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Abstract

This paper studies a decentralized financial market with short sales constraints in

which a continuum of risk neutral agents have heterogenous beliefs regarding the

quality of an asset and need to search for each other in order to trade. When

agents cannot hold more than one unit of the asset there exists a unique monotone

equilibrium. This equilibrium converges to a globally stable steady state that can

be computed in closed form for any distribution of beliefs. The steady state

trading volume is independent from the distribution of beliefs as long as it is

atomless. When asset holdings are unrestricted there also exists a unique monotone

equilibrium that can be computed in closed form but this equilibrium fails to

converge to a meaningful steady state.
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1 Introduction

Over the counter markets are characterized by the existence of a cross-section of realized

prices for a given asset at any point in time. Yet, in the leading model of such markets

Duffie et al. (2005) consider a setting with only two types of agents so that only one price

is realized in bilateral trades, and only one bid and one ask in trades intermediated by

market makers. There are some examples of models with a finite number of types, see

for example Lagos and Rocheteau (2009) or Feldhütter (2012), but in these contributions

the market is not truly decentralized since all trades are intermediated.

In this paper I consider a version of the Duffie et al. (2005) model with an arbitrary

distribution of types that arises through divergence in beliefs regarding the quality of the

asset. When agents cannot hold more than one unit of the asset I show that there exists

a unique monotone equilibrium that can be calculated in closed form with the use of an

endogenously determined probability measure that summarizes the trading frictions in

the economy. This equilibrium converges to a globally stable steady state that can be

computed in closed form for any distribution of beliefs and which delivers a number of

novel predictions. In particular, I show that the equilibrium is asymptotically efficient

as frictions weaken, that trading volume is independent from the distribution of beliefs

in the population as long as it is atomless, and that despite standard economic intuition

an increase in market liquidity may lead to a decrease in welfare due to the conflicting

effects of the meeting intensity on the intensive and extensive margins of trade.

The model that I consider can be seen as a search and matching version of the

speculative behavior models of Harrison and Kreps (1978) and Morris (1996) in which

agents are subject to a restriction on asset holdings. Capitalizing on this analogy I show

that speculative behavior arises in the limit of perfect liquidity if and only if beliefs are

time varying and the asset supply is low enough, and that it persists in the search market

provided that the intensity of bilateral meetings is sufficiently high.

In the last part of the paper I generalize the model by allowing for unrestricted asset

holdings. In this case I show that the economy still admits a unique monotone equilibrium

that can be computed in closed form for any distribution of beliefs. But, unlike the

restricted case, this equilibrium does not converge to a meaningfull steady state because,

due to quasi-linear preferences, the supply of the asset tends to concentrate over time in

the hands of a very small group of optimistic agents.

The remainder of the paper is organized as follows. Section 2 outlines the benchmark

model. Section 3 defines equilibrium, solves for the unique equilibrium in which only

those meetings between a buyer and a less optimistic seller lead to a trade, and shows
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that this monotone equilibrium converges to a unique globally stable steady state. Section

4 discusses various features of the equilibrium including asymptotic efficiency, trading

volume and execution delays, the cross-section of trading prices and speculative behavior.

Section 5 studies the unrestricted version of the model in which agents can hold any

nonnegative number of units of the asset. Appendix A and B contain the proof of all

results as well as technical arguments omitted from the text. Finally, Appendices C and

D contain two extensions of the benchmark model that allow for the presence of market

makers and the possibility of non stationary initial conditions.

2 The model

Time runs continuously and the economy is populated by a continuum (i.e. a non atomic

finite measure space with mass one) of risk neutral agents who have access to a risk-free

bank account with rate r, and to an over-the-counter market for an infinitely lived risky

asset. The cash-flow from this asset are paid at rate Xtdt for some strictly positive process

that evolves according to

dXt = Xt (σdZt + µdt)

where µ, σ > 0 are constants and the process Zt is a Brownian motion under some

probability measure P0 that serves as a reference in the construction of the model.

To introduce heterogenous valuations I assume that the only information available to

agents when forming expectations about the future is the history of the cash-flow process

to date. In this setting the volatility parameter σ is common knowledge but agents cannot

infer the growth rate µ from their observations and I assume that an agent’s intrinsic

type is characterized by his perception of this growth rate. Specifically, I assume that an

agent’s perceived growth rate evolves according to

dmt =

∫
M

(x−mt−)N(dt, dx) (1)

where the integrator is an agent-specific Poisson random measure whose predictable

compensator is given by

Q(dt,B) = η

∫
B
dF (n)dt, B ∈ B(R),

for some constant η ≥ 0 that represents the arrival rate of changes in perception, and
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some right-continuous distribution function F : R→ [0, 1] with

inf
m∈R

F (m) = 1− sup
m∈R

F (m) = 0

that gives the distribution of the new perceived growth rate conditional on the arrival

of a change. In what follows I further assume that the Poisson random measures are

pairwise independent across agents and that the initial distribution of perceived growth

rates across the population is F (m) so that, by the law of large numbers, the same

function also gives the distribution of perceived growth rates across the population at all

subsequent dates. This stationarity assumption is relaxed in Appendix D where I allow

for an arbitrary initial distribution of perceived growth rates.

The model outlined above implies that from the point of view of a generic agent the

cash-flows from the asset evolve according to

dXt = Xt(σdWt +mtdt) (2)

where the process

Wt = Zt +

∫ t

0

(1/σ)(µ−ms)ds

is a standard Brownian motion under the subjective probability measure associated

with his perceived growth rate. To guarantee that asset values are finite across of the

population I impose the following parametric assumption.

Assumption 1 It holds that: r > m = inf{m ∈ R : F (m) = 1}.

A fraction s ∈ [0, 1] of the population is initially endowed with one unit of the asset, and

I assume that short sales are prohibited and that agents can hold at most one unit of the

asset. As a result, an agent’s type is characterized by a pair (qt,mt) where qt ∈ {0, 1}
records his ownership status and mt ∈ M represents his perception of the growth rate.

The restriction on holdings allows for a simple characterization of the equilibrium and

will be relaxed in Section 5 below where I consider a model in which agents can hold an

arbitrary number of units of the asset subject to a short sale constraint.

Following Duffie et al. (2005) I assume that agents meet randomly and pairwise

independently at the jump times of a Poisson process with arrival rate λ ≥ 0. Once they

have made contact, an owner and a non owner can trade the asset in exchange for some

mutually agreeable price. I assume that agents truthfully reveal their beliefs to each other
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upon meeting and that the terms of trade are determined through Nash bargaining with

bargaining powers θ1 ∈ [0, 1] for the seller and θ0 = 1−θ1 for the buyer. This assumption

rules out adverse selection but allows for a simple analysis of the bargaining problem

and the induced equilibrium. See Duffie et al. (2002, 2005, 2007), Lagos and Rocheteau

(2009), Lagos et al. (2011) and Weill (2008) among others for similar assumptions.

Remark 1 (Potential and realized types) Transient state

Remark 2 (Model specification) Since all agents are risk neutral the volatility σ and

the nature of the source of risk driving cash flows will not play any role in the analysis.

This implies that under appropriate conditions all results carry over to the case where

the perceived evolution of cash flows is given by

dXt = Xt− (dMt +mtdt)

for some observed martingale Mt that is independent from the evolution of the agent’s

beliefs and which could be even be discontinuous.

3 Dynamic search equilibrium

3.1 Individual value functions

Let F1,t(m) denote the distribution of perceived growth rates in the population of asset

owners and denote by F0,t(m) the corresponding distribution in the population of non

asset owners. These distributions are exogenously given at the initial date and have to

be determined endogenously at all subsequent dates subject to

0 = F1,t(m) + F0,t(m)− F (m) = s− F1,t(m), (t,m) ∈ [0,∞)×M. (3)

The first constraint reflects the fact that the distribution of perceived growth rates in the

population remains constant through time. The second constraint is a market clearing

condition which requires that the total mass of owners be equal to the asset supply at

all times. In view of these constraints it is clear that it suffices to determine one of the

distributions, and I will concentrate on F1,t(m).

When two agents make contact they have to decide whether to trade and then to

bargain over the terms of this trade. To describe the result of this process let Vq,t(m,x)
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denote the value function of an agent of type (q,m), define

Gt(m,x) = V1,t(m,x)− V0,t(m,x) (4)

to be the gain from becoming an owner and consider a meeting between an owner with

perceived growth rate m and a non owner with perceived growth rate n.

If a trade occurs at price P then the owner becomes a non owner and receives

V0,t(m,x) + P , while the non owner receives V1,t(n, x) − P and becomes an owner. If

no trade occurs then the agents part ways with their value functions unchanged. In this

setting the assumption of Nash bargaining implies that the meeting results in a trade if

and only if the agents’ perceived growth rates are such that Gt(m,x) ≤ Gt(n, x) in which

case the realized price is given by

P = argmax
p∈R

(Gt(n, x)− p)θ0 (p−Gt(m,x))θ1 = θ0Gt(m,x) + θ1Gt(n, x).

Using this realized price and taking as given the cumulative distributions of perceived

growth rates among the populations of owners and now owners I define the value functions

by the system of dynamic programming equations

Vq,t(m,x) = Et

[∫ τ

t

e−r(s−t)qXsds+ e−r(τ−t) (Vq,τ (mτ , Xτ ) + Eq,τ (mτ , Xτ |G))

]
(5)

subject to (1), (2) and (4) where τ is the first time that the agent gets an opportunity to

change ownership type by trading, and

Eq,t(m,x|G) =

∫
M
θq((2q − 1)(Gt(n, x)−Gt(m,x)))+dF1−q,t(n) (6)

gives the expected gain to an agent of type (q,m) from a meeting with a randomly selected

agent of the complementary ownership type. To pin down a unique equilibrium I further

require that the value functions satisfy

|Vq,t(m,x)| ≤ cvx, (q, t,m) ∈ {0, 1} × [0,∞)×M, (7)

for some constant cv > 0. This linear growth condition is very natural given the

agents’ risk neutrality and allows for an intuitive interpretation of the value functions.

In particular, I show in Appendix B that under this condition the system of dynamic
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programming equations (5) is equivalent to

Vq,t(m,x) = Et

∫ ∞
t

e−r(s−t) (qXs + λEq,s(ms, Xs|G)) ds. (8)

This formulation shows that the value function of a generic agent is the sum of two

components. The first component is given by qft(m,x) where

ft(m,x) = Et

∫ ∞
t

e−r(s−t)Xsds (9)

represents the present value of the dividends from the asset to an agent with perceived

growth rate m, i.e. the fundamental value of the asset from the point of view of such an

agent. The second component

hq,t(m,x) = Et

∫ ∞
t

e−r(s−t)λEq,s(ms, Xs|G)ds ≥ 0

represents the present value of future trading gains. For asset owners (q = 1) this

component can be understood as the value of the resale option attached to the asset. For

non owners this component gives the value that an agent attaches to being present in

the market. Contrary to other models of speculative behavior (e.g. Harrison and Kreps

(1978), Morris (1996) and Scheinkman and Xiong (2003)) this value is non zero here

because, due to the finite asset supply and the restriction on holdings, the buyer captures

a non zero fraction of the trading surplus in equilibrium as long as the seller’s bargaining

power is not equal to one.

Lemma 1 The fundamental value of the asset is

f(m,x) = (1 + ϕ)
x

ρ(m)
(10)

where ϕ > 0 is a constant defined in the appendix and ρ(m) = r + η −m.

The interpretation of the above formula is intuitive. Indeed, the standard Gordon growth

formula implies that x/ρ(m) gives the fundamental value of the asset when the agent

has a constant perceived growth rate equal to m and is present in the market for an

exponentially distributed period of time. This single period fundamental asset value is

then scaled up by the constant factor 1 +ϕ > 1 to account for the fact that in the model

the agent is present in the market for an infinite number of such periods with a randomly

selected perceived growth rate in each sub-period.
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Remark 3 (Multiplicity) The dynamic programming equation (5) does not uniquely

determine the value functions. Indeed, if the functions Vq,t(m,x) solve this system then

the definition of the gain from becoming an owner implies that the same is true of the

functions Vq,t(m,x) + ertβq for any constants βq. The linear growth condition (7) is

meant to rule out such solutions and allows to determine a unique equilibrium. A similar

restriction is also necessary in other models of speculative behavior including Harrison

and Kreps (1978), Morris (1996) and Scheinkman and Xiong (2003).

Remark 4 (Pessimism and Impatience) Using the independence between Poisson

and Brownian shocks I show in Appendix B that Vq,t(m,x) = vq,t(m)x for some bounded

functions which satisfy the reduced-form system

vq,t(m) = Et

∫ ∞
t

e−
∫ s
t (r−mu)du (q + λEq,s(ms, 1|v1 − v0)) ds. (11)

Comparing this system to (8) reveals that the heterogenous beliefs model of this paper

is equivalent to a common beliefs model in which agents trade a consol bond and differ

through their subjective rates of time preferences. In this alternative interpretation of

the model a higher perceived growth rate corresponds to a lower discount rate so that

more optimistic agents are less impatient.

3.2 Equilibrium distribution of types

The system of dynamic programming equations (8) characterizes the value functions

induced by a pair of distribution functions. To close the model, it remains to determine

how these distributions evolve over time as a result of trading.

Assume that a suitable version of the law of large numbers applies (see e.g. Duffie

and Sun (2007, 2012)) and consider the ways in which agents enter or exit the group of

owners who are more pessimistic than a given growth rate m ∈M:

1. An agent may enter because he is a non owner with m0 ≤ m who has just met an

owner with perceived growth rate m1 such that

(m0,m1) ∈ T0,t(m|G) =
{

(a, b) ∈M2 : Gt(a, x) ≥ Gt(b, x) and a ≤ m
}
.

where the notation reflects the fact that, since the gain from becoming an asset owner

is homogenous in the cash flow variable by Remark 4, the set on the right hand side

does not depend on x ≥ 0. The contribution of such exits to the instantaneous rate
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of change of the distribution is given by the integral:∫
T0,t(m|G)

λdF0,t(m0)dF1,t(m1)

where the usual informal notation dFq,t(m) denotes the Borel measure associated with

the distribution Fq,t(m).

2. An agent may exit because he is an owner with m1 ≤ m who has just met a non owner

with perceived growth rate m0 such that

(m0,m1) ∈ T1,t(m|G) =
{

(a, b) ∈M2 : Gt(a, x) ≥ Gt(b, x) and b ≤ m
}
.

The contribution of such exits to the instantaneous rate of change of the distribution

is given by the integral:

−
∫
T1,t(m|G)

λdF0,t(m0)dF1,t(m1).

3. An agent may enter because he is an owner whose perceived growth rate was just reset

to some m0 ≤ m. The contribution of such entries to the instantaneous rate of change

of the distribution is ηsF (m).

4. Finally, an agent may exit because his perceived growth rate has been reset. The

contribution of such exits is given by: −ηF1,t(m) .

Gathering the contribution of these four channels and using (3) shows that the rates of

change in the masses of agents who are more pessimistic than a fixed perceived growth

rate m are almost surely given by

Ḟ0,t(m) = −Ḟ1,t(m) (12)

Ḟ1,t(m) = η(sF (m)− F1,t(m)) +

∫
T0,t(m|G)

λdF0,t(m0)dF1,t(m1) (13)

−
∫
T1,t(m|G)

λdF0,t(m0)dF1,t(m1).

