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A Formulation

A.1 The firm

The firm operates in continous-time and generates cash flows at rate Yt ≥ 0. The value

of the unlevered firm is defined as

Vt = Et
∫ ∞
t

e−r(s−t)(1− τ)Ysds

where r > 0 denotes the risk-free rate, τ ∈ [0, 1) denotes the corporate tax rate, and the

expectation is with respect to the risk-neutral probability measure P. We assume that

the cash flow process Yt evolves according to

dYt = Yt (σdWt + µdt) (1)

for some constants σ > 0 and 0 ≤ µ < r where Wt is a risk-neutral Brownian motion. As

a result, the value of the unlevered firm is explicitly given by

Vt =

(
1− τ
r − µ

)
Yt

and thus also evolves as a geometric Brownian motion. This shows that we may equiva-

lently use Vt or Yt as a state variable and we choose later so stay in line with the existing

dynamic capital structure literature .

A.2 Debt contracts

The firm’s debt takes the form of a continuum of ex-ante identical, exponentially maturing

bonds that have equal seniority and pay coupons at rate c > 0. The mass of existing

bonds at date t ≥ 0 defines the face value Ft of the firm’s debt and we assume that each

bond matures independently of all others with intensity ξ > 0 so that debtholders receive

payments at rate (c+ ξ)Ft as long as the firm operates. The recovery of bonds in default

is assumed to be zero.

The firm can at adjust its capital structure all times by retiring or issuing bonds at

market value but is subject to a fixed adjustment cost βYt with β > 0. As a result, the

face value of the firm’s debt evolves according to

dFt = −ξFt−dt+ dIt

where It is a process with initial value I0− = 0 whose increments capture changes in the
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capital structure of the firm.

A.3 Strategies

As long as β > 0 any adjustment process It whose paths has intervals of continuity leads

to an infinite accumulation of adjustment costs. Building on this observation we define

a default and adjustment strategy as a pair

s ≡ {τb(s), I(s)}

where τb(s) is a stopping time that represents the time of default and It(s) is a discrete

process of the form

It(s) =
∑
s∈A(s)

1{s≤t}∆Is(s) =
∑
s∈A(s)

1{s≤t}As(s)Fs−

where A(s) is a thin set whose elements represent the moments at which the firm

restructures its capital and At(s) ≥ −1 is a predictable process that represents the

relative size of the adjustment conditional on a restructuring at date t ≥ 0.

We will for the most part focus on Markov equilibria in which the state summarized

by the variables Ft and Yt that determine the cash flows of all stakeholders. Accordingly,

a strategy is said to be Markovian if

A(s) = {t ≥ 0 : (Ft−, Yt) ∈ R} ,

τb(s) = inf{t ≥ 0 : (Ft, Yt) ∈ D},

and

At(s) = 1{(Ft−,Yt)∈R}A (Ft−, Yt) .

for some closed disjoint subsets D,R of R2
+ and some function A = A(·|s) : R → [−1,∞).

If in addition

D =
{

(F, Y ) ∈ R2
+ : Y/F ∈ D̄

}
,

R =
{

(F, Y ) ∈ R2
+ : Y/F ∈ R̄

}
,

A (F, Y ) = a (Y/F )

for some closed disjoint subsets D̄, R̄ of R+ and some function a = a(·|s) : R̄ → [−1,∞)

then we say that s is reduced Markovian. Throughout we denote by S0 the set of all
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default and adjustment strategies, by M ⊂ S0 the subset of Markovian strategies, and

by Mr ⊂M the subset of reduced Markovian strategies.

A.4 Debt valuation

Denote by Pt(s) ≥ 0 the value of an individual bond issued by the firm when creditors

anticipate that management will use the strategy s ∈ S0. The absence of arbitrage

opportunities requires that

Pt(s) = Et

[∫ τm∧τb(s)

t

e−r(s−t)cds+ 1{τm<τb(s)}e
−r(τm−t)

]

on the set {τm∧τb(s) > t} where τm is an exponential random variable with mean m = 1/ξ

that represents the maturity of the individual bond under consideration. Integrating

inside the expectation against the conditional distribution

Pt [τm ∈ ds |τm > t ] = 1{s>t}e
−ξ(s−t)ξds

then shows that on the set {τb(s) > t} the market price of an individual bond issued by

the firm is given by

Pt(s) = Et

[∫ τb(s)

t

e−ρ(s−t)(c+ ξ)ds

]
≤ c+ ξ

ρ
(2)

with the maturity-adjusted discount rate ρ ≡ r + ξ.

If s is Markovian then the right hand side of the above identity only depends on the

path of the pair (Ft, Yt). As a result, the bond price

Pt(s) = P (Ft, Yt|s)

is a bounded function of these variables and, since the adjustment times are predictable,

we have that this function satisfies the no-jump condition

P (F, Y |s) = P (F (1 + A(F, Y )) , Y |s) , (F, Y ) ∈ R(s), (3)

which guarantees that the market price of the bond does not react to the occurence of

an anticipated restructuring of the firm’s capital. By the same token, if s is reduced

Markovian then the right hand side of (2) only depends on the path of the invers leverage

process yt. In that case, the bond price Pt(s) = P (yt|s) is a bounded function of yt and
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the absence of arbitrage requires that this function satisfies

P (y|s) = P

(
y

1 + a(y)

∣∣∣∣ s) , y ∈ R̄(s), (4)

which again guarantees that the market price of the bond does not react to the occurence

of an anticipated restructuring.

