leads to a welfare
increase. To understand the second result recall that, in order to satisfy the incentive compatibility
constraint, themanager has tomake sure that no investor has an incentive to under-report his type
by switching to a fund that is targeted to less optimistic investors. Now fix an arbitrary type 𝜃 ∈ Θ.
As the upper bound of the type space increases, the investors whose type are larger than 𝜃 and
who have to be deterred from under-reporting their type as 𝜃, becomemore optimistic on average.
To prevent these investors from under-reporting the manager then needs to modify the menu to
worsen the conditions he offers to investors of type 𝜃 and this explains why investors benefit from
being part of a narrower customer base.
The left panel of Figure 1 illustrates the effect of a change in the range 𝜃𝐻 of perceived risk

premia on the indirect utility of an investor who stands at a given percentile. As shown in the
right panel, an increase in 𝜃𝐻 leads to a decrease in the utility of all investors. However, another
effect comes into play when considering an investor at a given percentile because, as 𝜃𝐻 increases,
the type and hence the indirect utility of investors at a given percentile also increase. As shown by
the left panel of the figure, the first effect dominates at low percentiles while the second dominates
at higher percentiles.
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F IGURE 1 Effect of 𝜉 and 𝜃𝐻 on the indirect utility of investors. [Color figure can be viewed at
wileyonlinelibrary.com]
Notes: The solid curve plots the investor’s indirect utility as a function of his type (right) and his percentile in the distribution of
types (left). The dashed curves illustrate how this utility changes when the range of perceived risk premia increases from 𝜃𝐻 to
𝜃𝐻 + Δ while the dash-dotted curve indicates how it changes when the risk premium of the familiar asset increases

4.2 Impact of the information friction

To elicit the impact of the information friction on the optimalmenu and thewelfare of the players,
we now compare the outcomes of the model to those of the benchmark case where the manager
knows the type of each individual investor but remains subject to a linear pricing constraint. The
results in Appendix A.3 show that in this case, the optimal fund loading function 𝜙◦(𝜃), the opti-
mal strategy 𝑞◦(𝜃) of investors of type 𝜃, and their indirect utility 𝑣◦(𝜃) are given by

(𝜙◦(𝜃), 𝑞◦(𝜃), 𝑣◦(𝜃)) =

(
2𝜉(𝜃)‖𝜉(𝜃)‖2 , ‖𝜉(𝜃)‖2

4𝑎
,
‖𝜉(𝜃)‖2

8

)
. (27)

Our first result compares the risk exposures offered by the manager to a given type of investor the
two models.

Proposition 4.2. The function

Δ(𝜃) ∶=
𝜙◦2(𝜃)

𝜙◦1(𝜃)
−
𝜙∗2(𝜃)

𝜙∗1(𝜃)
=

𝜃

𝜉
−
𝑣̇∗(𝜃)

𝑔∗(𝜃)
, (28)

is nonnegative for all 𝜃 ∈ Θ and such that Δ(0) = Δ(𝜃𝐻) = 0.

The proposition shows that the lack of information regarding the beliefs of investors for the
non-familiar asset leads the manager to offer funds that are more tilted towards the familiar asset
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F IGURE 2 Relative difference in risk exposures compared to the first best. [Color figure can be viewed at
wileyonlinelibrary.com]
Notes: The solid curves plots the function Δ(𝜃) defined in Equation (28) at the base parameter values 𝜉 = 𝜃𝐻 = 1. The dashed
curves illustrate the impact of a decrease in either 𝜃𝐻 (left) or 𝜉 (right) while the dash-dotted curves illustrate the impact of an
increase in these same parameters

than in the first best. This means that to achieve a given exposure in the non-familiar asset, a
given investor needs to take a larger position in the familiar asset than he would have in the first
best, and the manager uses the eagerness of investors to do so as a screening device. Our model
thus provides a potential explanation for the fact that fund managers are often perceived as being
home-biased because their funds are too geared towards familiar assets. Intuitively, the strength
of this bias should be driven by the intensity of the information friction. Therefore, one expects
that Δ(𝜃) should increase as 𝜃𝐻∕𝜉 increases and Figure 2 confirms that this is the case.
The dome shape of the function Δ(𝜃) that is apparent in both panels of Figure 2 is the result

of two conflicting effects. On the one hand, the fact that more optimistic investors demand more
of the non-familiar asset prompts the manager to intensify the distortions as 𝜃 increases to deter
thesemore optimistic investors from underreporting their type. On the other hand, as 𝜃 increases,
themass of investors whomight be tempted to underreport their type as being equal to 𝜃 becomes
smaller and this implies that fewer distortions are needed to maintain incentive compatibility.
The second part of Proposition 4.2 shows that the risk exposures offered to themost pessimistic

and most optimistic investors are the same as in the first best. However, this does not imply that
these investors select the same allocation or receive the same utility as in the first best because,
even though the risk exposures they are offered are the same, the prices that themanager demands
for them are different.

Remark 4.3. The bias implied by Proposition 4.2 is partly due to the fact that all investors
would invest the same amount in the familiar asset given direct access. Whether the result can
be expected to hold in environments where both components of an investor’s unconstrained
demand varywith his type likely depends on the relative shapes of these demand components. For
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example, if asset returns are correlated then the optimal unconstrained demand for asset 2 is
increasing in type whereas the ratio of the demand for asset 1 to the demand for asset 2 is decreas-
ing. As a result, the share of the non-familiar asset in the optimal unconstrained portfolio of an
investor increases with his type as in our benchmark model and we thus expect the same bias
to prevail.

Our next result provides a detailed comparison of the portfolio allocations and indirect utilities
of investors in the two models.

Proposition 4.4. There are types 𝜃1 ≤ 𝜃 ≤ 𝜃2 such that

{𝜃 ∈ Θ ∶ 𝑣∗(𝜃) ≤ 𝑣◦(𝜃)} = [0, 𝜃],

{𝜃 ∈ Θ ∶ 𝜋(𝜃, 𝜙∗(𝜃))𝜙∗
𝑘
(𝜃) ≤ 𝑞◦(𝜃)𝜙◦

𝑘
(𝜃)} = [0, 𝜃𝑘], 𝑘 ∈ {1, 2}. (29)

The proposition shows that types below 𝜃1 invest less in both risky assets than in the first best
case and suffer a utility loss, that types above 𝜃2 invest more in both risky assets than in the first
best case and receive a utility gain, and that intermediate types in [𝜃1, 𝜃2] invest more in the famil-
iar asset and less in the non-familiar asset than in the first best case. To understand these results,
start by considering very low types. Since such investors lie at the bottom of the distribution, the
manager needs to deter almost all other investors from pooling with them. To do so, he must offer
them high prices and it naturally follows that such investors end up investing less in both assets
and suffer a significant utility loss. More optimistic investors are offered better terms that lead
them to invest more and to increase their exposure to the non-familiar asset. However, the dis-
cussion following Proposition 4.2 shows that their exposure to the familiar asset will increase at
a faster rate, which explains why intermediate types invest more in the familiar asset and less in
the non-familiar asset. Finally, as we approach the right tail of the distribution, the terms that are
being offered to investors are so good that they invest more in both assets, and their indirect utility
exceeds that of the first best.
Whenmoving from the full information case to the asymmetric information case, the manager

naturally suffers a decrease in utility since he now has less information. As 𝜃𝐻 increases, investors
becomemore optimistic on average and thusmore eager to trade the non-familiar asset. Therefore,
the information friction becomes more intense and we thus expect the manager’s utility loss to
increase as a function of 𝜃𝐻 . Similarly, as the risk premium of the familiar asset increases the
information friction becomes less intense because investors now tend to caremore for the familiar
asset and, as a result, we expect the manager’s utility loss to decrease as a function of 𝜉. Figure 3
numerically confirms that these natural properties holds at the optimum of our model.

4.3 Impact of the linear pricing constraint

To analyze the impact of the linear pricing constraint, we now compare the outcomes of ourmodel
to those of a model in which the manager is unconstrained in his choice of the pricing scheme.
We show in Appendix A that in this case, the optimal pricing strategy is to offer a fixed cost equal
to 𝜉2∕(2𝑎) for unlimited access to the familiar asset and a quantity-dependent unit price given by

𝑝̂(𝑞) ∶=
1

2
𝜃𝐻 −

𝑎

4
𝑞, (30)
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F IGURE 3 Manager’s utility loss compared to the first best. [Color figure can be viewed at
wileyonlinelibrary.com]
Notes: The solid curves plot the relative utility loss of the manager as a function of the risk premium of the familiar asset and the
range of perceived risk premia on the non-familiar asset. In each panel the dashed and dash-dotted curves illustrate the effect of
a change in either the risk premium 𝜉 of the familiar asset (right) or the range of investor types 𝜃𝐻 (left). The base case
parameters used to construct this figure are 𝜉 = 𝜃𝐻 = 1

for trading the non-familiar asset. In response to this menu, an investor of type 𝜃 ∈ Θ demands
𝑞̂1(𝜃) = 𝜉∕𝑎 units of the familiar asset and 𝑞̂2(𝜃) = (2𝜃 − 𝜃𝐻)+∕𝑎 units of the non-familiar asset
so that his expected utility is given by

𝑣(𝜃) ∶= 𝑢

(
𝜃, 𝑟𝑤0 + 𝑞̂(𝜃)⊤𝜀 −

𝜉2

2𝑎
− 𝑞̂2(𝜃)𝑝̂(𝑞̂2(𝜃))

)
=

(
𝜃 −

𝜃𝐻
2

)2

+

. (31)

Comparing this solution to that of our model reveals twomajor differences.9 First, with nonlinear
pricing investors of type 𝜃 ≤ 𝜃𝐻∕2who care less about the familiar asset than the average investor
get zero utility which means that, in contrast to the linear pricing case, the manager is able to
extract the whole surplus generated by investments in the familiar asset. This is intuitive. Indeed,
because it is common knowledge that investors have identical preferences regarding the familiar
asset, the manager knows exactly how many units each investor would want to acquire and thus
can set his fixed price so as to extract the full surplus generated by this investment.
Second, and more importantly, nonlinear pricing makes it optimal for the manager to exclude

investors who are less optimistic than average from the non-familiar asset market. By contrast,
under linear pricing, the optimal menu is such that all investors hold the two risky assets and
receive a strictly positive utility. This suggests that linear pricing improves the aggregate welfare
of investors and may even result in individual gains for all investors if the benefit from recover-
ing part of the surplus associated with the familiar asset is sufficient to offset the forgone quan-
tity discounts implied by Equation (30) on the non-familiar asset. These intuitive properties seem
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F IGURE 4 Utility gain from
linear pricing. [Color figure can be viewed at
wileyonlinelibrary.com]
Notes: This figure plots the relative difference
between the indirect utility of investors in the
main model and their indirect utility in the
model where the manager can use nonlinear
pricing. The solid curve represents gain from
linear pricing in the base case where 𝜉 = 𝜃𝐻 = 1

while the dashed and dash-dotted curves
illustrate the impact of a gradual decrease in the
familiar asset risk premium

difficult to establish analytically. However, all our numerical simulations confirm that linear pric-
ing indeed improves the aggregate welfare of investors, and Figure 4 illustrates that it may even
lead to strict Pareto improvements when the ratio 𝜃𝐻∕𝜉 that measures the intensity of the infor-
mation friction is low enough.

4.4 The optimality of bundling

The normalization that we adopted in Proposition 3.1 implies that funds differ only in their expo-
sure to the risky assets. This normalization is convenient for the derivation of the optimal menu
but, in some cases, it may be more natural to instead normalize the funds in such a way that the
optimal menu only includes all-equity funds that do not invest in the riskless asset. With this
alternative normalization, the fund that targets investors of type 𝜃 ∈ Θ is given by

(𝛾𝐴𝐸(𝜃), 𝜙𝐴𝐸(𝜃)) ∶=
[1, 𝜙∗(𝜃)]

𝜙∗1(𝜃) + 𝜙∗2(𝜃)
=

1

𝑣̇∗(𝜃) + 𝑔∗(𝜃)

[
𝑎𝐹∗(𝜃),

(
𝑔∗(𝜃)

𝑣̇∗(𝜃)

)]
, (32)

where we have set

𝑔∗(𝜃) ∶=
√
2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2. (33)

In particular, since 𝑣̇∗(0) = 0 by Theorem 3.5, we have 𝜙𝐴𝐸(0) = (1, 0)⊤ so that the familiar asset
is offered in the optimal menu with a fee rate given by

𝛾∗1 ∶=
𝑎𝐹∗(0)

𝑔∗(0)
= 𝜉 −

√
2𝑣∗(0) ∈

[
1

3
,
2

3

]
𝜉, (34)

where the inclusion follows from the fact that, as we show in Appendix 3.3, the indirect utility of
the most pessimistic investor lies in the interval [ 1

18
,
2

9
]𝜉2.
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This shows that the requirement of linear pricing leads the manager to engage in what Adams
and Yellen (1976) refer to as mixed bundling – the familiar asset is available both separately and
in packages. Note, however, that it is never optimal to also offer the non-familiar asset separately
because this would prevent themanager from screening investors. Indeed, if the manager decides
not to bundle, then the best he can do is to offer assets separately with fee rates

(𝛾̂1, 𝛾̂2) ∶= argmax
𝛾∈ℝ2

+

{
𝛾1(𝜉 − 𝛾1)+ + ∫

𝜃𝐻

0

𝛾2(𝜃 − 𝛾2)+
𝑑𝜃

𝜃𝐻

}
=

(
𝜉

2
,
𝜃𝐻
3

)
. (35)

This pricing strategy in turn generates

𝑀0 ∶= 𝛾̂1(𝜉 − 𝛾̂1)+ +
1

𝜃𝐻 ∫
𝜃𝐻

0

𝛾̂2(𝜃 − 𝛾̂2)+𝑑𝜃 =
1

4
𝜉2 +

2

27
𝜃2𝐻, (36)

in management fees and our next result confirms that this quantity is strictly lower than the
amount of fees generated by the optimal fund menu.

Lemma 4.5. It is never optimal to unbundle the assets, that is𝑀0 < 𝑀.

4.5 Exclusivity of funds

Consider now the exclusive case in which each investor can allocate capital to at most one fund.
Given a menu satisfying properties 1 and 2 of Proposition 3.1, the optimal strategy of an investor
of type 𝜃 ∈ Θ who optimally allocates his wealth between fund (1, 𝜙(𝜃′)) and the riskless asset is
given by

argmax
𝑞∈ℝ+

𝑢
(
𝜃, 𝑟𝑤0 + 𝑞(

1, 𝜙(𝜃′)
))

= 𝜋(𝜃, 𝜙(𝜃′)), (37)

and delivers him the indirect utility

𝑣(𝜃, 𝜃′) ∶= 𝑢
(
𝜃, 𝑟𝑤0 + 𝜋

(
𝜃, 𝜙(𝜃′)

)(
1, 𝜙(𝜃′)

))
=

1

2

(
𝜙(𝜃′)⊤𝜉(𝜃) − 1‖𝜙(𝜃′)‖

)2

+

. (38)

Under exclusivity, incentive compatibility only requires that each investor finds it optimal to pick
the fund targeted to him in the sense that

𝑣(𝜃) = 𝑣(𝜃, 𝜃) = sup
𝜃′∈Θ

𝑣(𝜃, 𝜃′), 𝜃 ∈ Θ. (39)

The Cauchy–Schwartz inequality guarantees that this condition is weaker than its non exclusive
counterpart in Equation (10) so that the manager cannot do worse when the investors are forced
to commit to a single fund. However, since

𝑑𝑣(𝜃, 𝜃′)

𝑑𝜃′

||||𝜃′=𝜃 = 𝜋(𝜃, 𝜙(𝜃))
𝑑𝛼(𝜃, 𝜃′)

𝑑𝜃′

||||𝜃′=𝜃, (40)



CVITANIĆ and HUGONNIER 473

we have that the first-order conditions induced by those two constraints coincide and it follows
that the same menu is optimal under either constraint. As we will see below in Section 5.3,
this result no longer holds when investors can directly access the familiar asset at a sufficiently
low cost.

5 DIRECT INVESTMENT IN THE FAMILIAR ASSET

In our main model, investors can only access the risky assets through the manager. We now relax
this assumption by allowing them to directly access the familiar asset via an outside fund that
charges an exogenous fee.10

5.1 Formulation

Assume that investors can allocate capital to the riskless asset, themanager’s funds, and an outside
fund with net excess return1 ∶= 𝜀1 − 𝛾1 for some 𝛾1 ∈ [0, 𝜉). In this case, the investors’ budget
constraint is

𝑤1(𝑞, 𝑛,𝐦) ∶= 𝑟𝑤0 + ∫(𝛾(𝑚), 𝜙(𝑚))𝑞(𝑑𝑚) + 𝑛1, (41)

where 𝑛 ≥ 0 represents the amount invested in the outside fund. The optimization problem of an
investor of type 𝜃 ∈ Θ is then defined by

𝑣𝑖(𝜃,𝐦) ∶= sup
(𝑞,𝑛)∈𝜇+()×ℝ+

𝑢(𝜃, 𝑤1(𝑞, 𝑛,𝐦)), (42)

and the aggregation of the investors’ decisions generates the amount of management fees given
by Equation (6) where

(𝑞∗(⋅, 𝜃,𝐦), 𝑛∗(𝜃,𝐦)) = argmax
(𝑞,𝑛)∈𝜇+()×ℝ+

𝑢(𝜃, 𝑤1(𝑞, 𝑛,𝐦)), (43)

denotes the best response of an investor of type 𝜃 ∈ Θ. To facilitate the analysis, we assume
throughout that if the manager includes in his menu the familiar asset with a fee equal to 𝛾1
investors will direct their demand for the familiar asset to the manager rather than to the outside
fund. Given this assumption, a menu is said to be optimal if it maximizes Equation (6) subject to
Equation (43).
The following lemma elicits the conditions under which the presence of the outside fund has

an impact on the optimal fund menu.

Lemma 5.1. Assume that

𝛾1 > 𝛾∗1 ∶= 𝜉 −
√
2𝑣∗(0), (44)

where the function 𝑣∗ is defined as in Proposition 3.4. Then the optimal fund menu is given by
Theorem 3.5.
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The intuition for the above result is clear: when confronted with two funds that offer the same
risk exposure but different fee rates, investors will systematically discard the fund with the higher
fee rate. Therefore, if 𝛾1 exceeds the fee rate 𝛾∗1 that themanager offers as part of the optimalmenu
in the benchmarkmode, then investors will stay away from the outside fund and the optimal fund
menu will remain unchanged.

5.2 The relaxed problem

Assume from now on that the condition of Lemma 5.1 fails. Proceeding as in Section 3 shows that
the manager can without loss of generality focus on menus such that funds are indexed by types,
fees are normalized to one, and each investor finds it optimal to only invest in the fund that target
its type (see Appendix C.1). The incentive compatibility constraint is more stringent because the
manager has to prevent investors from allocating capital not only to funds that do not target their
type but also to the outside fund. The following result quantifies this observation by providing a
characterization of incentive compatible loading functions.