Given F (m) and an arbitrary initial condition F1,0(m) these equations fully characterize

the distributions of perceived growth rates induced by a pair of value functions and

directly leads to the following definition of equilibrium.

Definition 1 A dynamic search equilibrium is an array (Vq,t(m,x), Fq,t(m)) of value

functions and distribution functions such that
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1. The value functions solve (7) subject to (8).

2. The distribution functions satisfy (12) and (13) subject to (3) and the exogenous

initial condition F1,0(m).

An equilibrium is stationary if both the distribution functions and the value functions are

time-independent.

Since intrinsic types are associated with an agent’s optimism regarding the cash-flows of

the asset it is natural to look for equilibria in which the gain Gt(m,x) from becoming an

owner increases with the agent’s perceived growth rate. In such a monotone equilibrium

a trade occurs as soon as an owner meets a more optimistic non owner. This implies that

the sets Tq,t(m|G) do not depend on the gain from becoming an owner, and allows to

construct an equilibrium in two steps: First, derive the distribution of perceived growth

rates among asset owners. Second, compute the induced value functions and verify that

the corresponding gain from becoming an owner is an increasing function of an agent’s

perceived growth rate.

Remark 5 (Initial conditions) Since the distribution of perceived growth rates in

the population is stationary it follows from (3) that the initial distributions Fq,0(m)

are absolutely continuous with respect to the distribution F (m). If the stationarity

assumption is relaxed then one can consider initial conditions that need not have this

property, i.e. initial conditions that allow for transient types. This extension of the model

is pursued in Appendix D and can be used to study the return to the steady state after

an aggregate liquidity shock.

Remark 6 (Tie breaking) The definition of the sets Tq(m|G) implicitly assumes that

meetings between an owner and a non owner with the same perceived growth rate result

in a trade. This assumption has no impact on the equilibrium distributions because the

choice of the tie breaking rule influences the second and third terms on the right of (13) in

the same way. While it does not influence the equilibrium, the choice of the tie breaking

rule may impact trading volume if the distribution of perceived growth rates includes

atoms. From that point of view the assumption that agents trade whenever they are

indifferent can be seen as maximizing the trading volume.
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Figure 1: The sets Tq,t(m) in a monotone equilibrium
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Notes. This figure illustrates the sets T0,t(m), T1,t(m) and T1,t \ T0,t(m) (hatched area and

thick part of the boundary) under the assumption that the value of becoming an asset owner

increases with an agent’s perceived growth rate. For the purpose of illustration I assume here

that the set M of potential types has a finite lower bound m.

3.3 The monotone equilibrium

If the gain from becoming an asset owner increases with an agent’s perceived growth rate

then the sets of agents between which a trade occurs simplify to

Tq,t(m|G) = Tq,t(m) =
{

(a, b) ∈M2 : a ≥ b and a+ q(b− a) ≤ m
}
,

and satisfy

T1,t(m) \ T0,t(m) =
{

(a, b) ∈M2 : b ≤ m < a
}

as illustrated by Figure 1. Inserting these sets into the integral equations (12), (13) for

the equilibrium distributions and simplifying gives

Ḟ1,t(m) = −Ḟ0,t(m) = λR(m,F1,t(m)) (14)

= −λF1,t(m)(1− s− F (m) + F1,t(m)) + λφ(sF (m)− F1,t(m)).
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with the constant φ = η/λ. The following proposition provides an explicit expression

for the unique solution to this Ricatti equation and shows that it converges to a unique

steady state from any initial condition. To state the result let

F ∗1 (m) = −1
2

(1− s+ φ− F (m)) + 1
2
Φ(m) (15)

= −1
2

(1− s+ φ− F (m)) + 1
2

√
(1− s+ φ− F (m))2 + 4sφF (m)

denote the strictly positive solution to the characteristic equation R(m,x) = 0 associated

with the right hand side of (14).

Proposition 1 In a monotone equilibrium the distribution of perceived growth rates

among asset owners is given by

F1,t(m) = F ∗1 (m) +
(F1,0(m)− F ∗1 (m))Φ(m)

Φ(m) + (F1,0(m) + Φ(m)− F ∗1 (m)) (eλΦ(m)t − 1)
(16)

and converges strongly to the steady state distribution F ∗1 (m) from any initial condition

such that (3) holds.

To illustrate the convergence of the equilibrium distributions to the steady state Figure

2 plots the equilibrium distributions among owners and non owners at various points

in time in a simple environment where perceived growth rates are uniformly distributed

among the whole population and F1,0(m) = sF (m). As can be seen from the figure,

the distribution of beliefs among owners is initially uniform but as time passes this

distribution moves down and to the right, indicating that the market gradually channels

the asset towards more optimistic agents. Similarly, the distribution of beliefs among non

owners gradually shifts up and to the left, indicating that pessimistic agents are less and

less likely to hold the asset as trading unfolds in the market.

The explicit solution for the steady state distribution of perceived growth rates allows

to derive some analytic comparative statics results.

Corollary 1 The steady state distribution F ∗1 (m) is increasing in the asset supply s, and

increasing and concave in φ with

lim
φ→∞

F ∗1 (m) = sF (m),

lim
φ→0

F ∗1 (m) = (1− s− F (m))−.

Proposition 1 shows that the steady state distributions only depends on the arrival

rates of meetings and changes in perceived growth rates through φ = η/λ. This constant
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Figure 2: Convergence to the steady state distributions
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Notes. This figure plots the equilibrium distributions at various point in time in an environment

where perceived growth rates are initially uniformly distributed over [−0.04, 0.04], the asset

supply is equal to s = 1− sc = 0.4, and the arrival rates of meetings and changes in perceived

growth rates are respectively given by λ = 26 and η = 2 so that agents meet once every two

weeks and change their mind twice a year on average.

measures the frequency of changes in perceived growth rates relative to the frequency of

trading opportunities and therefore indicates the steady state degree of misallocation in

the market. In line with this interpretation, the above corollary shows that as φ increases,

either because meetings become less frequent or because agents change their minds more

often, the equilibrium allocation becomes gradually less efficient in that owners tend to

be collectively more pessimistic.

In the limit where φ→∞ the steady state equilibrium distributions are proportional

to the population wide distribution so that ownership and beliefs are independent. To

understand this result observe that in this limit it must be the case that either η → ∞
so that beliefs become infinitely volatile, or λ → 0 so that trading becomes impossible

due to a lack of meetings. In either case, changes of beliefs become too frequent relative

to trading opportunities for the decentralized market to channel the asset towards more

optimistic agents and, as a result, the equilibrium distributions asymptotically reproduce

the population wide distribution albeit on a smaller scale.
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Figure 3: Steady state distributions of perceived growth rates
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Notes. This figure plots the equilibrium distributions for various values of the meeting intensity

in an environment where perceived growth rates in the population are uniformly distributed

over [−0.04, 0.04], the asset supply is s = 1−sc = 0.4, and the arrival rate of jumps in perceived

growth rates is η = 2 so that agents change their mind twice a year on average.

On the other hand, the corollary shows that as φ decreases to zero, either because

meetings become infinitely frequent or because beliefs are fixated, the supports of the

steady state distributions become separated. Specifically, there exists a threshold m∗

such that all owners are more optimistic than this threshold while all non owners are

more pessimistic, see Figure 3 for an illustration. As shown in Section 4.1 below these

limiting distributions coincide with the allocation that would prevail in any equilibrium of

the corresponding Walrasian market. Therefore, the above result shows that when agents

beliefs are fixed or the search friction vanishes the equilibrium of the search market is

asymptotically efficient for any distribution of perceived growth rates.

Having derived the distributions of perceived growth rates among owners and non

owners I now need to compute the induced value functions and to verify the conjectured

monotonicity. Subtracting (8) with q = 0 from itself with q = 1 gives

Gt(m,x) = Et

∫ ∞
t

e−r(s−t) (Xs + λ[E1,s − E0,s](ms, Xs|G)) ds. (17)
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Since the right hand side of (8) only depends on the gain for becoming an asset owner it

follows that solving the system of dynamic programming equations (8) subject to (7) is

equivalent to solving (17) subject to

|Gt(m,x)| ≤ cgx, (t,m) ∈ [0,∞)×M. (18)

As a first step towards the construction of a function satisfying these requirements I

observe that under the conjectured monotonicity the non linear equation (17) is equivalent

to the linear equation

Gt(m,x) = Et

∫ ∞
t

e−r(s−t) (Xs + λOs(ms, Xs|G)) ds (19)

where the linear operator on the right hand side is defined by

Ot(m,x|v) =

∫
M

(vt(n, x)− vt(m,x))dHt(n|m) (20)

=

∫
M

(vt(n, x)− vt(m,x))
(
1{n>m}θ1dF0,t(n) + 1{n≤m}θ0dF1,t(n)

)
with

Ht(n|m) = θ0F1,t(n ∧m) + θ1(F0,t(n)− F0,t(m))+

and coincides with the nonlinear operator E1−E0 on nondecreasing functions. To solve this

equation consider the equivalent probability measure P ∗ under which the compensator

of an agent’s perceived growth rate is

Q∗(dt,B) = Q(dt,B) +

∫
B
λdHt (n|mt−)dt, B ⊆ B(R). (21)

Under this probability measure changes in the perceived growth rate are more likely and

can be interpreted as occurring not only due to exogenous shocks but also due to trades.

Indeed, the compensator is the sum of three terms:

Q∗(dt,B) = Q(dt,B) +

∫
B∩{n>mt−}

λθ1dF0,t(n)dt+

∫
B∩{n≤mt−}

λθ0dF1,t(n)dt.

The first term is the compensator under the original probability measure and reflects

exogenous changes in the agent’s perceived growth rate. The second term reflects a

positive jump that occurs when the generic agent, viewed as an asset owner, meets a

14



randomly selected now owner who is more optimistic. Similarly, the third term reflects

a negative jump that occurs when the generic agent, viewed as non asset owner, meets a

more pessimistic owner drawn from the equilibrium distribution.

This decomposition of the compensator suggests that the probability P ∗ should be

interpreted as tracking the beliefs of the marginal agent. This interpretation is confirmed

by the next result which shows that the equilibrium gain from becoming an owner can

be computed as the fundamental value of the asset to an hypothetical agent whose

beliefs about the growth rate are represented by this endogenously determined probability

measure. To state the result, let Fns denote the class of cumulative distribution functions

which can be expressed as

F (m) =

∫ m

−∞
δ(n)dn+

∑
k∈N

1{mk≤m}πk

for some locally bounded density function δ(n) and some sequences of points mk ∈M and

point probabilities πk ∈ [0, 1). This class of distributions is general enough to include

all the standard distributions used in economics and only excludes pathological cases

where the distribution of perceived growth rates in the population contains a singularly

continuous part as in the well-known examples derived from the Cantor function (see for

example Feller (1968, Chapters I and V)).

Theorem 1 The unique solution to (18) and (19) is

Gt(m,x) = E∗t

∫ ∞
t

e−r(s−t)Xsds. (22)

If the distribution of perceived growth rates is in Fns then this solution is nondecreasing

with respect to m ∈M and there exists a unique monotone equilibrium.

The equilibrium gain from becoming an asset owner can be seen as the reservation value of

the asset as it gives both the maximal price that a non owner can accept to pay to acquire

the asset and the minimal price that an owner can accept to charge to part with the asset.

Therefore, the above theorem shows that in a decentralized market the reservation value

of the asset to a given agent can be calculated as the expected value of future discounted

cash flows under an endogenously determined, agent-specific probability measure. This

type of results is standard in frictionless asset pricing, where private values are usually

computed under a probability measure constructed from the agent’s marginal rates of

substitution, but what is unique to the decentralized market setting considered here is

that this probability measure entirely summarizes the trading frictions.
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A notable feature of the monotone equilibrium derived in Theorem 1 is that, given

the opportunity, an agent always trades if the match surplus is positive. In other words,

there is no option value of waiting for better terms of trade in a decentralized market.

This is due to the fact that the only trading cost is proportional to the match surplus,

and is reminiscent of what happens in real options models without fixed costs where

the optimal strategy typically consists in exerting action as soon as the surplus becomes

different from zero, see Dixit and Pindyck (1994) and Stokey (2009).

The conditional expectation in Theorem 1 does not seem to admit an explicit solution

and is also very difficult to compute numerically due to the complex time-dependence

induced by the non stationarity of the equilibrium distributions of perceived growth rates.

A notable exception is the case where the support of distribution of perceived growth rates

in the economy is a finite collection of points. Indeed, the following proposition shows

that in that case the necessary computation can be reduced to solving a finite dimensional

system of first order linear differential equations.

Proposition 2 Assume that the distribution of perceived growth rates is supported by a

finite collection of N points and set

Bij,t = δij (r −mi + η + λHt(m|mi))− η∆F (mj)− λ∆Ht(mj|mi)

where δij is the Kronecker delta symbol. In the unique monotone equilibrium the gain

from becoming an asset owner satisfies

Gt(mi, x) = gi,tx, 1 ≤ i ≤ N,

where the function gt ∈ RN is the unique bounded solution to ġt = Btgt − 1.

To gain more insights into the structure of the monotone equilibrium I consider next the

case in which the initial conditions are given by the steady state distributions and derive

an explicit solution for the corresponding stationary monotone equilibrium.

3.4 Steady state equilibrium

Assume that the initial condition for (14) is given by the steady state distribution of

perceived growth rates among asset owners, and let

F ∗0 (m) = F (m)− F ∗1 (m)
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denote the corresponding distribution among non owners. Using (22) together with the

Markov property of the perceived growth rate process and the law of iterated expectations

shows that the bounded function

gt(m) =
Gt(m,x)

x
= E∗t

∫ ∞
t

e−
∫ s
t (r−mu)duds (23)

is time-independent and satisfies

g(m) = E∗
∫ τ

0

e−(r−m)sds+ E∗[e−(r−m)τg(mτ )]

where the stopping time τ denotes the first time that the agent’s perceived growth rate

changes. Integrating with respect to the joint distribution of τ and mτ and simplifying

the result then shows that the above equation is equivalent to

γ(m)g(m) = 1 +D∗(m|g) (24)

= 1 +

∫
M
g(n)

(
ηdF (n) + 1{n>m}λθ1dF

∗
0 (n) + 1{n≤m}λθ0dF

∗
1 (n)

)
,

with the discount rate

γ(m) = ρ(m) + λθ1(1− s− F ∗0 (m)) + λθ0F
∗
1 (m) > 0. (25)

The result of Theorem 1 guarantees that this integral equation admits a unique bounded

solution and an educated guess suggests that

g(m)c = Γ(m) = exp

(
−
∫ m

m

dn

γ(n)

)
(26)

for some free constant. Substituting this conjecture into (24) and using integration by

parts to simplify the result shows that this free constant is

c =
1

g(m)
= γ(m)−D∗(m|Γ) = r −m+D∗(m|1− Γ) > 0 (27)

where the second equality follows from the linearity of D∗ and the inequality follows from

Assumption 1 and the definition of the discount rate. This provides an explicit solution for

the steady state gain from becoming an asset owner, and combining this expression with

arguments similar to those of Lemma 1 allows to derive the unique stationary monotone

equilibrium in closed-form.
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Theorem 2 Assume that F1,0(m) = F ∗1 (m). Then there exists a unique monotone

equilibrium that is stationary and given by the distributions

F1,t(m) = F ∗1 (m)

F0,t(m) = F ∗0 (m) = F (m)− F ∗1 (m)

and the time-independent value functions

Vq(m,x) = qf(m,x) +
λEq,0(m,x|G)

ρ(m)
+ ηf(m, 1)

∫
M

λEq,0(n, x|G)

ρ(n)
dF (n)

where the fundamental value of the asset and the steady state gain from becoming an asset

owner are defined by (9), (10), (23), (26) and (27).