A.5 Equity valuation without commitment

Because default and capital adjustments are decided upon after debt has been issued

management may have incentives to deviate from the policy conjectured by creditors.

Absent commitment this implies that creditors will only accept to lend money to the firm

if the debt contract is incentive compatible in the sense that management never wants to

deviate from the strategy that creditors use to price the bonds at issuance.

If creditors conjecture that the firm will use a ∈ S0 but management instead uses

another strategy s ∈ S0 then the value of equity is

Et(s, a) ≡ Et

[∫ τb(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]
(5)

subject to the cash flow dynamics (1) and

dFs = −ξFs−dt+ dIs(s) (6)

where

δ(Fs, Ys) ≡ (1− τ)Ys − (ξ + c(1− τ))Fs

is the instantaneous cash flow to equity holders and

Nt(s) ≡
∑
s∈A(s)

1{s≤t}

is the counting process induced by the restructuring times of s. To formalize the notion

of an equilibrium let S denote the set of strategies such that

Λ(s) ≡ E

[∫ τb(s)

0

e−rs (Fs(s) + Ys) ds+ (|∆Fs(s)|+ Ys) dNs(s)

]
<∞ (7)

We then have the following:
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Definition 1 A subgame perfect equilibrium (SPE) is a strategy a ∈ S such that

Et (a, a) = sup
s∈S

Et (s, a) , t ≥ 0.

A Markov perfect equilibrium (MPE) is a SPE in M while a reduced Markov Perfect

Equilibrium (rMPE) is a SPE in Mr.

B Results

B.1 Characterization of SPEs

As a first step towards the construction of equilibria for our default and restructuring

game we derive a version of the one shot deviation principle.

Lemma 1 A strategy a ∈ S is a SPE if and only if

Et (a, a) = sup
s∈S

Et

[∫ θt(s)∧τb(s)

t

e−r(s−t)δ(Fs, Ys)ds (8)

+ 1{θt(s)<τb(s)}e
−r(θt(s)−t)

(
Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

)]

where the stopping time

θt(s) ≡ inf {s ≥ t : s ∈ A(s)} = inf {s ≥ t : dIs(s) 6= 0}

denotes the time of the first restructuring prescribed by the strategy s ∈ S on or after an

arbitrary date t ≥ 0.

Proof. Assume that a ∈ S is a SPE, let s ∈ S and consider for each fixed starting

point t ≥ 0 the one-shot deviation st obtained by following s until τb(s) ∧ θt(s) and then

reverting to a. Using the equilibrium property of a together with the law of iterated
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expectations we deduce that

Et (a, a) = Et

[∫ θt(a)∧τb(a)

t

e−r(s−t)δ(Fs, Ys)ds

+ 1{θt(a)<τb(a)}e
−r(θt(a)−t) (Eθt(a)(a, a) + Pθt(a)(a)∆Iθt(a)(a)− βYθt(a)

)]

≥ Et (st, a) = Et

[∫ θt(s)∧τb(s)

t

e−r(s−t)δ(Fs, Ys)ds

+ 1{θt(s)<τb(s)}e
−r(θt(s)−t)

(
Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

)]

and the necessity of (8) follows from the arbitrariness of s ∈ S. To establish the converse

assume that a ∈ S satisfies (8). Since never restructuring and defaulting at the first time

that the cash flow becomes negative is feasible we have that Et(a, a) ≥ 0 at all times.

Using this property and iterating (8) forward we deduce that

Et(a, a) ≥ Et

[∫ τb(s)∧θn,t(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]

where θn,t(s) is the time of the nth restructuring after t ≥ 0. let Zn,t denote the random

variable inside the conditional expectation. Since the bond price is bounded and δ(F, Y )

is a linear function we have that

sup
n≥1
|Zn,t| ≤ C0(t)

∫ τb(s)

0

e−rs ((Fs + Ys) ds+ (|∆Is(s)|+ Ys)dNs(s))

for some deterministic function C0(t) > 0 and it follows from (7) that the right hand side

has finite expectation. Letting the number of restructuring rounds n→∞ and appealing

to the dominated convergence theorem then gives

Et(a, a) ≥ Et

[∫ τb(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]

and the desired result now follows from (5).

Lemma 1 provides a characterization of SPEs in terms of a stochastic control problem

in which the controlled process is two dimensional. To further simplify the construction

of equilibria we now provide an alternative characterization that only involves a one

dimensional controlled process.
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Corollary 1 A default and adjustment strategy a ∈ S is a SPE if and only if the scaled

equity value process et(a) = Et(a, a)/Ft satisfies

et(a) = sup
s∈S

Et

[∫ θt(s)∧τb(s)

t

e−ρ(s−t)δ(ys)ds (9)

+ 1{θt(s)<τb(s)}e
−ρ(θt(s)−t)

((
1 + Aθt(s)(s)

)
eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)]

with the discount rate ρ = r + ξ and the cash flow function δ(y) ≡ δ(1, y).

Proof. The result follows from Lemma 1 by noting that we have

Fs = e−ξ(s−t)Ft, for all s ∈ [t, θt(s)),

and therefore

Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

= Fθt(s)−

(
Fθt(s)
Fθt(s)−

eθt(s)(a) + Pθt(s)(a)
∆Iθt(s)(s)

Fθt(s)−
− βyθt(s)−

)
= Fθt(s)−

((
1 + Aθt(s)(s)

)
eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)
= e−ξ(θt(s)−t)Ft

((
1 + Aθt(s)(s)

)
eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)
where the second equality follows from the definition of At(s) ≥ −1 as the relative size

of the debt adjustment.

