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Abstract

We study a dynamic general equilibrium model with costly-to-short stocks and

heterogeneous beliefs. Costly short sales drive a wedge between the valuation

of assets that promise identical cash flows but are subject to different trading

arrangements. In particular, we show that the price of an asset is given by the

risk-adjusted present value of its future cash flows which include both dividends

and an endogenous lending yield that we characterize explicitly. This valuation

formula implies that stocks with low and high shorting costs should offer similar

risk-return tradeoff once returns are appropriately adjusted for lending revenues

and thus sheds light on recent empirical findings about the explanatory power of

shorting costs in the cross-section of returns.
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1 Introduction

Securities lending and borrowing is a critical function that makes financial markets more

efficient through improved liquidity and price discovery. In the U.S. alone, short selling

accounts for more than a quarter of trading volume in the stock market and the value of

securities on loans has recently surpassed $1.4trillion (Gensler, 2021). Historically, the

primary suppliers of shares to loan have mostly been investment firms, pension funds,

insurance companies, passive funds, and exchange traded funds (ETFs). However, the

practice of securities lending is now extending to non institutional investors because it can

be a significant revenue source that often offsets management fees and transaction costs.1

For example, Kashyap, Kovrijnykh, Li and Pavlova (2020) report that securities lending

contributed 5% of the total revenues of both BlackRock and State Street in 2017 while

the data provider DataLend (2022) reports that the global revenues of security lenders

have been growing steadily in the last decade to reach a level in excess of $9billion in 2021.

As a last indication of the current importance of securities lending, we note that the U.S.

Securities and Exchange Commission Rule 10c–1, which is currently under review, will

soon create a new reporting and disclosure regime for all participants in the securities

lending market (Gensler, 2021).

Despite the crucial importance of short selling and the extensive literature on the

effects of short sales constraints on asset returns,2 there are only few studies that explicitly

analyze the role of securities lending in the price formation process.3 In particular,

there is currently no commonly accepted theoretical model for the joint endogenous

determination of asset returns and lending fees. We contribute to bridging this gap

by developing a tractable dynamic general equilibrium model of asset prices and lending

fees with a focus on the return-augmenting effect of securities lending. Specifically, we

consider a continuous-time Lucas economy populated by two groups of investors who

have logarithmic utility and heterogenous dogmatic beliefs about the growth rate of the

1See, e.g., Table 3 in iShares Report on Securities Lending. In addition, a number of important
broker-dealers have recently started lending programs that allow retail customers to earn incremental
income. See, for example, the Fully Paid Lending program of Fidelity and the similar programs put in
place by TDAmeritrade/Charles Schwab, BNY Mellon, and E–Trade among others.

2See among others Seneca (1967), Miller (1977), Harrison and Kreps (1978), Figlewski (1981),
Diether, Malloy and Scherbina (2002), Jones and Lamont (2002), Mitchell, Pulvino and Stafford (2002)
Scheinkman and Xiong (2003), Ofek, Richardson and Whitelaw (2004), and Atmaz and Basak (2019) for
key contributions, and either Reed (2013) or Jiang, Habib and Hasan (2020) for comprehensive surveys.

3The short list of such studies includes Duffie (1996), D’Avolio (2002), Duffie, Gârleanu and Pedersen
(2002), Cohen, Diether and Malloy (2007), Hanson and Sunderam (2014), Drechsler and Dreschler (2018),
Nutz and Scheinkman (2020) and, since the release of our first draft, the work of Atmaz, Basak and
Ruan (2021), Gârleanu, Panageas and Zheng (2021), and Chen, Kaniel and Opp (2022) which we briefly
review below.
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economy.4 The financial market includes a riskless asset, and two long-lived risky assets

that each represent a claim to a constant fraction of the aggregate dividend. The first

risky asset (asset 1) can be shorted at a cost that is to be determined in equilibrium, while

the second risky asset (asset 2) cannot be shorted.5 The risky assets in our model have

proportional dividends and thus are Siamese twins (see e.g., Froot and Dabora (1999)

and De Jong, Rosenthal and Van Dijk (2009)). This assumption allows us to study the

effect of costly short sales on ex-ante identical assets within a single general equilibrium

model where all markets clear rather than across different models, while accounting for

the fact that the shares of a given stock are often not all available for lending because of

a variety of reasons that include the existence of different share classes (Mei, Scheinkman

and Xiong, 2009), dual or cross-listings as in the case of ADRs (Blau, Van Ness and Warr,

2012), or the occurrence of an equity carve-out (Lamont and Thaler, 2003).

To establish a short position an investor must borrow the required shares from another

investor who holds a long position. In line with the empirical evidence (D’Avolio, 2002,

Baklanova, Copeland and McCaughrin, 2015, Gensler, 2021, Chen et al., 2022) we assume

that the lending market is intermediated by lending agents. In our model, investors

wanting to go short over the next instant are randomly matched with one of the lending

agents. Each lending agent sets a shorting fee to maximize the flow of shorting revenues

taking as given the aggregate short demand schedule of the investors who are matched

with her. Once the terms of the short transactions are set, each lending agent borrows the

required shares from the custodian bank that holds securities on behalf of long investors,

lends them over an infinitesimal time interval, and transfers back the securities and the

induced shorting fees to the custodian bank who in turn redistributes them on a value

weighted basis to long investors. This approach is, to the best of our knowledge, new to

the literature and allows us to easily integrate costly short sales into an otherwise standard

dynamic asset pricing model. Our modelling implies that the shortable asset entitles its

owners to a convenience yield that can be endogenously determined in equilibrium by

matching the aggregate flows of lending fees paid and received by investors.

4The assumption of a constant disagreement simplifies the solution of the model by fixing the
identity of the optimist and pessimist, and thereby limiting the number of state variables. Moving
to a richer environment with a stochastic disagreement leads to a more cumbersome, yet fully explicit,
characterization of the equilibrium but does not affect the underlying economics. We develop such an
extension in Appendix B.

5Since we endogenize not only the asset prices but also the interest rate, the model is better suited
to analyze the global securities lending market and market-wide events, such as the effect of widespread
shorting during the dot-com era, rather than idiosyncratic episodes like the recent GameStop short-
squeeze.
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If asset 1 could be shorted at no cost, then the short sale constraint on asset 2 would

have no impact and pricing would be linear in the sense that both assets would offer the

same price-dividend ratio. By contrast, our analysis shows that costly short sales drive a

wedge between the valuation of the two assets and thereby result in nonlinear pricing. In

particular, the value of asset 1 in our model represents a fraction of the market portfolio

that is strictly greater than its share of dividends and which varies endogenously across

times and states to reflect the impact of the short selling frictions at play in the model.