Proposition 5.2. A loading function 𝜙 ∶ Θ → ℝ2 is incentive compatible given direct access to the
familiar asset if and only if it satisfies condition (10) and

inf
𝜃∈Θ

{
𝜙1(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)+

}
≥ 𝜉 − 𝛾1, (45)

in which case 𝜙1(𝜃) > 0 and 𝜙(𝜃)⊤𝜉(𝜃) > 1 for all 𝜃 ∈ Θ.

Combining the above results shows that the optimal menu solves

𝑀1 ∶= sup
𝜙∈Φ1

𝐼(𝜙). (1)

where Φ1 ⊆ Φ denotes the set of functions 𝜙 ∈ 𝐴𝐶(Θ;ℝ2) that satisfy Equations (10) and (45).
Following the logic of Lemma 3.3, our next result shows that the manager can use the indirect
utility and marginal utility of investors as instruments.

Lemma 5.3. Assume that 𝜙 ∈ Φ1 is incentive compatible. Then, the indirect utility function defined
by Equations (38) and (39) belongs to 𝐴𝐶(Θ;ℝ) and satisfies both Equation (18) and

2𝑣(𝜃) ≥ (𝜉 − 𝛾1)
2
+ [𝑣̇(𝜃)]2, (46)

for almost every type 𝜃 ∈ Θ.

The above lemma directly implies that

𝜃𝐻𝑀1 ≤ 𝑉1 ∶= sup
𝑣∈1 ∫Θ 𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃, (1)

where 1 denotes the set of functions 𝑣 ∈ 𝐴𝐶(Θ;ℝ) that satisfy Equation (46). An important dif-
ference between this problem and () is that for the incentive compatibility condition (46) to
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hold it is no longer sufficient that the integrand in the objective be real valued for all types. This
implies that the usual sufficient optimality conditions need to be modified to explicitly account
for the constraint and we show in Appendix C.2 how this can be achieved by constructing an
appropriate Lagrangian.
To motivate the form of the solution consider investors with low types who do not care much

for the non-familiar asset and have access to the familiar asset at a cheap price 𝛾1 ≤ 𝛾∗1 . To entice
such investors to allocate capital to a fund that includes the non-familiar asset, themanager needs
to offer them very favorable conditions that are likely to attract more optimistic investors and,
thereby, fail the incentive compatibility constraint. We thus expect the constraint to bind over
[0, 𝜃∗] for some 𝜃∗ ∈ Θ so that themanager offers only the familiar asset to sufficiently pessimistic
investors. As the fee rate on the outside fund decreases, all investors become less willing to acquire
exposure to the familiar asset otherwise than through the outside fund. This makes it gradually
more difficult for the manager to screen investors by bundling and we expect that below a certain
fee rate, it will no longer be optimal to do so. At that point the manager will pick a menu that
is equivalent to offering the assets separately with fee rates 𝛾1 and 𝛾̂2 =

1

3
𝜃𝐻 (see Equation (35)).

This menu delivers the indirect utility

𝑠(𝜃) ∶= sup
𝑞∈ℝ2

+

𝑢
(
𝜃, 𝑟𝑤0 + 𝑞⊤(𝜀 − 𝛾)

)
=

1

2
(𝜉 − 𝛾1)

2
+
1

2

(
𝜃 −

𝜃𝐻
3

)2

+

, (47)

and a direct calculation shows that this function satisfies condition (46) with an equality. Based
on this observation, we conjecture that when 𝛾1 is sufficiently low, the constraint binds not only
for low types but throughout the type space.
The following proposition confirms the above conjectures and provides a complete solution to

the relaxed problem.

Proposition 5.4.

(a) If 𝛾1 ≤ 1

3
𝜉, then 𝑣∗1(𝜃) ∶= 𝑠(𝜃) attains the supremum in (1).

(b) Assume 𝛾1 ∈ (
1

3
𝜉, 𝛾∗1] and denote by (𝑤, 𝜃∗) ∈ 𝐶2

𝑝(Θ;ℝ) × Θ the unique solution to the free
boundary problem defined by

𝑤(𝜃)(1 + 𝑤̈(𝜃)) = [𝑤̇(𝜃)]2 +
3

2𝜉

(
2𝑤(𝜃) − [𝑤̇(𝜃)]2

) 3

2 , (48)

subject to

0 = 𝑤̇(𝜃∗) = 𝑤(𝜃∗) −
1

2
(𝜉 − 𝛾1)

2 (49)

= 𝜃𝐻 − 𝜉𝑤̇(𝜃𝐻)
(
2𝑤(𝜃𝐻) − [𝑤̇(𝜃𝐻)]

2
)−1

2 . (50)

Then, the function

𝑣∗1(𝜃) ∶= 𝟏{𝜃≤𝜃∗} 12(𝜉 − 𝛾1)
2
+ 𝟏{𝜃>𝜃∗}𝑤(𝜃), (51)

attains the supremum in (1).
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5.3 The optimal fund menu

As in ourmainmodel, the value of the relaxed problem (1) gives an upper bound on the value of
the actual problem (1) and, to show that these values coincide, we need to construct an incentive
compatible loading function that delivers to each investor the indirect utility prescribed for his
type by the solution to the relaxed problem. This is the content of the following:

Theorem 5.5. Assume 𝛾1 ≤ 𝛾∗1 and denote by 𝑣
∗
1 ∈ 𝐶2

𝑝(Θ;ℝ) the solution to the relaxed problem
(1) as defined in Proposition 5.4. Then

inf
𝜃∈Θ

𝐹
(
𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
> 0, (52)

and the fund loading function

𝜙∗1(𝜃) ∶=
1

𝑎𝐹
(
𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)(√
2𝑣∗1(𝜃) − [𝑣̇∗1 (𝜃)]

2, 𝑣̇∗1 (𝜃)

)⊤

, (53)

attains the supremum in (1). In particular, 𝛾1𝜙∗1(𝜃) = (1, 0)⊤ for all 𝜃 ≤ 𝜃∗, so that the manager
only offers the familiar asset to all sufficiently low types.

A comparison of Theorems 3.5 and 5.5 reveals two important differences. First, the presence
of competition from the outside fund forces the manager to offer the familiar asset at the market
rate 𝛾1 rather than at the monopolistic fee rate 𝛾∗1 of Lemma 5.1. In addition, the optimal menu
is such that the manager offers the familiar asset not only to the most pessimistic investors but
to a group of sufficiently pessimistic investors who, therefore, find themselves excluded from the
non-familiar asset market.
Second, if the competition induced by the outside fund is sufficiently fierce, then it is no longer

useful for the manager to bundle assets and the optimum can be implemented by offering the
familiar asset at themarket rate 𝛾1 and the non-familiar asset at rate

1

3
𝜃𝐻 . Note, however, that this

conclusion is fragile and dependent on our specific assumptions. In our model, the introduction
of a cheap outside fund effectively reduces the optimal number of funds from a continuum to only
two but this only occurs because there are two risky assets. In a general model with 𝑛 ≥ 3 assets,
we conjecture that unbundling is unlikely to occur unless the manager holds a monopoly on a
single risky asset and faces fierce competition on all others.
Since the fee rate 𝛾1 on the familiar asset is lower than the monopolistic rate 𝛾∗1 , it follows

from Equation (34) that we have 𝑣∗(0) ≤ 𝑣∗1(0). This shows that the presence of an outside fund
improves the welfare of the most pessimistic investors who are those that care the most for the
familiar asset. As illustrated by Figure 5, this property actually holds for all investors because the
presence of competition combined with the need to maintain incentive compatibility forces the
manager to offer better terms not only to the most pessimistic investors but to all of them.
To conclude, let us briefly examine the non-exclusivity of funds in the presence of an outside

fund. If the manager has the ability to commit each investor to a single fund, then incentive com-
patibility and individual rationality require that the investors’ indirect utility satisfies Equation
(39) and the participation constraint

inf
𝜃∈Θ

𝑣(𝜃) ≥ 1

2
(𝜉 − 𝛾1)

2, (54)
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F IGURE 5 Indirect utility in the presence
of an outside fund. [Color figure can be viewed
at wileyonlinelibrary.com]
Notes: This figure plots the indirect utility of an
investor as a function of his type for different
levels of the market fee rate 𝛾1 on the
outside fund

which states that optimally picking one fund out of the menu is preferable to optimally investing
in the outside fund. Our last result provides a complete solution to the model in this case and
shows that the ability to commit investors to a single fund may have value when some measure
of competition is introduced in the model.

Proposition 5.6. Assume that the manager can commit each investor to a single fund. Then, the
indirect utility of investors and the optimal loading function are given by Equations (51) and (53) for
all 𝛾1 ≤ 𝛾∗1 . As a result, the ability to commit investors has strictly positive value to the manager if
and only if 𝛾1 < 𝜉∕3.

6 CONCLUSION

In this paper, we argue that offering a menu of funds is optimal for an investment firm that has
incomplete information about the characteristics of its customer base and is required to use linear
pricing. To illustrate this mechanism, we study the optimal offering strategy of a manager who is
constrained to use fraction-of-fund fees and does not observe the beliefs of investors regarding
one of the risky assets. We show that the optimal menu can be explicitly constructed from the
solution to a calculus of variations problem that optimizes over the indirect utility that investors
receive. We provide a complete characterization of the optimal menu and study its most salient
features. In particular, we show that the information friction leads themanager to offer funds that
are inefficiently tilted towards the asset that is not subject to the information friction, and argue
that this result provides a novel information-based explanation for the home bias.
While the tractability of our model rests on specific assumptions regarding the beliefs, prefer-

ences, and heterogeneity of investors, we believe that some of our key conclusions are not depen-
dent on these assumptions. Instead of (or in addition to) differing in their beliefs, the investors
could also differ along other dimensions such as risk aversion, initial endowments, hedging needs,
the assets they are willing to invest in, or the risks they are exposed to prior to choosing their
portfolio allocation. Such generalizations are likely to significantly complicate the analysis of the
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model, but we conjecture that they would not undermine our qualitative message. In particular,
we expect that in these more general environments, the linear pricing constraint will still induce
the manager to bundle assets into funds as a way of screening investors. We leave these challeng-
ing extensions of our basic framework for future research.
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ENDNOTES
1 Morningstar (2018) reports that the 150 largest US fund families jointly offer 7687 funds of which 4706 are equity
funds, and that the average number of funds offered by a given family in that group is equal to 51 with some
sponsors, such as Fidelity, offering more than 400 different funds.

2 The 1970 Amendment to the Investment Advisors Act of 1940 allows managers of mutual funds listed in the US
to use performance fees only if they are symmetric around a benchmark. As a result, the vast majority of funds
in US use linear schedules known as fraction-of-fund fees. For example, Das and Sundaram (1998) report that
as of 1998, only 1.4% of funds used performance fees.

3 See for example Mussa and Rosen (1978), and Wilson (1993) or Laffont and Martimort (2009) for a textbook
treatment. An explicit derivation of the optimal nonlinear pricing scheme in the setting of our mutual fund
model is provided in Appendix A.2.

4 See Cooper (2013) for a survey of the literature on the home bias and Hau and Rey (2008) for a study of the
home bias at themutual fund level in which the authors show that, while of lower magnitude than among other
investor classes, the home bias is nonetheless present in the decision of equity mutual fund managers.

5 The multiplication by the risk aversion 𝑎 > 0 and the subtraction of the constant term 𝑎𝑟𝑤0 in the definition of
the investors’ preferences is without loss of generality and allows to simplify many expressions throughout the
text and appendix.

6 The fact that investors have to go through themanager to access the risky assetsmay be due to transaction and/or
informational costs. For example, one may think that investors form their beliefs about the non-familiar asset
using information provided as part of the onboarding process and that this information would not be otherwise
available to investors.

7 In practice, management fees are calculated on the basis of the net asset value at the end rather than at the
beginning of the period and thus include a form of performance sensitivity. We focus on the case where fees
computed at the beginning of the period to avoid the nonlinearity that may arise from the fact that with possibly
unbounded excess returns the end of period asset value may be negative.

8 See for exampleMussa andRosen (1978) andLaffont andMartimort (2009) for a textbook treatment. A derivation
of the optimal nonlinear pricing scheme in the setting of our delegated portfolio managementmodel is provided
in Appendix A.2.

9 Note that this pricing scheme is not unique. Instead of unbundling the assets, the manager could induce the
same amount of fees and the same investor utilities by offering amenu ofmutually exclusive funds with loadings
𝜙(𝜃) = 𝑞̂(𝜃) and unit price 𝜉2∕(2𝑎) + 𝑞̂2(𝜃)𝑝̂(𝑞̂2(𝜃)) to which each investor can allocate either zero or one unit
of capital.

10 We focus on the case where the outside fund coincides with the familiar asset risk as it is the most natural in our
context. However, a qualitatively similar solution applies if, instead of the familiar asset, investors can directly
access the unfamiliar asset.
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APPENDIX A: BENCHMARK CASES

A.1 Free access to all assets
If investors can freely trade all existing assets then the indirect utility of the manager is zero, and
an investor of type 𝜃 ∈ Θ chooses his optimal investment by solving

𝑣(𝜃) ∶= sup
𝑞∈ℝ2

𝑢(𝜃, 𝑟𝑤0 +(0, 𝑞)) = sup
𝑞∈ℝ2

{
𝑎𝑞⊤𝜉(𝜃) −

𝑎2

2
‖𝑞‖2}. (A.1)

The unique solution to this concave problem is 𝑞(𝜃) ∶= 1

𝑎
𝜉(𝜃). Substituting this solution back into

the objective shows that the investor’s indirect utility is

𝑣(𝜃) = 𝑎𝑞(𝜃)⊤𝜉(𝜃) −
𝑎2

2
‖𝑞(𝜃)‖2 = 1

2
‖𝜉(𝜃)‖2. (A.2)

https://doi.org/10.1111/mafi.12341
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This function naturally constitutes an upper bound on the indirect utility that investors can hope
to achieve when they no longer have direct access to all assets.

A.2 Nonlinear pricing
Assume now that the manager does not observe the types of investors, but is allowed to use any
price schedule that is a function of the amount invested. In this case, an investor of type 𝜃 ∈ Θ

chooses his allocation by solving

𝑣(𝜃) ∶= sup
𝑞∈ℝ2

+

𝑢(𝜃, 𝑟𝑤0 +(0, 𝑞) − 𝑃(𝑞)), (A.3)

where 𝑃(𝑞) is the fee that the manager charges for 𝑞 ∈ ℝ2
+ and, denoting the solution by 𝑞̂(𝜃), we

have that the manager’s problem can be formulated as

𝑀̂ ∶= sup
𝑝 ∫

Θ

𝑃(𝑞̂(𝜃))
𝑑𝜃

𝜃𝐻
. (A.4)

Since

𝑃(𝑞̂(𝜃)) = 𝑞̂(𝜃)⊤𝜉(𝜃) −
𝑎

2
‖𝑞̂(𝜃)‖2 − 𝑣(𝜃)

𝑎
, (A.5)

we have that the manager’s objective function can be written as

∫
Θ

𝑃(𝑞̂(𝜃))
𝑑𝜃

𝜃𝐻
= ∫

Θ

(
𝑞̂(𝜃)⊤𝜉(𝜃) −

𝑎

2
‖𝑞̂(𝜃)‖2 − 𝑣(𝜃)

𝑎

)
𝑑𝜃

𝜃𝐻

= ∫
Θ

(
𝑞̂(𝜃)⊤𝜉(𝜃) −

𝑎

2
‖𝑞̂(𝜃)‖2 − 1

𝑎

𝑑𝑣(𝜃)

𝑑𝜃
(𝜃𝐻 − 𝜃)

)
𝑑𝜃

𝜃𝐻
−
𝑣(0)

𝑎

= ∫
Θ

(
𝑞̂1(𝜃)𝜉 + 𝑞̂2(𝜃)(2𝜃 − 𝜃𝐻) −

𝑎

2
‖𝑞̂(𝜃)‖2 − 𝑣(0)

𝑎

)
𝑑𝜃

𝜃𝐻
, (A.6)

where the second equality follows from integration by parts, and the third follows from the enve-
lope condition, which requires that

𝑑𝑣

𝑑𝜃
(𝜃) =

𝑑

𝑑𝜃

{
𝑎
(
𝑞⊤𝜉(𝜃) − 𝑃(𝑞)

)
−
𝑎2

2
‖𝑞‖2}

𝑞=𝑞̂(𝜃)

= 𝑎𝑞̂2(𝜃). (A.7)

Maximizing under the integral sign shows that whenever possible themanager should choose the
price function in such a way that 𝑣(0) = 0 and

𝑞̂(𝜃) =
𝐞1
𝑎
𝜉 +

𝐞2
𝑎
(2𝜃 − 𝜃𝐻)+, (A.8)

where (𝐞1, 𝐞2) denotes the orthonormal basis of ℝ2. Since the above allocation is weakly increas-
ing, it follows from the taxation principle (see for example Laffont and Martimort (2009)) that
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there exists a price function 𝑃̂(𝑞) that implements it, in the sense that

𝑞̂(𝜃) ∈ argmax
𝑞∈ℝ2

+

{
𝑎
(
𝑞⊤𝜉(𝜃) − 𝑃̂(𝑞)

)
−
𝑎2

2
‖𝑞‖2}. (A.9)

The indirect utility of an investor of type 𝜃 ∈ Θ can be computed from the envelope condition
which requires that

𝑣(𝜃) = 𝑣(0) + ∫
𝜃

0

𝑑𝑣(𝑥) = ∫
𝜃

0

𝑎𝑞̂2(𝑥)𝑑𝑥 =

(
𝜃 −

1

2
𝜃𝐻

)2

+

. (A.10)

Using this formula in conjunction with Equation (A.5) then shows that the amount of fees that
the managers receives from an investor of type 𝜃 ∈ Θ is

𝑃̂(𝑞̂(𝜃)) =
1

2𝑎
𝜉2 +

1

𝑎
(2𝜃 − 𝜃𝐻)+

(
3

4
𝜃𝐻 −

1

2
𝜃

)
, (A.11)

and it now follows from the taxation principle (see Rochet (1985)) that a price function, which
allows the manager to achieve his optimum is given by

𝑃̂(𝑞) = 𝟏{𝑞1≠0}
1

2𝑎
𝜉2 + 𝑞2

(
1

2
𝜃𝐻 −

𝑎

4
𝑞2

)
. (A.12)

The interpretation of the above results is clear. All investors are able to achieve their optimal
level of exposure to the familiar asset (i.e., 𝑞̂1(𝜃) = 𝑞1(𝜃)), but the fact that the manager is per-
fectly informed about investors’ beliefs regarding this asset allows him to fully extract the cor-
responding surplus. On the other hand, because the manager does not observe the investors’
beliefs regarding the non-familiar asset, he must screen them along this dimension. To this
end, he uses a price schedule that is strictly concave so that marginal prices decrease with
quantities. In equilibrium, all investors except those of the highest type achieve inefficiently
small exposures to the non-familiar asset, and investors who are less optimistic than aver-
age even get excluded from that market because serving such investors would require lower
prices that would in turn reduce the fees that the manager extracts from more optimistic
investors.
Importantly, the nonlinear pricing solution cannot be implemented through a menu of nonex-

clusive linearly priced funds with different fees and risk exposures. If it could then this implemen-
tation would also provide an optimal menu for our main model and, as a result, the linear pricing
constraint would have not effect.