Proposition 1 (Leverage ratchet effect) If a ∈ S is a MPE then It(a) is a non

decreasing process.

Proof. Assume that a ∈M is a MPE in which

P [{s ∈ A(a) : dIs(a) < 0}] 6= 0.

To show that this leads to a contradiction consider the deviation â ∈ S0 defined by the

default time τb(â) ≡ τb(a) and the face value process

Ft(â) ≡ sup
0≤u≤t

{
eξ(u−t)Fu(a)

}
.

Standard results in the theory of Skorokhod reflection problems (see for example (au-
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thor?) (2) and references therein) show that we have

0 ≤ ∆It(â) = (Ft(a)− Ft−(â))+ ≤ ∆It(a)+ (10a)

0 = (Ft(a)− Ft(â)) ∆It(â). (10b)

Using these properties we show in Lemma 2 below that â ∈ S defines a feasible deviation

and it remains to show that this deviation is profitable.

Denote by P (F, Y ) = P (F, Y |a) the bond price function induced by the assumed

Markov perfect equilibrium and by c̄ ≡ c(1− τ) + ξ the after tax cost of debt per unit of

face value. A direct calculation using (5) then shows

E0 (â, a)− E0 (a, a) = E

[∫ τb(a)

0

e−rsc̄ (Fs(a)− Fs(â)) ds (11)

+

∫ τb(a)

0

e−rs (P (Fs(â), Ys)dIs(â)− βYsdNs(â))

−
∫ τb(a)

0

e−rs (P (Fs(a), Ys)dIs(a)− βYsdNs(a))

]

≥ E

[∫ τb(a)

0

e−rs (c̄Gsds− P (Fs−(a), Ys) (dGs + ξGs−ds))

]

= E

[∫ τb(a)

0

e−rs(c̄− ξP (Fs(a), Ys))Gsds+

∫ τb(a)

0

Gs−d
(
e−rsP (Fs(a), Ys)

)]

where Gt ≡ Ft(a) − Ft(â) is the difference between the face value processes associated

with the two strategies, the inequality follows from (10b) and (3), and the last equality

follows from the fact that

P (F0, Y0|a)G0 = Gτb(a)P
(
Fτb(a)(a), Yτb(a)

)
= 0.

Now, since the process

e−ρtP (Ft(a), Yt) +

∫ t

0

e−ρs(c+ ξ)ds

is by construction a martingale on the stochastic interval [[0, τb(a)]] we have that there

exists a local martingale Mt such that

d(e−rtP (Ft(a), Yt)) = e−rt (ξP (Ft−(a), Yt)− (c+ ξ)) dt+ e−rtdMt.
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Substituting this evolution into (11) then gives

E0 (â, a)− E0 (a, a) ≥ E

[∫ τb(a)

0

e−rsGs−dMs −
∫ τb(a)

0

e−rscτGsds

]
(12)

and the desired result now follows from Lemma 3 below and the fact that Gt is non

positive by construction.

Lemma 2 The strategy â ∈ S.

Proof. Using (10) we deduce that the deviation â satisfies dNt(â) ≤ dNt(a) as well as

|∆Ft(â)| ≤ |∆Ft(a)| and it follows that

E

[∫ τb(a)

0

e−rs ((|∆Fs(â)|+ Ys) dNs(â)− (|∆Fs(a)|+ Ys) dNs(a))

]
≤ 0. (13)

On the other hand, Itô’s formula implies that we have

Fs(â)− Fs(a) =

∫ s

0

eξ(u−s) (dIu(â)− dIu(a))

and therefore∫ τb(a)

0

e−rs (Fs(â)− Fs(a)) ds =

∫ τb(a)

0

ds e−ρs
{∫ s

0

eξu (dIu(â)− dIu(a))

}
≤
∫ τb(a)

0

ds e−ρs
{∫ s

0

eξu|∆Fu(a)|dNu(a)

}
=

∫ τb(a)

0

e−rudNu(a)|∆Fu(a)|
{∫ τb(a)

u

e−ρ(s−u)ds

}
≤ 1

ρ

∫ τb(a)

0

e−ru|∆Fu(a)|dNu(a). (14)

where the first inequality follows from (10b). Combining (13) and (14) then shows that

Λ(â) ≤ C0Λ(a) for some C0 > 0 and the desired result follows.

Lemma 3 The process

Ut ≡
∫ t∧τb(a)

0

e−rsGs−dMs

that appears in (12) has expected value zero.

Proof. Denote by Pt(a) = P (Ft(a), Yt) the bond price along the path of the assumed
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equilibrium. Itô’s formula implies that

Ut = e−rθGθPθ(a) +

∫ θ

0

e−rs ((c+ ξ)Gsds− Ps(a) (dIs(a)− dIs(â)))

∣∣∣∣
θ≡τb(a)∧t

and it thus follows from the uniform boundedness of the bond price process, the non

positivity of Gt and (10a) that we have

|Ut|
C1

≤ e−rt∧τb(a)|Gt∧τb(a)|+
∫ t∧τb(a)

0

e−rs ((c+ ξ)|Gs|ds+ |dIs(a)− dIs(â)|)

=

∫ t∧τb(a)

0

e−rs ((r − c)Gsds+ dIs(â)− dIs(a) + |dIs(a)− dIs(â)|)

≤
∫ τb(a)

0

e−rs ((Fs(â) + Fs(a)) |r − c|ds+ |∆Fs(a)|dNs(a))

for some constant C1 > 0. This in turn implies that

E
{

sup
t≥0
|Ut|
}
≤ C2 (Λ(a) + Λ(â)) <∞

for some constant C2 > 0 where the second inequality follows from the fact that a and

â are both feasible by Lemma 2. This shows that the local martingale Ut is a uniformly

integrable martingale and the desired result follows.