This contribution provides a novel general equilibrium approach behind the intuition in

Cochrane (2002) and Cherkes, Jones and Spatt (2013) according to which the valuation

of a shortable asset includes not only the present value of its future dividends but also

the present value of future lending revenues. Perhaps of greater interest, this nonlinearity

provides a rational explanation for the mispricing observed in certain famous equity carve-

outs (Lamont and Thaler, 2003), such as the partial spin-off of Palm by 3Com that we

use to quantitatively illustrate the implications of the model.

Our theoretical framework provides a backdrop to the recent empirical findings of

Beneish, Lee and Nichols (2015) and Drechsler and Dreschler (2018) who document that

stocks with high lending fees exhibit low average excess returns that cannot be explained

by standard factor models such as the three- and four-factor models of Fama and French

(1993) and Carhart (1997). In particular, Drechsler and Dreschler (2018) argue that

these negative excess returns are compensation for the systematic risk borne by the

small fraction of investors who account for most of the shorting activity. They refer to

this finding as the shorting premium and construct a portfolio risk factor labeled CME

(for cheap-minus-expensive to short) that earns the corresponding abnormal return. Our

model offers an alternative explanation for these findings that is aligned with the literature

(e.g., Fama and French, 2010) that questions the possibility to generate abnormal returns

by stock picking, and argues that the estimated alphas may result from return-augmenting

activities like securities lending. Specifically, our framework implies that stock returns

satisfy a modified CAPM that includes an explicit downward adjustment for lending fees

and, therefore, predicts that lending fees should not have any significant impact on the

cross-section of return provided that an appropriate correction is applied before running

the estimation. This prediction of the model is supported by empirical evidence in our

companion paper Hugonnier and Prieto (2023).
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Related literature

To capture the fact that locating shares to borrow may be a time consuming process,

Duffie et al. (2002) develop a model with a single stock in which search costs and

bargaining over fees generate a deterministic price process that includes the present value

of the lending fees that accrue to holders of long positions. Vayanos and Weill (2008)

extend the search model of Duffie et al. (2002) to include two assets with different lending

fees and show that the resulting equilibrium can help understand phenomena such as the

different pricing of on-the-run and off-the-run Treasury bonds. By contrast, we study an

otherwise frictionless stochastic general equilibrium model where positive loan fees arise

due the presence of an intermediated securities lending market.

Our paper is naturally related to the large body of theoretical literature that studies

the impact of shorting constraints in trading models where agents have heterogenous

beliefs. Earlier contributions in this literature, including the seminal papers of Miller

(1977) and Harrison and Kreps (1978), feature discrete-time partial equilibrium models

with risk-neutral investors in which the combination of heterogenous beliefs with the

impossibility of short selling gives rise to speculative episodes where the asset price exceeds

its fundamental value to the most optimistic investor. Scheinkman and Xiong (2003)

extend the original setting of Harrison and Kreps (1978) to continuous-time and use it

to study the occurrence and properties of bubbles. Detemple and Murthy (1997) and,

later, Gallmeyer and Hollifield (2008) study a similar problem but in a dynamic general

equilibrium setting with risk-averse investors and show that the imposition of a short

sale ban may result in either a price increase or a price decrease relative to a frictionless

model. More recently, Nutz and Scheinkman (2020) study a continuous-time version of

the model of Harrison and Kreps (1978) in which agents can short the asset subject

to exogenous quadratic costs but these costs are dissipated and thus do not accrue to

holders of long positions. Our paper advances this literature by proposing a tractable way

to model the endogenous determination of securities lending fees in a dynamic general

equilibrium setting where lending fees are rebated to holders of long positions.

Our focus and contributions differ markedly from Atmaz et al. (2021) who develop

a CARA-Normal model with heterogeneous beliefs, two independent risky assets and a

riskless asset with exogenous return. In their model, stock prices and shorting costs are

linear functions of two Gaussian processes that represent dividends and the stochastic

disagreement among agents. Therefore, prices and shorting costs can be negative and,

perhaps of greater concern, the model does not rule out situations where some agents

that are a priori assumed to be long only end up holding short positions without paying
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the corresponding cost. By contrast, prices and shorting fees are nonnegative in our

framework and, rather than independent assets, we consider Siamese twins which allows

us to elicit the premium associated with the possibility of shorting an asset.

Perhaps closest to us, Gârleanu et al. (2021) also propose a continuous-time general

equilibrium model that features costly short sales and myopic investors with heterogenous

beliefs. The main difference with our paper resides in the modelling of the shorting

friction. Specifically, Gârleanu et al. (2021) take the shorting cost as an exogenously given

function of short interest that they interpret as a cost of matching between competitive

brokers and dealers. They show that in some regions of the parameter space this modelling

produces multiple equilibria that are associated with different solutions for the lending

yield and use this feature to analyze situations where fears among short sellers lead to

runs. As we discuss in Section 4.1 below, this equilibrium multiplicity is subject to two

important caveats. First, it is quite unlikely to arise in practice as it requires a very large

shorting cost. Second, and perhaps more importantly, this multiplicity counterfactually

implies that the interest rate and market price of risk experience predictable jumps every

time the equilibrium switches from one lending yield to another.

By contrast, we construct a model where securities lending market is intermediated by

lending agents with some degree of market power and show that this modelling—which

is consistent with existing market conditions in the U.S—produces a unique equilibrium

that is not nested among the multiple equilibria of Gârleanu et al. (2021) because in our

model the endogenous shorting cost cannot be expressed as a deterministic function of

the endogenous short interest. More recently, Chen, Kaniel and Opp (2022) introduce

asymmetric information in a partial equilibrium version of our model to evaluate the

implications of non-competitive lending fees. They quantify price wedges due to the

incremental impact that lenders assign to stocks due to the fee income, similar to the

effect we capture endogenously by using assets 1 and 2 in our model.

Our work is also related to the broad literature on rational models of limits to

arbitrage. See Gromb and Vayanos (2010) for a survey. We highlight Basak and Croitoru

(2000) who study a dynamic general equilibrium model with a risky asset and a derivative

in zero net supply to show that mispricing can arise between two securities that carry

the same risk, if agents are subject to portfolio constraints that prevent them from

exploiting the induced arbitrage opportunity. Banerjee and Graveline (2014) obtain

similar conclusions in a static CARA-Normal model with quasi-redundant assets and

costly short sales. By contrast, we study the implications of costly shorting in a dynamic
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setting where all risky assets are in positive supply so that both expected returns and

volatilities are endogenously determined.