An important question regarding the nature of the steady state equilibrium is whether

it is stable, i.e. whether the economy converges to it from any initial conditions. The

following result shows that this is indeed the case.

Corollary 2 Assume that F ∈ Fns then the unique monotone equilibrium of Theorem 1

converges to the unique stationary monotone equilibrium of Theorem 2 from any initial

condition such that (3) holds.

Remark 7 (Stochastic marginal utility) Assume as in Duffie et al. (2005) and Weill

(2008) that an owner receives the stochastic utility flow U(mt)Xtdt for some bounded

increasing function U(m) ≥ 0. In this case it can be shown that when F ∈ Fns there

exists a unique monotone equilibrium that is given by

Gt(m,x) = E∗t

∫ ∞
t

e−r(s−t)U(ms)Xsds

and the same distributions as in Proposition 1. The corresponding globally stable steady

state equilibrium can also be derived. In particular, the steady state distributions are as

in Theorem 2 and the gain from becoming an owner is

G(m,x) = xg(m) = xΓ(m)

(
c−

∫ m

m

dU(n)

γ(n)Γ(n)

)
where the free constant can be obtained by imposing the boundary condition

γ(m)g(m) = U(m) +D∗(m|g).
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Since the equilibrium distributions do not depend on U(m) all the predictions of the

paper regarding efficiency, volume and trading delays carry over to the case where the

marginal utility is a non trivial function. If U(m) is non constant one may even dispense

from heterogenous beliefs by assuming that mt only influences the agent’s marginal utility

as this is sufficient to generate trade. In this all the formulas of the paper remain valid

provided that the function ρ(m) = ρ(0) = r for all m ∈M throughout.

Remark 8 (Singular distributions) As can be seen from the arguments leading to

Theorem 2 the assumption that F ∈ Fns is not needed for the existence and uniqueness

of the stationary monotone equilibrium. The reason for this simplification is that in

the stationary case the gain from becoming an owner is known in closed form and

can be directly shown to be increasing for any distribution. By contrast, in the non

stationary case the gain from becoming an owner is only known as the unique fixed point

of an integral operator and showing the monotonicity of this fixed point requires some

assumptions on the structure of the distribution of perceived growth rates.

4 Analysis

4.1 Asymptotic efficiency

In a Walrasian market, equilibrium is characterized by a price process at which agents can

trade instantly and such that markets clear. The corresponding allocation is efficient and,

assuming that the gain from becoming an owner is increasing in beliefs, it follows that

there exists a cutoff w ∈M such that in equilibrium the set of asset owners is contained

in the set of agents who are more optimistic than w.

Since the distribution of perceived growth rates can have atoms, the inclusion can be

strict in which case some randomization will be required at the margin. Taking this into

account shows that the market clearing condition is

s = 1− F (w) + π∆F (w) (28)

where π ∈ [0, 1] represents the probability that a given marginal agent is allocated one

unit of the asset in equilibrium, and ∆F (w) gives the mass of agents with perceived

growth rate w. It follows that the cutoff is a quantile of order 1− s of the distribution of

perceived growth rates and I will denote by

m∗ = inf {m ∈M : F (m) ≥ 1− s} (29)
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Figure 4: The equilibrium cutoff
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Notes. This figure illustrates the determination of the equilibrium cutoff as the smallest quantile

of order s0 = 1 − s of the distribution of perceived growth rates. In the first two cases the set

of quantiles is reduced to a singleton while in the third case it is given by the whole shaded

interval. For the purpose of illustration I assume here that the set M of potential types has a

finite lower bound m.

the smallest among such quantiles.

Remark 9 Note that the equilibrium cutoff is generically unique and given by the lowest

quantile. Indeed, the only case where the set

Q =

{
m ∈M : lim

n↑m
F (n) ≤ 1− s ≤ F (m)

}
(30)

is not reduced to a single point is when the distribution of perceived growth rates in the

population is constant at the level 1 − s over a set of positive measure as illustrated by

the shaded interval in the right panel of Figure 4.

Fix an arbitrary cutoff w ∈ Q. If this cutoff is such that F (w) = 1 − s as in the left

panel of Figure 4 then the set of owners is exactly the set of agents who are strictly more

optimistic than w and no randomization is required. On the contrary, if w is an atom of

the distribution such that F (w) > 1 − s as in the middle and right panels of the figure

then some randomization is required at the margin, and

π(w) =
F (w)− (1− s)

∆F (w)
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gives the fraction of marginal agents who hold the asset in equilibrium. In either case,

it follows from (28) that the equilibrium distribution of perceived growth rates among

owners and non owners are given by

Fw
1 (m) = (1− s− F (m))− (31)

Fw
0 (m) = F (m)− Fw

1 (m) = min{1− s, F (m)} (32)

and do not depend on the choice of the cutoff w ∈ Q. Finally, the equilibrium price must

be determined in such a way that an hypothetical agent who is constantly marginal is

indifferent between holding or not holding the asset. In the eyes of such an agent the cash

flow process has constant drift equal to the cutoff w and it follows that the equilibrium

price is given by

Pw
t = Π(w,Xt) =

Xt

r − w
. (33)

To justify this construction it remains to verify that given this price the distributions

of perceived growth rates in (31), (32) are consistent with individual optimality. This

verification is carried out in the appendix and delivers the following.

Proposition 3 The allocation (31), (32) and the price process (33) form a competitive

equilibrium for any w ∈ Q.

Comparing the competitive allocation to the distributions in Corollary 1 shows that the

steady state distributions of the search market converge to the equilibrium distributions

of the Walrasian market as meetings become more frequent. The next proposition shows

that the same is true for trading prices. To state the result, let

P (m,n, x) = θ0G(m,x) + θ1G(n, x) = (θ0g(m) + θ1g(n))x

denote the steady state trading price between an asset owner with perceived growth rate

m and a non owner with perceived growth rate n ≥ m.

Proposition 4 If the bargaining powers θq ∈ (0, 1) then the equilibrium converges to the

Walrasian equilibrium as the meeting intensity increases:

lim
λ→∞

F ∗q (m) = Fw
q (m),

lim
λ→∞

P (m,n, x) = lim
λ→∞

G(m,x) = Π(m∗, x),
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for all perceived growth rates m ≤ n and all (x, q) ∈ (0,∞)× {0, 1}.

If non asset owners possess all the bargaining power, i.e. if θ1 = 0, then in every meeting

the buyer is able to impose the price that his most favourable to him subject to the

seller’s participation constraint and all trades occur at the seller’s reservation value.

Symmetrically, if asset owners possess all the bargaining power then all trades occur

at the buyer’s reservation value. In either case, it can be shown that the cross-section

of realized prices of the search market fails to converge to the Walrasian price despite

the fact that the corresponding equilibrium distributions, which do not depend on the

bargaining powers, converge to the efficient allocation.

4.2 Trading volume and execution delays

In the model trading volume is naturally defined as the number of meetings that give

rise to a trade. Therefore, I have that in the stationary monotone equilibrium trading

volume is given by the integral

ϑ =

∫
M2

1{n≤m}λdF
∗
0 (m)dF ∗1 (n) =

∫
M
λF ∗1 (n)dF ∗0 (m). (34)

Combining the explicit solution for the steady state distributions given in Proposition 1

with a simple change of variable then leads to the following.

Proposition 5 Assume that the distribution of perceived growth rates is continuous.

Then the steady state trading volume is given by

ϑ = ϑc ≡ ηs(1− s)
[
(1 + φ) log

(
1 +

1

φ

)
− 1

]
The steady state trading volume is increasing in both η and λ and decreases to zero as

either or both decrease to zero.

The above proposition offers a striking conclusion: In a decentralized market governed

by search and bargaining market trading volume does not depend on the distribution of

perceived growth rates among market participants provided that it is continuous. This

means in particular that contrary to standard intuition (see for example Banerjee (2011)

and the references therein) trading volume depends neither on the support nor on the

dispersion of beliefs in the market. The proposition also shows that, under the same

continuity assumption, trading volume increases with the intensity of both meetings and

changes in beliefs, and is a dome shaped function of the asset supply with a maximum
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at the point where the masses of potential buyers and sellers coincide. This last result is

intuitive. Indeed as supply increases there are simultaneously more assets to trade and

less potential buyers. The first effect is initially the strongest, so that trading volume

increases for small value of the supply parameter s, but the second effect will eventually

dominate as the mass of potential buyers becomes smaller and smaller.

The definition of trading volume given in (34) assumes that meetings involving equally

optimistic investors all result in a trade. If the distribution of perceived growth rates is

continuous then this assumption is without loss of generality since such meetings occur

with zero probability, but it is not so otherwise. Indeed, if the distribution of perceived

growth rates has atoms the steady state trading volume depends on the tie breaking rule

and is given by

ϑ(p) =

∫
M
λF ∗1 (n)dF ∗0 (m)−

∑
m∈M

λp∆F ∗0 (m)∆F ∗1 (m)

where the constant p ∈ [0, 1] denotes the probability that a meeting between an owner

and an equally optimistic non owner fails to result in a trade. Using integration by parts

to simplify the right hand side then leads to

ϑ(p) = ϑc +
∑
m∈M

λ

[
F ∗1 (m)∆F (m)−∆F ∗1 (m)

(
1 + p∆F ∗0 (m) +

∆F ∗1 (m)

2

)]

where the constant ϑc is defined as in Proposition 5. This confirms that trading volume

increases with the probability of trade execution, but whether it is lower or higher than

with a continuous distribution is unclear since the sign of the last term depends on the

parameters of the model and the distribution of beliefs.

Having calculated the trading volume implied by the model, I now turn to the steady

state expected execution delay defined as the expected amount of time δq(m) = E[τq]

that an agent has to wait between transactions.

Proposition 6 The steady state expected execution delay is given by

δq(m) =

[
1− η

∫
M

dF (m)

bq(m)

]−1
1

bq(m)
(35)

=

[
φ log

(
φ

1 + φ

)
+

(
1− 1 + φ

F ∗q (m)

)
log

(
1−

F ∗q (m)

1 + φ

)]−1
1

bq(m)
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where the second equality holds only if the underlying distribution of perceived growth

rates is continuous and

bq(m) = η + λq(1− s− F (m)) + λF ∗1 (m) > η.

The steady state expected execution delay is decreasing in λ, increasing in s for asset

owners and decreasing in s for non owners.

4.3 Search frictions and welfare

The results of Section 4.1 show that the monotone equilibrium of the search market

converges to the Walrasian equilibrium as the search friction vanishes. However, they do

not say anything about the welfare implications of this friction.

As the search friction weakens, the welfare of agents is subject to two opposite effects

because the intensity with which agents meet determines both the extensive margin, i.e.

the number of trades, and the intensive margin which corresponds here to the expected

gains from a meeting. Proposition 6 shows that an increase in the meeting intensity

improves the intensive margin. This implies that agents trade more often and leads to an

increase in welfare everything else equal. On the other hand, Proposition 1 shows that

the steady state mass F ∗1 (m) of owners who are more pessimistic than a given m ∈ M
is decreasing in the meeting intensity, and since the expected difference in beliefs with a

compatible seller

E[1{m1≤m}(m−m1)] =

∫
M

1{n≤m}F
∗
1 (n)dn

and the expected difference in beliefs with a compatible buyer

E[1{m0≥m}(m0 −m)] =

∫
M

1{n>m}(1− s− F (n) + F ∗1 (n))dn

both depend positively on this steady state mass, it follows that the counterparties of a

given agent tend to be closer to him as the meeting intensity increases. Combining this

with the fact that the range of reservation values simultaneously shrinks (see Section 4.4

below) then shows that an increase in the meeting intensity worsens the extensive margin

of trade for all agents, and thereby has a detrimental effect on their welfare.

In the absence of trading opportunities, i.e. when the meeting intensity is equal to
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Figure 5: Welfare and search frictions
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Notes. This figure plots the value functions of an owner and a non owner with average beliefs

as functions of the meeting intensity for different values of the bargaining power θ1 of asset

owners in an environment where perceived growth rates are initially uniformly distributed over

the interval [−0.04, 0.04], the risk free rate is r = 5%, the asset supply is s = 0.4 and η = 2 so

that agents change their mind twice a year on average.

zero, the steady state value functions satisfy

lim
λ→0

(Vq(m,x)− qf(m,x)) = 0, (q,m, x) ∈ {0, 1} × (0,∞)×M.

Combining this with the fact that

Vq(m,x)− qf(m,x) = E

∫ ∞
0

e−rtλEq,s(ms, Xs|G)ds > 0

for any λ > 0 when θq 6= 0 shows that the first effect dominates in a neighbourhood

of the origin and it follows that, starting from a totally illiquid market, both owners

and non owners benefit from a higher meeting intensity. Whether their value functions

remain monotonic away from the origin is not clear in general, and depends on the

bargaining powers, the magnitude of the search friction and the distribution of beliefs.

For example, Figure 5 shows that in a market with uniformly distributed beliefs an

increase in the meeting intensity may have a very different impact on welfare depending

on the bargaining powers, and illustrates the fact that when the bargaining power of a
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given type is high, so that a decrease in expected trading gains is very costly to that type,

an increase in liquidity can lead to a decrease in welfare.

4.4 The cross-section of trading prices

In the stationary monotone equilibrium, the cross-section of trading prices observed by

an econometrician who has access to all transaction data is

P (m0,m1, Xt) = (θ0g(m1) + θ1g(m0))Xt.

In this equation the quantities m1 ≤ m0 are random variables that take value in M and

are distributed according to the cumulative distribution

Prob [{m0 ≤ a} ∩ {m1 ≤ b}] =
U(a, b)

ϑ

where the denominator is the steady state equilibrium trading volume as defined by

equation (34), and the function

U(a, b) =

∫
M2

1{n≤a}1{m≤n∧b}λdF
∗
0 (n)dF ∗1 (m)

= λF ∗1 (b)(F ∗0 (a)− F ∗0 (b))+ +

∫
M

1{n≤a∧b}λF
∗
1 (n)dF ∗0 (n)

gives the probability that a non owner who is more pessimistic than a meets an owner

who is more pessimistic than b with whom a mutually beneficial trade can be agreed

upon. When the distribution of perceived growth rates in the population is continuous

the above integrals can be computed explicitly using the same change of variable as in the

proof of Proposition 5. However, even with this simplification the distribution of realized

prices remains too complex to be studied analytically in general.