RemarkA.1. The simple form of the optimal nonlinear pricing scheme in Equation (A.12) is due to
the assumption of independent returns, which effectively results in a form of separation whereby
themanager extracts thewhole surplus on the familiar asset and uses a standard nonlinear pricing
scheme (see e.g., Basov (2006, Example 173, p.127)) for the asset that is subject to the information
friction. If the independence assumption is removed then the demand of an investor for both
assets will be a function of his type and, as a result, the optimal pricing scheme will take a much
more complicated form.



CVITANIĆ and HUGONNIER 483

Remark A.2. Approximating the quantity dependent term (𝜃𝐻∕2 − 𝑎𝑞2∕4) by a piecewise con-
stant function shows that the nonlinear pricing solution can be approached through a menu of
mutually exclusive linearly priced bundles that are subject to minimum and maximum invest-
ment requirements. In this sense the nonlinear pricing scheme – which is best interpreted as a
broker – can still resemble a fund family if the underlying assets are viewed as funds.

A.3 Linear pricing under complete information
Assume now that the manager is fully informed about the type of each investor and interacts
with each of them in a bilateral way, but is still required to use linear price schedules. If the man-
ager offers a fund (𝛾, 𝜙) to such an investor of type 𝜃 ∈ Θ then the amount that this investor will
optimally allocate to the fund is

argmax
𝑞∈ℝ+

𝑢(𝜃, 𝑟𝑤0 + 𝑞(𝛾, 𝜙)) = argmax
𝑞∈ℝ+

{
𝑎𝑞

(
𝜙⊤𝜉(𝜃) − 𝛾

)
−
𝑎2

2
‖𝑞𝜙‖2}

=
1

𝑎‖𝜙‖2 (
𝜙⊤𝜉(𝜃) − 𝛾

)
+
, (A.13)

where the second equality follows from an application of the Kuhn–Tucker conditions. Taking
this best response into account the manager then solves

𝑣◦𝑚(𝜃) ∶= sup
(𝛾,𝜙)∈ℝ×ℝ2

𝛾

𝑎‖𝜙‖2 (
𝜙⊤𝜉(𝜃) − 𝛾

)
+
. (A.14)

Since the objective function only depends on the vector 𝜈 = 𝜙∕𝛾, wemaywithout loss of generality
normalize the fee rate to 1. With this normalization,

𝑣◦𝑚(𝜃) = sup
𝜈∈ℝ2

1

𝑎‖𝜈‖2 (
𝜈⊤𝜉(𝜃) − 1

)
+
, (A.15)

and solving that problem shows that the linearly priced fund that the manager offers to investors
of type 𝜃 ∈ Θ is given by (1, 𝜙◦(𝜃)) with

𝜙◦(𝜃) ∶= argmax
𝜈∈ℝ2

1

𝑎‖𝜈‖2 (
𝜈⊤𝜉(𝜃) − 1

)
+
=

2𝜉(𝜃)‖𝜉(𝜃)‖2 . (A.16)

Substituting into Equations (A.13) and (A.15) shows that the amount that investors of type 𝜃 ∈ Θ

allocate to the fund, their indirect utility, and the manager’s indirect utility are explicitly given by

(𝑞◦(𝜃), 𝑣◦(𝜃)) ∶=

(‖𝜉(𝜃)‖2
4𝑎

,
‖𝜉(𝜃)‖2

8

)
, (A.17)

and

𝑣◦𝑚 ∶= ∫
Θ

𝑣◦𝑚(𝜃)
𝑑𝜃

𝜃𝐻
=

1

4𝑎

(
𝜉2 +

1

3
𝜃2𝐻

)
. (A.18)

The most salient features of this solution can be summarized as follows. First, and contrary to
what happens when all price schedules are allowed, the indirect utility of investors depends on
the risk premium 𝜉 of the familiar asset. This shows that linear pricing prevents themanager from
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extracting the whole surplus associated with the familiar asset. Second, each investor allocates a
strictly positive amount to the fund that themanager proposes to him. Third, the optimal exposure
of an investor of type 𝜃 ∈ Θ to the two risky assets are given by

𝑞◦2(𝜃)𝜙
◦
2(𝜃) =

𝜉(𝜃)

2𝑎
. (A.19)

Because investors have quadratic preferences and agree on the familiar asset risk premium, their
optimal exposures to the familiar asset are the same, but more optimistic investors naturally
choose a larger exposure to the non-familiar asset. The relative composition of the investors’ opti-
mal portfolios

𝑞◦(𝜃)𝜙◦2(𝜃)

𝑞◦(𝜃)𝜙◦1(𝜃)
=

𝑞2(𝜃)

𝑞1(𝜃)
=

𝜃

𝜉
, (A.20)

is the same as in the case where investors can freely trade the risky assets, but the overall risk
exposure

‖𝑞◦(𝜃)𝜙◦(𝜃)‖ =
1

2𝑎
‖𝜉(𝜃)‖ =

1

2
‖𝑞0(𝜃)‖, (A.21)

is smaller by a factor of two. The intuition for this result is that, since the loadings vector is deter-
mined only up to a multiplicative constant, offering the optimal fund (1, 𝜙◦(𝜃)) to an investor of
type 𝜃 is equivalent to offering him the fund 1

𝑎
𝜉(𝜃) that he would have picked on his own but with

a fee equal 1

2𝑎
‖𝜉(𝜃)‖2 and, given this fee, the investor’s optimal strategy is to invest half of what he

would have on his own. Fourth, and last, the amount that an investor allocates to the fund (and
hence the amount of fees that he pays) is increasing in both his risk tolerance and his type. As a
result, the manager collects more fees from more optimistic or less risk averse investors, and his
utility is increasing in 1∕𝑎, 𝜉, and the parameter 𝜃𝐻 that determines the average belief of investors.

APPENDIX B: PROOF OF THE RESULTS IN SECTION 3

B.1 The revelation principle
Before proceeding with the proof of Proposition 3.1 we start by establishing some useful results
about the investors’ problem (5).
Lemma B.1. The measure 𝑞∗ ∈ 𝜇+() is optimal for an investor of type 𝜃 ∈ Θ if and only if it
satisfies

∫
{
𝜙(𝑚)⊤

(
𝜉(𝜃) − 𝑎 ∫ 𝜙(𝑛)𝑞∗(𝑑𝑛)

)
− 𝛾(𝑚)

}
𝜈(𝑑𝑚) ≤ 0, (B.1)

for all measures 𝜈 in the set

(𝑞∗) ∶= {𝜈 ∈ 𝜇() ∶ ∃𝛿 > 0 such that 𝑞∗ + 𝛿𝜈 ∈ 𝜇+()}. (B.2)

In particular, the null measure is optimal for investors of type 𝜃 ∈ Θ if and only if the menu is such
that 𝜙(𝑚)⊤𝜉(𝜃) ≤ 𝛾(𝑚) for all𝑚 ∈ .
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Proof. The first part follows from standard results on convex optimization in infinite dimensional
spaces, see for example Luenberger (1969, Chapter 7). The second part follows from the first part
by taking 𝑞∗ = 0 and observing that (0) = 𝜇+(). □

Lemma B.2. The value function of an investor of type 𝜃 ∈ Θ satisfies

𝑣𝑖(𝜃,𝐦) = sup
𝑞∈𝜇2,+()

𝑢(𝜃, 𝑤1(𝑞,𝐦)) (B.3)

where 𝜇2,+() denotes the set of nonnegative measures onwhose support consists in at most two
distinct points.

Proof. A direct calculation shows that

𝑣𝑖(𝜃,𝐦) = sup
𝑥∈ℝ2

sup
𝑞∈𝜇𝑥+()

{
𝑎

(
𝑥1𝜉1 + 𝑥2𝜃 − ∫ 𝛾(𝑚)𝑞(𝑑𝑚)

)
−
𝑎2

2
‖𝑥‖2}, (B.4)

where

𝜇𝑥+() =

{
𝑞 ∈ 𝜇+() ∶ ∫ 𝜙(𝑚)𝑞(𝑑𝑚) = 𝑥

}
. (B.5)

By Shapiro et al. (2014, Proposition 6.40), we have that the inner supremum remains the same if
one optimizes over 𝜇𝑥+() ∩ 𝜇2,+() rather than over 𝜇𝑥+(), and the result follows. □

Proof of Proposition 3.1. Fix amenu𝐦0 = (𝛾0, 𝑏,0) and consider an alternativemenuof the form
𝐦 = (1, 𝜙,Θ) for some fund loading function 𝜙 ∶ Θ → ℝ2. As a first step, we show that this fund
loading function can be chosen in such away that the investment strategy𝜋(𝜃, 𝜙(𝜃)) delivers each
investor the sameutility as his best response to𝐦0 and generates the same amount ofmanagement
fees. By Lemma B.2, we have that given this menu each investor optimally allocates money to
at most two funds. In order to construct the function 𝜙(𝜃), we therefore need to consider three
mutually exclusive cases.

Case 0: If investors of type 𝜃 ∈ Θ find it optimal to not invest in any of the proposed funds, then
we know from Lemma B.1 that

sup
𝑚∈0

{
𝑏(𝑚)⊤𝜉(𝜃) − 𝛾0(𝑚)

} ≤ 0. (B.6)

Therefore, setting 𝜙(𝜃) =
𝑏(𝑚)

𝛾0(𝑚)
for some 𝑚 ∈ 0 we get that 𝜋(𝜃, 𝜙(𝜃)) = 0 and the

required properties follow.
Case 1: If the best response of investors of type 𝜃 ∈ Θ is to allocatemoney to a single fund𝑚(𝜃) ∈

0, then we have that

𝑣𝑖(𝜃,𝐦0) = 𝑢(𝜃, 𝑟𝑤0 + 𝑞(𝜃)(𝛾0(𝑚(𝜃)), 𝑏(𝑚(𝜃))))

=
1

2‖𝑏(𝑚(𝜃))‖2 (𝑏(𝑚(𝜃))⊤𝜉(𝜃) − 𝛾0(𝑚(𝜃)))2, (B.7)
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where

𝑞(𝜃) = argmax
𝑞∈ℝ

{
𝑞
(
𝑏(𝑚(𝜃))⊤𝜉(𝜃) − 𝛾0(𝑚(𝜃))

)
−
𝑎

2
𝑞2‖𝑏(𝑚(𝜃))‖2}

=
1

𝑎‖𝑏(𝑚(𝜃))‖2 (𝑏(𝑚(𝜃))⊤𝜉(𝜃) − 𝛾0(𝑚(𝜃))). (B.8)

Setting 𝜙(𝜃) ∶= 𝑏(𝑚(𝜃))

𝛾0(𝑚(𝜃))
shows that we have 𝛾0(𝑚(𝜃))𝑞(𝜃) = 𝜋(𝜃, 𝜙(𝜃)) and the desired

properties now follow by observing that

𝜋(𝜃, 𝜙(𝜃))(1, 𝜙(𝜃)) = 𝑞(𝜃)(𝛾0(𝑚(𝜃)), 𝑏(𝑚(𝜃))). (B.9)

Case 2: If the best response of investors of type 𝜃 ∈ Θ is to allocate strictly positive amounts to a
pair of funds (𝑚1(𝜃),𝑚2(𝜃)) ∈ 0 then

𝑣𝑖(𝜃,𝐦0) = 𝑢

(
𝜃, 𝑟𝑤0 +

2∑
𝑘=1

𝑞𝑘(𝜃)(𝛾0(𝑚𝑘(𝜃)), 𝑏(𝑚𝑘(𝜃)))

)

=
𝑎2

2

‖‖‖‖‖‖
2∑

𝑘=1

𝑞𝑘(𝜃)𝑏(𝑚𝑘(𝜃))

‖‖‖‖‖‖
2

, (B.10)

where the vector

𝑞(𝜃) = argmax
𝑞∈ℝ2

𝑢

(
𝜃, 𝑟𝑤0 +

2∑
𝑘=1

𝑞𝑘(𝛾0(𝑚𝑘(𝜃)), 𝑏(𝑚𝑘(𝜃)))

)
, (B.11)

satisfies the first-order conditions

𝑏(𝑚𝑘(𝜃))
⊤𝜉(𝜃) − 𝛾0(𝑚𝑘(𝜃)) = 𝑎

2∑
𝓁=1

𝑞𝓁(𝜃)
(
𝑏(𝑚𝑘(𝜃))

⊤𝑏(𝑚𝓁(𝜃))
)
. (B.12)

It follows that to satisfy the required properties for such types, we need to choose the
fund loading function in such a way that

2∑
𝑘=1

𝛾0(𝑚𝑘(𝜃))𝑞𝑘(𝜃) = 𝜋(𝜃, 𝜙(𝜃)),

𝑎2

2

‖‖‖‖‖‖
2∑

𝑘=1

𝑞𝑘(𝜃)𝑏(𝑚𝑘(𝜃))

‖‖‖‖‖‖
2

= 𝑣𝑖(𝜃,𝐦0) =
1

2‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1), (B.13)

and using the first-order conditions (B.12) shows that the unique solution to this system
is explicitly given by

𝜙(𝜃) =
𝑞1(𝜃)𝑏(𝑚1(𝜃)) + 𝑞2(𝜃)𝑏(𝑚2(𝜃))

𝑞1(𝜃)𝛾0(𝑚1(𝜃)) + 𝑞2(𝜃)𝛾0(𝑚2(𝜃))
. (B.14)
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To complete the proof, it now remains to show that the best response of an investor of type 𝜃 ∈ Θ

to the menu𝐦 is indeed given by

𝑞∗(𝜎; 𝜃,𝐦) = 𝟏{𝜃∈𝜎}𝜋(𝜃, 𝜙(𝜃)). (B.15)

As is easily seen, every fund in the menu𝐦 is a linear combination of funds in𝐦0. Therefore, we
have that 𝑣𝑖(𝜃,𝐦) ≤ 𝑣𝑖(𝜃,𝐦0) for all 𝜃 ∈ Θ and the desired result follows by observing that the
definition of 𝜙(𝜃) guarantees that 𝑣𝑖(𝜃,𝐦0) = 𝑢(𝜃, 𝑤1(𝑞

∗,𝐦)). □

Proof of Proposition 3.2. Fix a menu 𝐦 = (1, 𝜙,Θ) and for each 𝜃 ∈ Θ denote by 𝜃 the set of
feasible directions from the measure defined in Equation (B.15). If the fund loading function is
incentive compatible, then it follows from Lemma B.1 that

sup
𝜃∈Θ

sup
𝜈∈𝜃 ∫Θ

{
𝜙(𝜃′)⊤

(
𝜉(𝜃) − 𝑎 ∫

Θ

𝜙(𝜃′′)𝑞∗(𝑑𝜃′′; 𝜃,𝐦)

)
− 1

}
𝜈(𝑑𝜃′) ≤ 0. (B.16)

Substituting the definition of the measure 𝑞∗(⋅; 𝜃,𝐦) into the left hand side of this inequality, we
obtain that

sup
𝜃∈Θ

sup
𝜈∈𝜃 ∫Θ

{
𝜙(𝜃′)⊤𝜉(𝜃) − 1 −

𝜙(𝜃′)⊤𝜙(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)

}
𝜈(𝜃′) ≤ 0, (B.17)

and the validity of Equation (10) now follows by observing that the set𝜃 contains all nonnegative
single pointmeasures onΘ. Conversely, assume that the loading function 𝜙 ∶ Θ → ℝ2 is such that
Equation (10) holds, fix an arbitrary 𝜃 ∈ Θ, and let 𝜈 ∈ 𝜃 so that

𝜈(𝜎) ≥ −𝟏{𝜃∈𝜎}𝜋(𝜃, 𝜙(𝜃))∕𝛿, (B.18)

for some 𝛿 > 0. Combining this property with Equation (10) shows that

∫
Θ

{
𝜙(𝜃′)⊤

(
𝜉(𝜃) − 𝑎 ∫

Θ

𝜙(𝜃′′)𝑞∗(𝑑𝜃′′; 𝜃,𝐦)

)
− 1

}
𝜈(𝑑𝜃′)

= ∫
Θ

{
𝜙(𝜃′)⊤𝜉(𝜃) − 1 −

𝜙(𝜃′)⊤𝜙(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)+

}
𝜈(𝑑𝜃′)

=
{
𝜙(𝜃)⊤𝜉(𝜃) − 1 − (𝜙(𝜃)⊤𝜉(𝜃) − 1)+

}
𝜈({𝜃})

+∫
Θ∖{𝜃}

{
𝜙(𝜃′)⊤𝜉(𝜃) − 1 −

𝜙(𝜃′)⊤𝜙(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)+

}
𝜈(𝑑𝜃′)

≤ −
(
1 − 𝜙(𝜃)⊤𝜉(𝜃)

)
+
𝜈({𝜃}) ≤ (

1 − 𝜙(𝜃)⊤𝜉(𝜃)
)
+

(𝜙(𝜃)⊤𝜉(𝜃) − 1)+
𝛿‖𝜙(𝜃)‖2 = 0. (B.19)

and the incentive compatibility of the fund loading function now follows from Lemma B.1 and
the arbitrariness of the pair (𝜃, 𝜈) ∈ Θ × 𝜃. □
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B.2 The relaxed problem
Proof of Lemma 3.3. Let 𝜙 ∈ Φ and assume that

𝐴 ∶= {𝜃 ∈ Θ ∶ 𝜋(𝜃, 𝜙(𝜃)) > 0} =
{
𝜃 ∈ Θ ∶ 𝜙(𝜃)⊤𝜉(𝜃) − 1 > 0

} ≠ ∅, (B.20)

for otherwise the statement is trivial. Since Φ ⊆ 𝐴𝐶(Θ;ℝ2) and

‖𝜙(𝜃)‖‖𝜉(𝜃𝐻)‖ ≥ ‖𝜙(𝜃)‖‖𝜉(𝜃)‖ ≥ 𝜙(𝜃)⊤𝜉 > 1, (B.21)

on the set 𝐴, we have that 𝑣 ∈ 𝐴𝐶(Θ;ℝ). This implies that 𝑣(𝜃) is differentiable at almost every
𝜃 ∈ Θ and a direct calculation shows that

𝑣̇(𝜃) =
1‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)

(
𝜙̇(𝜃)⊤𝜉(𝜃) + 𝜙2(𝜃)