Other contributions to the study of lending fees include Duffie (1996), Krishnamurthy

(2002), and Blocher, Reed and Van Wesep (2013). More recently, Nezafat and Schroder

(2022) study the role of private information in the equity lending market in a static

rational expectations model with endogenous loan fees. There is also a growing literature

on strategic short selling that studies the role of short selling in the transmission of

information about firm fundamentals. For example, Goldstein and Guembel (2008) show

that this channel can lead to negative spillovers, Goldstein, Ozdenoren and Yuan (2013)

show that it may distort investment decisions, and Brunnermeier and Oehmke (2014)

show that it may lead to situations where short sellers can force a vulnerable institution

to liquidate assets at fire-sale prices. In the same vein, Brunnermeier and Pedersen (2005)

and Carlin, Lobo and Viswanathan (2007) develop predatory trading models where short

sellers exploit undercapitalized arbitrageurs.

The remainder of the paper is organized as follows. The model is presented in

Section 2. Section 3 provides a detailed account of the equilibrium construction. Section

4 discusses the endogenous determination of the equilibrium shorting costs and their

properties in the one- and two-risky assets cases. Section 5 concludes with empirical

implications for the cross section of returns. The proofs of all results are provided

in Appendix A and an extension of our benchmark model to the case of stochastic

disagreement is found in Appendix B

2 The model

2.1 Fundamental uncertainty

We consider a continuous-time economy on an infinite horizon. There is a single non

storable good available for consumption at every date t ≥ 0 and we assume that its

supply et evolves according to

det
et

= µdt+ σdZt,

for some exogenously given constants µ and σ > 0, where the process (Zt)t≥0 is a Brownian

motion under some reference probability.
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2.2 Agents

The economy is populated by two agents that we index by a ∈ {o, p}. Agents observe

aggregate consumption as well as the prices of traded assets, but do not observe the

increments of the Brownian motion and disagree about their perception of the dynamics

of the aggregate consumption process. Specifically, we assume that from the point of

view of agent a, this process evolves according to

det
et

= µ(a)dt+ σdZ
(a)
t

for some constant µ(a), where the process (Z
(a)
t )t≥0 is a Brownian motion under the

subjective probability of agent a. We denote by

∆ =
δ

σ
≡ µ(o) − µ(p)

σ

the disagreement per unit of volatility and assume that ∆ ≥ 0 so that agent o can be

interpreted as being an optimist and agent p as being a pessimist. The assumption of

a constant disagreement simplifies the solution of the model by fixing the identity of

the optimist and pessimist, and thereby limiting the number of state variables. Moving

to a richer model with a stochastic disagreement process leads to a more cumbersome,

yet fully explicit, characterization of the equilibrium but does not affect the underlying

economics, see Appendix B for such an extension.

Finally, we assume that conditional on their beliefs, the two agents have homogenous

logarithmic preferences given by

E
(a)
0

[∫ ∞
0

e−ρt log ctdt

]

for some constant discount rate ρ > 0, where E
(a)
t [·] denotes an expectation under the

agent’s subjective probability measure conditional on the observation of the paths of

dividends and market prices, up to date t ≥ 0.

As is well-known, this specification implies that agents have marginal propensity to

consume equal to ρ and choose their portfolio to optimize an instantaneous quadratic

criterion (see (8) below). In the context of our model, this myopic behavior also implies

that–up to a slight reinterpretation and the addition of a linear term in the drift of the

endogenous state variable–all the asset pricing results we derive below remain unchanged

if instead of two agents with constant beliefs we consider a steady state population of
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agents subject to idiosyncratic shocks that shift their perceived growth rate back and

forth between a low and a high value.

Investors are initially endowed with long portfolios of the two risky assets. Specifically,

we assume that initial endowments are represented by vectors n(o), n(p) ∈ [0, 1]2 with

n(o) = 1 − n(p) that give the number of units of each asset in the initial portfolio and

determine the initial wealth W
(a)
0 ≡

∑
i naiSi0 of both investors.

2.3 Traded assets

The financial market consists of three long-lived assets: A locally riskless asset in zero

net supply and two risky securities in positive supply of one unit each.

The price of the riskless asset evolves according to

dS0t = rtS0tdt

for some interest rate process rt that is to be determined in equilibrium. On the other

hand, we assume that risky asset i ∈ {1, 2} is a claim to a fraction ηi ≥ 0 of aggregate

consumption, and that its price evolves according to

dSit + ηietdt = rtSitdt+ Sitσit

(
dZ

(a)
t + θ

(a)
it dt

)
, (1)

where the volatility coefficient σit and the perceived market prices of risk

θ
(o)
it = ∆ + θ

(p)
it

are to be determined endogenously in equilibrium. To ensure that the market portfolio

Mt ≡ S1t + S2t is a claim to the whole aggregate consumption, we naturally assume that

the fractions paid by the risky assets are such that η1 + η2 = 1.

The risky assets in our model have proportional dividends and thus are Siamese twins6

(see, e.g., Froot and Dabora (1999) and De Jong et al. (2009)). This assumption allows

us to study the effect of costly short sales on ex-ante identical assets within a single

general equilibrium model where all markets clear rather than across different models,

while accounting for the fact that the shares of a given stock are often not all available

for lending because of a variety of reasons that include the existence of different share

6This setup will admit closed form expressions for all economic quantities. A more general model
including multiple risky assets with multiple sources of risk is amenable to the same intermediated
securities lending market analysis but a full analytical solution of the model is no longer available.
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classes (Mei et al., 2009), dual or cross-listings as in the case of ADRs (Blau et al., 2012),

or the occurrence of an equity carve-out (Lamont and Thaler, 2003).

2.4 Shorting frictions

Our point of departure from existing equilibrium models with heterogenous beliefs is that

the risky assets are subject to different trading arrangements. Specifically, we assume that

shares of asset 2 cannot be shorted whereas shares of asset 1 can be shorted by incurring

a flow cost per dollar of short as long as the position is maintained.

To sell short, one must first borrow the required shares. In line with the evidence

reported by D’Avolio (2002), Baklanova et al. (2015), Gensler (2021), and Chen et al.

(2022) among others, we assume that the lending market is intermediated by a number

n ≤ ∞ of ex-ante identical lending agents and that securities are held for investors by

a custodian bank. At time t ≥ 0 an investor who wishes to short over the next instant

is randomly matched to one of the lending agents. Each lending agent i sets a shorting

fee Φit to maximize her flow of shorting revenues taking as given the aggregate short

demand schedule of the investors who are matched with her at time t ≥ 0. Once the

terms of the short transactions are set, each lending agent borrows the required shares

from the custodian bank, lends them over an infinitesimal time interval to the investors

matched with her, and transfers the induced shorting fees to the custodian bank who in

turn redistributes them on a value weighted basis to holders of long positions. See Figure

1 for an illustration of this mechanism in a model with a single intermediary.

We assume that, at any point in time, a given individual investor can only be matched

with a single lending agent. As a result, each lending agent enjoys some degree of market

power over the group of investors who are matched with her at a given point in time.