B.2 Recursive optimal stopping representation

The following lemma shows that the search for Markov equilibria is equivalent to solving

a recursive optimal stopping problem.

Lemma 4 A Markovian strategy a ∈M∩ S is a MPE if and only if the induced equity

value function satisfies

E(F, Y |a) = sup
θ∈T

EF,Y
[∫ θ

0

e−rtδ(F̄t, Yt)dt+ e−rθR
(
F̄θ, Yθ|a

)+
]

(15)

subject to (1) and the uncontrolled dynamics

dF̄t = −ξF̄tdt

where the reward function is defined by

R(F, Y |a) ≡ sup
G∈R+

{E(G, Y |a) + (G− F )P (G, Y |a)− βY } (16)
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and T denotes the set of stopping times.

Proof of necessity. Assume that a ∈M∩ S is a MPE and denote by

R(F, Y,G|a) ≡ E(G, Y |a) + (G− F )P (G, Y |a)− βY

the objective function on the right hand side of (16). Since (τb(a), θ0(a)) are stopping

times it follows from (16) and Lemma 1 that

E(F, Y |a) = EF,Y

[∫ τb(a)∧θ0(a)

0

e−rtδ(F̄t, Yt)dt

+ e−rθ0(a)1{θ0(a)<τb(a)}R
(
F̄θ0(a), Yθ0(a), F̄θ0(a)

(
1 + A(F̄θ0(a), Yθ0(a))

)∣∣ a)]

≤ sup
(τ,θ)∈T 2

EF,Y

[∫ τ∧θ

0

e−rtδ(F̄t, Yt)dt+ 1{θ<τ}e
−rθR

(
F̄θ, Yθ|a

)]

≤ sup
(τ,θ)∈T 2

EF,Y

[∫ τ∧θ

0

e−rtδ(F̄t, Yt)dt+ 1{θ<τ}e
−rθR

(
F̄θ, Yθ|a

)+

]

≤ sup
ζ∈T

EF,Y

[∫ ζ

0

e−rtδ(F̄t, Yt)dt+ e−rζR
(
F̄ζ , Yζ |a

)+

]

To establish the reverse inequality let

Rn(F, Y |a) ≡ sup
0≤G≤n

R(F, Y,G|a)

and consider the sequence (sn)∞n=1 of one shot deviations defined by

θ0(sn) ≡ σ + 1{Rn(F̄σ ,Yσ |a)≤0}∞,

τb(sn) ≡ 1{Rn(F̄σ ,Yσ |a)≤0}σ + 1{Rn(F̄σ ,Yσ |a)>0}(σ + qσ ◦ τb(a)),

and

F̄θ0(sn)

(
1 + Aθ0(sn)(sn)

)
= argmay

0≤G≤n
R
(
F̄θ0(sn), Yθ0(sn), G|a

)
where σ is an arbitrary but fixed stopping time, and qσ denotes the Markov shift operator.

It is easily seen that sn ∈ S is a feasible deviation for each n ≥ 1. Therefore, it follows
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from Lemma 1 and the specification of sn that we have

E(F, Y |a) ≥ EF,Y
[∫ τb(sn)∧θ0(sn)

0

e−rtδ(F̄t, Yt)dt

+ e−rθ0(sn)1{θ0(sn)<τb(sn)}Rn(F̄θ0(sn), Yθ0(sn)|a)

]
= EF,Y

[∫ σ

0

e−rtδ(F̄t, Yt)dt+ e−rσRn(F̄σ, Yσ|a)+

]
.

Letting n→∞ on both sides and invoking the monotone convergence theorem to justify

the interchange of limit and expectation then gives

E(F, Y |a) ≥ EF,Y
[∫ σ

0

e−rtδ(F̄t, Yt)dt+ e−rσR(F̄σ, Yσ|a)+

]
and the result follows by taking the supremum over σ ∈ T .

Proof of sufficiency. Assume that a ∈ M ∩ S satisfies (15) and let s ∈ S be fixed.

Because τb(s) ∧ θt(s) is a stopping time this implies that we have

E(Ft, Yt|a) ≥ Et
[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(τb(s)∧θt(s)−t)R
(
F̄τb(s)∧θt(s), Yτb(s)∧θt(s)

∣∣ a)+
]

≥ Et
[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(θt(s)−t)1{θt(s)<τb(s)}R
(
F̄θt(s), Yθt(s)

∣∣ a)]
≥ Et

[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(θt(s)−t)1{θt(s)<τb(s)}R
(
F̄θt(s), Yθt(s), F̄θt(s)

(
1 + Aθt(s)(s)

)∣∣ a)]
and the required result now follows from Lemma 1, the arbitrariness of s ∈ S and the

definition of the function R(F, Y,G|a).

The next result specializes Lemma 4 to the case of rMPEs and will serve as a basis for

most of our results on barrier strategies.