)
−
𝜙̇(𝜃)⊤𝜙(𝜃)‖𝜙(𝜃)‖4 (𝜙(𝜃)⊤𝜉(𝜃) − 1)2, (B.22)

for almost every 𝜃 ∈ 𝐴 and 𝑣̇(𝜃) = 0 for all 𝜃 ∈ 𝐴𝑐. Equation (10) implies that for every fixed 𝜃 ∈ 𝐴

the absolutely continuous function

𝜃′ ↦ 𝐹𝜃(𝜃
′) =

(
𝜙(𝜃′)⊤𝜉(𝜃) − 1

)
−
𝜙(𝜃′)⊤𝜙(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1), (B.23)

attains a maximum at the point 𝜃′ = 𝜃. In particular, we have that

𝜕𝐹𝜃(𝜃
′)

𝜕𝜃′

|||||𝜃′=𝜃 = 𝜙̇(𝜃)⊤𝜉(𝜃) −
𝜙̇(𝜃)⊤𝜙(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1) = 0 (B.24)

for almost every 𝜃 ∈ 𝐴. Substituting this expression into Equation (B.22) shows that

𝑣̇(𝜃) =
𝜙2(𝜃)‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1), a.e. 𝜃 ∈ 𝐴, (B.25)

and combining this identity with the definition of 𝑣(𝜃) we obtain that

2𝑣(𝜃)‖𝜙(𝜃)‖2 = (𝜙(𝜃)⊤𝜉(𝜃) − 1)2, (B.26)

𝑣̇(𝜃)‖𝜙(𝜃)‖2 = 𝜙2(𝜃)(𝜙(𝜃)
⊤𝜉(𝜃) − 1), (B.27)

for almost every 𝜃 ∈ 𝐴. Solving this system gives

𝜙±(𝜃) =

(√
2𝑣(𝜃) − [𝑣̇(𝜃)]2, 𝑣̇(𝜃)

)⊤

𝜃𝑣̇(𝜃) − 2𝑣(𝜃) ± 𝜉
√
2𝑣(𝜃) − [𝑣̇(𝜃)]2

, a.e. 𝜃 ∈ 𝐴, (B.28)
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for almost every 𝜃 ∈ 𝐴 and we claim that only 𝜙+(𝜃) is consistent with the definition of the set𝐴.
Indeed, letting

𝑝±(𝜃) ∶= 𝑎𝜋(𝜃, 𝜙±(𝜃)) =
𝜙±(𝜃)

⊤𝜉(𝜃) − 1‖𝜙±(𝜃)‖2 , (B.29)

andusingEquation (B.25) in conjunctionwithEquation (B.28) and the definition of 𝑣(𝜃)weobtain
that

𝑝±(𝜃) = 𝑥𝑣̇(𝜃) − 2𝑣(𝜃) ± 𝜉
√
2𝑣(𝜃) − [𝑣̇(𝜃)]2

= 𝑥𝜙±(𝜃)𝑝±(𝜃) − ‖𝜙±(𝜃)‖2𝑝±(𝜃)2 ± 𝜉
√‖𝜙±(𝜃)‖2𝑝±(𝜃)2 − 𝜙2,±(𝜃)2𝑝(𝜃)2

= 𝑥𝜙±(𝜃)𝑝±(𝜃) − ‖𝜙±(𝜃)‖2𝑝±(𝜃)2 ± 𝑝±(𝜃)𝜙1,±(𝜃)𝜉

= 𝑝±(𝜃) − (1 ∓ 1)𝑝±(𝜃)𝜙1,±(𝜃)𝜉, a.e. 𝜃 ∈ 𝐴. (B.30)

This shows that

𝟏{𝜃∈𝐴}

⎛⎜⎜⎜⎝𝜙(𝜃)
⊤ −

(√
2𝑣(𝜃) − [𝑣̇(𝜃)]2, 𝑣̇(𝜃)

)
𝜃𝑣̇(𝜃) − 2𝑣(𝜃) + 𝜉

√
2𝑣(𝜃) − [𝑣̇(𝜃)]2

⎞⎟⎟⎟⎠ = 0, (B.31)

and it now remains to establish the validity of Equations (17) and (18). On the set 𝐴, these proper-
ties follow from Equations (B.29), (B.30), and the fact that we have

2𝑣(𝜃) − [𝑣̇(𝜃)]2 = 2𝜙1(𝜃)
2𝑣(𝜃), (B.32)

as a result of Equations (B.26) and (B.27). On the set 𝐴𝑐 we have that

𝑣̇(𝜃) = 𝑣(𝜃) =
1‖𝜙(𝜃)‖2 (𝜙(𝜃)⊤𝜉(𝜃) − 1)+ = 0, (B.33)

and the desired result follows by observing that 𝐹(𝜃, 0, 0) = 0 for all 𝜃 ∈ Θ. □

The proof of Proposition 3.4 will be carried out through a series of lemmas. The first lemma
establishes the uniqueness of the solution and shows that it attains the supremum in the relaxed
problem.

Lemma B.3. If 𝑣∗ ∈ 𝐶2(Θ;ℝ) is a solution to the boundary value problem defined by Equations
(22)–(24) then

𝑉 = ∫
Θ

𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))𝑑𝜃. (B.34)

In particular, there can be at most one classical solution to the boundary value problem.
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Proof. Let 𝑣∗ ∶ Θ → ℝ be as in the statement. Since 𝑣∗ ∈ 𝐶2(Θ;ℝ), we necessarily have that 𝑣∗ ∈
 for otherwise

1 + 𝑣∗(𝜃) =
1

𝑣∗(𝜃)

(
[𝑣̇∗(𝜃)]2 +

3

2𝜉

(
2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2

) 3

2

)
, (B.35)

would not be real valued on Θ. Let now 𝑣 ∈  be another feasible function. Using Lemma B.4
below, we deduce that

∫
Θ

(𝐹(𝑥, 𝑣(𝜃), 𝑣̇(𝜃)) − 𝐹(𝑥, 𝑣∗(𝜃), 𝑣̇∗(𝜃)))𝑑𝜃 ≤ Δ(𝑣, 𝑣∗)

∶= ∫
Θ

((𝑣(𝜃) − 𝑣∗(𝜃))𝐹∗
𝑣∗(𝜃)

(𝜃) + (𝑣̇(𝜃) − 𝑣̇∗(𝜃))𝐹∗
𝑣̇∗(𝜃)

(𝜃))𝑑𝜃, (B.36)

where we have set

𝐹∗
𝑘
(𝜃) ∶= 𝐹𝑘(𝑥, 𝑣

∗(𝜃), 𝑣̇∗(𝜃)), 𝑘 ∈ {𝑣∗(𝜃), 𝑣̇∗(𝜃)}. (B.37)

Now, since 𝑣∗ ∈ 𝐶2(Θ;ℝ) by assumption, we have that 𝑣̇∗ ∈ 𝐶1(Θ;ℝ) and we may thus integrate
by parts to show that

Δ(𝑣, 𝑣∗) =
(
(𝑣 − 𝑣∗)(𝜃)𝐹∗

𝑝(𝜃)
)|||𝜃𝐻𝜃=0 + ∫

Θ

(𝑣 − 𝑣∗)(𝜃)

(
𝐹∗
𝑣(𝜃) −

𝑑

𝑑𝜃
𝐹∗
𝑝(𝜃)

)
𝑑𝜃

= (𝑣(𝜃𝐻) − 𝑣∗(𝜃𝐻))𝐹
∗
𝑝(𝜃𝐻) − (𝑣(0) − 𝑣∗(0))𝐹∗

𝑝(0) = 0, (B.38)

where the last two equalities follow from the fact that 𝑣∗ solves the Euler–Lagrange equation
(20) subject to Equation (23). To complete the proof assume that (𝑣𝑖)2𝑖=1 ∈ 𝐶2(Θ;ℝ) are distinct
solutions, and let

𝑣∗(𝜃) =
1

2

2∑
𝑖=1

𝑣𝑖(𝜃). (B.39)

By the first part of the proof we have that

𝑉 = ∫
Θ

𝐹(𝜃, 𝑣𝑖(𝜃), 𝑣̇𝑖(𝜃))𝑑𝜃, 𝑖 ∈ {1, 2}, (B.40)

and combining this identity with Equation (B.39) and Lemma B.4 we deduce that

𝑉 =
1

2

2∑
𝑖=1

∫
Θ

𝐹(𝜃, 𝑣𝑖(𝜃), 𝑣̇𝑖(𝜃))𝑑𝜃 < ∫
Θ

𝐹(𝑥, 𝑣∗(𝜃), 𝑣̇∗(𝜃))𝑑𝜃. (B.41)

Since 𝑣∗ ∈  this inequality contradicts the fact that the functions (𝑣𝑖)2𝑖=1 both attain the supre-
mum in (), and establishes the required uniqueness. □
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Lemma B.4. Let

 ∶= {(𝑣, 𝑝) ∈ ℝ2 ∶ 𝑣 ≠ 0 and 2𝑣 − 𝑝2 > 0}. (B.42)

The function 𝐹(𝜃, 𝑦, 𝑝) is strictly concave in (𝑣, 𝑝) ∈  for any fixed 𝜃 ∈ Θ.

Proof. A direct calculation shows that

𝜕2𝐹

𝜕𝑣𝜕𝑝
(𝜃, 𝑣, 𝑝) = 𝜉

(
2𝑣 − 𝑝2

)−3

2

[
−1 𝑝

𝑝 −2𝑣

]
. (B.43)

The determinant and trace of this matrix are, respectively, strictly positive and strictly negative
for all (𝑣, 𝑝) ∈ . Therefore, its eigenvalues are strictly negative. □

To prove the existence of a solution to the boundary value problem (22)–(24), we start by show-
ing that for any initial condition 𝑞 in an appropriate interval, the initial value problem given by
Equation (22) subject to 𝑣̇(0) = 𝑣(0) − 𝑞 = 0 admits a unique classical solution. Then, we show
that the initial condition 𝑞 can be chosen in such a way as to satisfy the boundary condition (24).

Lemma B.5. The initial value problem

𝑣(𝜃)(1 + 𝑣(𝜃)) − [𝑣̇(𝜃)]2 =
3

2𝜉

(
2𝑣(𝜃) − [𝑣̇(𝜃)]2

) 3

2 , (B.44)

𝑣̇(0) = 𝑣(0) − 𝑞 = 0, (B.45)

admits a unique solution 𝑣(𝜃) = 𝑣(𝜃; 𝑞) in 𝐶2(ℝ+;ℝ) for any 𝑞 >
1

18
𝜉2. This solution is decreasing

in 𝑞 as well as strictly increasing and strictly convex in 𝜃 with

inf
𝜃≥0

(
𝟏{𝑞∈1} − 𝟏{𝑞∈2}

)
(1 − 𝑣(𝜃)) ≥ 0, (B.46)

where we have set 1 ∶= (
1

18
𝜉2,

2

9
𝜉2] and 2 ∶= (2𝜉2∕9,∞).

Proof. Let 𝑞 be fixed and write the initial value problem defined by Equations (B.44) and (B.45)
as a system of first-order differential equations

0 = 𝑋′(𝜃) − 𝐺(𝑋(𝜃)) = 𝑋(0) − (𝑞, 0)⊤, 𝜃 ≥ 0 (B.47)

with the function

𝐺(𝑋) ∶=

(
𝑋2, 1 +

1

𝜉

(
1 −

𝑋2
2

2𝑋1

)(
3
√
2𝑋1 − 𝑋2

2 − 2𝜉

))⊤

. (B.48)

Since𝐺 ∈ 𝐶1(; ℝ2), it follows fromHirsch et al. (2013, p.387) that the initial value problem (B.47)
admits a unique solution that is defined on [0, 𝜃) for some 𝜃 ≤ ∞. Before showing that this solu-
tion is actually defined on thewhole positive real line, we start by establishing the other properties
listed in the statement.
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Letting the type 𝜃 → 0 in the differential equation and using the fact that 𝑣̇(0) = 0 shows that
we have

𝜉(1 − 𝑣(0)) = 2𝜉 −
√
18𝑞. (B.49)

To proceed further,we distinguish two cases. If 𝑞 ∈ 2, then 𝑣(0) > 1, andwe claim that the second
derivative may reach one but never goes below. To see this, consider the function

𝑏(𝜃) ∶= 2𝑣(𝜃) − [𝑣̇(𝜃)]2, (B.50)

and assume that the solution is such that

𝜃̂ ∶= inf
{
𝜃 ∈ [0, 𝜃) ∶ 𝑣(𝜃) = 1

}
< 𝜃, (B.51)

for otherwise there is nothing to prove. Evaluating the differential equation (B.44) at the point 𝜃̂
shows that

𝑏(𝜃̂)(2𝜉 − 3

√
𝑏(𝜃̂)) = 0, (B.52)

and it follows that either 𝑏(𝜃̂) = 0 or 𝑏(𝜃̂) = 4𝜉2∕9. Since 𝑣(𝜃) > 1 on [0, 𝜃̂) we have that 𝑏(𝜃)
is strictly decreasing on that interval, and using this property in conjunction with the fact that
𝑏(0) = 2𝑞 > 4𝜉2∕9, we deduce that 𝑏(𝜃̂) = 4𝜉2∕9. This in turn implies that 𝑣(𝜃) solves the initial
value problem

𝑤(𝜃)(1 + 𝑤̈(𝜃)) = [𝑤̇(𝜃)]2 +
3

2𝜉

(
2𝑤(𝜃) − [𝑤̇(𝜃)]2

) 3

2 ,

𝑤(𝜃̂) = 𝑣(𝜃̂),

𝑤̇(𝜃̂) =
(
2𝑣(𝜃̂) − 4𝜉2∕9

) 1

2
, (B.53)

on the interval [𝜃̂, 𝜃) and, since the unique solution to this problem is

𝑤(𝜃) = 𝑣(𝜃̂) +
1

2
(𝜃 − 𝜃̂)2 + (𝜃 − 𝜃̂)

(
2𝑣(𝜃̂) − 4𝜉2∕9

) 1

2
, (B.54)

we conclude that 𝑣(𝜃) = 𝑤̈(𝜃) = 1 for all 𝜃 ∈ [𝜃̂, 𝜃). Because 𝑣(𝜃) ≥ 1 for all 𝜃 ∈ [0, 𝜃)wehave that
the solution is strictly convex and combining this property with the fact that 𝑣̇(0) = 0 we deduce
that it is strictly increasing.
Assume next that 𝑞 ∈ 1 so that 𝑣(0) ∈ (0, 1]. If 𝑞 =

2

9
𝜉2 then a direct calculation shows that

the unique solution to the initial value problem is

𝑣(𝜃) =
2

9
𝜉2 +

1

2
𝜃2, (B.55)



CVITANIĆ and HUGONNIER 493

and it follows that we have 𝑣(𝜃) = 1 for all 𝜃 ∈ [0, 𝜃). Now assume that the initial condition 𝑞 <
2

9
𝜉2, and denote by

𝜃0 ∶= inf
{
𝜃 ∈ [0, 𝜃) ∶ 𝑣(𝜃) ≥ 1

}
, (B.56)

the first point at which the second derivative reaches one. Since 𝑣(0) < 1 we have that 𝜃1 > 0.
Assume that 𝜃1 < 𝜃. Since the solution is twice continuously differentiable on its domain of def-
inition we have that 𝑣(𝜃1) = 1, and it thus follows from Equation (B.44) that the function 𝑣(𝜃)

solves the differential equation

𝑤̇(𝜃) = 𝐿(𝑥, 𝑤(𝜃)) ∶= (1 − 𝑤(𝜃))
(
9
√
𝑏(𝜃) − 2𝜉

) 𝑣̇(𝜃)
𝑣(𝜃)

, (B.57)

𝑤(𝜃1) = 1. (B.58)

Since the functions 𝑣(𝜃) and 𝑣̇(𝜃) are continuous in a neighborhood of 𝜃1, we have that 𝐿(𝑥, 𝑤)
is continuously differentiable in a neighborhood of (𝜃1, 1) and it follows that there exists an 𝜀 > 0

such that Equations (B.57) and (B.58) admit a unique solution in (𝜃1 − 𝜀, 𝜃1 + 𝜀). Because 𝑣(𝜃)
and the constant function 𝑤(𝜃) ≡ 1 are both solutions to that differential equation, uniqueness
implies that we must have 𝑣(𝜃) = 1 in a left neighborhood of the point 𝜃1. This contradicts the
definition of 𝜃1 and thus shows that we have 𝜃1 = ∞.
Since 𝑣̇(0) = 0 and 𝑣(0) > 0 the strict increase of the solutionwill follow from its strict convexity.