To simplify the presentation, we focus throughout on the case where intermediaries are

benevolent and enjoy full bargaining power over investors in the determination of the

shorting fee. As discussed in Remark 1 below, the model is easily extended to the case

where intermediaries do not enjoy full bargaining over investors. Allowing the lending

agents to retain a fraction of lending revenues may have different effects on the model

depending on what lending agents actually do with these revenues. If these revenues

evaporate then one would need to adjust the short market clearing condition (5) to

account for the fact that only a fraction of the fees is returned to long agents. This

change would percolate through the model but the solution method and the qualitative

insights would remain the same. If instead the lending agents redistribute the retained

fraction to its shareholders, then different cases may arise depending on the identity of
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Lending
Agent

Short
ν1 shares

Short
ν2 shares
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ν3 shares

Custodian
Bank

Long
n5 shares

Long
n4 shares

Long
n3 shares

Long
n2 shares

Long
n1 shares

L
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L
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d
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ν
1 S

1tΦ
t

ν2S1tΦt

ν 3
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Φ
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n 1
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Γ t

n2
S1t

Γt

n3S1tΓt

n
4S

1tΓ
t

n
5 S

1t Γ
t

Shares

Fees

Figure 1: The shorting mechanism. In this example with a single lending agent, the short

interest in asset 1 amounts to ν =
∑

i νi ≥ 0 shares while the aggregate long position sums up

to
∑

k nk = 1 + ν shares. As a result, the equilibrium lending yield is Γt = ν
1+νΦt.

these shareholders. If the lending agent is held by optimistic agents and the identities of

these agents remain fixed over time then the equilibrium will remain the same. On the

other hand, if the intermediary is held by a, possibly time-varying, mix of pessimists and

optimists then the dividends of the intermediary would constitute an additional source

of income for all investors. This would break the homogeneity of the investors’ portfolio

and consumption problems and, thereby, make the model untractable.

The fact that at least part of the shorting fees eventually accrue to investors who

are long induces a form of interaction between investors. For this interaction to remain

competitive, investors have to take as given not only the costs incurred when taking short

positions but also the fees that they may receive when they hold shares of the shortable

asset. We model this feature by assuming that agents take as given the flow cost of

shorting as well as the flow rate of lending fees Γt that each dollar invested in asset 1

generates, and determine this rate endogenously in equilibrium by requiring that the flow

of lending fees received by long agents equals the flow of costs paid by short agents. To

make a clear distinction between the flows paid by short agents and those received or

anticipated by long agents, we refer to Φit as the shorting cost charged by lending agent

i and to Γt as the lending yield.

10



In our model, investors of type o are more optimistic than investors of type p and both

have logarithmic utility. Therefore, we know that investors of type p are short whenever

investors of type o are and, since all investors cannot be short simultaneously, it follows

that shorting activity can only come from the pessimists in equilibrium. Furthermore,

the assumption of logarithmic utility implies that the short demand schedule of any

investor is proportional to her wealth. Combining these observations shows that, up to a

multiplicative factor, all intermediaries face the same optimization problem in equilibrium

and it follows that they will all select the same shorting fee Φit ≡ Φt at every point in

time. In particular, we may assume without loss of generality that the lending market is

intermediated by a single agent and thus set n ≡ 1 from now on.

2.5 Definition of equilibrium

Combining the above shorting mechanism with the usual self-financing condition shows

that the wealth of agent a evolves according to

dW
(a)
t =

(
rtW

(a)
t − ct + Λ (π1t; Φt,Γt)

)
dt+

∑
i

πitσit

(
dZ

(a)
t + θ

(a)
it dt

)
, (2)

where ct ≥ 0 represents her consumption rate, πt ∈ R×R+ denote the amounts she invests

in the risky assets, and the nonlinear term

Λ(m; Φt,Γt) ≡ m+Γt −m−Φt (3)

captures the flow rate of lending fees that she pays or receives.

As is standard, we require agents to maintain strictly positive wealth at all times.

Therefore, the optimization problem solved by agent a is

sup
(c,π)

E(a)

[∫ ∞
0

e−ρt log ctdt

]
subject to (2), (3), and W

(a)
t > 0.

Whenever they exist, we denote by (c
(a)
t (Φ,Γ), π

(a)
t (Φ,Γ)) the optimal consumption and

optimal portfolio of agent a, taking as given the traded asset prices and the pair of flow

rates (Φ,Γ) that characterize the short market.
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Definition 1. An equilibrium is a price process (S0t, S1t, S2t), a shorting cost Φt, and a

lending yield Γt such that

Φt ∈ argmax
x

{∑
a

π
(a)
1t (x,Γ)−x

}
, (4)

and all markets clear:

∑
a

c
(a)
t (Φ,Γ) = et, (Consumption),∑

a

π
(a)
it (Φ,Γ) = Sit, (Risky asset i ∈ {1, 2}),∑

a

Λ
(
π

(a)
1t (Φ,Γ); Φt,Γt

)
= 0, (Lending market), (5)

where the mapping Λ is defined in (3).

The above definition is similar to the classical definition of an equilibrium by Radner

(1972) but includes two additional conditions to accommodate the presence of costly

short sales in a dynamic general equilibrium setting.

The first condition (4) is an optimality condition that results from our modelling of

the security lending market and which requires that the shorting cost maximizes shorting

revenues taking as given market prices, the lending yield anticipated by agents, and their

short demand schedules (a, x) 7→ π
(a)
t (x,Γ)−. The second condition (5) requires that the

flow of fees received by holders of long positions must equal the flow of lending fees paid

by short agents. We treat this condition as a market clearing condition as it matches

the flows exchanged between agents, but one could equally view this requirement as a

rational expectations condition which ensures that the lending fees anticipated by agents

are indeed realized along the equilibrium path.

3 Equilibrium

In this section, we sequentially build an equilibrium for our economy with shorting costs.

To facilitate the analysis, we focus throughout on the characterization of an equilibrium

in which the asset volatilities are strictly positive at all times.
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3.1 Individual optimality

The absence of arbitrage requires the net Sharpe ratios offered by the different assets to

be such that it is not possible to generate a locally riskless return by combining assets.

In our model, this constraint can be intuitively expressed as

max
{
θ

(a)
2t , θ

(a)
1t + γt

}
−
(
θ

(a)
1t + φt

)
≤ 0, (6)

where γt ≡ Γt/σ1t and φt ≡ Φt/σ1t denote the lending yield and the shorting cost per unit

of volatility. The interpretation of this inequality is clear. Indeed, it simply requires that

the largest expected excess return that can be achieved by going in either risky assets

(first term) and short in asset 1 (second term) is negative. In addition to this no-arbitrage

requirement, in equilibrium we must have that

θ
(a)
2t = θ

(a)
1t + γt, (7)

for otherwise one of the assets would dominate the other and markets would not clear.