One exception concerns the impact of liquidity on the support of the distribution.

Proposition 4 shows that the interval of realized prices collapses to a single point in the

limit of perfect liquidity, and one naturally expects this convergence to be monotonic.

This intuition can be confirmed as follows: Theorem 2 shows that bid/ask spread is

explicitly given by

1− minm∈M g(m)

maxm∈M g(m)
= 1− exp

(
−
∫
M

dn

γ(n)

)
and, since the discount rate γ(n) is increasing in the meeting intensity (see Appendix B),
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Figure 6: Probability density of trading prices
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Notes. This figure plots the probability density function of realized prices for various levels

of the meeting intensity. To construct this figure I assume that the risk free rate is r = 5%,

that the asset supply is s = 50%, that perceived growth rates are uniformly distributed over

[−0.04, 0.04] and that agents have equal bargaining powers and change beliefs twice a year on

average. Under these assumptions the Walrasian price is given by Π = 20 independently of the

meeting intensity and bargaining powers.

it follows that the relative width of the support is decreasing in the meeting intensity and

converges to zero. While it seems difficult to analytically calculate the rate of convergence,

numerical experiments suggest that convergence is quite fast. For example, Figure 6

shows that in an environment with uniformly distributed beliefs, homogenous bargaining

powers and as many asset owners as non owners the relative support of the distribution

is reduced by 50% when the average frequency of meetings increases from monthly to

weekly, and by a further 70% when it increases from weekly to daily.

To illustrate the convergence of the cross-section of trading prices to the Walrasian

price Figure 7 plots the bid and the ask prices as functions of the meeting intensity for

different allocations of the bargaining power in an environment where beliefs are uniformly

distributed and there are 40% of asset owners. The figure confirms that the range of prices

given by the shaded areas shrinks as the search friction weakens and shows that for a

given perceived growth rate the convergence of the gain from becoming an owner is not
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Figure 7: Trading prices and search frictions
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Notes. This figure plots the bid and ask prices as functions of the meeting intensity for different

values of the bargaining power θ1 of sellers in an economic environment where perceived growth

rates are initially uniformly distributed over [−0.04, 0.04], the risk free rate is r = 5%, the asset

supply is s = 0.4 and η = 2 so that agents change their mind twice a year on average. Under

these assumptions the Walrasian price is given by Π = 23.8095 independently of the meeting

intensity and bargaining powers.

monotonic in general. As explained in Section 4.3 this non monotonicity is due to the

conflicting effects of the meeting intensity on the frequency of trades and the expected

gains from each individual trade. Interestingly, the figure also shows that while prices

include a liquidity discount compared to the Walrasian price for low levels of the meeting

intensity they may also include a significant scarcity premium when the meeting intensity

and the seller bargaining power are sufficiently high.

4.5 Speculative behavior

In their seminal paper Harrison and Kreps (1978) define speculation as a situation where

the right to resell a stock makes investors willing to pay more for it than they would agree

to pay if obliged to hold it forever, and show it is a necessary condition for equilibrium if

trading is frictionless, agents have constant beliefs over time and holdings are subject to

no other restrictions than a ban on short sales.
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Following the same definition I say that the equilibrium of the search market exhibits

speculative behavior if the cross-section of realized prices is such that

inf
n∈M

(θ1G(m,x) + θ0G(n ∧m,x)) ≥ f(m,x), m ∈M,

where the left hand side gives the lowest price that a non asset owner with perceived

growth rate m can hope to pay for the asset and the right hand side gives the fundamental

value of the asset from the point of view of that same agent. To unveil the conditions

under which speculative behavior arises consider first the limiting Walrasian market of

Section 4.1 where trading is frictionless subject to the restriction that agents may hold

either one or zero unit of the asset. In such a market the equilibrium price is an increasing

function of the perceived growth rate

m∗(s) = inf {m ∈M : F (m) ≥ 1− s} .

of the marginal agent, and since this perceived growth rate is a monotone decreasing

function of the asset supply, it is natural to expect that speculative behavior occurs

as soon as the asset supply is low enough. The following result confirms this intuition

and relies on the continuity of the equilibrium gain from becoming an owner to provide

sufficient conditions for speculative behavior to arise in the search market.

Proposition 7 Speculative behavior occurs in the Walrasian market if and only if

m−m∗(s) ≤ η

(
1−

∫
M

ρ(m)

ρ(n)
dF (n)

)
(36)

and if this condition holds then speculative behavior occurs in the search market for all

sufficiently high meeting intensities.

The above result complements the findings of Harrison and Kreps (1978) by showing that

with time-varying beliefs and a restriction on asset holdings speculation only occurs if

the asset is sufficiently rare. Indeed, the left hand side of (36) is monotone increasing in

the asset supply, has value zero at s = 0 and satisfies

lim
s→1

(m−m∗(s)) = |M| ≥
∫
M

(m− n)dF (n) ≥ ξ (37)

where the constant ξ ≥ 0 denotes the right hand side of condition (36), and the second

inequality follows from Assumption 1. Therefore there exists a critical level s∗ for the asset

supply such that speculation occurs in both the Walrasian market and the search market
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as soon as the asset is rare enough in the sense that s ≤ s∗ yet traded at a sufficiently

high frequency. For example, in the economic environment of Figure 7 the critical level

of the asset supply is given by s∗ ≈ 48% and, as can be seen from the figure, the minimal

meeting intensity required to induce speculative behavior is monotone decreasing in the

bargaining power attributed to asset owners.

An immediate consequence of Proposition 7 is that with restricted asset holdings

speculative behavior can only occur if the agents’ beliefs are time varying in the sense

that η 6= 0. The intuition for this finding is clear: If beliefs are constant then there is

no trading in the stationary equilibrium and, as a result, no agent would ever agree to

pay more than his fundamental value. If there are only two types of agents, as in Duffie

et al. (2005) and Weill (2008) among many others, then a direct calculation shows that

speculative behavior only arises if s < ∆F (m) so that not all optimistic agents can hold

the asset in equilibrium. In general it follows from (37) that a necessary condition for

speculative behavior is that owners be more optimistic than the average.

5 Unrestricted asset holdings

As an extension of the model I now consider the case where agents can hold an arbitrary

number of units of the asset subject to a short sale constraint. To avoid the complications

induced by tie breaking I assume throughout this section that the distribution of perceived

growth rate in the population is continuous so that the probability of a meeting between

two agents with the same beliefs is zero.

In order to proceed towards the construction of an equilibrium I start by determining

the nature and terms of the trades between agents.

5.1 Trading strategies

Consider a meeting between an agent of current type σ1 = (q1,m1) and an agent of

current type σ2 = (q2,m2) where qi ∈ N gives the number of units of the asset held by

each agent prior to the meeting. Since agents are subject to a short sale constraint the

first agent can buy up to q2 units, and sell up to q1 units. Therefore, the maximal trading

surplus that can be generated from the meeting is

St(σ1, σ2, x|V ) = max
n∈[−q1,q2]∩Z

((Vq1+n,t − Vq1,t)(m1, x) + (Vq2−n,t − Vq2,t)(m2, x)) .
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Since agents have linear utility and differ only in their optimism regarding the cash flows

of the asset it is natural to look for equilibria in which

Vq,t(m,x) = V0,t(m,x) + qGt(m,x) (38)

for some non decreasing function Gt(m,x) that gives the gain to the agent from an

additional unit of the asset, i.e. the marginal value of the asset. In such a monotone

equilibrium the maximal surplus from a meeting simplifies to

St(σ1, σ2, x) = max
n∈[−q1,q2]∩Z

n (Gt(m1, x)−Gt(m2, x))

= q2(Gt(m1, x)−Gt(m2, x))+ + q1(Gt(m2, x)−Gt(m1, x))+

and can be achieved through Nash bargaining by having the most pessimistic agent sell

his whole inventory to the most optimistic agent at the unit price

Pt(m1,m2) = θ1Gt(m1 ∧m2, x) + θ0Gt(m1 ∨m2, x).

Taking this trading behavior as given I now determine the induced evolution of the

equilibrium distribution of types.

5.2 Equilibrium distribution of asset holdings

Let Fq,t(m) denote the mass of agents who hold q ∈ N units of the asset and are more

pessimistic than a given m ∈ M. These distributions are initially given and have to be

determined endogenously at all subsequent dates subject to

0 = F (m)−
∞∑
q=0

Fq,t(m) = s−
∞∑
q=0

qFq,t(m). (39)

As in the benchmark model, the first constraint requires that the joint distribution of

holdings and perceived growth rates be consistent with the distribution of perceived

growth rates in the economy. The second constraint is a market clearing condition that

requires the average asset holding among the population to equal the asset supply. Note

that contrary to the benchmark model there is no reason here to impose an upper bound

on the supply parameter so I only assume that s > 0.

To determine the evolution of these distributions I proceed as in the restricted holdings
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case by considering the ways in which agents enter or exit the group of owners who hold

exactly q units and are more pessimistic than a given m ∈M.

1. An agent may exit because he has perceived growth rate m1 ≤ m and meets an

agent with perceived growth rate m2 ≥ m1 to whom he sells his whole inventory.

The contribution of such exits is

−
∫
M2

1{m1≤m∧m2}λdFq,t(m1)dF (m2).

2. An agent may exit because he has perceived growth rate m1 ≤ m and meets an

asset owner with perceived growth rate m2 ≤ m1 whose inventory he buys. The

contribution of such exits is

−
∞∑
n=1

∫
M2

1{m2≤m1≤m}λdFq,t(m1)dFn,t(m2).

3. An agent may enter because he is of type (q − n,m1) for some n ≤ q and meets

an agent of type (n,m2) with perceived growth rate m2 ≤ m1 whose inventory he

buys. The contribution of such entries is

q∑
n=1

∫
M2

1{m2≤m1≤m}λdFn,t(m2)dFq−n,t(m1).

4. An agent holding q units may enter or exit because his perceived growth rate has

been reset. The contribution of such events is ηFq,t(m)F (m)− ηFq,t(m).

Summing the contributions of these five channels and using integration by parts it can

be shown (see Appendix B for details) that for q ≥ 1

Ḟq,t(m) = −λFq,t(m) + ν

q∑
n=0

Fn,t(m)Fq−n,t(m) + η(Fq,t(m)F (m)− Fq,t(m)) (40)

where ν = (λ/2) gives the intensity with which an individual agent contacts others.

Combining this with the first equality in (39) then shows that the corresponding mass of

non asset owners evolves according to

Ḟ0,t(m) = ν(1− F0,t(m))2 − ν(1− F (m))2 + η (F0,t(m)F (m)− F0,t(m)) . (41)

and solving that equation delivers the following result.

32



Proposition 8 In a monotone equilibrium with unrestricted asset holdings the mass of

non asset owner is given by

F0,t(m) = 1− 1− F0,0(m)

1 + νt(1− F0,0(m))

and converges to one. In particular, the model with unrestricted asset holdings does not

admit a steady state distribution.

The intuition for this finding is clear: with unrestricted asset holdings the more optimistic

agent accumulate more and more holdings over time until the whole supply of the asset

is held by a vanishingly small group of extremely optimistic agents.

Despite the fact that the model does not converge to a meaningful steady state it is

nonetheless interesting to analyze its dynamics over a finite time horizon. In order to do

so it is necessary to solve the infinite dimensional system given by (40). As a first step

in this direction, consider the discrete-time Fourier transform

Φz,t(m) =
∞∑
q=0

e−izqFq,t(m), z ∈ R.

A direct calculation using (40) together with the fact that Φ0,t(m) = 1 shows that this

series is absolutely convergent for any z ∈ R and satisfies

Φ̇z,t(m) = ν(1− Φz,t(m))2 − ν(1− F (m))2 + η (Φz,t(m)F (m)− Φz,t(m)) . (42)

subject to an exogenously given initial condition Φz,0(m) that can be calculated from the

initial distribution of holdings and perceived growth rates. In particular, setting m = m

on both sides of the above equation shows that

Φ̇z,t(m) = ν(1− Φz,t(m))2

and solving this Ricatti equation gives

1− Φz,t(m) =
1− Φz,0(m)

1 + νt(1− Φz,0(m))
. (43)

Using this function as an input then turns (42) into an ordinary Ricatti equation with a

time-dependent forcing term whose unique solution can be derived in terms of confluent

hypergeometric functions (see e.g. Abramowitz and Stegun (1964)).
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Proposition 9 The unique solution to (42) is given by

ν(1− Φz,t(m)) =
Ẏ1,z,t(m)− Az(m)Ẏ2,z,t(m)

Y1,z,t(m)− Az(m)Y2,z,t(m)

where the functions Az(m) ∈ C and Yn,z,t(m) ∈ R are defined in the appendix.

Given its discrete-time Fourier transforms, the joint equilibrium distribution of holdings

and perceived growth rates can be recovered as

Fq,t(m) =
1

2π

∫ π

−π
eizqΦz,t(m)dz, q ∈ N.

This integral is easily computed numerically and can even be computed in closed form in

some cases as illustrated by the following example.

Example 1 The marginal distribution of asset holdings in the population at a given

time is defined by

q 7−→ µq,t = Fq,t(m).

Setting m = m in the differential equation (40) shows that this marginal distribution

solves the Smoluchowski coagulations equations

µ̇q,t = −µq,t
∞∑
j=1

Kq,jµj,t +
1

2

q−1∑
j=1

Kq,jµj,tµq−j,t

with constant coagulation kernel Kq,j = λ. This system of equations was first derived

by Smoluchowski (1916) to describe the distribution of cluster sizes resulting from the

gradual coagulation of particles according to an additive reaction under which the collision

of two clusters of sizes q1 and q2 results in a single cluster of size q1 + q2. See Aldous

(1999), Dubovskii (1994) for a survey of the mathematical theory of coagulation.

The general solution to this system can be computed recursively by observing that

the right hand side of (43) is the ratio of two power series and then expressing this ratio

as a single power series. This gives

µ0,t = 1− 1− µ0,0

1 + νt(1− µ0,0)

34



and

µq,t =
1

1 + νt(1− µ0,0)

(
(1− νt)µq,0 + νt

q∑
j=1

µj,0µq−j,t

)
, q ≥ 1.

In some cases this recursive computation can even be simplified to obtain an explicit

solution for the marginal distribution of asset holdings. For example, if s ∈ N and the

initial distribution is such that all agents in the market hold s units of the asset, then

the distribution at subsequent dates it is given by

µq,t = 1{q∈sN}

(
1

1 + νt

)2(
νt

1 + νt

)q/s−1

for q ≥ 1 and

µ0,t = 1−
∞∑
q=1

µq,t =
νt

1 + νt
.

Similarly, if the marginal distribution of asset holdings in the population is initially

geometric with mean s > 0 then at subsequent times it is explicitly given by

µq,t =
sq

(1 + νt)2

(
1 + νt

1 + s(1 + νt)

)1+q

for q ≥ 1 and

µ0,t = 1−
∞∑
q=1

µq,t = 1− s

1 + s(1 + νt)
.