Lemma 5 A strategy a ∈ Mr ∩ S is a rMPE if and only if the induced equity value
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function satisfies

e(y|a) = sup
θ∈T

Ey
[∫ θ

0

e−ρtδ(ȳt)dt+ e−ρθφ (ȳθ|a)+

]
(17)

= ê(y) + sup
θ∈T

Ey
[
e−ρθψ (ȳθ|a)

]
(18)

subject to

dȳt = ȳt (σdWt + (ξ + µ) dt)

where

ê(y) ≡ Ey
[∫ ∞

0

e−ρtδ(ȳt)dt

]
=
δ(0)

ρ
+
δ(y)− δ(0)

r − µ

denotes the equity value associated with never defaulting or restructuring, and the reward

functions are defined by

φ(y|a) ≡ sup
z≥0

Φ(y, z|a) = sup
z∈R+

{y
z
e(z|a) +

(y
z
− 1
)
P (z|a)− βy

}
ψ(y|a) ≡ φ(y|a)+ − ê(y).

In particular, if a is a rMPE then the induced scaled equity value is nonnegative, convex,

and differentiable at all points where e(y|a) = φ(y|a)+.

Proof. Equation (17) follows from Lemma 4 by noting that

R(F̄t, Yt|a)/F̄t = sup
z≥0

{
Yt
zF̄t

e (z|a) +

(
Yt
zF̄t
− 1

)
P (z|a)

}
− βYt
zF̄t

= sup
z≥0

{ ȳt
z
e (z|a) +

( ȳt
z
− 1
)
P (z|a)

}
− βȳt = φ(ȳt|a)

and F̄t = e−ξtF0. To see that (17) is equivalent to (18) it suffices to observe that the

no-action equity value function satisfies the Dynkin identity

ê(y)− Ey
[
e−ρζ ê(ȳζ)

]
= Ey

[∫ ζ

0

e−ρtδ(ȳt)dt

]
for all stopping times ζ ∈ T . Setting θ ≡ 0 in (17) shows that the equity value function

is nonnegative. On the other hand, we have that ψ(y|a) is convex as the supremum

of a family of affine functions and it thus follows from (author?) (1, Theorem 5) and

(author?) (3, Corollary 7.5) that v(y) ≡ e(y|a) − ê(y) is differentiable at all points of

13



the set

{y ≥ 0 : v(y|a) = ψ(y|a)} = {y ≥ 0 : e(y|a) = φ(y|a)+}.

Since the function ê(y) is linear this in turn implies that e(y|a) is also convex and

differentiable at all points of this set and the proof is complete.

Corollary 2 If a ∈ Mr ∩ S is a rMPE then the induced scaled equity value function is

nondecreasing and there exists and constant 0 ≤ yb(a) <∞ such that

e(y|a) = 0 = φ(y|a)+

at all points y ≤ yb(a).

Proof. Assume that a ∈ Mr ∩ S is a rMPE and observe that since e(y|a) ≥ ê(y) we

have e(y|a) > 0 for all sufficiently large y and thus D̄(a) 6= R+. Let

yb(a) ≡ sup{y ≥ 0 : y ∈ D̄(a)}.

Since the scaled equity value function is nonnegative and not identically zero we have that

yb(a) < ∞ and that e′+(z|a) > 0 at some point z > yb(a). Together with the convexity

afforded by Lemma 5 this implies that the scaled equity value is nondecreasing and it

follows by continuity that e(y|a) = 0 ≥ φ(y|a)+ for all y ≤ yb(a).

Corollary 3 If a ∈Mr ∩ S is a rMPE then

e(y|a) = sup
z∈C(a)

Φ (y, z|a) ,

{Y(y) ≡ y/ (1 + a(y|a))} = argmay
z∈C(a)

Φ (y, z|a)

for all y ∈ R̄(a) where C(a) ≡ R+\(D̄ ∪ R̄)(a). Furthermore, the scaled equity value is

differentiable and satisfies

e′(y|a) =
∂Φ

∂y
(y,Y(y)|a)

at all points of the restructuring region R̄(a).

Proof. If y ∈ R̄(a) lies then it follows from (17) that

e(y|a) ≥ φ(y|a)+ = sup
z≥0

Φ(y, z|a)+

14



and from (9) that

e(y|a) = Φ(y,Y(y)|a) =
y

Y(y)
e(Y(y)|a) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy

Combining the two shows that we have

R̄(a) ⊆ {y ≥ 0 : e(y|a) = φ(y|a) ≥ 0} (19)

Y(y) ∈ Z = argmay
z≥0

Φ (y, z|a)

and the first part will follow if we can show that the maximizer is unique and lies in C(a).

Suppose to the contrary that y ∈ R̄(a) is such that

sup
z≥0

Φ(y, z|a) = Φ(y, z∗|a).

for some z∗ /∈ C(a). If z∗ ∈ D̄(a) then it follows from (19) that we have

e(y|a) = Φ(y, z∗|a) = −βy < 0

which contradicts the nonnegativity of the scaled equity value function. On the other

hand, if z∗ ∈ R̄(a) then

e(y|a) = Φ(y, z∗|a)

=
y

z∗
e(z∗|a) +

( y
z∗
− 1
)
P (z∗|a)− βy

=
y

z∗
Φ(z∗,Y(z∗)|a) +

( y
z∗
− 1
)
P (z∗|a)− βy

= Φ(y,Y(z∗)) +
( y
z∗
− 1
)

(P (z∗|a)− P (Y(z∗)|a))− βy

= Φ(y,Y(z∗))− βy < Φ(y,Y(z∗))

where the third equality follows from (9), the fifth equality follows from the no jump

condition (4) and the inequality follows from the strict positivity of the fixed cost. This

contradicts the fact that e(y|a) = φ(y|a) over R̄(a) and thus establishes that Z ⊆ C(a).