This equality shows that, in our model, an agent wanting to go long is indifferent between

the risky assets once fees are taken into account and will lead to some indeterminacy in

the characterization of optimal portfolios: see Proposition 1 below. Importantly, given (7)

the no-arbitrage condition (6) boils down to γt ≤ φt which simply requires that borrowing

asset 1 to hold it does not generate riskless profits.

The assumption of logarithmic utility implies that, under the above conditions, the

optimal consumption rate of agent a is given by

c
(a)
t = ρW

(a)
t

and that the fractions of her wealth p
(a)
it = π

(a)
it /W

(a)
t that she optimally invests in the

risky assets solve the mean-variance problem

max
p∈R×R+

{
Λ (p1; Φt,Γt) +

∑
i

piσitθ
(a)
it −

1

2
(p1σ1t + p2σ2t)

2

}
. (8)

The following proposition derives the solution to this problem and summarizes the optimal

trading behavior of agents, taking as given market prices and the rates (Φ,Γ) that

characterize the short market.

13



Proposition 1. Assume that condition (7) holds and let φt ≥ γt. Then the optimal

portfolio of agent a satisfies

p
(a)
1t (Φ,Γ)σ1t = 1{

θ
(a)
2t ≥0

}xt + 1{
θ
(a)
1t +φt≤0

} (θ(a)
1t + φt

)
, (9a)

p
(a)
2t (Φ,Γ)σ2t = 1{

θ
(a)
2t ≥0

} (θ(a)
2t − xt

)
, (9b)

where xt is an arbitrary process such that 0 ≤ xt ≤ θ
(a)
2t .

The optimal trading strategy in Proposition 1 admits an intuitive interpretation. If the

net Sharpe ratio θ
(a)
2t = γt + θ

(a)
1t that agent a associates with long positions in the risky

assets is positive, then agent a naturally goes long at the optimum but there is a degree

of freedom in the determination of her optimal portfolio because any p ∈ R2
+ that delivers

the efficient risk exposure

∑
i

piσit = argmax
x∈R

{
xθ

(a)
2t −

1

2
x2

}
= θ

(a)
2t

is optimal. On the other hand, if θ
(a)
2t ≤ 0 then the agent clearly does not want to go long

in either risky asset. Whether she goes short in asset 1 depends on the sign of the Sharpe

ratio −(θ
(a)
1t + φt) that she associates with a short position in asset 1. If this quantity is

positive, then she shorts asset 1 to achieve the efficient risk exposure

p1tσ1t = argmax
x∈R

{
x
(
θ

(a)
1t + φt

)
− 1

2
x2

}
= θ

(a)
1t + φt,

and otherwise she invests only in the riskless asset.

3.2 Equilibrium shorting cost

Proposition 1 and the discussion preceding it show that the total flow of lending fees

induced by a shorting cost process Φt is well-defined only if φt = Φt/σ1t ≥ γt in which

case it is explicitly given by

∑
a

π
(a)
t (Φ,Γ)−Φt =

∑
a

φt

(
θ

(a)
1t + φt

)−
W

(a)
t . (10)

In our model, agent o is more optimistic than agent p and both have logarithmic utility.

Therefore, we know that agent p is short whenever agent o is short and, because agents

cannot be short simultaneously in equilibrium, it follows that any shorting activity must
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come from the pessimist alone. In particular, we must have

θ
(o)
2t = θ

(o)
1t + γt > 0, (11)

so that the optimist is long at all times. In combination with (7), this implies that the

Sharpe ratios perceived by the optimist are such that

∀y ≥ γt :
(
θ

(o)
1t + y

)−
=
(
θ

(o)
2t − γt + y

)−
= 0.

As a result, the sum in (10) reduces to the contribution of the pessimist and it follows

that the equilibrium shorting cost satisfies

φt ∈ argmax
y≥γt

{
y
(
θ

(p)
1t + y

)−}
= max

{
γt,−

1

2
θ

(p)
1t

}
+ 1{

θ
(p)
1t ≥0

}R+. (12)

The above expression shows that when θ
(p)
1t ≥ 0, the shorting cost is undetermined because

in such states neither agent wants to go short irrespective of the cost set by the lending

agent. To facilitate the presentation, we from now select the smallest element of the

above set of maximizers, i.e., we let

φt = max

{
γt,−

1

2
θ

(p)
1t

}
. (13)

This selection is without loss of generality and simply amounts to setting the flow cost

to zero on the endogenous set of states L ≡ {(ω, t) : γt = 0}, where the shorting market

is inactive in equilibrium.

Substituting the optimal portfolios of Proposition 1 into the market clearing conditions

shows that the equilibrium lending yield and shorting cost are related by

γtσ1tS1t = (φt − γt)
(
θ

(p)
1t + φt

)−
W

(p)
t . (14)

Since the diffusion of asset 1 and the wealth of the pessimist are both strictly positive in

equilibrium, this identity combined with (7) and (13) implies that (see the Appendix A

for a detailed argument)

L =
{

(ω, t) : θ
(p)
2t ≥ 0

}
, (15)

15



and substituting back into (13) shows that

φt = −1

2
θ

(p)
1t 1{S}, (16)

where

S ≡ (Ω× R+) \L =
{

(ω, t) : θ
(p)
2t < 0

}
(17)

denotes the set of states where the shorting market is active. These expressions provide

key information about the equilibrium properties of the shorting market. Specifically,

the equivalent set identities (15) and (17) show that the market is active in equilibrium

exactly in states where θ
(p)
2t = θ

(p)
1t + γt < 0 so that the pessimist perceives a strictly

negative net Sharpe ratio on long positions in either risky asset. Equation (16) shows

that, in those states, the lending agent sets the flow cost φt to one half of the Sharpe ratio

−θ(p)
1t that the pessimist could have obtained absent frictions. In response, the pessimist

scales down her short demand by a half relative to the frictionless case and, as a result,

the flow of lending fees received by the optimist, i.e.(
π

(p)
1t

)−
Φt =

1

4

(
θ

(p)
1t

)2

W
(p)
t 1{S},

amounts to a fourth of her optimal frictionless excess return.