In both cases it is easily seen that the marginal distribution converges to a Dirac mass

at zero in accordance with Proposition 8. In order to circumvent this behaviour, and

thereby obtain a steady state it is necessary to modify the model by introducing the

possibility of security issuance and/or default on assets. I leave this extension for further

research.

5.3 Equilibrium value functions

Having characterized the distribution of types it now remains to compute the value

functions and to verify the conjectured linearity in asset holdings. Taking as given the

distribution of beliefs among owners and non owners I define the value functions through
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the system of dynamic programming equations

Vq,t(m,x) = Et

[∫ τ

t

e−r(s−t)qXsds+ e−r(τ−t)(Vq,τ (mτ , Xτ ) + Êq,τ (mτ , Xτ |V ))

]
(44)

where the stopping time τ denotes the first time that the agent gets an opportunity to

trade, and the integral operator

Êq,t(m,x|v) =
∞∑
p=0

∫
M
Rt((m, q), (n, p), x|v)dFp,t(n)

with

Rt(σ1, σ2, x|v) = (θ0 + 1{n∗
t (σ1,σ2,x|v)≤0}(θ1 − θ0))St(σ1, σ2, x)

n∗t (σ1, σ2, x|v) = argmax
n∈[−q1,q2]∩Z

((vq1+n,t − vq1,t)(m1, x) + (vq2−n,t − vq2,t)(m2, x))

represents the expected payoff to an agent of type (m, q) from a meeting with another

randomly selected agent. To pin down a unique equilibrium I further require that the

value functions satisfy the linear growth condition

|Vq,t(m,x)| ≤ cv(1 + q)x, (q, t,m) ∈ N× [0,∞)×M, (45)

for some constant cv > 0 and the same arguments as in the model with restricted holdings

show that under this condition (44) is equivalent to

Vq,t(m,x) = Et

∫ ∞
t

e−r(s−t)(qXs + λÊq,s(ms, Xs|V ))ds. (46)

An immediate calculation using the constraint (39) then shows that solving (46) subject

to (45) for a function of the form (38) is equivalent to finding a nondecreasing solution

to the single dynamic programming equation

Gt(m,x) = Et

∫ ∞
t

e−r(s−t)(Xs + λÔs(ms, Xs|G))ds (47)

subject to the linear growth condition (18) where the linear operator on the right hand

side is defined by

Ôt(m,x|v) =

∫
M

1{n>m}(vt(n, x)− vt(m,x))θ1dF (n).
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In order to construct the unique function satisfying these requirements consider the

equivalent probability measure P̂ under which the compensator of the changes in an

agent’s perceived growth rate is given by

Q̂(dt,B) = Q(dt,B) +

∫
B∩{n>mt−}

λθ1dF (n)dt, B ⊆ B(M).

As in the model with restricted holdings this auxiliary probability measure can be seen as

tracking the beliefs of the marginal agent. Indeed, the first term in the above definition

reflects exogenous changes in the agent’s perceived growth rate while the second reflects

a positive jump that occurs every time that the current holder of the asset meets a more

optimistic agent to whom he sells his his whole inventory.

Consistent with this interpretation the next result shows that the marginal value of the

asset is given by the fundamental value of the asset to an hypothetical agent whose beliefs

are represented by the probability measure P̂ . In order to state the result, introduce the

strictly positive discount rate

γ̂(m) = r −m+ η + λθ1(1− F (m))

and define the bounded function Γ̂(m) as in (26) albeit with the function γ̂(m) in place

of the function γ(m).

Theorem 3 The unique solution to (18) and (47) is

Gt(m,x) = Êt

∫ ∞
t

e−r(s−t)Xsds =
xΓ̂(m)

r −m+
∫
M η(1− Γ̂(n))dF (n)

and is nondecreasing in the perceived growth rate. In particular, there exists a unique

monotone equilibrium with unrestricted asset holdings.

A key difference between the restricted and unrestricted models is that in the later the

marginal asset value is stationary and can be computed in closed for any distribution. To

understand this result, observe that in the unrestricted model an agent who holds q + 1

units has the same buying options as an agent who holds q units but has one additional

option to sell. Since the agent can sell the asset to any other agent who is more optimistic,

the value of that additional option only depends on the population wide distribution of

beliefs and, therefore, is time independent.

By contrast, in the restricted model an asset owner can only sell to a more optimistic

non owner and a non owner can only buy from a more pessimistic owner. The equilibrium
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gain from becoming an asset owner therefore depends on the distribution of beliefs in the

two groups and, since these distributions are time dependent prior to reaching the steady

state, it follows that the gain from becoming an asset owner is stationary.

A Proofs

Lemma A.1 Assume that |Yt| ≤ St where the process St is a geometric Brownian motion

with strictly negative drift and arbitrary volatility. Then limt→∞ Yt = 0 and there exists

a constant a > 1 such that Et supt≥0 |Yt|a <∞.

Proof. Assume that the process St has drift µ < 0 and volatility v and fix an arbitrary

constant 1 < a < 1 − 2µ/v2. By application of Itô’s lemma I have that the process Sat

is a geometric Brownian motion with drift aµ + a(a − 1)v2/2 < 0 and the second part

now follows from Doob (1949, Eq.(4.2)). To establish the first part I start by observing

that the process St is a nonnegative supermartingale since µ < 0. This implies that the

process converges almost surely to some nonnegative random variable S∞ and the desired

follows since E[S∞] ≤ limtE[St] = limt e
µtS0 = 0 by Fatou’s lemma. Q.E.D.

Proof of Lemma 1. Using the independence between the Brownian motion and the

Poisson process I deduce that

ψt(m) ≡ ft(m,x)/x = Et

∫ ∞
t

e−
∫ s
t (r−mu)duds

and it follows from Assumption 1 that ψt(m) is bounded. Let σ denote the next time

that the agent’s perceived growth rate changes. Using the fact that ms = m on [[t, σ[[ and

applying the law of iterated expectation gives

ψt(m) = Et

∫ σ

t

e−(r−m)(s−t)ds+ Et[e
−(r−m)(σ−t)ψσ(mσ)].

Now integrating inside the expectation with respect to the joint distribution of the

stopping time σ and the perceived growth rate mσ I obtain

ψt(m) =

∫ ∞
t

e−ρ(m)(s−t)(1 + ηB(ψs))ds (A.1)

where the discount rate function ρ(m) is defined as in the statement and

B(v) =

∫
M
v(n)dF (n).
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To solve this recursive integral equation I look for a time-independent solution in the

form ψt(m) = (1 +ϕ)/ρ(m). Inserting this conjecture into (A.1) immediately shows that

the integration constant is given by

1 + ϕ =
1

1− B(η/ρ)
> 0 (A.2)

where the inequality follows Assumption 1 and the definition of ρ(m). To show that this

solution is in fact unique consider the integral operator

Tt(m, v) =

∫ ∞
t

e−ρ(m)(s−t)(1 + ηB(vs))ds

Assumption 1 implies that this operator maps the space L∞(M × [0,∞)) into itself.

Furthermore, a direct calculation shows that

|Tt(m, v1)− Tt(m, v2)| ≤ η

ρ(m)
sup

(m,t)∈M×[0,∞)

|v1,t(m)− v2,t(m)| .

Since (η/ρ(m)) < 1 as a result of Assumption 1 this shows that the operator T is a

contraction on the space of real valued bounded functions and it thus follows from the

Banach fixed point theorem that (A.1) can have at most one bounded solution. Q.E.D.

Proof of Proposition 1. The differential equation (14) is a standard Ricatti equation

whose solution can be found in any textbook. In order to show that the solution satisfies

the constraint (3) set m = m in equation (13) to obtain

Ḟ1,t(m) = λF1,t(m)(s− F1,t(m)),

and observe that the unique solution with initial value s is F1,t(m) = s. In order to

establish the second part I argue as follows. By the first part of the proposition I have

that there exists a smooth function such that

0 ≤ F1,t(m) = B(t, F (m), F1,0(m)) ≤ F (m)

Since the initial distribution is absolutely continuous with respect to F (m) this shows

that F1,t(m) is also absolutely continuous with respect to F (m) and it therefore follows

from the Radon-Nikodym theorem that

F1,t(A) =

∫
A

(
αc1,t(m)dF c(m) + αd1,t(m)dF d(m)

)
(A.3)
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for any set A ⊆ M where the finite measures dF c(m) and dF d(m) denote respectively

the continuous part and the purely atomic part of the population wide distribution, and

the nonnegative functions αi1,t(m) are defined by

αc1,t(m) =
∂B

∂x
(t, F (m), F1,0(m)) + αc1,0(m)

∂B

∂y
(t, F (m), F1,0(m)),

and

αd1,t(m) =
∞∑
k=1

1{m=mk}
B(t, F (mk), F1,0(mk))−B(t, F (mk−1), F1,0(mk−1))

p(mk)
.

Furthermore, since the distribution F1,t(m) is nonnegative and bounded from above by

the population wide distribution I have that the functions αi1,t(m) are uniformly bounded.

Similarly, I know from the first part of the proposition that

0 ≤ F ∗1 (m) = B∗(F (m)) ≤ F (m)

for some smooth function and it follows that

F ∗1 (A) =

∫
A

(αc,∗1 (m)dF c(m) + αd,∗1 (m)dF d(m))

for any set A ⊆ M where the nonnegative functions αi,∗1 (m) are uniformly bounded and

explicitly defined by

αc,∗1 (m) =
∂B∗

∂x
(F (m)),

and

αd,∗1 (m) =
∞∑
k=1

1{m=mk}
B∗(F (mk))−B∗(F (mk−1))

p(mk)
.

A direct calculation based on (15), (16) then shows that limt α
i
1,t(m) = αi,∗1 (m) and, since

the integrands in (A.3) are uniformly bounded, it follows from the dominated convergence

theorem that

lim
t→∞

F1,t(A) = lim
t→∞

∫
A

(
αc1,t(m)dF c(m) + αd1,t(m)dF d(m)

)
=

∫
A

lim
t→∞

(
αc1,t(m)dF c(m) + αd1,t(m)dF d(m)

)
= F ∗1 (A).
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Since A ⊆ M is arbitrary this shows that the equilibrium distribution F1,t(m) converges

strongly to its steady state counterpart F ∗1 (m) and completes the proof. Q.E.D.

Proof of Corollary 1. A direct calculation shows that

−∂F
∗
0 (m)

∂s
=
∂F ∗1 (m)

∂s
=
F ∗1 (m) + φF (m)

Φ(m)
≥ 0

which implies the desired monotonicity in s. Using the definition of the steady state

distribution it can be shown that

∂F ∗1 (m)

∂φ
=
sF (m)− F ∗1 (m)

Φ(m)
=

s(1− s)F (m)(1− F (m))

(φ+ F ∗1 (m) + (1− s)(1− F (m)))Φ(m)

and the desired monotonicity follows by observing that all the terms on the right hand

side are nonnegative. Knowing that F ∗1 (m) is increasing in φ a further calculation shows

that Φ(m) is also increasing in φ and it now follows from the above equation that the

steady state distribution is concave in φ. The expression for the limiting values follows

by sending φ to 0 and ∞ in (15), I omit the details. Q.E.D.

Lemma A.2 Assume that F ∈ Fns. Then the function

Yt(m,x) = E∗t

∫ ∞
t

e−r(s−t)Xsds

is nondecreasing in the agent’s perceived growth rate and satisfies (18).

Proof. The same arguments as in the proof of equation (11) show that

yt(m) =
Yt(m,x)

x
= E∗t

∫ ∞
t

e−
∫ s
t (r−mu)duds (A.4)

and the second part of the statement now follows from Assumption 1 which implies that

the function yt(m) satisfies

‖y‖∞ = sup
(t,m)∈[0,∞)×M

|yt(m)| ≤ (r −m)−1. (A.5)

In order to prove that the first part of the statement and thereby complete the proof I

will proceed in several steps.

Step 1: Continuity and differentiability in time. Let τ ≥ t denote the first time that

the agent’s growth rate changes. Using (A.4) in conjunction with the law of iterated
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expectations and the definition of P ∗ gives

yt(m) = E∗t

[
e−(r−m)(τ−t)yτ (mτ ) +

∫ τ

t

e−(r−m)(s−t)ds

]
=

∫ ∞
t

e−
∫ s
t γu(m)du

(
1 +

∫
M
ys(k)(ηdF (k) + λdHs(k|m))

)
ds

where the discount rate

γt(m) = ρ(m) + λθ1(1− s− F0,t(m)) + λθ0F1,t(m) (A.6)

is right-continuous, strictly positive and bounded. Since all the terms inside the integral

are uniformly bounded this implies that the function yt(m) is continuously differentiable

in time for each fixed m ∈M and satisfies

ẏt(m) = γt(m)yt(m)− 1−
∫
M
yt(k)(ηdF (k) + λdHt(k|m))

Step 2: Continuity in space. Let n > m be elements of M and define

ct(n,m) = yt(n)− yt(m).

Using the above equation in conjunction with (20) shows that

ċt(n,m) = γt(n)yt(n)− γt(m)yt(m) +

∫
M
yt(k)λ(dHt(k|m)− dHt(k|n))

= γt(n)ct(n,m)− yt(m)(n−m)−
∫ n

m

ct(m, k)dνt(k)

where νt(m) is the right continuous and bounded function defined by

νt(m) = λ (θ1F0,t(m)− θ0F1,t(m)) .

Using the facts that the function ct(n,m) is uniformly bounded and that the discount

rate is strictly positive shows that

ct(n,m) =

∫ ∞
t

e−
∫ s
t γu(n)du

(
ys(m)(n−m) +

∫ n

m

cs(m, k)dνs(k)

)
ds (A.7)

and, since all the terms below the integral are uniformly bounded it now follows from

the dominated convergence theorem and the right-continuity of the functions γt(m) and
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νt(m) with respect to m that

lim
n→m

ct(n,m) =

∫ ∞
t

e−
∫ s
t γu(m)du

(
lim
n→m

∫ n

m

cs(m, k)dνs(k)

)
ds = 0

which establishes the right-continuity of the function yt(m) with respect to m. Similarly,

if n < m are arbitrary elements of M then

ct(n,m) =

∫ ∞
t

e−
∫ s
t γu(n))du

(
ys(m)(n−m)−

∫ m

n

cs(m, k)dνs(k)

)
ds

and, since all the terms below the integral are uniformly bounded by construction, it

follows from the dominated convergence theorem and the integration by parts formula

for Lebesgue Stieljes integrals that

lim
n→m

ct(n,m) =

∫ ∞
t

e−
∫ s
t γu(m−)du

(
− lim

n→m

∫ m

n

cs(m, k)dνs(k)

)
ds

=

∫ ∞
t

e−
∫ s
t γu(m−)du lim

n→m

(
−ys(m)∆νs(k) +

∫ m

n

ys(k)dνs(k)

)
ds = 0.

This shows that the function yt(m) is left continuous with respect to m and combining

this property with the first part finally shows that it is continuous.