Assume towards a contradiction that the solution is not strictly convex on its domain of definition
so that

𝜃0 ∶= inf
{
𝜃 ∈ [0, 𝜃) ∶ 𝑣(𝜃) ≤ 0

}
< 𝜃. (B.59)

By continuity we have that

0 = 𝑣(𝜃0) < 𝑣(𝜃), 𝜃 ∈ [0, 𝜃0), (B.60)

and it follows that 𝑣(𝜃) and 𝑣̇(𝜃) are strictly increasing on [0, 𝜃0). Differentiating both sides of
Equation (B.44) shows that

𝑣(𝜃) = (1 − 𝑣(𝜃))
(
9
√
𝑏(𝜃) − 2𝜉

) 𝑣̇(𝜃)
𝑣(𝜃)

≥ 0, (B.61)

where the inequality follows from the nonnegativity and increase of 𝑣(𝜃), and the fact that 𝑣(𝜃) ≤
1, which implies that

9
√
𝑏(𝜃) − 2𝜉 ≥ 9

√
𝑏(0) − 2𝜉 = 9

√
2𝑞 − 2𝜉 ≥ 𝜉, 𝜃 ∈ [0, 𝜃). (B.62)

This shows that the function 𝑣(𝜃) is increasing on the interval [0, 𝜃0) and implies that we have
𝑣(𝜃0) ≥ 𝑣(0) > 0, which contradicts Equation (B.60).
To complete the first part of the proof, it now remains to show that the solution is defined on the

whole positive real line. Standard results on first-order differential systems (see e.g., Hirsch et al.
(2013, p.398)) imply that this can fail to be the case only if the solution becomes unbounded or
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reaches the boundary of . Assume first that 𝑞 ∈ 1. Using the fundamental theorem of calculus
in conjunction with the fact that the solution is nondecreasing and such that 𝑣(𝜃) ≤ 1 gives

0 ≤ 𝑣̇(𝜃) = 𝑣̇(0) + ∫
𝜃

0

𝑣(𝜃)𝑑𝑥 ≤ 𝑣̇(0) + 𝜃 = 𝜃, (B.63)

and, therefore,

𝑞 = 𝑣(0) ≤ 𝑣(𝜃) = 𝑞 + ∫
𝜃

0

𝑣̇(𝜃)𝑑𝑥 = 𝑞 + ∫
𝜃

0

𝑥𝑑𝑥 = 𝑞 +
1

2
𝜃2, (B.64)

which shows that the solution cannot grow unbounded. On the other hand, because the solution
is such that 𝑣(𝜃) ≤ 1, we have that the function 𝑏(𝜃) is nondecreasing, and it follows that

𝑏(𝜃) = 2𝑣(𝜃) − [𝑣̇(𝜃)]2 ≥ 𝑏(0) = 2𝑣(0) = 2𝑞 > 0, (B.65)

which shows that the solution remains in . Assume next that the initial condition 𝑞 ∈ 2 and
consider the function 𝑏(𝜃). Since 𝑞 ∈ 2, we know from the first part of the proof that this function
is decreasing and such that 𝑏(0) > 4𝜉2∕9. If the function 𝑏(𝜃) remains above 𝑞∗ = 4𝜉2∕9, then we
have that the solution never reaches the boundary of the set. On the other hand, if the function
𝑏(𝜃) reaches 𝑞∗ at some point 𝜃∗ ∈ [0, 𝜃), then it follows from Equation (B.44) that 𝑣(𝜃∗) = 1 and
the same arguments as in the first part of the proof then show that

𝑣(𝜃) = 𝑣(𝜃∗) +
1

2
(𝜃 − 𝜃∗)2 + (𝜃 − 𝜃∗)

(
2𝑣(𝜃∗) − 4𝜉2∕9

) 1

2 , (B.66)

for all 𝜃 ∈ [𝜃∗, 𝜃). This in turn implies that 𝑏(𝜃) = 4𝜉2∕9 for all 𝜃 ∈ [𝜃∗, 𝜃) and it follows that
the solution to the initial value problem never reaches the boundary of . Finally, differentiating
Equation (B.44) shows that

𝑣(𝜃) = (1 − 𝑣(𝜃))
(
9
√
𝑏(𝜃) − 2𝜉

) 𝑣̇(𝜃)
𝑣(𝜃)

≤ 0, (B.67)

where the inequality follows from 𝑣(𝜃) ≥ 1 and 𝑏(𝜃) ≥ 4𝜉2∕9. This implies that 𝑣(𝜃) is decreasing,
and combining this with the strict increase of the solution we obtain that

𝑣(0) ≤ 𝑣(𝜃) = 𝑞 + ∫
𝜃

0

(𝜃 − 𝑥)𝑣(𝜃)𝑑𝑥 ≤ 𝑞 +
1

2
𝑣(0)𝜃2, (B.68)

and it follows that the solution cannot grow unbounded.
To complete the proof, it now remains to show that the solution is decreasing in the initial

condition. Since the right hand side of Equation (B.47) belongs to 𝐶1(; ℝ)we know fromHirsch
et al. (2013, p.395) that the corresponding flow is continuous and the desired result will follow
from the Kamke–Müller theorem (see, e.g., Müller (1927)) provided that the Jacobian matrix

𝐽(𝜃) ∶= ∇𝐺(𝑋(𝜃)) =

[
𝜕𝐺𝑖

𝜕𝑋𝑗
(𝑋(𝜃))

]2
𝑖,𝑗=1

, (B.69)
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is ofMetzler type for all 𝜃 ≥ 0. A direct calculation shows that the off-diagonal terms of thismatrix
are explicitly given by 𝐽12(𝜃) = 1 and

𝐽21(𝜃) =
3
(
𝑣(𝜃) + [𝑣̇(𝜃)]2

)√
2𝑣(𝜃) − [𝑣̇(𝜃)]2 − 2𝜉[𝑣̇(𝜃)]2

2𝜉𝑣(𝜃)2
. (B.70)

Assume towards a contradiction that this function is not positive throughout the type space. Since
𝐽21(0) > 0, this implies that there exists 𝜃̄ > 0 such that

𝐽̇21(𝜃̄) < 0 = 𝐽21(𝜃̄). (B.71)

The assumption that 𝐽21(𝜃̄) = 0 implies that we have

𝜉 =
3

2[𝑣̇(𝜃̄)2]

(
𝑣(𝜃̄) + [𝑣̇(𝜃̄)]2

)√
2𝑣(𝜃̄) − [𝑣̇(𝜃̄)]2. (B.72)

Using this expression in conjunction with the fact that the function 𝑣(𝜃) solves Equation (B.44)
the shows that we have

𝐽̇21(𝜃̄) =
6
√
2𝑣(𝜃̄) − [𝑣̇(𝜃̄)]2

𝑣̇(𝜃̄)
(
𝑣(𝜃̄) + [𝑣̇(𝜃̄)]2

){(
𝑣(𝜃̄) − [𝑣̇(𝜃̄)]2

)2
+ 𝑣(𝜃̄)[𝑣̇(𝜃̄)]2

} ≥ 0, (B.73)

which contradicts Equation (B.71). □

Lemma B.6. For any 𝜃 > 0, there exists a unique 𝑞 = 𝑞(𝜃) ∈ 1 such that

Λ(𝜃, 𝑞) ∶= 𝜃 −
𝜉𝑣̇(𝜃; 𝑞)√

2𝑣(𝜃; 𝑞) − [𝑣̇(𝜃; 𝑞)]2
= 0, (B.74)

where 𝑣(𝜃; 𝑞) denotes the unique solution to (B.44) and (B.45). Furthermore, the function 𝑞(𝜃) is
continuous, strictly decreasing, and such that lim𝜃→0 𝑞(𝜃) =

1

8
𝜉2.

Proof. Fix an arbitrary 𝜃𝐻 > 0. Since the right hand side of Equation (B.47) belongs to 𝐶1(; ℝ),
we know fromHirsch et al. (2013, p.395) that the corresponding flow is continuous. Therefore, the
function 𝑞 ↦ Λ(𝜃; 𝑞) is continuous on 1. A direct calculation shows that for 𝑞 ∈ 𝜕1, this flow is
explicitly given by

𝑋

(
𝜃;

1

18
𝜉2

)⊤

=

(
1

18
𝜉2, 0

)
, (B.75)

𝑋

(
𝜃;
2

9
𝜉2

)⊤

=

(
2

9
𝜉2 +

1

2
𝜃2, 𝜃

)
. (B.76)

Substituting these expressions in Equation (B.74) then shows that

Λ

(
𝜃,
2

9
𝜉2

)
= −

1

2
𝜃 < 0 < 𝜃 = Λ

(
𝜃,

1

18
𝜉2

)
, (B.77)
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and the existence of a solution now follows from the intermediate value theorem. To complete
the first part of the proof assume that there exists 𝜃𝐻 > 0 such that Equation (B.74) admits two
solutions 𝑞1 ≠ 𝑞2. Then the functions 𝑣(𝜃; 𝑞1) and 𝑣(𝜃; 𝑞2) both solve the boundary value problem
associated with the upper end point 𝜃𝐻 > 0 but differ in a right neighborhood of the origin. This
contradicts the conclusion of Lemma B.3 and establishes the required uniqueness.
By the first part of the proof, we have that the solutionmapping defines a function 𝑞 ∶ (0,∞) →

 such that 𝑞(𝜃) = 𝑣(𝜃, 𝑞(𝜃)). Assume toward a contradiction that this function is not continuous
so that there exist 𝜃0 > 0 and (𝜃𝑖,𝑛)∞𝑛=1 ⊆ (0,∞) such that

𝜃0 = lim
𝑛→∞

𝜃1,𝑛 = lim
𝑛→∞

𝜃2,𝑛,

𝑞1 ∶= lim
𝑛→∞

𝑞(𝜃1,𝑛) ≠ lim
𝑛→∞

𝑞(𝜃2,𝑛) ∶= 𝑞2. (B.78)

The continuity of (𝑣(𝜃; 𝑞), 𝑣̇(𝜃; 𝑞)) and the definition of 𝑞(𝜃) then imply that

0 = lim
𝑛→∞

|||Λ(
𝜃𝑖,𝑛, 𝑞(𝜃𝑖,𝑛)

)||| = |Λ(𝜃0, 𝑞𝑖)|, (B.79)

and it follows that 𝑞𝑖 ∈ int(1) for otherwise Equation (B.77) would imply that the term on the
right hand side is strictly positive. This contradicts the fact that the solution to Equation (B.74) is
unique in 1 for every 𝜃 > 0, and establishes the required continuity.
Now assume that the solution mapping is not strictly monotone. By continuity this implies

that there exist 𝜃1, 𝜃2 > 0 such that 𝜃1 ≠ 𝜃2 and 𝑞(𝜃1) = 𝑞(𝜃2) ∶= 𝑞∗ ∈ 1. The definition of the
solution mapping then implies that

Λ(𝜃1, 𝑞
∗) = Λ(𝜃2, 𝑞

∗), (B.80)

which contradicts LemmaB.7 below. Next, we claim that the solutionmapping is such that 𝑞(𝜃) <
1

8
𝜉2 for all 𝜃 > 0. Indeed, if we had that 𝑞(𝜃0) ≥ 1

8
𝜉2 for some 𝜃0 > 0 then

𝜃 ↦ Λ(𝜃, (𝑞(𝜃0)) = 0, (B.81)

would admit a solution given by 𝜃 = 𝜃0 > 0 and this would contradict Lemma B.7.
The above results show that the solution mapping is continuous, monotone and bounded on

(0,∞). Therefore, the limit 𝑞(0) ∶= lim𝑥→0 𝑞(𝜃) exists and the proof will be complete once we
show that equals the constant in the statement. Since 𝑣̇(0; 𝑞) = 0 for all 𝑞 ∈ 1 we have that

lim
𝜃→0

𝑣̇(𝜃, 𝑞(𝜃))

𝜃
= 𝑣(0; 𝑞(0)). (B.82)

Using this identity in conjunctionwith Equation (B.49) and the definition of the solutionmapping
we obtain that

0 = lim
𝜃→0

Λ(𝜃, 𝑞(𝜃))

𝜃
= 1 −

𝜉𝑣(0; 𝑞(0))√
2𝑞(0)

= 1 +
𝜉√
2𝑞(0)

(
1 −

√
18𝑞(0)

𝜉

)
, (B.83)
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and solving for 𝑞(0) gives the desired result. Knowing that the solution mapping is strictly mono-
tone and such that 𝑞(𝜃) ≤ 𝑞(0) for all 𝜃 ≥ 0, we then deduce that it is strictly decreasing and the
proof is complete. □

Lemma B.7. For 𝑞 ∈ 1 the equation Λ(𝜃, 𝑞) = 0 admits a solution 𝜃 > 0 only if 𝑞 ≤ 1

8
𝜉2, and in

this case there is at most one solution.

Proof. A direct calculation using Equation (B.44) shows that

𝜕Λ

𝜕𝜃
(𝜃, 𝑞) =

𝜉√
2𝑣(𝜃; 𝑞) − [𝑣̇(𝜃; 𝑞)]2

− 2. (B.84)

Since 𝑣(𝜃; 𝑞) ≤ 1 for all (𝜃, 𝑞) ∈ ℝ+ × 1, by LemmaB.5 we have that this derivative is nonincreas-
ing as a function of 𝜃, and it follows that the function 𝜃 ↦ Λ(𝜃, 𝑞) is concave. If 𝑞 >

1

8
𝜉2, then this

concavity implies that

𝜕Λ

𝜕𝜃
(𝜃, 𝑞) ≤ 𝜕Λ

𝜕𝜃
(0, 𝑞) =

𝜉√
2𝑞

− 2 < 0, (B.85)

and it follows that the only solution toΛ(𝜃, 𝑞) = 0 is given by 𝜃 = 0. On the other hand, if 𝑞 ≤ 1

8
𝜉2,

then 𝜕Λ

𝜕𝜃
(0, 𝑧) ≥ 0, and the concavity of the function 𝜃 ↦ Λ(𝜃, 𝑞) implies that there can be at most

one 𝜃 > 0 such that Λ(𝜃, 𝑞) = 0. □

Proof of Proposition 3.4. By construction 𝑣∗(𝜃) = 𝑣(𝜃; 𝑞(𝜃𝐻)) belongs to 𝐶2(Θ;ℝ) and solves the
boundary value problem. Therefore, it follows from Lemma B.3 that this function is the unique
such solution and that it attains the supremum in the relaxed problem. Furthermore, since 𝜃𝐻 > 0,
we know from Lemma B.6 that 𝑞(𝜃𝐻) >

1

8
𝜉2, and it thus follows from Lemma B.5 that 𝑣∗(𝜃) is

strictly increasing and strictly convex. □

B.3 The optimal fund menu
Proof of Theorem 3.5. Let us start by establishing Equation (25). Since 𝑣∗(0) = 𝑞(𝜃𝐻) ∈ 1 by
Lemma B.6, we know from Lemma B.5 that

inf
𝜃∈Θ

(1 − 𝑣∗(𝜃)) ≥ 0. (B.86)

Using this and the fundamental theorem of calculus then shows that we have

2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2 = 2𝑞(𝜃𝐻) + ∫
𝜃

0

2𝑣̇∗(𝑥)(1 − 𝑣∗(𝑥))𝑑𝑥 >
1

9
𝜉2. (B.87)

As a result, Equation (25) will follow once we show that

𝑐(𝜃) ∶=
𝑎𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))√
2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2

= 𝜉 +
𝜃𝑣̇∗(𝜃) − 2𝑣∗(𝜃)√
2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2

> 0, (B.88)
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for all 𝜃 ∈ Θ. Since 𝑣∗(0) = 𝑞(𝜃𝐻) ∈ 1 by Lemma B.6, we have that 𝑐(0) ≥ 𝜉∕3 is strictly positive,
and it is therefore sufficient to show that 𝑐(𝜃) is nondecreasing. Differentiating Equation (B.88),
we find that

𝑐̇(𝜃) =
(𝜃 − 𝑣̇∗(𝜃))

(
2𝑣∗(𝜃)𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2

)
(2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2)

3

2

. (B.89)

Using Equation (B.86), we deduce that

𝜃 − 𝑣̇∗(𝜃) = ∫
𝜃

0

(1 − 𝑣∗(𝑥))𝑑𝑥 ≥ 0. (B.90)

On the other hand, using the fact that 𝑣∗(0) = 𝑞(𝜃𝐻) ∈ 1 in conjunction with the fundamental
theorem of calculus, Equations (B.49), and (B.61) we obtain that

𝓁(𝜃) ∶= 2𝑣∗(𝜃)𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2 = 𝓁(0) + ∫
𝜃

0

2𝑣∗(𝑥)𝑣∗(𝑥)𝑑𝑥

≥ 𝓁(0) = 2𝑣∗(0)

(√
18𝑣∗(0)

𝜉2
− 1

)
≥ 0, (B.91)

and the desired result now follows from Equation (B.87).
Let us now turn to the second part of the statement. Since 𝑣∗ ∈ 𝐶2(Θ;ℝ), we have that 𝜙∗ ∈

𝐶1(Θ;ℝ2), and the feasibility of 𝜙∗ will follow once we show that

𝐿(𝜃, 𝜃′) ∶=
(
𝜙∗(𝜃′)⊤𝜉(𝜃) − 1

)
−
𝜙∗(𝜃′)⊤𝜙∗(𝜃)‖𝜙∗(𝜃)‖2 (

𝜙∗(𝜃)⊤𝜉(𝜃) − 1
)
+
, (B.92)

is nonpositive for all (𝜃, 𝜃′) ∈ Θ2. Substituting the definition of 𝜙∗(𝜃) into the left hand side, and
using the fact that

1‖𝜙∗(𝜃)‖2 (
𝜙∗(𝜃)⊤𝜉(𝜃) − 1

)
+
= 𝑎𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃)) > 0, (B.93)

as a result of Equation (25), we obtain that

𝐿(𝜃, 𝜃′) = −
2𝑣∗(𝜃)(𝑔(𝜃)𝑔(𝜃′) − 2𝑣∗(𝜃′) + (𝜃′ − 𝜃 + 𝑣̇∗(𝜃))𝑣̇∗(𝜃′))

𝑎3𝐹(𝜃′, 𝑣∗(𝜃′), 𝑣̇∗(𝜃′))𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))2
, (B.94)

with

𝑔∗(𝜃) ∶=
√
2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2. (B.95)

Since the functions 𝑣∗(𝜃) and 𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃)) are both strictly positive on Θ, it is sufficient to
show that

𝑔∗(𝜃) ≥ ℎ(𝜃; 𝜃′) ∶=
2𝑣∗(𝜃′) +

(
𝜃 − 𝜃′ − 𝑣̇∗(𝜃)

)
𝑣̇∗(𝜃′)

𝑔∗(𝜃′)
, (𝜃, 𝜃′) ∈ Θ2, (B.96)
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but, because ℎ(𝜃; 𝜃) = 𝑔(𝜃) for all types, it is actually enough to show that the map 𝜃′ ↦ ℎ(𝜃; 𝜃′)

is increasing on [0, 𝜃] and decreasing on [𝜃, 𝜃𝐻]. A direct calculation shows that

[𝑔∗(𝜃′)]3
𝜕ℎ

𝜕𝜃′
(𝜃; 𝜃′) =

(
𝜃 − 𝑣̇∗(𝜃) − 𝜃′ + 𝑣̇𝜃′)

)
𝓁(𝜃′), (B.97)

and Equation (B.91) implies that the sign of this derivative is the same as that of

(𝜃 − 𝑣̇∗(𝜃)) −
(
𝜃′ − 𝑣̇∗(𝜃′)

)
. (B.98)

Due to Equation (B.86), we have that the function 𝜃 − 𝑣̇∗(𝜃) is nondecreasing. Therefore, the sign
of the above expression is the same as that of the difference 𝜃 − 𝜃′. □

Lemma B.8. The map 𝜃 ↦ 𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃)) is nondecreasing.