Remark 1 (Nash bargaining). Since the lending agent upholds only the interests of asset

owners, this fraction constitute an upper bound on the share that alternative price setting

mechanisms may attribute to the optimist. In particular, if the cost was determined by

Nash bargaining between the lending agent and the pessimist(s) then (16) would be

replaced by − b
2
θ

(p)
1t 1{S}, where b ∈ [0, 1] represents the bargaining power of the lending

agent. In response, the pessimist would now scale down her optimal short demand by

a factor 1 − b
2

and, as a result, the optimist would capture a fraction b
2
(1 − b

2
) of her

optimal frictionless excess return. We focus throughout the paper on the polar case

where b = 1 because it leads to simpler algebraic expressions for equilibrium outcomes,

but the structure of the equilibrium and the qualitative properties of the model, including

the characterization of the trading regions, remain the same when b < 1.
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3.3 State variables and trading regions

Combining the equilibrium restriction (7) with the expression of the equilibrium shorting

cost in (12) shows that{
(ω, t) : θ

(p)
2t < 0 and θ

(p)
1t + φt ≥ 0

}
= ∅, (18)

see Appendix A for details. Therefore, it follows from Proposition 1 that the pessimist

is strictly long in either or both risky assets in the interior of the set L where θ
(p)
2t > 0, is

fully invested in the riskless asset on the boundary where

∂L ≡
{

(ω, t) : θ
(p)
2t = 0

}
,

and is strictly short in asset 1 on the set S where θ
(p)
2t < 0. As we now show, the scale

invariance of logarithmic preferences allows us to characterize these sets and the resulting

pricing of risk/time in terms of a single endogenous state variable

st ≡ c
(o)
t /et ∈ [0, 1]

that tracks the consumption share of the optimist. To construct the equilibrium evolution

of this state variable, we take as reference the subjective probability of the optimist. This

choice is without loss in generality.

Since the marginal propensity to consume of both agents is ρ, it follows from market

clearing that the price of the market portfolio is

Mt =
∑
i

Sit =
∑
a

W
(a)
t =

1

ρ

∑
a

c
(a)
t =

et
ρ
,

and that the endogenous state variable can be expressed as

st =
W

(o)
t

Mt

= 1− W
(p)
t

Mt

. (19)

On the other hand, combining (7), (11), and (14) with the results of Proposition 1 shows

that the wealth of the agents evolve according to

dW
(o)
t

W
(o)
t

= (rt − ρ) dt+ θ
(o)
2t

(
dZ

(o)
t + θ

(o)
2t dt

)
,
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and

dW
(p)
t

W
(p)
t

= (rt − ρ) dt+ 1{L}
(
θ

(o)
2t −∆

)(
dZ

(o)
t + θ

(o)
2t dt

)
+ 1{S}

(
θ

(o)
2t −∆− γt + φt

)(
dZ

(o)
t +

(
θ

(o)
2t − γt + φt

)
dt
)
,

subject to (16) and

γtσ1tS1t = 1{S}(1− st) (γt − φt)
(
θ

(o)
2t −∆− γt + φt

)
Mt. (20)

Next, applying Itô’s lemma to the second equality in (19) and matching terms, pins down

the equilibrium interest rate rt and the equilibrium market price of risk θ
(o)
2t as functions

of the state variable and the lending yield:

θ
(o)
2t = θ∗(st) − 1{S}

(1− st) (st∆− σ − γt)
1 + st

(21a)

and

rt = r∗(st) + 1{S}
st(1− st) (σ + γt + ∆) (st∆− σ − γt)

(1 + st)2
, (21b)

where

θ∗(st) ≡ σ + (1− st) ∆,

r∗(st) ≡ ρ− σ2 + µ(o)st + µ(p)(1− st),

denote the market price of risk and the interest rate that would prevail in an otherwise

identical economy where either or both of the risky assets can be freely shorted (see e.g.,

Detemple and Murthy (1997)).

On the shorting region, we have that φt = −1
2
θ

(p)
1t > γt from (16) and combining this

inequality with (7) and (21a) shows that

σ + γt < st∆.

Therefore, it follows from (21) that the presence of costly short selling increases the

interest rate and decreases the market price of risk relative to the frictionless case. To

understand this result, observe that costly short sales trigger a reduction in the short

demand of the pessimist which in turn implies that the optimist’s equilibrium portfolio
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does not have to be as leveraged as in the frictionless case and, thus, explains the changes

in the interest rate and market price of risk. The fact that costly short sales result in

an increased riskless rate stands in sharp contrast to the effect of other types of frictions

such as limited participation (Basak and Cuoco, 1998), borrowing constraints (Kogan,

Makarov and Uppal, 2007), and liquidity constraints (Detemple and Serrat, 2003) which

all result in a lower interest rate. To understand this difference note that the latter

frictions require investors not subject to the friction to take highly leveraged positions

that they would not have chosen in a frictionless setting. On the contrary, costly short

sales imply that pessimistic investors short less than they would have absent costs. This

limits how levered optimistic investors have to be to clear market and ultimately results

in a higher interest rate. A similar but stronger effect also occurs when short sale are

prohibited (Gallmeyer and Hollifield, 2008).

Substituting (17) into (21a) shows that the net Sharpe ratio perceived by the pessimist

on long risky asset positions satisfies

θ
(p)
2t = 1{

θ
(p)
2t ≥0

} (σ − st∆) + 1{
θ
(p)
2t <0

}γt (1− st) + 2 (σ − st∆)

1 + st
. (22)

This implies that L of (15) is contained in the set of states where the consumption share

of the optimist lies below the threshold

s∗ = s∗(∆) ≡ min
{

1,
σ

∆

}
and, because the second term on the right hand side of (22) is nonnegative at st = s∗, we

conclude that the trading regions are explicitly given by

L =
{

(ω, t) : θ
(p)
2t ≥ 0

}
= {(ω, t) : 0 < st ≤ s∗} , (23a)

S = (Ω× R+) \L =
{

(ω, t) : θ
(p)
2t < 0

}
= {(ω, t) : s∗ < st < 1} . (23b)

These expressions show that shorting occurs only in states where the optimists represent

a large enough share of the economy. This is intuitive. Indeed, when optimists are very

few, prices mostly reflect the opinion of the pessimists and shorting is not necessary. On

the contrary, when a large fraction of agents are optimists, equilibrium prices reflect more

closely the opinion of the optimists and shorting becomes necessary for the pessimists to

express their perception of the risky assets as being overpriced.

As illustrated in Figure 2, the characterization of the trading regions in (23) shows that

two mutually exclusive types of equilibria may arise in our model. The first type occurs if
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Figure 2: Equilibrium trading regions. The figure illustrates the shape of the equilibrium

trading regions and allows us to determine the equilibrium configuration that occurs for each

level of disagreement among agents.

the disagreement among agents is so small that ∆ ≤ σ. In that case, both agents are long

in the risky asset throughout the state space, and the existence of the shorting market

is irrelevant so that the equilibrium is the same as in an otherwise identical frictionless

economy with heterogenous beliefs (see Detemple and Murthy (1997)). The second type

of equilibrium occurs when the disagreement among agents is such that ∆ > σ. In that

case, the equilibrium includes two non empty trading regions: up to the locus of points

st = σ/∆, both agents are long and the shorting market is inactive, while strictly above

that locus agent 2 holds a short position in asset 1 and the shorting costs she incurs

generate a strictly positive flow of lending revenues for the optimist.