Step 3: Monotonicity in space. Fix k ∈ N, let mk ≤ m < m + 1/n < mk+1 for some

n ∈ N and consider the difference quotient

nct(m+ 1/n,m) =
yt(m+ 1/n)− yt(m)

1/n

=

∫ ∞
t

e−
∫ s
t γu(m+1/n)du

(
ys(m) + n

∫ m+1/n

m

cs(m, k)dνs(k)

)
ds

where the second equality follows from (A.7). Combining the decomposition in (A.3)

with the assumption F ∈ Fns shows that the quantity inside the bracket on the right

hand side of the above expression can be written as

An,s(m) = ys(m) + n

∫ m+1/n

m

cs(m, k)dνs(k)

= ys(m) + n

∫ m+1/n

m

cs(m, k)λ(θ1α
c
0,s(k)− θ0α

c
1,s(k))f(k)dk
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for some nonnegative functions such that

αc0,t(m) + αc1,t(m) = 1.

Using this decomposition together with the uniform boundedness of yt(m), the definition

of the constants θq and the local boundedness of the population wide density function

then shows that

|An,t(m)| ≤ |yt(m)|+ λn

∫ m+1/n

m

|ct(m, k)|(θ1α
c
0,t(k) + θ0α

c
1,t(k))f(k)dk

≤ |yt(m)|+ λn

∫ m+1/n

m

|ct(m, k)|f(k)dk

≤ ‖y‖∞

(
1 + 2λn

∫ m+1/n

m

f(k)dk

)
≤ (1 + 2λK(m)) ‖y‖∞

where the finite constant K(m) > 0 is an upper bound on the population wide density

function in a right neighbourhood of the point m. Since

lim
n→∞

(An,t(m)− yt(m)) = lim
n→∞

n

∫ m+1/n

m

cs(m, k)dνs(k) = 0,

due to the continuity of the function yt(m) it follows from the dominated convergence

theorem and the right continuity of the discount rate that the function yt(m) is right

differentiable with

D+yt(m) = lim
n→∞

nct(m+ 1/n,m) =

∫ ∞
t

e−
∫ s
t γu(m)duys(m)ds ≥ 0

and the required monotonicity now follows from the result of Step 2 and Titchmarsh

(1975, Example IV.11.3), see Hagood and Thomson (2006). Q.E.D.

Remark A.1 Using the bound (A.5) in conjunction with the fact that the discount rate

is uniformly bounded away from zero it is easily shown that

sup
(t,m)∈[0,∞)×M

‖D+yt(m)‖∞ ≤ (r −m)−2

and it thus follows from Assumption 1, Hagood and Thomson (2006, Theorem 9) and

Fubini’s theorem that yt(m) is absolutely continuous and satisfies

yt(m)− yt(m) =

∫ m

m

D+yt(n)dn =

∫ ∞
t

ds

∫ m

m

e−
∫ s
t γu(n)duys(n)dn.
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This in turn shows that yt(m) is almost everywhere jointly differentiable in (t,m) and

implies that it solves the hyperbolic partial differential equation

d

dt
(D+yt(m)) = γt(m)D+yt(m)− yt(m).

Note however that unless F (m) is continuous this solution should be understood in the

weak sense since both the discount rate and the space derivative on the right hand side are

discontinuous at each of the countably many atoms of the population wide distribution

of perceived growth rates.

Proof of Theorem 1. Assume that the function Gt(m,x) solves equation (19) subject

to (18) so that the process

Mt = e−rtGt(mt, Xt) +

∫ t

0

e−rs (Xs + λOs(ms, Xs|G)) ds

is a martingale over any finite horizon under the probability measure P . Using this

property together with Girsanov theorem and the fact that

∆Mt = e−rt∆Gt(mt, Xt)

I obtain that the process

M∗
t = Mt −

∫ t

0

e−rsλOs(ms, Xs|G)ds = e−rtGt(mt, Xt) +

∫ t

0

e−rsXsds

is a local martingale under the equivalent probability measure P ∗. This in turn implies

that there exists an sequence of stopping times (σn)∞n=1 that is almost surely increasing

with t ≤ σn →∞ and such that

Gt(m,x) = lim
n→∞

E∗t

[
e−r(σn−t)Gσn(mσn , Xσn) +

∫ σn

t

e−r(s−t)Xsds

]
= lim

n→∞
E∗t

[
e−r(σn−t)Gσn(mσn , Xσn) +

∫ ∞
t

e−r(s−t)Xsds

]
where the second equality follows from the nonnegativity of cash flows and the monotone

convergence theorem. Using Assumption 1 together with (18) then shows that

e−r(σn−t)|Gσn(mσn , Xσn)| ≤ cg

(
Xt

St

)
Sσn

where the process St is a geometric Brownian motion with drift m − r < 0 under
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the probability measure P ∗ and it now follows from Lemma A.1 and the dominated

convergence theorem that

Gt(m,x) = E∗t

∫ ∞
t

e−r(s−t)Xsds = Yt(m,x).

This shows that Yt(m,x) is the unique solution to (19) such that (18) holds and the proof

is complete since it follows from Lemma A.2 that this solution is nondecreasing with

respect to the agent’s perceived growth rate for any F ∈ Fns. Q.E.D.

Proof of Proposition 2. The result follows from Theorem 1 and the definition of the

equivalent probability measure P ∗. I omit the details. Q.E.D.

Proof of Theorem 2. The equilibrium distributions and the gain from becoming an

owner have already been derived so the only thing that requires a proof is the expression

for the value function but this follows by direct calculation. Q.E.D.

Proof of Corollary 2. From Proposition 1 I know that Fq,t(m) converges to the steady

state distribution F ∗q (m) so all there is to prove is that the gain from becoming an owner

also converges to its steady state counterpart. Let the discount rate γt(m) be as in (A.6)

and consider the bounded function defined by

gt(m) = x−1Gt(m,x) = E∗t

∫ ∞
t

e−
∫ s
t (r−mu)duds

=

∫ ∞
t

e−
∫ s
t γu(m)du

(
1 +

∫
M
gs(n) (ηdF (n) + λdHs(n|m))

)
ds

where the second equality follows from the definition of the probability measure P ∗ and

the law of iterated expectations. Combining this identity with an application of l’Hôpital

rule I obtain that the limit exists and satisfies

g∗(m) := lim
t→∞

gt(m) = lim
t→∞

1

γt(m)

(
1 +

∫
M
gt(n) (ηdF (n) + λdHt(n|m))

)
.

By Proposition 1 I have that the equilibrium distributions converge strongly to their

steady state counterparts and it follows that limt γt(m) = γ(m). On the other hand,

since the function gt(m) is uniformly bounded the same arguments as in the proof of

Proposition 1 show that

lim
t→∞

∫
M
gs(n) (ηdF (n) + λdHs(n|m)) =

∫
M
g∗(n) (ηdF (n) + λdH∗(n|m))
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where the bounded function

H∗(n|m) = θ0F
∗
1 (n ∧m) + θ1(F ∗0 (n)− F ∗0 (m))+

is the steady state counterpart of Ht(n|m). This shows that g∗(m) solves the integral

equation (24) and the desired result follows since the unique bounded solution to that

equation is given by the function g(m) of Theorem 2. Q.E.D.

Proof of Proposition 3. Fix an arbitrary cutoff w ∈ Q. In order to establish that the

price process Pt = Π(w,Xt) is an equilibrium I need to prove that the conjectured trading

behavior is optimal given the possibility of continuous trading at this price.

As a first step in this direction I start by calculating the value functions associated

with the conjectured trading behavior. Define a pair of stopping times by setting

τq = inf {t ≥ 0 : (2q − 1)(w −mt) ≥ 0}

and assume that an agent of ownership type q trades upon the occurrence of the stopping

time τq. The value functions associated with this trading strategy are defined by the

system of dynamic programming equations

Vq(m,x) = E

[∫ τq

0

e−rsqXsds+ e−rτq((2q − 1)Pτq + V1−q(mτq , Xτq))

]
. (A.8)

The next lemma provides an explicit formula for the unique pair of functions that solve

this equation subject to the linear growth condition (7).

Lemma A.3 The unique solution to (A.8) such that (7) holds is

Vq(m,x) = Π(w, x)

(
q +

(w −m)−

ρ(m)
+
η(1 + ϕ)

ρ(m)

∫
M

(w − n)−

ρ(n)
dF (n)

)
(A.9)

Proof. Using the same arguments as in the proof of equation (11) it can be shown that

solving the system (A.8) subject to (7) is equivalent to finding a pair of bounded functions

that solve the reduced-form system

vq(m) = E

[∫ τq

0

e−
∫ s
0 (r−mu)duqds+ e−

∫ τq
0 (r−mu)du((2q − 1)p+ v1−q(mτq))

]
(A.10)

with the constant p = Π(w; 1). The definition of the stopping times τq immediately
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implies that any solution to this system must satisfy

vq(m) = (2q − 1)p+ v1−q(m) (A.11)

for all m ∈ M. Let the stopping time τ denote the first time that the agent’s perceived

growth rate changes. Combining (A.10) and (A.11) with the law of iterated expectations

I obtain that

vq(m) = E

∫ τ

0

e−(r−m)sqds+ E
[
e−(r−m)τ ((2q − 1)p+ v1−q(mτ ))

]
= E

∫ τ

0

e−(r−m)sqds+ E
[
e−(r−m)τvq(mτ )

]
=

1

ρ(m)

(
q + η

∫
M
vq(n)dF (n)

)
for all m ∈M such that (2q − 1)(w −m) < 0. Using these restrictions together with the

definition of the candidate price process I obtain

lim
m↑w

v1(m) = lim
m↑w

(p+ v0(m))

= p+ lim
m↑w

(
η

ρ(m)

∫
M
v0(n)dF (n)

)
=

1

ρ(w)

(
1 + η

∫
M
v1(n)dF (n)

)
= lim

m↓w
v1(m)

This shows that any solution to (A.10) must be continuous at w and combining this

property with the above identities gives

v0(m) =
1

ρ(m)

(
p(w −m)− + η

∫
M
v0(n)dF (n)

)
. (A.12)

Using the same arguments as in the proof of Lemma 1 it can be shown that the unique

bounded solution to this integral equation is

v0(m) = p

(
(w −m)−

ρ(m)
+
η(1 + ϕ)

ρ(m)

∫
M

(w − n)−

ρ(n)
dF (n)

)
where ϕ > 0 is defined as in (A.2). The corresponding formula for v1(m) now follows

from identity (A.11) and the proof is complete. Q.E.D.

To establish that the stopping times τq are optimal I need to verify that the agent never
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has an incentive to deviate from this strategy in the sense that

Vq(m,x) = sup
τ∈S

E

[∫ τ

0

e−rsqXsds+ e−rτ ((2q − 1)Pτ + V1−q(mτ , Xτ ))

]
(A.13)

where S denotes the set of all stopping times. This verification is carried out in the next

lemma and concludes the proof. Q.E.D.

Lemma A.4 The pair of functions defined by (A.9) satisfies (A.13).

Proof. Combining (A.11) with (A.12) shows that the nonnegative function vq(m) solves

the integral equation

vq(m) =
1

ρ(m)

(
q + p((2q − 1)(w −m))+ + η

∫
M
vq(n)dF (n)

)
.

Applying Itô’s lemma to the discounted value function and using the above integral

equations it is easily deduced that

d
(
e−rtVq(mt, Xt)

)
= d

(
e−rtvq(mt)Xt

)
= e−rtdMt − e−rt

(
qXt + Pt((2q − 1)(w −mt))

+
)
dt

for some local martingale Mt, and it follows that the process

Yq,t = e−rtVq(mt, Xt) +

∫ t

0

e−rsqXsds

= Vq,0(m0, X0) +

∫ t

0

e−rsdMs −
∫ t

0

e−rsPs((2q − 1)(w −mt))
+ds

is a nonnegative supermartingale. Combining this with Doob’s optional sampling theorem

for supermartingales (see Dellacherie and Meyer (1980, Theorem 2.16)) gives

Vq(m,x) ≥ sup
τ∈S

E

[∫ τ

0

e−rsqXsds+ e−rτVq(mτ , Xτ )

]
= sup

τ∈S
E

[∫ τ

0

e−rsqXsds+ e−rτ ((2q − 1)Pτ + V1−q(mτ , Xτ ))

]
where the equality follows from (A.11) and the definition of vq(m). Using (A.8) then

shows that the reverse inequality also holds and completes the proof. Q.E.D.

Proof of Proposition 4. The convergence of the distributions follows directly from

(31), (32) and Corollary 1 so it suffices to establish the convergence of the trading prices.
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Consider the bounded function

β(m) =
x

G(m,x)
− r +m =

D∗(m|1− Γ)

Γ(m)
+ (r −m)

(
1

Γ(m)
− 1

)
.

Using the definition of the nonnegative functions γ(m) and Γ(m) together with the

assumption that θq ∈ (0, 1) it is easily deduced that

lim
λ→∞

(1/γ(m)) = lim
λ→∞

(1− 1/Γ(m)) = 0. (A.14)

and therefore

lim
λ→∞

β(m) = lim
λ→∞
D∗(m|1− Γ)

= lim
λ→∞

∫
M

(1− Γ(n))(ηdF (n) + λθ0dF
∗
1 (n))

= lim
λ→∞

∫
M
λθ0(1− Γ(n))dF ∗1 (n)

= lim
λ→∞

∫
M
λθ0F

∗
1 (n)

Γ(n)

γ(n)
dn

= lim
λ→∞

∫
M

θ0F
∗
1 (n)dn

θ0F ∗1 (n) + θ1(1− s− F ∗0 (n))
= m−m∗

where the fourth equality follows from the integration by parts formula, the fifth equality

follows from (A.14) and the definition of γ(m), and the last equality follows from the

convergence of the distributions and the definition of the quantile in (29). Combining

this with the definition of β(m) then shows that

lim
λ→∞

G(m,x) = lim
λ→∞

(
x

r −m+ β(m)

)
=

x

r −m∗
= Π(m∗, x)

and completes the proof. Q.E.D.

Proof of Proposition 5. Assume that the distribution function F (m) is continuous.

Using the definition of ϑ and integration by parts I obtain

ϑ(s, η, λ) =

∫
M2

1{m≥n}λdF
∗
1 (n)dF ∗0 (m)

=

∫
M
λF ∗1 (m)dF ∗0 (m)

=

∫
M
λF ∗1 (m)dF (m)− λ

2
F ∗1 (m)2 =

∫ 1

0

λ`(x)dx− λs2

2

50



where I have set

`(x) = −1

2
(1− s+ φ− x) +

1

2

√
4sφx+ (1− s+ φ− x)2, (A.15)

the third equality follows from (3) and the last equality follows from (15), the market

clearing condition and the change of variable formula for Stieltjes integrals. Computing

the integral leads to the formula in the statement and the comparative statics follow by

differentiating the result with respect to λ and η. Q.E.D.

Remark A.2 If the cumulative distribution F (m) fails to be continuous then the first

two equalities remain valid but the third and fourth transform to

ϑ(s, η, λ) =

∫
M
λF ∗1 (m)dF (m)−

∫
M
λF ∗1 (m)dF ∗1 (m)

=

∫ 1

0

λ`(F ◦ I(x))dx− λ

2

(
s2 +

∑
m∈M

∆F ∗1 (m)2

)

where the function

I(x) = inf {m ∈M : F (m) ≥ x}

denotes the quantile function. In particular, if the support of the distribution is a

countable collection of isolated points then

ϑ(s, η, λ) =
∞∑
k=1

λ

(
p(k)`(F (mk))−

1

2
∆`(F (mk))

2

)
− λs2

2

where the constant p(k) = limx↑mk(F (mk)−F (x)) gives the mass of the kth point. In this

case the equilibrium trading rate actually depends on the exogenously fixed distribution

of perceived growth rates in the population.