Proof. A direct calculation shows that

𝑑𝐹

𝑑𝜃
(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃)) =

(
𝜃 −

𝑣̇∗(𝜃)

𝑔∗(𝜃)
𝜉

)
𝑣∗(𝜃) +

(
𝜉

𝑔∗(𝜃)
− 1

)
𝑣̇∗(𝜃). (B.99)

Since the function 𝑣∗(𝜃) is increasing and convex by Lemma B.5, we only need to show that the
bracketed terms are nonnegative. Consider the first term. Since

𝜃 −
𝑣̇∗(𝜃)

𝑔∗(𝜃)
𝜉 = Λ(𝜃; 𝑣∗(0)), (B.100)

we know from the proof of LemmaB.7 that this term is concave in 𝜃, equal to zero on the boundary
of the type space, and such that

𝑑

𝑑𝜃

(
𝜃 −

𝑣̇∗(𝜃)

𝑔∗(𝜃)
𝜉

)|||||𝜃=0 > 0. (B.101)

This implies that this term is nonnegative throughout Θ. On the other hand, a direct calculation
using the definition of the function 𝑔∗(𝜃) shows that

𝑑

𝑑𝜃

(
𝜉

𝑔∗(𝜃)
− 1

)
= −

𝑔̇∗(𝜃)𝜉

[𝑔∗(𝜃)]2
= −

𝑣̇∗(𝜃)(1 − 𝑣∗(𝜃))𝜉

[𝑔∗(𝜃)]5∕2
. (B.102)

Since 𝑣∗(0) ∈ 1, we know from Lemma B.5 that 𝑣∗(𝜃) ≤ 1 and 𝑣̇∗(𝜃) ≥ 0. Therefore, the above
expression is negative and the desired result now follows by observing that

𝑔∗(𝜃𝐻)

𝜉
=

𝑣̇∗(𝜃𝐻)

𝜃𝐻
= ∫

𝜃𝐻

0

𝑣∗(𝜃)
𝑑𝜃

𝜃𝐻
≥ 1, (B.103)

due to Equation (24), the fundamental theorem of calculus and Lemma B.5. □
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Proof of Proposition 4.2. A direct calculation using the fact that 𝑣∗(𝜃) solves Equation (22) subject
to Equations (23) and (24) shows that we have

Δ(0) = Δ(𝜃𝐻) = 0,

Δ̇(𝜃) =
1

𝑔∗(𝜃)𝜉

(
𝜉

2
− 𝑔∗(𝜃)

)
, (B.104)

and therefore Δ̇(0) > 0 since 𝑣∗(0) < 1

8
𝜉2 by Lemma B.6. In view Lemma B.5, we have that 𝑔∗(𝜃)

is nonnegative and increasing. Therefore, the derivative Δ̇(𝜃) only changes sign once, and the
desired result now follows from the fact that the function is equal to zero on the boundary of the
type space. □

Proof of Proposition 4.4. To establish the existence of a constant 𝜃2 with the required property we
need to show that the function

𝓁(𝜃) ∶= 𝑎
(
𝜋(𝜃, 𝜙∗(𝜃))𝜙∗1(𝜃) − 𝑞◦(𝜃)𝜙◦1(𝜃)

)
= 𝑔∗(𝜃) −

𝜉

2
, (B.105)

is first negative then positive. Since 𝑣∗(𝜃) ≤ 1 and 𝑣̇∗(𝜃) ≥ 0, by Lemma B.5, we have that the
function 𝓁(𝜃) is increasing, and it is thus sufficient to show that it crosses the horizontal axis.
Consider the function

Δ(𝜃) ∶=
𝜋(𝜃, 𝜙∗(𝜃))𝜙∗2(𝜃)

𝜋(𝜃, 𝜙∗(𝜃))𝜙∗1(𝜃)
−
𝑞◦(𝜃)𝜙◦2(𝜃)

𝑞◦(𝜃)𝜙◦1(𝜃)
=

𝑣̇∗(𝜃)

𝑔∗(𝜃)
−
𝜃

𝜉
. (B.106)

As shown in the proof of Proposition 4.2, we have that the derivative of this function changes sign
only once and the desired result now follows by observing that

Δ̇(𝜃) =
𝓁(𝜃)

𝑔∗(𝜃)𝜉
. (B.107)

To show the existence of a constant 𝜃1 with the required property, consider the function

𝑘(𝜃) ∶= 𝑎
(
𝜋(𝜃, 𝜙∗(𝜃))𝜙∗2(𝜃) − 𝑞◦(𝜃)𝜙◦2(𝜃)

)
= 𝑣̇∗(𝜃) −

𝜃

2
. (B.108)

Combining Lemmas B.5 and B.6, we deduce that this function is increasing, convex, and such that

𝑘̇(0) = 𝑣∗(0) −
1

2
< 0 = 𝑘(0). (B.109)

Therefore, the function 𝑘(𝜃) crosses the horizontal axis at most once and the existence of a con-
stant 𝜃1 with the required property now follows by observing that, due to Equation (24), the
increase of the function of 𝑔∗(𝜃) and the definition of 𝜃2, we have

𝑘(𝜃𝐻) = 𝑣̇∗(𝜃𝐻) −
𝜃𝐻
2

=
𝜃𝐻
𝜉

(
𝑔∗(𝜃𝐻) −

𝜉

2

)
≥ 𝜃𝐻

𝜉

(
𝑔∗(𝜃2) −

𝜉

2

)
= 0. (B.110)
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Let us now show that the constants 𝜃1 and 𝜃2 are such that 𝜃1 ≤ 𝜃2. Since

𝜋(𝜃, 𝜙∗(𝜃))𝜙∗2(𝜃)

𝜋(𝜃, 𝜙∗(𝜃))𝜙∗1(𝜃)
≤ 𝑞◦(𝜃)𝜙◦2(𝜃)

𝑞◦(𝜃)𝜙◦1(𝜃)
, (B.111)

for all 𝜃 ∈ Θ, by Proposition 4.2 it follows from the definition of 𝜃1 that we have

𝜋(𝜃1, 𝜙
∗(𝜃1))𝜙

∗
2(𝜃1) ≤ 𝜋(𝜃1, 𝜙

∗(𝜃1))𝜙
∗
1(𝜃1)

𝑞2(𝜃1)𝜙
◦
2(𝜃1)

𝑞2(𝜃1)𝜙
◦
1(𝜃1)

= 𝜋(𝜃1, 𝜙
∗(𝜃1))𝜙

∗
1(𝜃1). (B.112)

Therefore, 𝑘(𝜃1) ≤ 0 and the desired conclusion now follows from the first part of the proof. The
remaining claims in the statement follow from Lemma B.9 below. □

Lemma B.9. There exists 𝜃 ∈ [𝜃1, 𝜃2] such that 𝑣∗(𝜃) ≤ 𝑣◦(𝜃) if and only if 𝜃 ≤ 𝜃.

Proof. Consider the function defined by

𝑚(𝜃) ∶= 𝑣∗(𝜃) − 𝑣◦(𝜃) = 𝑣∗(𝜃) −
1

8
‖𝜉(𝜃)‖2. (B.113)

Since 𝑣∗(0) < 𝜉2∕8 by Lemma B.6, we have that𝑚(0) < 0. On the other hand, the result of Propo-
sition 4.4 implies that we have

𝑚(𝜃𝐻) = 𝑣∗(𝜃𝐻) −
1

8
‖𝜉(𝜃𝐻)‖2

=
1

2
[𝑔∗(𝜃𝐻)]

2 +
1

2
[𝑣̇∗(𝜃𝐻)]

2 −
1

8
‖𝜉(𝜃𝐻)‖2

≥ 1

2
[𝜉∕2]2 +

1

2
[𝜃𝐻∕2]

2 −
1

8
‖𝜉(𝜃𝐻)‖2 = 0, (B.114)

and it follows from the intermediate value theorem that there exist 𝜃 ∈ Θ such that𝑚(𝜃) = 0. To
complete the proof, it is now sufficient to show that this point is unique and lies between 𝜃1 and
𝜃2. A direct calculation gives

0 = 𝑚̇(𝜃) −

(
𝑣̇(𝜃) −

1

4
𝜃

)
= 𝑚̈(𝜃) −

(
𝑣(𝜃) −

1

4

)
, (B.115)

and, as shown in the proof of Lemma B.5, we have that 𝑣∗(𝜃) is nondecreasing. It follows that
two cases may occur. If 𝑚̈(0) > 0, then the function 𝑚(𝜃) is convex and therefore increasing,
which implies that it can cross the horizontal axis at most once. On the contrary, if 𝑚̈(0) ≤ 0,
then 𝑚̇(𝜃) changes sign at most once and the existsence of unique crossing point follows. Finally,
using Proposition 4.4, we obtain that

𝑣∗(𝜃1) =
1

2
[𝑣̇∗(𝜃1)]

2 +
1

2
[𝑔∗(𝜃1)]

2 =
1

2
[𝑣̇∗(𝜃1)]

2 +
1

8
𝜉2

≤ 1

2
[𝜃1∕2]

2 +
1

8
𝜉2 =

1

8
‖𝜉(𝜃1)‖2,
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𝑣∗(𝜃2) =
1

2
[𝑣̇∗(𝜃2)]

2 +
1

2
[𝑔∗(𝜃2)]

2 =
1

2
[𝜃2∕2]

2 +
1

2
[𝑔∗(𝜃2)]

2

≥ 1

2
[𝜃2∕2]

2 +
1

2
[𝜉∕2]2 =

1

8
‖𝜉(𝜃2)‖2, (B.116)

and the desired result now follows from the first part of the proof. □

Lemma B.10. The functions 𝜙∗1(𝜃) and 𝜙∗2(𝜃) are, respectively, decreasing and increasing with
respect to the investor type.

Proof. A direct calculation shows that we have

𝜙̇∗1(𝜃) =
(𝜃 − 𝑣̇∗(𝜃))𝑔∗(𝜃)

𝜉𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))2

(
[𝑣̇∗(𝜃)]2 − 2𝑣∗(𝜃)𝑣∗(𝜃)

)
. (B.117)

Since 𝑣∗(𝜃) ≤ 1, by Lemma B.5 and 𝑣̇∗(0) = 0 we have that 𝜃 − 𝑣̇∗(𝜃) ≥ 0. Therefore, the sign of
the above derivative depends on the sign of the bracketed termon the right hand side andwe know
from the proof of Theorem 3.5 that this term is negative throughout the type space. Similarly, a
direct calculation gives

𝜙̇∗2(𝜃) =
(𝑔∗(𝜃) − 𝜉)

𝑔∗(𝜃)𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))2

(
[𝑣̇∗(𝜃)]2 − 2𝑣∗(𝜃)𝑣∗(𝜃)

)
, (B.118)

and the same argument as in the first part of the proof show that the sign of this quantity depends
on that of the function 𝜉 − 𝑔∗(𝜃). Because 𝑣∗(𝜃) ≤ 1, we have that this function is increasing and
the desired result now follows by observing that

𝑔∗(𝜃𝐻) = (𝜉∕𝜃𝐻)𝑣̇
∗(𝜃𝐻) ≤ 𝜉, (B.119)

as a result of Equation (24) and the fact that 𝑣̇∗(𝜃) ≤ 𝜃 for all 𝜃 ∈ Θ. □

Proof of Proposition 3.6. This directly follows by combining Lemmas B.8 and B.10. □

Proof of Proposition 4.1. By Theorem 3.5 we have that

𝑀 = sup
𝑣∈Φ ∫

𝜃𝐻

0

𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))
𝑑𝜃

𝜃𝐻
= ∫

𝜃𝐻

0

𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))
𝑑𝜃

𝜃𝐻
. (B.120)

Therefore, the envelope theorem implies that

𝑑𝑀

𝑑𝜉
= ∫

𝜃𝐻

0

𝑑𝐹

𝑑𝜉
(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))

𝑑𝜃

𝜃𝐻
= ∫

𝜃𝐻

0

𝑔∗(𝜃)
𝑑𝜃

𝜃𝐻
, (B.121)

and the required monotonicity in 𝜉 follows from the nonnegativity of 𝑔∗(𝜃). Similarly, an applica-
tion of the envelope theorem shows that

𝑑𝑀

𝑑𝜃𝐻
=

1

𝜃2𝐻
∫

𝜃𝐻

0

(
𝐹(𝜃𝐻, 𝑣

∗(𝜃𝐻), 𝑣̇
∗(𝜃𝐻)) − 𝐹(𝜃, 𝑣∗(𝜃), 𝑣̇∗(𝜃))

)
𝑑𝜃, (B.122)
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and the desired monotonicity follows from Lemma B.8. □

Proof of Lemma 4.5. By Proposition 3.1, we have that there exists an incentive compatible fund
loading function𝜙𝑈 that implements the same indirect utilities as the unbundling solution. There-
fore𝑀0 ≤ 𝑀 and the result will follow once we show that the inequality is strict. Let

𝑣𝑈(𝜃) =
1

2‖𝜙𝑈(𝜃)‖2 (
𝜙𝑈(𝜃)

⊤𝜉(𝜃) − 1
)2
+
=

1

8
𝜉2 +

1

2

(
𝜃 −

𝜃𝐻
3

)2

+

, (B.123)

denote the indirect utility that investors derive when offered 𝜙𝑈 . By Lemma 3.3, we have that
𝑣𝑈 ∈  and it thus follows from Theorem 3.5 that

𝑀0 = ∫
Θ

𝐹(𝜃, 𝑣𝑈(𝜃), 𝑣̇𝑈(𝜃))
𝑑𝜃

𝜃𝐻
≤ 𝑀 = sup

𝑣∈ ∫
Θ

𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))
𝑑𝜃

𝜃𝐻
. (B.124)

Since the supremum on the right is uniquely attained by the function 𝑣∗, it now suffices to show
that the functions 𝑣∗ and 𝑣𝑈 differ over an open subset of the type space and this property follows
by observing that over the interval (0, 𝜃𝐻∕3), the function 𝑣𝑈 is constant whereas the function 𝑣∗
is strictly increasing. □

B.4 Performance fees
If themanager is allowed to charge performance fees as in Equation (8), then the budget constraint
of an investor is given by

𝑤1 = 𝑟𝑤0 + ∫
(
(𝛿(𝑚)𝑏(𝑚) + (1 − 𝛿(𝑚))𝜙(𝑚))

⊤
𝜀 − 𝛾(𝑚)

)
𝑞(𝑑𝑚), (B.125)

where 𝑞 ∈ 𝜇+() is a positive measure. Comparing this expression to Equation (4) reveals that
from the point of view of an investor, the extendedmenu

{(𝛾(𝑚), 𝛿(𝑚), 𝑏(𝑚), 𝜙(𝑚)) ∶ 𝑚 ∈ }, (B.126)

is payoff equivalent to the standardmenuwith loading function 𝛿(𝑚)𝑏(𝑚) + (1 − 𝛿(𝑚))𝜙(𝑚) and
fee rate 𝛾(𝑚). Using this property and proceeding as in Section 3 shows that the manager can
focus on extended menus of the form{(

1, 𝛿(𝜃), 𝑏(𝜃),
𝜙(𝜃) − 𝛿(𝜃)𝑏(𝜃)

1 − 𝛿(𝜃)

)
∶ 𝜃 ∈ Θ

}
, (B.127)

where (𝛿, 𝑏) ∶ Θ → (ℝ+,ℝ
2) are arbitrary functions and 𝜙 ∈ Φ0 is an incentive compatible load-

ing function in the sense of Proposition 3.1. A direct calculation then shows that the amount of
fees generated by such a menu is random and given by

∫
Θ

𝜋(𝜃, 𝜙(𝜃))

[
1 +

𝛿(𝜃)

1 − 𝛿(𝜃)
(𝜙(𝜃) − 𝑏(𝜃))

⊤
𝜀

]
𝑑𝜃

𝜃𝐻
. (B.128)
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Since the manager represents an investment firm, it is natural to assume that he has access to a
wider financial market in which any risk can be hedged. This implies that themanager should use
an equivalent martingale measure to value the present values of the fees and since 𝜀 has expec-
tation zero under any such measure we conclude that the optimal menu can be implemented
without using performance fees

APPENDIX C: PROOF OF THE RESULTS IN SECTION 5

C.1 Incentive compatible menus
Proposition C.1. Assume that investors can directly access the familiar asset. Then, given any fund
menu𝐦 there exists a fund menu𝐦 = (𝛾, 𝜙,) such that

(1)  = Θ,
(2) 𝛾(𝜃) = 1 for all 𝜃 ∈ Θ,
(3) 𝑞∗(𝜎; 𝜃,𝐦) = 𝟏{𝜃∈𝜎}𝜋(𝜃, 𝜙(𝜃)) and 𝑛∗(𝜃;𝐦) = 0 for all 𝜃 ∈ Θ and 𝜎 ⊆ Θ,
(4) 𝑣𝑚(𝐦) = 𝑣𝑚(𝐦), and
(5) 𝑣𝑖(𝜃,𝐦) = 𝑣𝑖(𝑥,𝐦) for all 𝜃 ∈ Θ.

Proof of Propositions C.1 and 5.2. The proofs of these propositions are similar to those of Proposi-
tions 3.1 and 3.2. We omit the details. □

Proof of Lemma 5.3. The proof is similar to that of Lemma 3.3. We omit the details. □

C.2 The relaxed problem
Proof of Lemma 5.1. SinceΦ1 ⊆ Φ, we have that𝑀1 ≤ 𝑀 and it follows that it is sufficient to show
that 𝑣∗ satisfies Equation (46). The definition of the function 𝑣∗ and the results of Lemmas B.5 and
B.6 imply that 𝑣∗(𝜃) ≤ 1 for all 𝜃 ∈ Θ. Therefore, the function 𝑏∗(𝜃) ∶= 2𝑣∗(𝜃) − [𝑣̇∗(𝜃)]2 is non-
decreasing, and the desired result follows by noting that under the assumption of the statement,
we have 𝑏∗(0) ≥ (𝜉 − 𝛾1)

2. □

To derive a set of optimality conditions for the relaxed problem (1), we consider the
Lagrangian objective defined by

∫
Θ

𝐻𝜆(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃 ∶= ∫
Θ

𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃 + ∫
Θ

𝜆(𝜃)𝑐(𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃, (C.1)

where the function

𝑐(𝑣(𝜃), 𝑣̇(𝜃)) ∶= 2𝑣(𝜃) − [𝑣̇(𝜃)]2 − (𝜉 − 𝛾1)
2
, (C.2)

returns the value of the constraint (46) and 𝜆 ∶ Θ → ℝ+ is a Lagrange multiplier that enforces
this constraint at each point of the type space.
The next lemma provides a set of sufficient optimality conditions for the relaxed problem (1).

To state the result, denote by𝐴𝐶∗
𝑝(Θ;ℝ) the set of piecewise absolutely continuous functions that

are right continuous at zero, left continuous at 𝜃𝐻 , and have at most finitely many jump disconti-
nuities.
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Lemma C.2. Let (𝑣, 𝜆) ∈ 1 × 𝐴𝐶∗
𝑝(Θ;ℝ+) be such that 𝑣̇ ∈ 𝐴𝐶(Θ;ℝ) and denote by  the set of

points where the function 𝜆 is continuous. If(
𝐻𝜆
𝑣(𝜃)

−
𝑑

𝑑𝜃
𝐻𝜆
𝑣̇(𝜃)

)
(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ , (C.3)

𝐻𝜆
𝑣̇(𝜃)

(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ {0, 𝜃𝐻}, (C.4)

𝜆(𝜃)𝑐(𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ Θ, (C.5)

and𝐻𝜆
𝑣̇(𝜃)

(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) is continuous, then 𝑣 attains the supremum in (1).

The above conditions can be interpreted as follows. The first condition requires that the Euler–
Lagrange equation associated with the optimization of the Lagrangian holds at all points of con-
tinuity of the multiplier. The second condition imposes the boundary conditions associated with
the free values of the curve on the boundaries of the type space. The third condition is the usual
complementary slackness condition associated with the optimal choice of the multiplier.
The last condition is technical. It provides a sufficient condition for the integration by parts

argument that proves the optimality of the candidate and is thus similar to the first corner condi-
tion ofWeierstrass (see, e.g., Mesterton-Gibbons (2009, Chapter 6)). In the context of our problem
this condition requires that

𝐻𝜆
𝑣̇(𝜃)

(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 𝜃 − 𝑣̇(𝜃)

(
2𝜆(𝜃) +

𝑣̇(𝜃)𝜉√
2𝑣(𝜃) − [𝑣̇(𝜃)]2

)
, (C.6)

be continuous throughout the type space, and, since the functions 𝑣 and 𝑣̇ are both continuous,
this requirement is equivalent to the property that 𝑣̇(𝜃) = 0 at every point of discontinuity of the
Lagrange multiplier.