Applying Itô’s lemma to both sides of the first equality in (19) and matching terms

finally shows that the state variable evolves according to

dst
st(1− st)

= m (st, γt) dt+ v (st, γt) dZ
(o)
t ,
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with the functions defined by

v (st, γt) = v (st, γt; ∆) ≡ ∆− 1{st>s∗(∆)}
st∆− (γt + σ)

1 + st
, (24a)

m (st, γt) = m (st, γ; ∆) ≡ (1− st) v (st, γt)
2 (24b)

+ 1{st>s∗(∆)}
(st∆− (γt + σ))((γt + ∆)st − σ)

(1 + st)2
.

Importantly, the drift and the diffusion of the endogenous state variable are equal to zero

at both st = 0 and st = 1. This implies that 0 and 1 are absorbing boundaries for the

consumption share process of the optimist, and will allow us to easily derive boundary

conditions for equilibrium prices in the next section.

3.4 Price representation

Having characterized the instantaneous pricing of risk and time, we now turn to the

pricing of long lived assets. To this end, let

ξ
(o)
t,u ≡

eρtc
(o)
t

eρuc
(o)
u

= e−ρ(u−t) stet
sueu

denote the normalized marginal utility of the reference agent.

Proposition 2. In equilibrium

S1t = E
(o)
t

[∫ ∞
t

ξ
(o)
t,u (e1u + S1uΓu) du

]
, (25)

S2t = E
(o)
t

[∫ ∞
t

ξ
(o)
t,ue2udu

]
, (26)

where eit = ηiet denotes the dividend rate of asset i = {1, 2}.

The above proposition shows that there are no rational bubbles in our model. Indeed,

the equilibrium prices of the two assets are given by the risk-adjusted present value of the

cash flows that they deliver to holders of long positions. The novelty is that, in our model,

the cash flows of risky asset 1 include an endogenous component S1tΓt that accounts for

the lending fees generated by each share of the asset along the equilibrium path.

This endogenous cash flow component is strictly positive over a set of positive measure

if and only if the disagreement ∆ > σ so that the shorting region is non empty. In that
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case, the equilibrium price-dividend ratio of asset 2

PD2t ≡
S2t

e2t

= E
(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]
is strictly lower than that of asset 1

PD1t ≡
S1t

e1t

= E
(o)
t

[∫ ∞
t

e−ρ(u−t) st
su

(1 + PD1uΓu) du

]
,

and the premium

PD1t − PD2t = E
(o)
t

[∫ ∞
t

e−ρ(u−t) st
su

PD1uΓudu

]
=

1

η1

(
1

ρ
− PD2t

)
> 0, (27)

where the second equality follows from the fact that the PD ratio of the market is 1/ρ,

gives the risk-adjusted present value of the stream of holding benefits that accrue to

owners of asset 1 in the form of lending fees.

The above inequality implies that, in the presence of costly short sales, the equilibrium

pricing rule is nonlinear as the risky assets have different price-dividend ratios despite

the fact that they are Siamese twins. Specifically, since PD2t < 1/ρ from (27), we have

that the share of asset 2 in the market portfolio

S2t

Mt

= ρη2PD2t < η2

is strictly lower than the share of aggregate dividends that it pays out, while the share

of asset 1 in the market portfolio

S1t

Mt

= ρη1PD1t = 1− ρη2PD2t > η1

exceeds its share of dividends. This nonlinearity is entirely driven by the presence of costly

short sales and provides a rational explanation for the apparent mispricing observed in

the period following certain corporate restructurings.

For example, Lamont and Thaler (2003) report that after the spin-off by 3Com of 5%

of its subsidiary Palm, the extrapolation of the value of the traded Palm shares resulted in

an implied valuation that exceeded the market capitalization of the subsidiary 3Com. The

key to understand this phenomenon is the observation that at the time of this apparent

mispricing, the costs associated with shorting Palm were very high because only the

5% of freely traded Palm shares could be lent to investors wanting to establish a short

position. In our model, the η1 = 5% of freely traded Palm shares are akin to asset 1
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so that their price in (25) should include a sizable lending fee component in (27), while

the remaining Palm shares held by 3Com are part of asset 2 whose equilibrium price in

(26) only reflects the present value of future dividends. We quantitatively illustrate this

feature of the model in Section 4.2.

Remark 2. The strict inequality (27) holds irrespective of whether the shorting market

is currently active or not. Indeed, we show in Appendix A that the equilibrium evolution

of st on the long region implies

P (o)

[{
sup
u≥t

su ∈ S
}∣∣∣∣ 0 < st ≤ s∗

]
= 1, (28)

so that the optimist can be certain that, starting from any point in L, her consumption

share will eventually enter the open region S where the trading of the pessimist generates

strictly positive lending fees.

4 Equilibrium prices and lending yield

To complete the construction of the equilibrium, it now remains to compute the lending

yield and the risky asset prices. To facilitate the presentation, we start with the simpler

case of a single risky asset where the solution is in closed-form before turning to the more

challenging case of two risky assets. We then calibrate the model to briefly discuss the

3Com/Palm spin-off puzzle.

4.1 One risky asset

When the weight η1 = 1, the single risky asset S1t = Mt is the market portfolio and its

volatility equals that of the aggregate dividend. Substituting these quantities into (16)

and (20) and using (21) shows that in equilibrium

Φt = 1{st>s∗}
(δ + Γt)st − σ2

1 + st
, (29)

Γt = 1{st>s∗}
(1− st)(stδ − Γt − σ2)((δ + Γt)st − σ2)

σ2(1 + st)2
, (30)

where the constant

δ ≡ σ∆ = µ(o) − µ(p) ≥ 0
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denotes the unscaled difference in beliefs between the two agents. Solving this system

delivers the following result.

Proposition 3. With a single risky asset, the equilibrium shorting cost and the equilib-

rium lending yield are given by

Φt = 1{st>s∗}
st(1− st)δ − 2σ2 +

√
s2
t (1− st)2δ2 + 4σ4st

2(1− st)
, (31)

and

Γt = 1{st>s∗}
−st((1− st)2δ + 4σ2) + (1 + st)

√
s2
t (1− st)2δ2 + 4σ4st

2st(1− st)
, (32)

and both are increasing and convex in δ.

The positive relation between the shorting cost and the difference in beliefs is intuitive.