Proof of Proposition 6. Consider an agent of ownership type q and denote his per-

ceived growth rate process by mt. The next time that this agent trades is the first time

τq at which he meets an agent of the complementary ownership type whose perceived

growth rate satisfies

(2q − 1)(n−mτ ) ≥ 0.
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In the steady state monotone equilibrium the arrival rate of this event is

λq(mt) = λq(1− s− F ∗0 (mt)) + λ(1− q)F ∗1 (m) = bq(mt)− η

and it follows that

δq(m) = E[τq] = E

∫ ∞
0

td
(

1− e−
∫ t
0 λq(ms)ds

)
= E

∫ ∞
0

e−
∫ t
0 λq(ms)dsdt.

Let σ denote the first time that the agent’s perceived growth rate changes. Combining

the above expression with the law of iterated expectations gives

δq(m) = E

∫ σ

0

e−
∫ t
0 λq(ms)dsdt+ E

[
e−

∫ σ
0 λq(ms)dsδq(mσ)

]
(A.16)

= E

∫ σ

0

e−λq(m)tdt+ E
[
e−λq(m)σδq(mσ)

]
=

1

bq(m)

(
1 + η

∫
M
δq(n)dF (n)

)
where the second equality follows from the fact that the agent’s perceived growth rate is

constant over [[0, σ]] and the third equality follows from the fact that

P ({σ ∈ dt} ∪ {mσ ≤ n}) = ηe−ηtF (n)dt.

Integrating both sides of (A.16) with respect to the cumulative distribution F (m) and

solving the resulting equation gives

1 + η

∫
M
δq(m)dF (m) =

(
1− η

∫
M

dF (n)

bq(n)

)−1

and substituting back into (A.16) produces the desired formula. Now assume that the

function F (m) is continuous. Combining Proposition 1 with the change of variable

formula for Stieljes integrals gives

η

∫
M

dF (n)

bq(n)
=

∫ 1

0

φ(q(1− s− x) + φ+ `(x))−1dx = κ(φ, F ∗q (m))

where the function `(x) is defined as in (A.15) and

κ(φ, x) = 1 + φ log

(
1 + φ

φ

)
+

(
1− 1 + φ

x

)
log

(
1 + φ

1 + φ− x

)
.

To complete the proof it remains to establish the comparative statics of δq(m) with respect
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to the meeting intensity. A direct calculation shows that

λ
∂2bq(m)

∂λ2
= φ2∂

2F ∗1 (m)

∂φ2
.

Since the distribution function F ∗1 (m) is concave in φ this shows that bq(m) is concave in

the meeting intensity and it follows that

∂bq(m)

∂λ
≥ lim

λ→∞

∂bq(m)

∂λ
= lim

λ→∞
q(1− s− F ∗0 (m)) + (1− q)F ∗1 (m)

= q(1− s− F (m))+ + (1− q)(1− s− F (m))− ≥ 0.

This shows that bq(m) is an increasing function of the meeting intensity and the desired

result now follows from equation (35) by noting that the distribution function F (m) does

not depend on the meeting intensity.

To complete the proof it remains to establish the comparative statics of δq(m) with

respect to the asset supply. For non owners the result follows from (35) by noting that

b0(m) is increasing in s as a result of Corollary 1. To obtain the result for asset owners I

start by observing that b1(m) is a convex in s since

∂2b1(m)

∂s2
=

2ηF (m)(1 + φ)(1− F (m))

Φ(m)3
≥ 0.

This implies that

∂2b1(m)

∂s2
≤ ∂2b1(m)

∂s2

∣∣∣∣
s=1

=
η(F (m)− 1)

φ+ F (m)
≤ 0

and the desired conclusion now follows from (35) by noting that the function F (m) does

not depend on the asset supply. Q.E.D.

Proof of Proposition 8. Evaluating (41) at the point m = m shows that the mass of

non asset owners solves the Ricatti differential equation

Ḟ0,t(m) = ν(1− F0,t(m))2

subject to a fixed initial condition F0,0(m). The formula of the statement as well the

convergence result now follow by direct calculation. Q.E.D.
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Proof of Proposition 9. Consider a candidate solution of the form

1− Φz,t(m) = ν−1 Ẏz,t(m)

Yz,t(m)

for some function Yz,t(m). Inserting this guess into (42) and simplifying the resulting

expression shows that this function solves

Ÿz,t(m) + ηẎz,t(m) = Rz,t(m)Yz,t(m)

with the discount rate

Rz,t(m) = νη(1− Φz,t(m)F (m)) + ν2(1− F (m))2

Using the fact that the function Φz,t(m) is given by (43) it can be shown that two linearly

independent solutions to this equation are given by

Yn,z,t(m) = e−
1
2

(η+Bz,t(m))tBz,t(m)Mn

(
1 +

φF (m)

1 + φ− F (m)
, 2, Bz,t(m)

)
where Mn(a, b, c) denotes the confluent hypergeometric of the n−th kind (see for example

Abramowitz and Stegun (1964)) and I have set

Bz,t(m) =
2(1 + φ− F (m))

1− Φz,t(m)
.

It follows that the general solution to (42) is explicitly given by

ν(1− Φz,t(m)) =
Ẏ1,z,t(m)− AẎ2,z,t(m)

Y1,z,t(m)− AY2,z,t(m)

for some function A = Az(m) ∈ C and imposing the initial condition Φz,0(m) then leads

to the formula in the statement. Q.E.D.

Proof of Theorem 3. Assume that the function Gt(m,x) solves equation (47) subject

to (18) so that the process

Mt = e−rtGt(mt, Xt) +

∫ t

0

e−rs
(
Xs + λÔs(ms, Xs|G)

)
ds

is a martingale over any finite horizon under the probability measure P . Using this
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property together with Girsanov theorem and the fact that

∆Mt = e−rt∆Gt(mt, Xt)

I obtain that the process

M̂t = Mt −
∫ t

0

e−rsλÔs(ms, Xs|G)ds = e−rtGt(mt, Xt) +

∫ t

0

e−rsXsds

is a local martingale under the equivalent probability measure P̂ . This in turn implies

that there exists an sequence of stopping times (σn)∞n=1 that is almost surely increasing

with t ≤ σn →∞ and such that

Gt(m,x) = lim
n→∞

Êt

[
e−r(σn−t)Gσn(mσn , Xσn) +

∫ σn

t

e−r(s−t)Xsds

]
= lim

n→∞
Êt

[
e−r(σn−t)Gσn(mσn , Xσn) +

∫ ∞
t

e−r(s−t)Xsds

]
where the second equality follows from the nonnegativity of cash flows and the monotone

convergence theorem. Using Assumption 1 together with (18) then shows that

e−r(σn−t)|Gσn(mσn , Xσn)| ≤ cg

(
Xt

St

)
Sσn

where the process St is a geometric Brownian motion with drift m − r < 0 under

the probability measure P̂ and it now follows from Lemma A.1 and the dominated

convergence theorem that

Gt(m,x) = Êt

∫ ∞
t

e−r(s−t)Xsds.

Using this identity together with the same arguments as in Section 3.4 then shows that

the uniformly bounded function defined by gt(m) = Gt(m,x)/x is time independent and

satisfies the integral equation

g(m)γ̂(m)− 1 = D̂(m|g) ≡
∫
M
g(n)

(
ηdF (n) + 1{n>m}λθ1dF (n)

)
.

This in turn implies that I must have g(m) = cΓ̂(m) for some free constant and imposing

the boundary condition

g(m) = 1 +Du(m|g) =

∫
M

(1 + ηg(n))dF (n)
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gives the formula of the statement. The monotonicity of the solution follows from that

of the function Γ̂(m) and the proof is complete. Q.E.D.

B Arguments omitted from the text

Proof of Equation (8). Assume that the functions Vq,t(m,x) solve (5) subject to (7).

Integrating in (5) with respect to the exponential distribution of the first time at which

the agent gets an opportunity to trade gives

Vq,t(m,x) = Et

∫ ∞
t

e−(r+λ)(s−t) (qXs + λVq,s(ms, Xs) + λEq,s(ms, Xs|G)) ds

and it follows that

e−(r+λ)tVq,t(mt, Xt) +

∫ t

0

e−(r+λ)s (qXs + λVq,s(ms, Xs) + λEq,s(ms, Xs|G)) ds

is a martingale over any finite horizon. Combining this with Emery’s inequality (see for

example Protter (2004, Theorem 3 p. 246)) and Itô’s lemma I deduce that

e−rtVq,t(mt, Xt) +

∫ t

0

e−rs (qXs + λEq,s(ms, Xs|G)) ds

is also a martingale over any finite horizon and, since the integral term is nonnegative, it

follows from the monotone convergence theorem that

Vq,t(m,x) = lim
n→∞

Et

[
e−r(n−t)Vq,n(mn, Xn) +

∫ ∞
t

e−r(s−t)(qXs + λEq,s(ms, Xs|G))ds

]
.

The growth condition (7) and Assumption 1 imply that

e−r(n−t)|Vq,n(mn, Xn)| ≤ cqe
−r(n−t)Xn ≤ Sn

where the process St is a geometric Brownian motion with drift m − r < 0. Combining

this bound with Lemma A.1 and the dominated convergence theorem then gives

lim
n→∞

Et
[
e−r(n−t)Vq,n(mn, Xn)

]
= 0
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and it follows that the functions Vq,t(m,x) solve (8). Conversely, if the functions Vq,t(m,x)

solve (8) subject to (7) then the law of iterated expectations gives

Vq,t(m,x) = Et

[
e−r(τ−t)Vq,τ (mτ , Xτ ) +

∫ τ

t

e−r(s−t)(qXs + λEq,s(ms, Xs|G))ds

]
where the stopping time τ > t denotes the first time that the agent gets an opportunity

to trade and the desired result now follows by noting that

Et
[
e−r(τ−t)Eq,τ (mτ , Xτ |G)

]
= Et

∫ τ

t

e−r(s−t)λEq,s(ms, Xs|G)ds

due to standard properties of exponential random variables. Q.E.D.

Proof of Equation (11). Consider the equivalent probability measure defined by

P (A) = E

[
1{A}e

−
∫ t
0 mu−du

(
Xt

X0

)]
, A ∈ Ft.

Using the definition of the operators E0 and E1 together with Bayes’ rule for conditional

expectations I obtain

vq,t(mt) = Vq,t(mt, Xt)/Xt = Et

∫ ∞
t

e−r(s−t)
(
Xs

Xt

)
(q + λEq,s(ms, 1, v1 − v0)) ds

= Et

∫ ∞
t

e−
∫ s
t (r−mu−)du (q + λEq,s(ms, 1, v1 − v0)) ds

and the desired conclusion now follows from the fact that, since its density only depends

on the Brownian motion, the new probability measure leaves the distribution of the

agent’s perceived growth rate unchanged. Q.E.D.

Comparative statics of γ(m) and Γ(m). A direct calculation shows that

∂γ(m)

∂λ
= θ1(1− s− F (m)) + F ∗1 (m)− φ∂F

∗
1 (m)

∂φ
(B.17)

Using the fact that the function F ∗1 (m) is increasing and concave in φ I obtain

∂

∂φ

[
F ∗1 (m)− φ∂F

∗
1 (m)

∂φ

]
= −φ∂

2F ∗1 (m)

∂φ2
≥ 0
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This shows that the right hand side of (B.17) is increasing in φ and since

lim
φ→0

∂γ(m)

∂λ
= θ1(1− s− F (m)) + lim

φ→0
F ∗1 (m)

= θ1(1− s− F (m)) + (1− s− F (m))−

= θ1(1− s− F (m))+ + θ0(1− s− F (m))− ≥ 0

it follows that the functions γ(m) and Γ(m) are both increasing in the intensity of

meetings between agents. Q.E.D.

Proof of Equation (40). Summing up the contributions of the four types of entries and

exits I obtain that the rate of change in the distribution is given by

Ḟq,t(m) = η(Fq,t(m)F (m)− Fq,t(m)) + Eq,t(m)− Xq,t(m) (B.18)

where

Eq,t(m) =
∑
n≥1

∫
M2

1{m2≤m1≤m}λdFn,t(m2)dFq−n,t(m1)

Xq,t(m) =

∫
M2

λ

(
1{m1≤m∧m2}dF (m2) +

∞∑
n=1

1{m2≤m1≤m}dFn,t(m2)

)
dFq,t(m1)

give respectively the total entry rate and the total exit rate. To simplify this expression

consider first the entry rate and observe that

Eq,t(m) =

q∑
n=1

∫
M2

1{m2≤m1≤m}λdFn,t(m2)dFq−n,t(m1)

=

q∑
n=0

∫
M

1{m1≤m}λFn,t(m1)dFq−n,t(m1)−
∫
M

1{m1≤m}λF0,t(m1)dFq,t(m1)

=

q∑
n=0

νFn,t(m)Fq−n,t(m)−
∫
M

1{m1≤m}λF0,t(m1)dFq,t(m1)

where the last equality follows from the assumed continuity of the distribution of perceived

growth rates and the fact that

d

(
q∑

n=0

Fn,t(m)Fq−n,t(m)

)
= 2

q∑
n=0

Fn,t(m)dFq−n,t(m).
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Now consider the exit rate and observe that

Xq,t(m) =

∫
M2

λ
(
1{m1≤m∧m2}dF (m2) + 1{m2≤m1≤m}(dF − dF0,t)(m2)

)
dFq,t(m1)

=

∫
M2

λ
(
1{m1≤m}dF (m2)− 1{m2≤m1≤m}dF0,t(m2)

)
dFq,t(m1)

= λFq,t(m)− λ
∫
M

1{m1≤m}F0,t(m1)dFq,t(m1)

where the first equality follows from (39) and the last from the fact that the total mass

of the population is equal to one. Substituting the expressions for Eq,t(m) and Xq,t(m)

into (B.18) and simplifying the result gives (40). Q.E.D.

Proof of Equation (41). Combining (39) with (40) shows that

−Ḟ0,t =
∞∑
q=1

Ḟq,t = λ(F0,t − F ) + ν

∞∑
q=1

q∑
n=0

Fn,tFq−n,t + η(F0,t − F0,t(m)F (m))

= λ(1− F0,t)(F0,t − F ) + ν
∞∑
q=1

q−1∑
n=1

Fn,tFq−n,t + η(F0,t − F0,t(m)F (m))

= λ(1− F0,t)(F0,t − F ) + ν
∞∑
n=1

Fn,t

∞∑
q=n+1

Fq−n,t + η(F0,t − F0,t(m)F (m))

= λ(1− F0,t)(F0,t − F ) + ν(F − F0,t)
2 + η(F0,t − F0,t(m)F (m))

= ν(1− F )2 − ν(1− F0,t) + η(F0,t − F0,t(m)F (m))

Q.E.D.