Proof of Lemma C.2. Assume that the conditions of the statement hold true and pick an arbitrary
𝑤 ∈ 1. Combining Lemma C.4 below with Equation (C.5), the definition of 1 and the nonneg-
ativity of the Lagrange multiplier we deduce that

𝛿(𝑣; 𝑤) ∶= ∫
𝜃𝐻

0

(
𝐹(𝜃, 𝑤(𝜃), 𝑤̇(𝜃)) − 𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))

)
𝑑𝜃

≤ ∫
𝜃𝐻

0

(
𝐻𝜆(𝜃, 𝑤(𝜃), 𝑤̇(𝜃)) − 𝐻𝜆(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))

)
𝑑𝜃

≤ ∫
𝜃𝐻

0

(
(𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆

𝑣(𝜃)
(𝜃) + (𝑤̇(𝜃) − 𝑣̇(𝜃))𝐻𝜆

𝑣̇(𝜃)
(𝜃)

)
𝑑𝜃

=

𝑁∑
𝑛=0

∫
𝜃𝑛+1

𝜃𝑛

(
(𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆

𝑣(𝜃)
(𝜃) + (𝑤̇(𝜃) − 𝑣̇(𝜃))𝐻𝜆

𝑣̇(𝜃)
(𝜃)

)
𝑑𝜃, (C.7)
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where 𝜃0 = 0, 𝜃𝑁+1 = 𝜃𝐻 , the𝑁−tuple (𝜃𝑛)𝑁𝑛=1 ∈ int(Θ)𝑁 identifies the points of discontinuity of
the multiplier, and we have set

𝐻𝜆
𝑘
(𝜃) = 𝐻𝜆

𝑘
(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)), 𝑘 ∈ {𝑣(𝜃), 𝑣̇(𝜃)}. (C.8)

By assumption, we have that the functions 𝑣, 𝑣̇,𝑤, and 𝜆 are absolutely continuous on the interval
(𝑥𝑛, 𝑥𝑛+1). Therefore, the functions 𝑤̇ − 𝑣̇ and

𝐻𝜆
𝑣̇(𝜃)

(𝜃) = 𝐹𝑣̇(𝜃)(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) − 2𝑣̇(𝜃)𝜆(𝜃), (C.9)

are, respectively, Lebesgue integrable and absolutely continuous on Θ; and we can thus integrate
by parts on the right hand side of Equation (C.7) to obtain that

𝛿(𝑣; 𝑤) ≤
𝑁∑
𝑛=0

{
(𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆

𝑣̇(𝜃)
(𝜃)

|||𝜃𝑛+1𝜃𝑛

+∫
𝜃𝑛+1

𝜃𝑛

(𝑤(𝜃) − 𝑣(𝜃))

[
𝐻𝜆
𝑣(𝜃)

(𝜃) −
𝑑

𝑑𝜃
𝐻𝜆
𝑣̇(𝜃)

(𝜃)

]
𝑑𝜃

}

=

𝑁∑
𝑛=0

(𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆
𝑣̇(𝜃)

(𝜃)
|||𝜃𝑛+1𝜃𝑛

= (𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆
𝑣̇(𝜃)

(𝜃)
|||𝜃𝐻0 −

𝑁∑
𝑛=1

(𝑤(𝜃𝑛) − 𝑣(𝜃𝑛))Δ𝐻
𝜆
𝑣̇(𝜃)

(𝜃𝑛)

= (𝑤(𝜃) − 𝑣(𝜃))𝐻𝜆
𝑣̇(𝜃)

(𝜃)
|||𝜃𝐻0 = 0, (C.10)

where the first equality follows from Equation (C.3), the second follows by expanding and then
collapsing the sum, and the last follows from Equation (C.4). □

Remark C.3. Note that for the function

𝐻𝜆
𝑣̇(𝜃)

(𝜃) = 2𝑣̇(𝜃)𝜆(𝜃) + 𝐹𝑣̇(𝜃)(𝜃), (C.11)

to be continuous it is necessary and sufficient that the optimal indirect utility be such that 𝑣̇(𝜃) = 0

at every point of discontinuity of the multiplier.

Lemma C.4. Let (𝜃, 𝜆) ∈ Θ × 𝐴𝐶∗
𝑝(Θ;ℝ+) be fixed. Then the map (𝑣, 𝑣̇) ↦ 𝐻𝜆(𝜃, 𝑣, 𝑣̇) is strictly

concave on the set of pairs such that 𝑐(𝑣, 𝑣̇) ≥ 0.

Proof. This follows by verifying that the determinant and trace of the Hessian matrix are, respec-
tively, strictly positive and strictly negative. We omit the details. □

Proof of Proposition 5.4. when 𝛾1 ≤ 𝜉∕3. To establish the result, it suffices to show that one can
construct a Lagrange multiplier 𝜆 ∈ 𝐴𝐶∗

𝑝(Θ;ℝ+) such that the pair (𝜆, 𝑣∗1) satisfies the conditions
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of Lemma C.2. As is easily seen, we have that the candidate optimizer belongs to 𝐶2
𝑝(Θ;ℝ) and

satisfies

𝑐
(
𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
= 0, 𝜃 ∈ Θ. (C.12)

Therefore, Equation (C.5) holds. On the other hand, substituting the candidate optimizer into
Equations (C.3) and (C.4) shows that the Lagrange multiplier must be chosen in such a way that

0 =
𝛾1

𝜉 − 𝛾1
+ 2𝜆(𝜃) − 2, 𝜃 ≤ 𝜃𝐻

3

0 =
𝛾1

𝜉 − 𝛾1
+ 2𝜆(𝜃) −

1

2
+ 𝜆̇(𝜃)

(
𝜃 −

𝜃𝐻
3

)
, 𝜃 >

𝜃𝐻
3
, (C.13)

(C.14)

and

0 =
𝛾1

𝜉 − 𝛾1
+ 2𝜆(𝜃𝐻) −

1

2
. (C.15)

A direct calculation shows that the unique solution to these equations is piecewise constant and
explicitly given by

𝜆(𝜃) ∶= 1 −
𝛾1

2(𝜉 − 𝛾1)
− 𝟏{3𝜃>𝜃𝐻}

3

4
. (C.16)

Since 𝛾1 ≤ 𝜉∕3, we have that 𝜆(𝜃) is nonnegative for all 𝜃 ∈ Θ. Therefore, it now only remains to
establish that the function

𝜃 ↦ 𝐻𝜆
𝑣̇∗
1
(𝜃)
(𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)) = 𝜃 − 𝑣̇∗1(𝜃)

⎛⎜⎜⎜⎝2𝜆(𝜃) +
𝜉√

2𝑣∗1(𝜃) − [𝑣̇∗1(𝜃)]
2

⎞⎟⎟⎟⎠, (C.17)

is continuous on Θ but this property follows from Remark C.3, the smoothness of the candidate
optimizer, and the fact that 𝑣̇∗1 (𝜃𝐻∕3) = 0. □

Lemma C.5. For every 𝛾1 ≤ 𝛾∗1 , there exists a unique solution (𝑤, 𝜃∗) ∈ 𝐶2
𝑝(Θ;ℝ) × Θ to the free

boundary problem defined by Equations (48)–(50).

Proof. We start by observing that (𝑤, 𝜃∗) is a solution to the free boundary problem if and only if
𝑚(𝑥) ∶= 𝑤(𝑥 + 𝜃∗) solves the initial value problem

𝑚(𝑥)(1 + 𝑚̈(𝑥)) − [𝑚̇(𝑥)]2 =
3

2𝜉

(
2𝑚(𝑥) − [𝑚̇(𝑥)]2

) 3

2 , (C.18)

𝑚̇(0) = 𝑚(0) −
1

2
(𝜉 − 𝛾1)

2 = 0, (C.19)
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and the constant 𝜃∗ ∈ Θ solves

𝑄(𝜃∗) ∶= 𝜃𝐻 −
𝜉𝑚̇(𝜃𝐻 − 𝜃∗)√

2𝑚(𝜃𝐻 − 𝜃∗) − [𝑚̇(𝜃𝐻 − 𝜃∗)]2
. (C.20)

Since 𝛾1 ≤ 𝛾∗1 , we have that

1

2
(𝜉 − 𝛾1)

2 ≥ 1

2
(𝜉 − 𝛾∗1)

2 = 𝑣∗(0) >
1

18
𝜉2. (C.21)

Therefore, it follows from Lemma B.5 that the unique classical solution to Equation (C.18) subject
to Equation (C.19) is given by 𝑚(𝑥) = 𝑣(𝑥; 𝑞1) with 𝑞1 =

1

2
(𝜉 − 𝛾1)

2 and it now only remains to
show that Equation (C.20) admits a unique solution.
Since the function 𝑄 is continuous on Θ and 𝑄(𝜃𝐻) = 𝜃𝐻 > 0, the existence claim will follow

from the intermediate value theorem once we show that 𝑄(0) ≤ 0. To this end, consider the con-
tinuously differentiable function

𝑆(𝜃) ∶= 𝜃 −
𝜉𝑣̇(𝜃; 𝑞1)√

2𝑣(𝜃, 𝑞1) − [𝑣̇(𝜃; 𝑞1)]2
, (C.22)

and observe that, since 𝑄(0) = 𝑆(𝜃𝐻), it is sufficient to prove that 𝑆(𝜃) ≤ 0 in a left neighborhood
of 𝜃𝐻 . Differentiating the above expression and using the fact that the function 𝑣(𝜃; 𝑞1) solves
(C.18) shows that

𝑆̇(𝜃) =
𝜉√

2𝑣(𝜃, 𝑞1) − [𝑣̇(𝜃; 𝑞1)]2
− 2. (C.23)

To proceed further, we distinguish three cases. If the fee rate on the outside fund is such that
𝑞1 ∈ 2, then we know from the proof of Lemma B.5 that

inf
𝜃∈Θ

√
2𝑣(𝜃, 𝑞1) − [𝑣̇(𝜃; 𝑞1)]2 ≥ 2

3
𝜉. (C.24)

This implies that we have 𝑆̇(𝜃) ≤ −
1

2
for all 𝜃 ∈ Θ and the desired result follows by noting that

𝑆(0) = 0. Assume next that the fee rate is such that 𝑞1 ∈ [
1

8
,
2

9
]𝜉2. In this case we know from

Lemma B.5 that 𝑣(𝜃; 𝑞1) ≤ 1 for all 𝜃 ∈ Θ. This implies that the derivative in Equation (C.23) is
decreasing and the desired result follows by noting that

𝑞1 ≥ 1

8
𝜉2 ⟹ 𝑆̇(𝜃) ≤ 𝑆̇(0) =

𝜉√
2𝑞1

− 2 ≤ 0 = 𝑆(0). (C.25)

Finally, assume that the fee rate on the familiar asset is such that 𝑞1 <
1

8
𝜉2, and denote by 𝑞(𝜃) the

function that describes the unique strictly positive solution to Equation (B.74) in 1. As shown in
the proof of LemmaB.6, this function is continuous, nonincreasing, and equal to 1

8
𝜉2 at the origin.
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By continuity, this implies that we have 𝑞1 = 𝑞(𝜃̂) for some strictly positive type 𝜃̂ such that

𝑆(𝜃̂) = 𝜃̂ −
𝜉𝑣̇(𝜃̂; 𝑞(𝜃̂))√

2𝑣(𝜃̂, 𝑞(𝜃̂)) − [𝑣̇(𝜃̂; 𝑞(𝜃̂))]2
= 0. (C.26)

On the other hand, since 𝑞1 <
1

8
𝜉2 <

2

9
𝜉2 we know from Lemma B.5 that 𝑣(𝜃; 𝑞1) ≤ 1 for all 𝜃 ∈ Θ

and it follows that the derivative in Equation (C.23) is decreasing. Using this property in conjunc-
tion with the fact that

𝑞1 <
1

8
𝜉2 ⟹ 𝑆̇(0) = −2 +

𝜉√
2𝑞1

> 0 = 𝑆(𝜃̂), (C.27)

we then deduce that 𝑆̇(𝜃̂) < 0, and it follows that 𝑆(𝜃) ≤ 𝑆(𝜃̂) = 0 for all 𝜃 ≥ 𝜃̂. To complete the
proof, it now remains to establish uniqueness. A direct calculation using Equation (C.20) and the
fact that the function 𝑣(𝜃; 𝑞1) solves Equation (C.18) implies that

𝑄′(𝜃) = 3 −
𝜉√

2𝑣(𝜃, 𝑞1) − [𝑣̇(𝜃; 𝑞1)]2
= 1 − 𝑆̇(𝜃). (C.28)

If 𝑞1 ≥ 1

8
𝜉2, then the first part of the proof shows that we have 𝑆̇(𝜃) ≤ 0 for all 𝜃 ∈ Θ. This implies

that the function 𝑄(𝜃) is strictly increasing and the required uniqueness follows. On the other
hand, if we have 𝑣∗(0) < 𝑞1 <

1

8
𝜉2, then we know from the first part of the proof that 𝑄′(𝜃) is

decreasing and has initial value

𝑄′(0) = 3 −
𝜉√
2𝑞1

≥ 3 −
𝜉√

2𝜉2∕18
= 0. (C.29)

Two cases may then occur: either 𝑄′(𝜃𝐻) ≥ 0, in which case, the function 𝑄(𝜃) is strictly increas-
ing, or 𝑄′(𝜃𝐻) < 0, in which case the function 𝑄(𝜃) is inverse𝑈−shaped with a maximumwhose
value exceeds 𝑄(𝜃𝐻). The required uniqueness follows by observing that in both cases, the func-
tion crosses the horizontal axis only once. □

Proof of Proposition 5.4. when 𝛾1 ∈ (𝜉∕3, 𝛾∗1]. To establish the result, it suffices to show that one can
construct a Lagrange multiplier 𝜆 ∈ 𝐴𝐶∗

𝑝(Θ;ℝ+) such that the pair (𝜆, 𝑣∗1) satisfies the conditions
of Lemma C.2. As is easily seen, we have that the candidate optimizer belongs to 𝐶2

𝑝(Θ;ℝ) and
satisfies

𝑐
(
𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
= 𝟏{𝜃>𝜃∗}

(
2𝑤(𝜃) − [𝑤̇(𝜃)]2 − 2𝑞1

)
= 𝟏{𝜃>𝜃∗}

(
2𝑣(𝜃 − 𝜃∗; 𝑞1) − [𝑣̇(𝜃 − 𝜃∗; 𝑞1)]

2 − 2𝑞1
)
, (C.30)

where the second equality follows from the construction in the proof of LemmaC.5. Since 𝛾1 ≥ 1

3
𝜉,

we have 𝑞1 ≤ 2

9
𝜉2. Therefore, the result of Lemma B.5 implies that the right hand side of the
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previous expression is strictly increasing in 𝜃 ∈ [𝜃∗, 𝜃𝐻] and it follows that we have

𝑐
(
𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
> 𝑐

(
𝑣∗1(𝜃

∗), 𝑣̇∗1 (𝜃
∗)

)
= 2(𝑣(0; 𝑞1) − 𝑞1) = 0, 𝜃 > 𝜃∗, (C.31)

which establishes that the candidate optimizer lies in 1 and shows that a necessary condition
for Equation (C.5) is that 𝜆(𝜃) = 0 for all 𝜃 > 𝜃∗. On the other hand, using the fact that the func-
tion 𝑣(𝜃; 𝑞) solves Equation (48) and substituting into Equations (C.3) and (C.4) shows that the
Lagrange multiplier must be chosen in such a way that

0 =
𝛾1

𝜉 − 𝛾1
+ 2𝜆(𝜃) − 2, 𝜃 ≤ 𝜃∗. (C.32)

Solving that equation shows the Lagrange multiplier is given by

𝜆(𝜃) ∶= 𝟏{𝜃≤𝜃∗}
(
1 −

𝛾1
2(𝜉 − 𝛾1)

)
. (C.33)

Since 𝛾1 ≤ 𝜉∕3, we have that 𝜆(𝜃) is nonnegative for all 𝜃 ∈ Θ. Therefore, it now only remains to
establish that the function

𝜃 ↦ 𝐻𝜆
𝑣̇∗
1
(𝜃)
(𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)) = 𝜃 − 𝑣̇∗1(𝜃)

⎛⎜⎜⎜⎝2𝜆(𝜃) +
𝜉√

2𝑣∗1(𝜃) − [𝑣̇∗1(𝜃)]
2

⎞⎟⎟⎟⎠, (C.34)

is continuous on Θ but this property follows from Remark C.3, the smoothness of the candidate
optimizer, and the fact that 𝑣̇∗1 (𝜃

∗) = 𝑣̇(0; 𝑞1) = 0. □

C.3 The optimal fund menu
Proof of Theorem 5.5. Since 𝑣∗1 ∈ 𝐶2

𝑝(Θ;ℝ), we have 𝜙∗1 ∈ 𝐴𝐶(Θ;ℝ2). Therefore, Lemma 5.3 and
Proposition 5.4 imply that

𝑀1 = sup
𝜙∈Φ

𝐼(𝜙) ≤ 𝑉1

𝜃𝐻
= ∫

Θ

𝐹
(
𝜃, 𝑣̇∗1 (𝜃), 𝑣̇

∗
1 (𝜃)

)𝑑𝜃
𝜃𝐻

= 𝐼(𝜙∗1), (C.35)

and the statement will follow once we show that the fund loading function 𝜙∗1 belongs to Φ1 and
satisfies Equation (52). We distinguish two cases depending on the fee rate of the outside fund.
Assume first that we have 𝛾1 ≤ 1

3
𝜉 so that the function 𝑣∗1(𝜃) is given by Equation (47). In this

case, the result follows by observing that we have

𝐹
(
𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
=

𝛾1
𝑎
(𝜉 − 𝛾1) +

𝜃∗

𝑎
(𝜃 − 𝜃∗)+ > 0, (C.36)

as well as

𝜉 − 𝛾1 =
𝜙∗11(𝜃)‖𝜙∗1(𝜃)‖2 (

𝜙∗1(𝜃)
⊤𝜉(𝜃) − 1

)
+
, (C.37)
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and

𝜙∗1(𝜃
′)⊤𝜉(𝜃) − 1 −

𝜙∗1(𝜃)
⊤𝜙∗1(𝜃

′)‖𝜙∗1(𝜃)‖2 (
𝜙∗1(𝜃)

⊤𝜉(𝜃) − 1
)
+

= 𝟏{𝜃≤𝜃∗<𝜃′}
(𝜃∗ − 𝜃)

(
𝜃∗ − 𝜃′

)
𝛾1(𝜉 − 𝛾1) + 𝜃∗(𝜃′ − 𝜃∗)

≤ 0 (C.38)

for all (𝜃, 𝜃′) ∈ Θ2. Assume next that the fee rate 𝛾1 ∈ (
1

3
𝜉2, 𝛾∗1], and let us start by establishing

the validity of Equation (52). Since 𝑣∗1(𝜃) is piecewise smooth, we have that the mapping defined
by