To complete the proof observe that

e(y|a) = φ(y|a) = sup
z∈C(a)

Φ(y, z|a)

is differentiable at all points of R̄(a) as a result of (19) and Lemma 5, and apply

(author?) (4, Corollary 4.iii)).
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B.3 The HJB equation

If v : R+ → R is a convex function then its one sided derivatives v′±(y) are nondecreasing

functions of finite variation, and its second distributional derivative is a positive measure

that we denote by v′′(dy). Consider now the measure

Ov(dy) = [(ξ + µ)yv′−(y)− ρv(y)]dy +
1

2
σ2y2v′′(dy).

(author?) (3) show that the solution to (18) is intimately related to the set of functions

that solve the HJB equation

may {Ov(y), ψ(y|a)− v(y)} = 0 (20)

in the distributional sense. To make this result precise we start by formally defining the

type of weak solutions we are interested in.

Definition 2 A function v : (0,∞)→ R is a solution to (20) in the sense of distributions

if it is convex and such that

i) v(y) ≥ ψ(y|a) for all y ≥ 0

ii) Ov(dy) is a non positive measure on R+

iii) Ov(dy) does not charge the set {y ≥ 0 : v(y) > ψ(y|a)}

Proposition 2 a ∈Mr ∩ S is a rMPE if and only if

v(y) ≡ e(y|a)− ê(y)

solves (20) in the sense of distributions subject to the boundary conditions

lim sup
y↓0

y−Πv(y) = lim sup
y↓0

y−Πψ(y|a) <∞, (21)

lim sup
y↑∞

y−Θv(y) = lim sup
y↑∞

y−Θψ(y|a) <∞, (22)

where Π < 0 and Θ > 1 denote the two solutions to (28).

Proof. This follows from Lemma 5 and (author?) (3, Theorems 6.3|4) using the fact

that in our case the state space is the positive real line with inaccessible boundaries and

the reward function is convex and thus continuous.
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B.4 Barrier strategies

In view of Proposition 1 and Corollary 2 we can essentially restrict the search for rMPEs

(but not the set of possible deviations) to the subset of default and adjustment strategies

such that dIt(a) ≥ 0 and

τb(a) = inf{t ≥ 0 : yt ≤ yb(a)}

for some constant default threshold yb(a) > 0. A class of strategies of particular interest

within that subset is the class of barrier strategies which is illustrated in Figure 1 and

formally defined as follows.

Definition 3 A strategy a ∈Mr is a barrier strategy if

D(a) =
{

(F, Y ) ∈ R2
+ : Y ≤ ybF

}
R(a) =

{
(F, Y ) ∈ R2

+ : Y ≥ yuF
}

and

A(F, Y |a) =
y

Y(y)
− 1

∣∣∣∣
y=Y

F

for some 0 < yb ≤ yu and some function Y : [yu,∞)→ (yb, yu) that determines the target

level of inverse leverage after the adjustment. In what follows we denote the set of barrier

strategies by B.

Remark 1 The requirement that Y(y) takes values in (yb(a), yu(a)) rather than in [0, y]

is without loss of generality for equilibrium purposes since adjustments that move the

state to a point inside (D ∪ R)(a) are strictly suboptimal as long as the fixed cost of

adjustment is strictly positive.

Assume that the firm follows a barrier strategy a ∈ B. Then (6) implies that the face

value of debt satisfies

dFt = −ξFtdt+ 1{yt−≥yu(a)}

(
Yt
Y(yt−)

− Ft−
)
, on {t < τb(a)}

and it follows that the induced inverse leverage process is an autonomous Markov process

that evolves according to

dyt = yt−σdWt + yt− (ξ + µ) dt+ 1{yt−≥yu(a)} (Y(yt−)− yt−) (23)
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Figure 1: Illustration of a barrier strategy. In the figure represents the default

region D(a), represents the restructuring region R(a), the complement represents the

continuation region, and the arrows indicate increases in the face value of debt that move the

state from the restructuring region to the continuation region.

until the first time that it reaches the barrier level yb(a) where the strategy requires

shareholders to file for bankruptcy.

Before proceeding with the computation of the security values induced by a barrier

strategy we first prove that all barrier strategies are feasible.

Lemma 6 B ⊆ S.

Proof. Fix a barrier strategy a ∈ B. Since the pair (Ft, Yt) forms a Markov process we

have that Λ(a) = Λ(F0, Y0) for some (possibly infinite) function Λ : R2
+ → R ∪ {∞} that

satisfies the boundary conditions

Λ(F, Y ) = 0, (F, Y ) ∈ D(a), (24)

Λ(F, Y ) = Y

(
1 +

1

Y(y)

)
+ Λ

(
Y

Y(y)
, Y

)
, (F, Y ) ∈ R(a). (25)
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On the other hand, a standard calculation using Girsanov’s theorem and the law of

iterated expectations shows that

Λ(F, Y ) = λ(y)Y, (F, Y ) ∈ R+\(D ∪R)(a)

for some function λ : R+ → R ∪ {∞} that satisfies

λ(y) = G(y) +H(y)

(
1 +

1

Y(yu(a))
− 1

y
+ λ(Y(yu(a)))

)
(26)

with H,G : R+ → R+ uniformly bounded and such that

min{G(y), 1−H(y)} > 0, y ∈ C(a) ≡ (yb(a), yu(a)). (27)

Combining (24), (25), and (26) we deduce that the strategy is feasible if and only if the

constant

λ(Y(yu(a))) =
G(Y(yu(a))) +H(Y(yu(a)))

1−H(Y(yu(a)))

is finite and the desired result now follows from (27) since the point Y(yu(a)) lies by

assumption in the set C(a).