C Market makers

Assume now that in addition to a continuum of agents the market also includes a unit

mass of competitive market makers who have access to a frictionless interdealer market

and keep no inventory. An agent contacts market makers with intensity α ≥ 0. When an

agent contacts a market maker, they bargain over the terms of a potential trade and I

assume that the result of this negotiation is given by the Nash bargaining solution with

bargaining power z ∈ [0, 1] for the market maker.
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C.1 Pricing in the interdealer market

Let Πt denote the asset price on the interdealer market and consider a meeting between

a market maker and an agent with perceived growth rate m who holds q ∈ {0, 1} units

of the asset. The assumption of Nash bargaining implies that such a meeting results in

a trade if and only if the trade surplus

Sq,t(mt, Xt|G) = (2q − 1)(Πt −Gt(mt, Xt))

= (2q − 1)(Πt − V1,t(mt, Xt) + V0,t(mt, Xt))

is nonnegative in which case the realized price is

P̂t = zGt(mt, Xt) + (1− z)Πt.

If the gain from becoming an owner is increasing in the perceived growth rate then there

must exist a cutoff wt ∈ M such that only those owners with perceived growth rate

m ≤ wt are willing to sell to market makers, while only those non owners with m ≥ wt

are willing to buy. Since market makers must be indifferent to trading with marginal

agents this in turn implies that the price on the interdealer market is

Πt = Gt(wt, Xt) = V1,t(wt, Xt)− V0,t(wt, Xt).

To guarantee that the cutoff is unique and constant over time I will from now impose

the following assumption. As explained in Remark 9 this assumption only rules out the

non generic cases in which the distribution of perceived growth rates in the economy is

constant at the level 1− s over an open interval.

Assumption 2 F ∈ Fns and the quantile set Q defined in (30) is a singleton.

To determine the cutoff and thereby complete the description of the interactions between

agents and market makers, I use the fact that since market makers keep no inventory their

positions must net out to zero. The total mass of owners who contact market makers to

sell is αF1,t(wt). On the other hand, the total mass of non owners who contact market

makers to buy the asset is

α(1− s− F0,t(wt) + ∆F0,t(wt)).

Since the distribution of perceived growth rates can have atoms, some randomization may

be required at the margin. Taking this into account shows that the interdealer market

60



clearing condition is

F1,t(wt)− (1− π1,t)∆F1,t(wt) = 1− s− F0,t(wt) + π0,t∆F0,t(wt) (C.19)

where πq,t ∈ [0, 1] denotes the probability with which market makers execute orders from

marginal agents of ownership type q. Combining this condition with Assumption 2 shows

that the cutoff is uniquely given by the lowest quantile

wt = m∗ = inf{m ∈M : F (m) ≥ 1− s},

and it now remains to determine the execution probabilities. Two cases may arise

depending on the properties of the distribution. If F (m∗) = 1 − s as illustrated in

the left panel of Figure 4 then the execution probabilities are uniquely defined by πq,t = q

and only marginal buyers get rationed in equilibrium. On the contrary, if the cutoff is

an atom such that F (m∗) > 1− s as in the middle panel of the figure then the execution

probabilities are not uniquely defined. In this case, one may for example take

π0,t = 1− π1,t =
F (m∗)− (1− s)

∆F (m∗)

so that a fraction of both marginal buyers and marginal sellers get rationed in equilibrium,

but many other choices are also compatible with market clearing. This choice has by

construction no influence on the welfare of agents, and I verify below but it also does not

have any impact on the evolution of the equilibrium distribution of types.

C.2 Equilibrium distribution of types

Since agents can now trade both among themselves and with market makers, the evolution

of the equilibrium distributions of perceived growth rates must include additional entry

and exit terms to reflect the new trading opportunities.

Let πq,t be execution probabilities such that (C.19) holds and consider the group of

asset owners who are more pessimistic than a fixed m ∈ M. In addition to the entry

channels of the benchmark model, an agent may enter this group because he is a non

owner with n ≤ m who buys the asset from a market maker. In a monotone equilibrium,
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the contribution of such entries is

Et(m) =

∫
M
α(1{n>m∗} + π0,t1{n=m∗})1{n≤m}dF0,t(n)

= α(F0,t(m)− F0,t(m
∗))+ + 1{m∗≤m}απ0,t∆F0,t(m

∗)

where the last term takes into account the fact that not all meetings with marginal

buyers result in a trade. On the other hand, an agent may exit this group because he is

an asset owner with n ≤ m who sells to a market maker. In a monotone equilibrium, the

contribution of such exits is

Xt(m) =

∫
M
α(1{n<m∗} + π1,t1{n=m∗})1{n≤m}dF1,t(n)

= αF1,t(m ∧m∗)− 1{m∗≤m}α(1− π1,t)∆F1,t(m
∗).

Gathering these contributions and using the market clearing conditions (3) and (C.19)

shows that the total contribution of intermediated trades is independent from the choice

of the choice of the execution probabilities and given by

Et(m)− Xt(m) = −αF1,t(m) + α(1− s− F (m))−.

Finally, combining this with (14) shows that the equilibrium rate of change in the mass

of asset owners who are more pessimistic than a fixed m ∈M is

Ḟ1,t(m) = λR(m,F1,t(m)) + α(1− s− F (m))− − αF1,t(m) (C.20)

and does not depends on the choice of the execution probabilities. In order to solve this

Ricatti differential equation set ψ = α/λ and let

F ∗1 (m) = −1

2
(1− s+ φ+ ψ − F (m)) +

1

2
Ψ(m)

where

Ψ(m) =
√

(1− s+ φ+ ψ − F (m))2 + 4sφF (m) + 4ψ(1− s− F (m))−

denote the strictly positive solution to the characteristic equation associated with the

differential equation (C.20). The following result is a the direct counterpart of Proposition

1 for the model with market makers.
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Proposition C.1 In a monotone equilibrium with market makers the distribution of

growth rates among asset owners is given by

F1,t(m) = F ∗1 (m) +
(F1,0(m)− F ∗1 (m))Ψ(m)

Ψ(m) + (F1,0(m) + Ψ(m)− F ∗1 (m)) (eλΨ(m)t − 1)
.

and converges strongly to the steady state distribution F ∗1 (m) from any initial condition

such that (3) holds.

Proof. The proof is analogous to that of Proposition 1. Q.E.D.

Corollary C.1 The steady state distribution F ∗1 (m) is increasing in the asset supply s,

increasing and concave in φ, and decreasing and convex in ψ with

lim
φ→0

F ∗1 (m) = lim
ψ→∞

F ∗1 (m) = (1− s− F (m))−

lim
φ→∞

F ∗1 (m) = lim
ψ→0

F ∗1 (m) = sF (m).

Proof. The proof is analogous to that of Corollary 1. Q.E.D.

C.3 Equilibrium value functions

Having characterized the equilibrium distribution of beliefs among owners and non owners

it now remains to compute the individual value functions and to verify the conjectured

monotonicity of the gain from becoming an owner.

Taking as given the distribution of perceived growth rates among the populations of

owners and non owners I define the value functions by the system

Vq,t(m,x) = Et

[ ∫ τ

t

e−r(s−t)qXsds+ e−r(τ−t)Vq,τ (mτ , Xτ ) (C.21)

+ e−r(τ−t)
(
1{τ=τa}Eq,τ + 1{τ=τm}Mq,τ

)
(mτ , Xτ |G)

]
where the stopping time τ = τm ∧ τa denotes the first time that the agent gets an

opportunity to trade with either a market maker or another agent, the operator Eq defined

as in (6) represents the expected gain from a meeting with an agent of the complementary

ownership type, and the operator

Mq,t(m,x|G) = (1− z)Sq,t(m,x|G)+

= (1− z)((2q − 1)(Gt(m
∗, x)−Gt(m,x)))+
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represents the payoff from a meeting with a market maker. To pin down a unique

monotone equilibrium I further require that the value functions satisfy (7) and the same

arguments as in the model without market makers show that under this growth condition

the system (C.21) is equivalent to

Vq,t(m,x) = Et

∫ ∞
t

e−r(s−t) (qXs + λEq,s(ms, Xs|G) + αMq,s(ms, Xs|G)) ds.

Using the conjectured monotonicity of the gain from becoming an asset owner it can

be shown that solving this system is in turn equivalent to solving the single dynamic

programming equation

Gt(m,x) = Et

∫ ∞
t

e−r(s−t)(Xs + λOs(ms, Xs|G) (C.22)

+ α(1− z)(Gt(m
∗, Xs)−Gt(ms, Xs)))ds.

subject to (18) where the linear operator O is defined as in (20) but with the equilibrium

distributions of Proposition C.1. To construct the solution to this equation consider the

probability measure P̂ under which the compensator of an agent’s perceived growth rate

is given by

Q̂(dt,B) = Q∗(dt,B) + 1{m∗∈B}α(1− z)dt.

Compared to the benchmark model with only bilateral meetings the compensator includes

an additional term that reflects the new trading opportunities available in the market:

market makers can be simply interpreted as additional agents whose perceived growth

is constantly equal to m∗. As in the model without intermediated trades this auxiliary

probability measure should be interpreted as tracking the beliefs of the marginal agent

and can be used to compute the equilibrium. To state the result set

Γα(m) = exp

(
−
∫ m

m

dn

γ(n) + α(1− z)

)
where the discount rate γ(m) > 0 is defined as in (25) albeit with the steady state

distributions of Proposition C.1 instead of those of Proposition 1.

Theorem C.1
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1. The unique solution to (C.22) such that (18) holds is

Gt(m,x) = Êt

∫ ∞
t

e−r(s−t)Xsds

and increases with the agent’s perceived growth rate. In particular, there exists a

unique monotone equilibrium with market makers.

2. Assume that F1,0(m) = F ∗1 (m). Then the unique monotone equilibrium with market

makers is stationary and given by

G(m,x) =
xΓα(m)

r −m+ α(1− z)(1− Γα(m∗)) +D∗(m|1− Γα)

and the steady state distributions of Proposition C.1.

Proof. The proof is analogous to those of Theorems 1 and 2. Q.E.D.

As in the model without intermediated trades it is possible to show that the steady state

equilibrium is globally stable and converges to the competitive equilibrium as trading

becomes instantaneous.

Corollary C.2

1. The unique monotone equilibrium converges to the stationary monotone equilibrium

from any initial condition as t→∞.

2. The stationary monotone equilibrium with market makers converges to the Wal-

rasian equilibrium as λ→∞ if the bargaining powers θq ∈ (0, 1) and as α→∞ if

the dealer bargaining power z < 1.

Proof. The proof is analogous to those of Corollary 2 and Proposition 4. Q.E.D.

In the model with market makers trading volume is the sum of two terms: The number

of bilateral meetings that give rise to a trade and the number of trades intermediated by

market makers. As in the benchmark model, the first term

ϑb(s, η, λ, α) =

∫
M2

1{n≤m}λdF
∗
1 (n)dF ∗0 (m).

represents the number of trades that occur due to bilateral meetings among agents.

Since market makers do not keep inventory, each trade that they execute is backed by an

offsetting trade. In accordance with the conventions of the NYSE (see Atkins and Dyl
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(1997) for a discussion) I therefore define the number of intermediated trades as half the

number of trades executed by market makers (or equivalently as the total number of sell

orders they execute) that is

ϑm(s, η, λ, α) = αF ∗1 (m∗)− α(1− π1)∆F ∗1 (m∗)

where the constant π1 ∈ [0, 1] is the probability with which marginal sell orders are

executed. The total trading volume is then defined by ϑ = ϑb + ϑm. The following result

provides an explicit solution for the equilibrium trading volume and constitutes the direct

counterpart of Proposition 5.

Proposition C.2 Assume that the distribution F (m) is continuous. Then the steady

state trading volume is explicitly given by

ϑ(s, η, λ, α) = η (1− s) (ψ + s(1 + φ)) log

(
1 +

F ∗1 (m∗)

(1− s)φ

)
− ηs

[
1− s+ (ψ + (1− s)(1 + φ)) log

(
1 +

F ∗1 (m∗)

ψ + (1− s)(1 + φ)

)]
and satisfies

lim
λ→0

ϑ(s, η, λ, α) = lim
λ→0

ϑm(s, η, λ, α) =
αηs(1− s)
α + η

where the constant

F ∗1 (m∗) = −1

2
(φ+ ψ) +

1

2

√
4s(1− s)φ+ (φ+ ψ)2

gives the steady state mass of owners who trade with market makers. In particular, trading

volume is increasing in α, λ and η.

Proof. The proof is analogous to that of Proposition 5. Q.E.D.

The above proposition shows that the conclusion of Proposition 5 remains valid in the

presence of market makers: The steady state trading volume does not depend on the

distribution of beliefs in the economy as long as it is continuous and is fully determined

by the meeting intensities, the frequency of changes in beliefs and the asset supply.
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D Non stationary initial distribution

Assume that the initial distribution of perceived growth rates in the population is given

by an arbitrary cumulative distribution function F0(m) which need not even be absolutely

continuous with respect to F (m). In this case the distribution of perceived growth rates

in the economy is given by

Ft(m) = e−ηtF0(m) +
(
1− e−ηt

)
F (m)

and converges to F (m). On the other hand, the same arguments as in Section 3.3 show

that in a monotone equilibrium the distributions of perceived growth rate among the

population of asset owners solves the Ricatti equation

Ḟ1,t(m) = −λF1,t(m)2 − λ(Q0(m) + e−ηtQ1(m))F1,t(m) + λQ2(m)

with

Q0(m) = 1− s+ φ− F (m)

Q1(m) = F (m)− F0(m)

Q2(m) = sφF (m).

Given an initial condition F1,0(m) this Ricatti equation admits a unique solution that can

be expressed in terms of the confluent hypergeometric function of the first kind M1(a, b;x)

(see Abramowitz and Stegun (1964)) as

λF1,t(m) = λ(Ft(m)− F0,t(m)) =
Ẏ+,t(m)− A(m)Ẏ−,t(m)

Y+,t(m)− A(m)Y−,t(m)

with

Y±,t(m) = e−
λ
2

(Q0(m)±Φ(m))tM1

(
Q0(m)± Φ(m)

2φ
, 1± Φ(m)

φ
; e−ηt

Q1(m)

φ

)
and

A(m) =
Ẏ+,0(m)− λF1,0(m)Y+,0(m)

Ẏ−,0(m)− λF1,0(m)Y−,0(m)

Φ(m) =
√
Q0(m)2 + 4Q2(m) =

√
(1− s+ φ− F (m))2 + 4sφF (m).
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Furthermore, it follows from basic properties of the confluent hypergeometric function

that this solution converges to a unique steady state that is the same as in the model

with stationary initial distribution:

lim
t→∞

F1,t(m) =
1

2
(Φ(m)−Q0(m)) = F ∗1 (m).

The unique monotone equilibrium can then be computed as in Theorem 1 by substituting

the above time-dependent distributions into (21). On the other hand, the same arguments

as in the proof of Corollary 2 show that this monotone equilibrium converges to the same

stationary monotone equilibrium as in Theorem 2.
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