𝜃 ↦ 𝐹∗
1 (𝜃) ∶= 𝐹

(
𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
, (C.39)

is absolutely continuous. On the other hand, since 𝛾1 >
1

3
𝜉, it follows from Equation (51) and the

proofs of Lemmas B.5 and C.5 that we have

min{𝑣̇∗1(𝜃), 1 − 𝑣∗1(𝜃), 𝑣
∗
1(𝜃), 𝑣

∗
1(𝜃)} ≥ 0, 𝜃 ∈ [𝜃∗, 𝜃𝐻]. (C.40)

Using this property in conjunction with the fundamental theorem of calculus, we then deduce
that

𝐹̇∗
1 (𝜃) = 𝟏{𝜃≥𝜃∗}

(
𝜃𝑣∗1(𝜃) − 𝑣̇∗1(𝜃) + 𝑣̇∗1(𝜃)(1 − 𝑣∗1(𝜃))

𝜉

𝑔∗1(𝜃)

)

≥ 𝟏{𝜃≥𝜃∗}
(
𝜃𝑣∗1(𝜃) − 𝑣̇∗1(𝜃)

)
= ∫

max{𝜃,𝜃∗}

𝜃∗

(
𝑣∗1(𝜃) − 𝑣∗1(𝑥)

)
𝑑𝑥 ≥ 0. (C.41)

for the function

𝑔∗1(𝜃) ∶=
√
2𝑣∗1(𝜃) − [𝑣̇∗1(𝜃)]

2. (C.42)

This shows that the absolutely continuous function 𝐹∗
1 (𝜃) is nondecreasing throughout the type

space and Equation (52) now follows by observing that

𝐹
(
𝜃, 𝑣∗1(𝜃), 𝑣̇

∗
1 (𝜃)

)
= 𝛾1(𝜉 − 𝛾1) > 0, 𝜃 ∈ [0, 𝜃∗]. (C.43)

To complete the proof, we now need to show that the fund loading function 𝜙∗1(𝜃) is incentive
compatible. A direct calculation using Equation (53) shows that

𝜉 − 𝛾1 −
𝜙∗11(𝜃)‖𝜙∗1(𝜃)‖2 (

𝜙∗1(𝜃)
⊤𝜉(𝜃) − 1

)
+
= 𝟏{𝜃≥𝜃∗}

(
𝑔∗1(𝜃

∗) − 𝑔∗1(𝜃)
)
, (C.44)

and Equation (45) follows by noting that, as a result of Equation (C.40), the function 𝑔∗1(𝜃) is
nondecreasing on the interval [𝜃∗, 𝜃𝐻]. On the other hand, using Equation (C.40) and proceeding
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as in the proof of Theorem 3.5 shows that the validity of Equation (10) is equivalent to

𝑔∗1(𝜃) ≥ ℎ(𝜃, 𝜃′) ∶=
2𝑣∗1(𝜃

′) +
(
𝜃 − 𝜃′ − 𝑣̇∗1(𝜃)

)
𝑣̇∗1 (𝜃

′)

𝑔∗1(𝜃
′)

, (𝜃, 𝜃′) ∈ Θ2. (C.45)

To prove this inequality, we start by decomposing the setΘ2 into the union of the disjoint subsets
(Θ𝑖)

4
𝑖=1

defined by

Θ1 ∶=
{
(𝜃, 𝜃′) ∈ Θ2 ∶ max{𝜃, 𝜃′} ≤ 𝜃∗

}
,

Θ2 ∶=
{
(𝜃, 𝜃′) ∈ Θ2 ∶ 𝜃 ≤ 𝜃∗ and 𝜃′ > 𝜃∗

}
,

Θ3 ∶=
{
(𝜃, 𝜃′) ∈ Θ2 ∶ 𝜃 > 𝜃∗ and 𝜃′ ≤ 𝜃∗

}
, (C.46)

and

Θ4 ∶=
{
(𝜃, 𝜃′) ∈ Θ2 ∶ min{𝜃, 𝜃′} > 𝜃∗

}
. (C.47)

On the set Θ1, the inequality holds since

𝑔∗1(𝜃) = ℎ(𝜃, 𝜃′) =
√
2𝑞1 = 𝜉 − 𝛾1, (𝜃, 𝜃′) ∈ Θ1. (C.48)

On the set Θ3, the inequality boils down to

𝑔∗1(𝜃) ≥ 𝑔∗1(𝜃
∗) =

√
2𝑞1 = 𝜉 − 𝑔1, 𝜃 > 𝜃∗, (C.49)

which is satisfied because 𝑔∗1(𝜃) is nondecreasing on [𝜃∗, 𝜃𝐻] as a result of Equation (C.40). On
the set Θ2, we have that

𝑔∗1(𝜃) − ℎ(𝜃, 𝜃′) = 𝜉 − 𝛾1 −
(𝜉 − 𝛾1)

2 + (𝜃 − 𝜃′)𝑣̇∗1 (𝜃
′)

𝑔∗1(𝜃
′)

, (C.50)

is strictly decreasing with respect to 𝜃 and it follows that the validity of Equation (C.45) on that
set is equivalent to

ℎ(𝜃∗, 𝜃′) ≤ 𝜉 − 𝛾1, 𝜃′ > 𝜃∗. (C.51)

Differentiating the right hand side of Equation (C.45) gives

𝜕ℎ

𝜕𝜃′
(𝜃, 𝜃′) =

(
𝜃 − 𝑣̇∗1(𝜃) − 𝜃′ + 𝑣̇∗1(𝜃

′)
)[2𝑣∗1(𝜃

′)𝑣∗1(𝜃
′) − [𝑣̇∗1 (𝜃

′)]2

𝑔∗1(𝜃
′)3

]
. (C.52)

Combining Equation (C.40) with the fundamental theorem of calculus, we deduce that

2𝑣∗1(𝜃
′)𝑣∗1(𝜃

′) − [𝑣̇∗1 (𝜃
′)]2 = ∫

𝜃′

𝜃∗
2𝑣∗1(𝑥)𝑣

∗
1(𝑥)𝑑𝑥 ≥ 0, (C.53)
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for all 𝜃′ ≥ 𝜃∗. On the other hand, since 𝑣̇∗1 (𝜃
∗) = 0, it follows from Equation (C.40) and the fun-

damental theorem of calculus that

𝜃∗ − 𝜃′ + 𝑣̇∗1(𝜃
′) = 𝜃∗ − 𝜃′ + ∫

𝜃′

𝜃∗
𝑣∗1(𝑥)𝑑𝑥 ≤ 0, (C.54)

for all 𝜃′ ≥ 𝜃. This shows that ℎ(𝜃∗, 𝜃′) is decreasing in 𝜃′ and Equation (C.51) now follows by
observing that

ℎ(𝜃∗, 𝜃∗) =
2𝑣∗1(𝜃

∗) − [𝑣̇∗1 (𝜃
∗)]2

𝑔∗1(𝜃
∗)

= 𝑔∗1(𝜃
∗) = 𝜉 − 𝛾1. (C.55)

Consider finally the setΘ4. Since ℎ(𝜃, 𝜃) = 𝑔∗1(𝜃), it is sufficient to show that for any fixed 𝜃 > 𝜃∗,
the function ℎ(𝜃, 𝜃′) reaches a maximum over (𝜃∗, 𝜃𝐻] at the point 𝜃′ = 𝜃. In view of Equation
(C.53), we have that the sign of 𝜕ℎ

𝜕𝜃′
is determined by the sign of

(
𝜃 − 𝑣̇∗1(𝜃)

)
−

(
𝜃′ − 𝑣̇∗1(𝜃

′)
)
. (C.56)

By Equation (C.40), we have that 𝑥 − 𝑣̇∗1(𝑥) is nondecreasing on [𝜃∗, 𝜃𝐻] and it follows that the
above expression is nonnegative if and only if 𝜃′ ≤ 𝜃. □

Proof of Proposition 5.6. Arguments similar to those of Sections 3.2 and 5.2 show that under exclu-
sivity the value function of the manager satisfies

𝜃𝐻𝑀1 ≤ 𝜃𝐻𝑀1,𝐸 ≤ 𝑉1,𝐸 ≡ sup
𝑣∈1,𝐸 ∫Θ 𝐹(𝜃, 𝑣(𝜃), 𝑣̇(𝜃))𝑑𝜃, (1,𝐸)

where 1,𝐸 denotes the set of functions 𝑣 ∈ 𝐴𝐶(Θ;ℝ) that satisfy Equation (54). Consider the
candidate optimizer 𝑣∗1,𝐸(𝜃) defined in the statement. As is easily seen, we have that this function
is absolutely continuous. On the other hand, the construction of the function 𝑤(𝜃) implies that

𝟏{𝜃≥𝜃∗}(𝑤(𝜃) − 𝑣(𝜃 − 𝜃∗; 𝑞1)) = 0 with 𝑞1 ≡ 1

2
(𝜉 − 𝛾1)

2. (C.57)

Therefore, it follows fromLemmaB.5 that 𝑣∗1,𝐸(𝜃) is nondecreasing on [𝜃
∗, 𝜃𝐻] and, since 𝑣∗1,𝐸(𝜃) =

𝑞1 for all 𝜃 ≤ 𝜃∗, we conclude that 𝑣∗1,𝐸 ∈ 1,𝐸 . To show that it attains the supremum consider the
multiplier

𝜆𝐸(𝜃) ≡ 𝟏{𝜃≤𝜃∗}
(
3 −

𝜉

𝜉 − 𝛾1

)
≥ 0, (C.58)

where the inequality follows from the fact that 𝛾1 ≤ 𝛾∗1 ≤ 2

3
𝜉. A direct calculation shows that the

pair (𝑣∗1,𝐸, 𝜆𝐸) satisfies all the conditions of Lemma C.6 below and it thus follows that we have

𝑉1,𝐸 = ∫
Θ

𝐹
(
𝜃, 𝑣∗1,𝐸(𝜃), 𝑣̇

∗
1,𝐸(𝜃)

)
𝑑𝜃. (C.59)
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To complete the proof, we distinguish two cases depending on the level of the fee rate on the
familiar asset. Assume first that 𝛾1 >

1

3
𝜉. In this case

0 =
|||𝑣∗1(𝜃) − 𝑣∗1,𝐸(𝜃)

||| = ‖‖‖𝜙∗1(𝜃) − 𝜙∗1,𝐸(𝜃)
‖‖‖, 𝜃 ∈ Θ, (C.60)

and the desired result now follows from (1,𝐸) and Theorem 5.5. Assume next that the fee rate
𝛾 ≤ 1

3
𝜉 and consider the fund loading function defined in the statement. To complete the proof,

we now show that this function belongs to Φ1,𝐸 but not to Φ1. To establish the former, we need to
show that

max

⎧⎪⎨⎪⎩𝑞1, sup𝜃′∈Θ

1

2

(
𝜙∗1,𝐸(𝜃

′)⊤𝜉(𝜃) − 1‖𝜙∗1,𝐸(𝜃′)‖
)2

+

⎫⎪⎬⎪⎭ ≤ 𝑣∗1,𝐸(𝜃), 𝜃 ∈ Θ. (C.61)

but, since 𝑣∗1,𝐸(𝜃) ≥ 𝑞1 for all 𝜃 ∈ Θ, we have that the validity of this inequality is equivalent to
the requirement that

𝐵(𝜃, 𝜃′) ≡ 4𝑣∗1,𝐸(𝜃)𝑣
∗
1,𝐸(𝜃

′) −
(
2𝑣∗1,𝐸(𝜃

′) + (𝜃 − 𝜃′)𝑣̇∗1,𝐸(𝜃
′)

)2

+
, (C.62)

be nonnegative for all (𝜃, 𝜃′) ∈ Θ × (𝜃∗, 𝜃𝐻]. Differentiating this function with respect to its first
argument gives

𝑑𝐵

𝑑𝜃
= 𝟏{𝜃>𝜃∗}4𝑣̇

∗
1,𝐸(𝜃)𝑣

∗
1,𝐸(𝜃

′) − 2𝑣̇∗1,𝐸(𝜃
′)

(
2𝑣∗1,𝐸(𝜃

′) + (𝜃 − 𝜃′)𝑣̇∗1,𝐸(𝜃
′)

)
+
. (C.63)

Since the fee rate 𝛾1 <
1

3
𝜉, we have that 𝑞1 ∈ 2. Therefore, it follows from Lemma B.5 that for all

types 𝜃′ > 𝜃∗ we have

𝑣∗1,𝐸(𝜃
′) = 𝑣(𝜃′ − 𝜃∗, 𝑞1) ≥ 1, (C.64)

and

𝑣̇∗1,𝐸(𝜃
′) = 𝑣̇∗1,𝐸(𝜃

∗) + ∫
𝜃′

𝜃∗
𝑣∗1,𝐸(𝜃)𝑑𝜃 ≥ 𝜃′ − 𝜃∗. (C.65)

Combining these properties with Equation (50) shows that for all (𝜃, 𝜃′) ∈ [𝜃∗, 𝜃𝐻]
2 we have

2𝑣∗1,𝐸(𝜃
′) + (𝜃 − 𝜃′)𝑣̇∗1,𝐸(𝜃

′) ≥ 2𝑣∗1,𝐸(𝜃
′) + (𝜃∗ − 𝜃′)𝑣̇∗1,𝐸(𝜃

′)

≥ 2𝑣∗1,𝐸(𝜃
′) − [𝑣̇∗1,𝐸(𝜃

′)]2

≥ 2𝑣∗1,𝐸(𝜃𝐻) − [𝑣̇∗1,𝐸(𝜃𝐻)]
2 =

(
𝜉

𝜃𝐻

)2

[𝑣̇∗1,𝐸(𝜃𝐻)]
2 ≥ 0, (C.66)
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and therefore

(𝜃 − 𝜃′)
𝑑𝐵

𝑑𝜃
= 2(𝜃 − 𝜃′)2

(
2𝑣∗1,𝐸(𝜃

′)
𝑣̇∗1,𝐸(𝜃) − 𝑣̇∗1,𝐸(𝜃

′)

𝜃 − 𝜃′
− [𝑣̇∗1,𝐸(𝜃

′)]2

)

= 2(𝜃 − 𝜃′)2
(
2𝑣∗1,𝐸(𝜃

′) − [𝑣̇∗1,𝐸(𝜃
′)]2

) ≥ 0. (C.67)

This shows that for any given 𝜃′ > 𝜃∗ the function 𝜃 ↦ 𝐵(𝜃, 𝜃′) reaches theminimum of zero over
[𝜃∗, 𝜃𝐻], and we now have to consider types such that 𝜃 ≤ 𝜃∗ < 𝜃′. For such types we have that
𝑑𝐵

𝑑𝜃
is negative or zero, and the desired property now follows from the fact that, as shown above,

we have 𝐵(𝜃∗, 𝜃′) ≥ 0 for all 𝜃′ > 𝜃∗.
To complete the proof, it now remains to show that we have 𝜙∗1,𝐸 ∉ Φ1,𝐸 . Proceeding as in the

proof of Theorem 5.5, we have that on [𝜃∗, 𝜃𝐻]2 the validity of the nonexclusive incentive compat-
ibility condition is equivalent to

𝑔∗1,𝐸(𝜃) ≥ ℎ(𝜃, 𝜃′) ≡ 2𝑣∗1,𝐸(𝜃
′) + (𝜃 − 𝜃′ − 𝑣̇∗1,𝐸(𝜃))𝑣̇

∗
1,𝐸(𝜃

′)

𝑔∗1,𝐸(𝜃)
, (C.68)

with

𝑔∗1,𝐸(𝜃) ≡
√
2𝑣∗1,𝐸(𝜃) − [𝑣̇∗1,𝐸(𝜃)]

2. (C.69)

Combining Equations (C.64) and (C.65), we deduce that

2𝑣∗1,𝐸(𝜃)𝑣
∗
1,𝐸(𝜃) − [𝑣̇∗1,𝐸(𝜃)]

2 ≥ 2𝑣∗1,𝐸(𝜃) − [𝑣̇∗1,𝐸(𝜃)]
2 ≥ 0, 𝜃 ≥ 𝜃∗. (C.70)

Therefore, the sign of

𝑑ℎ

𝑑𝜃′
=

(
𝜃 − 𝑣̇∗1,𝐸(𝜃) − 𝜃′ + 𝑣̇∗1,𝐸(𝜃

′)
)(

2𝑣∗1,𝐸(𝜃
′)𝑣∗1,𝐸(𝜃

′) − [𝑣̇∗1,𝐸(𝜃
′)]2

𝑔∗1,𝐸(𝜃
′)3

)
, (C.71)

is determined by the sign of the first bracket on the right. Because of Equation (C.65), we have
that the function 𝜃 − 𝑣̇∗1,𝐸(𝜃) is decreasing. This implies that

(𝜃 − 𝜃′)
𝑑ℎ

𝑑𝜃′
(𝜃, 𝜃′) ≤ 0, 𝜃∗ ≤ min{𝜃, 𝜃′}, (C.72)

and using this inequality in conjunction with the fact that ℎ(𝜃, 𝜃) = 𝑔∗1,𝐸(𝜃), we deduce that
𝑔∗1,𝐸(𝜃) < ℎ(𝜃, 𝜃′) for all 𝜃 ≠ 𝜃′ in [𝜃∗, 𝜃𝐻]

2. This shows that the inequality in Equation (C.68)
fails and the desired result follows. □

Consider the function defined by

𝐺𝜆(𝜃, 𝑣, 𝑝) ≡ 𝐹(𝜃, 𝑣, 𝑝) + 𝜆(𝜃)(𝑣 − 𝑞1), (C.73)
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and observe that, as a result of Lemma B.4, this function is strictly concave in 𝑣 and 𝑝. The follow-
ing lemma is the counterpart of Lemma C.2 for the case where the manager can force investors to
commit to a single fund.

Lemma C.6. Let (𝑣, 𝜆) ∈ 1,𝐸 × 𝐴𝐶∗
𝑝(Θ;ℝ+) be such that 𝑣̇ ∈ 𝐴𝐶(Θ;ℝ), and denote by  the set

of points where the function 𝜆 is continuous. If(
𝐺𝜆
𝑣(𝜃)

−
𝑑

𝑑𝜃
𝐺𝜆
𝑣̇(𝜃)

)
(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ , (C.74)

𝐺𝜆
𝑣̇(𝜃)

(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) = 0, 𝜃 ∈ {0, 𝜃𝐻}, (C.75)

𝜆(𝜃)(𝑣(𝜃) − 𝑞1) = 0, 𝜃 ∈ Θ, (C.76)

and 𝐺𝜆
𝑣̇(𝜃)

(𝜃, 𝑣(𝜃), 𝑣̇(𝜃)) is continuous, then 𝑣 attains the supremum in (1,𝐸).

Proof. The proof is similar to that of Lemma C.2. We omit the details. □
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