Let now a ∈ B be a barrier strategy and denote by

Lf(y) ≡ y (ξ + µ) f ′(y) +
1

2
σ2y2f ′′(y)

the differential operator associated with the continuous part of this stochastic differential

equation. Standard arguments relying on Itô’s lemma and the continuity of the bond

price at the issuance point show that the function

P (yt|a) = Pt(a) = Et

[∫ τb(a)

t

e−ρ(s−t) (c+ ξ) ds

]

is the unique solution to

ρP (y) = LP (y) + c+ ξ, y ∈ (yb(a), yu(a)),

P (y) = P (Y(y)), y ≥ yu(a),

P (y) = 0, y ≤ yb(a).

in the space of functions that are bounded on R+ and twice continuously differentiable

19



on the continuation region C(a) ≡ (yb(a), yu(a)).

To describe the solution to this differential problem denote by Θ > 1 and Π < 0 the

solutions to the quadratic equation

−ρ+ (ξ + µ) y +
1

2
σ2y(y − 1) = 0 (28)

induced by the continuous part of (23); and by y∗(a) ≡ Y(yu(a)) the level of inverse

leverage to which the firm moves upon reaching from the inside the right boundary of

the continuation region.

Lemma 7 Assume that a ∈ B is a barrier strategy. Then

Pt(a) = P (yt|a) ≡ 1{yt∈C(a)}π(y|a) + 1{yt≥yu(a)}π (Y(yt)|a)

with the function

π(y|a) ≡ 1

ρ
(c+ ξ)

(
1 + Aπ(a)yΘ +Bπ(a)yΠ

)
,

and the constants

Aπ(a) ≡ yu(a)Π − y∗(a)Π

yb(a)Π (yu(a)Θ − y∗(a)Θ) + yb(a)Θ (y∗(a)Π − yu(a)Π)
,

Bπ(a) ≡ y∗(a)Θ − yu(a)Θ

yb(a)Π (yu(a)Θ − y∗(a)Θ) + yb(a)Θ (y∗(a)Π − yu(a)Π)
.

In particular, the bond price function is strictly concave on C(a) with P ′(yb(a)|a) > 0,

P ′(y∗(a)|a) ≥ 0, and P ′(yu(a)|a) ≤ 0.

Proof. The first part follows by direct calculation and the second by noting that since

Θ > 1, Π < 0, and yb(a) ≤ y∗(a) ≤ yu(a) we have Aπ(a), Bπ(a) ≤ 0.

Remark 2 The derivatives of the bond price at the points y∗(a) and yu(a) are either

both non zero or both equal to zero depending on whether the length of the continuation

region |C(a)| is strictly positive or zero. In the latter case, the bond price function

coincides with the solution that obtains when imposing a reflecting boundary condition

at the upper threshold.

Consider now the scaled equity value that prevails when creditors correctly anticipate

that management will use the barrier strategy a:

et(a) = Et

[∫ τb(a)

t

e−ρ(s−t) (δ(ys)ds+ (As(a) (es(a) + Ps(a))− βys−) dNs(a))

]
.
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When a is a barrier strategy (or more generally a reduced Markov strategy) all the terms

in the conditional expectation only depend on the path of the Markov process described

by (23). As a result, et(a) = e(yt|a) for some deterministic function and standard results

show that this function is the unique solution to

ρe(y) = Le(y) + δ(y), y ∈ C(a), (29)

e(y) = 0, y ≤ yb(a),

e(y) =
y

Y(y)
e(Y(y)) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy, y ≥ yu(a), (30)

in the space of functions that are finite on R+ and twice continuously differentiable on

the continuation region C(a).

Lemma 8 Assume that a ∈ B is a barrier strategy. Then

et(a) = e(yt|a) ≡ 1{yt∈C(a)}ε(yt|a) + 1{yt≥yu(a)}ε(yt|a)

where

ε(y|a) ≡ ê(y) + Aε(a)yΘ +Bε(a)yΠ

ε(y|a) ≡ y

Y(y)
ε(Y(y)|a) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy

and (Aε(a), Bε(a)) are the unique solutions to the value matching conditions

ε(yb(a)|a) = 0,

ε(yu(a)|a) = ε(yu(a)|a),

at the endpoints of the continuation region.

Proof. Follows by direct calculation.

B.5 rMPEs in barrier strategies

We start with a result that specializes the differential characterization of Proposition 2

to the case of barrier strategies.

Proposition 3 A barrier strategy is a rMPE if and only if the induced equity value

function e(y|a) is a solution to (20) in the sense of distributions.
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Proof. Combining Corollary 3, Lemma 7, and Lemma 8 we deduce that there exists a

constant k > 0 such that

|e(y|a)| ∨ |φ(y|a)| ≤ k (1 + |y|) , y ≥ 0.

Since Π < 0 and Θ > 1 this implies that we have

lim
y↓0

y−Πf(y) = lim
y↑∞

y−Θf(y) = 0, for f ∈ {e(·|a), φ(·|a)+}.

This shows that the boundary conditions (21) and (22) hold for any barrier strategy and

the desired result now follows from Proposition 2.

The next result provides a set of necessary conditions for a barrier strategy to form an

equilibrium. To state the result let

s(y|a) ≡ 1

y
(e(y|a) + P (y|a))

denote the value of the firm per unit of cash flow.

Lemma 9 Assume that the barrier strategy a ∈ B is a rMPE. Then the following

conditions are satisfied:

i) yb(a) ≤ y0,

ii) e(y|a) = φ(y|a)+ = 0 on (0, yb(a)],

iii) e(y|a) = φ(y|a)+ > 0 on [yu(a),∞),

iv) Smooth pasting and value matching at the default boundary:

e′(yb(a)|a) = e(yb(a)|a) = 0. (31)

v) Smooth pasting and value matching at restructuring points:

e′(y|a) = s(Y(y)|a)− β = s(y|a), y ≥ yu(a). (32)

vi) Optimality of restructuring:

{Y(y)} = argmay
z≥0

Φ(y, z|a) = argmay
z∈C(a)

Φ(y, z|a), y ≥ yu(a).
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Proof of i). This follows by observing that if a is an rMPE with yb(a) > y0 then e(y|a) =

0 < e0(y) for all y ∈ (y0, yb(a)) which contradicts (9).

Proof of ii). If a ∈ B is a rMPE then it follows from Lemma 5 and the definition of the

strategy that we have e(y|a) = 0 ≥ φ(y|a)+ for all y ≤ yb(a).

Proof of iv). Since by definition e(y|a) = 0 for all y ≤ yb(a) it follows from Lemma 5

that e(y|a) = φ(y|a)+ = 0 over that region. This in turn implies that the scaled equity

value function is differentiable at all points y ≤ yb(a) and the desired result follows by

noting that e′−(y|a) = 0 at any such point.

Proof of iii). Since by definition e(y|a) = Φ(y,Y(y)|a) ≤ φ(y|a) for y ≥ yu(a) it follows

from Lemma 5 that we have

0 ≤ e(y|a) = Φ(y,Y(y)|a) = φ(y|a), y ≥ yu(a).

To see that the inequality is strict note that due to Item iv) the scaled equity value

function solves (29) subject to (31). In particular,

lim
y↓yb(a)

1

2
σ2y2e′′(y|a) = −δ(yb(a)) > 0

where the strict inequality follows from Item i) and the definition of the no-issuance

default threshold. The above inequality implies that we have e(y|a) > 0 in a right

neighborhood of yb(a) and thus for all y > yb(a) by convexity.

Proof of vi). This follows directly from Corollary 3.

Proof of v). Since e(y|a) = φ(y|a) > 0 for all y ≥ yu(a) by Item iii) it follows from

Lemma 5 that the scaled equity value function, and thus also φ(y|a), is differentiable at

all points y ≥ yu(a). On the other hand, by Item vi) we have that Y(y) is the unique

maximizer of the function z 7→ Φ(y, z|a) over the compact set C(a) and the validity of

(32) now follows from (author?) (4, Corollary 4) and (30).

Lemma 10 Assume that the barrier strategy a ∈ B satisfies Conditions i) and iv) of

Lemma 9. Then

vi) e(y|a) is nonnegative, nondecreasing, convex on the interval [0, yu(a)) and strictly

positive on the interval (yb(a), yu(a))

vii) e(y|a) ≥ e0(y) for all y ≤ yu(a) if and only if yb(a) ≤ y0.
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Proof of vi). Since e(y|a) solves (29) subject to value matching and smooth pasting at

the default boundary the uniqueness of the solution to second order differential equations

implies that the constants in Lemma 8 can be expressed as

Aε(a) =
yb(a)−Θ(1− τ) (yb(a)− y0) (Π− 1)

(r − µ)(Θ− Π)
≥ 0,

Bε(a) =
yb(a)−Π(1− τ)(yb(a)(Θ− 1)Π + y0Θ(1− Π))

(r − µ)Π(Π−Θ)
≥ 0.

Therefore, e(y|a) is convex on the interval [0, yu(a)) and remaining claims in the statement

follow by observing that because

lim
y↓yb(a)

1

2
σ2y2e′′(y) = −δ(yb(a)) > 0

we must have min{e, e′}(y|a) > 0 in a right neighbourhood of yb(a) and thus over the

whole interval since the scaled equity value is convex.

Proof of vii). The necessity of the condition is clear since in its absence e(y|a) = 0 <

e0(y) for all y ≤ (y0, yb(a)). Now assume that yb(a) ≤ y0. If yu(a) ≤ y0 then the result

follows from Item vi)) since e0(y) = 0 on [0, y0]. Assume from now on that yu(a) > y0.

Proceeding as in the first part of the proof shows that

w(y) = e(y|a)− e0(y) = Aε(a)yΘ + 1{y>y0}B̄(a)yΠ, y ∈ [y0, yu(a))

where Aε(a) ≥ 0 and

B̄(a) ≡ y1−Π
0 (1− τ)

(r − µ)Π
+
yb(a)−Π(1− τ)(yb(a)(Θ− 1)Π + y0Θ(1− Π))

(r − µ)(Π−Θ)Π

Noting that 0 = B̄(a)
∣∣ yb(a)=y0 and

dB̄(a)

dyb(a)
=

(1− τ)(Π− 1)(yb(a)(Θ− 1)− y0Θ)

yb(a)1+Π(r − µ)(Θ− Π)
≥ 0, yb(a) ≤ y0

we deduce that B̄(a) ≤ 0. This implies that w(y) is non decreasing on [y0, yu(a)] and the

thesis follows by observing that w(y0) = e(y0|a) ≥ 0.
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