Indeed, an increase in δ implies that agent p becomes more pessimistic than agent o in

relative terms and thus triggers an upward shift in her short demand schedule which in

turn leads to an increase of the shorting cost. To understand the comparative statics of

the lending yield, note that due to market clearing we have

Γt =
ΦtΥt

1 + Υt

, (33)

where the utilization ratio Υt ≡ π
(p)
1t

−
/S1t tracks the fraction of shortable shares that are

on loan. This measure of short interest is affected by changes in δ both directly through

the perceived risk premia and indirectly through the equilibrium shorting cost. However,

combining Proposition 1 and (16) reveals that in equilibrium we have

Υt =

(
1− st
σ

)(
θ

(p)
1t + φt

)−
=

(
1− st
σ2

)
Φt, (34)

which implies that the comparative statics of Υt and thus of Γt are the same as those

of the equilibrium shorting cost Φt. In particular, since the shorting cost is increasing

in δ, this identity shows that, in equilibrium, there exists a positive relation between

short interest and the divergence in beliefs. This implication of the model is consistent

with extensive empirical evidence. In particular, it is well documented that there exists a

positive relation between short interest and the dispersion of analysts’ earning forecasts

taken as a proxy for heterogenous beliefs (see e.g., D’Avolio (2002), Duffie et al. (2002)).
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Figure 3: Equilibrium shorting cost and lending yield. The solid and dash-dotted lines

represent the equilibrium shorting cost and lending yield as functions of the consumption share

of the optimist in a single asset model with σ = 0.1 and δ = 0.05. The dashed|dotted lines

represent the impact of a 10% increase|decrease in the divergence of beliefs δ.

To illustrate the magnitude of the shorting cost and its dependence on the wealth

distribution, Figure 3 plots Φt and Γt as function of the consumption share of the optimist

in a model with σ = 10% and δ = 5% which are both reasonable if one interprets et as

modelling aggregate dividends (David, 2008, Belo, Collin-Dufresne and Goldstein, 2015).

Given these values, the figure illustrates that the implied lending fee varies between 0

and 2% depending on the state of the economy. This interval of variation is of the right

magnitude for most U.S. stocks. Indeed, the empirical analysis in our companion paper

Hugonnier and Prieto (2023) shows that over the period 2004-14 the average annual cost

of shorting a stock varied between 0.07% and 0.59% in deciles 1 to 9, and jumped to

6.93% in decile 10. See e.g., Beneish et al. (2015), Muravyev, Pearson and Pollet (2018),

Drechsler and Dreschler (2018) for similar estimates. The figure shows that the shorting

cost starts from zero at the lower end of the shorting region, increases until it reaches a

maximum and tappers off to a limit that is explicitly given by

lim
st→1

Φt = (1− s∗) δ
2

= (∆− σ)
σ

2
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as a result of (31). To understand this limit, recall that as st → 1 the model converges

to one where only the optimist is present. As a result, the market price of risk perceived

by the pessimist must converge to its frictionless counterpart θ∗(1)−∆ = ∆(s∗ − 1) and

the expression for the limiting cost now follows from (16).

The bottom curves of the figure show that the lending yield is a bell-shaped function

of st that starts from zero at the lower end of the shorting region and comes back to zero

as the wealth share of the optimist approaches one. The apparent discrepancy between

the limiting behavior of the shorting cost and the lending yield as st → 1 can be traced

back to the economic nature of these objects. Indeed, Φt represents a price that can

be meaningfully understood in the limit as the cost for a short position of infinitesimal

size (see e.g., Davis (1998), Hugonnier and Kramkov (2004), Hugonnier, Kramkov and

Schachermayer (2005)) whereas Γt is a flow rate that can be strictly positive only in states

where the pessimist holds a non infinitesimal fraction of aggregate wealth.

As usual with logarithmic preferences, the price S1t = et/ρ of the single risky asset

is unaffected by the presence of frictions. However, it is important to recall that, in our

model, this price comprises two parts. Indeed, it follows from Proposition 2 that

S1t = E
(o)
t

[∫ ∞
t

ξ
(o)
t,ueudu

]
+ E

(o)
t

[∫ ∞
t

ξ
(o)
t,uS1uΓudu

]
,

where the first term

E
(o)
t

[∫ ∞
t

ξ
(o)
t,ueudu

]
= E

(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]
gives the (risk-adjusted) present value of futures dividends, i.e., the fundamental value of

the asset, and the second captures the present value of the flows of lending fees associated

with ownership of the asset. As we discuss below in the two risky assets case, the fact

that the lending yield is a deterministic function of the endogenous state variable implies

that both components can be computed from the solution to a boundary value problem

for a nonlinear differential equation, see (39) and (40).

Remark 3 (Exogenously fixed shorting cost). Gârleanu et al. (2021) consider a setting

that is very close to ours but assume that the shorting cost is given by an exogenous

function of short interest which they take to be constant in the baseline version of their

model. Working under this alternative assumption it can be shown that

– If ∆ ≤ σ then agents are always long in the unique equilibrium.
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– If σ < ∆ ≤ σ + φ where φ ≡ Φ/σ denotes the constant shorting cost per unit of

volatility then the unique equilibrium includes two regions: The region L over which

st < σ∆ where both agents hold long positions and the complementary region O in

which the pessimist would short absent costs but does not because the exogenous

shorting cost is too high.

– If ∆ > σ + φ then all equilibria include a third region S over which the pessimist

holds a short position in the stock.

In the latter case, the same steps as in Section 3.3 show that the equilibrium interest rate

and market price of risk are given by

rt = r∗(st) + 1{O} (1− st)σ (∆− σ/st)

+ 1{S} (1− st) st (φ− γt) (∆− φ+ γt) (35)

θ
(o)
t = θ∗(st)− 1{O} (1− st) (∆− σ/st)− 1{S} (1− st) (φ− γt) (36)

where the scaled lending yield γt ≡ Γt/σ is a solution to

γtσ = (1− st) (γt − φ) (σ − st(γt + ∆− φ)) (37)

and the short region S is determined by the interval of consumption shares st for which

this equation admits a strictly positive solution.

In our model the endogeneity of the shorting cost φt guarantees that (37) admits

exactly one strictly positive solution and that this solution is equal to zero on the

boundary of the shorting region. As a result, the equilibrium is unique and all equilibrium

quantities are continuous functions of the endogenous state variable st. This is no longer

the case when φ is exogenously fixed as in Gârleanu et al. (2021). Indeed, a direct

calculation shows that, over the region of the parameter space where

4σ < φ and ∆ ∈ 1

2

[
3φ−

√
φ (φ− 4σ), 3φ+

√
φ (φ− 4σ)

]
,

equation (37) admits two strictly positive solutions when st lies in an interval M to the

left of the point ŝ ≡ σ/(∆− φ). As a result, there are infinitely many equilibria that are

each associated with a different selection of the lending yield at times where the state

variable lies in the interval M.

This multiplicity is interesting from the theoretical point of view, but it is subject

to two important caveats that severely limit its practical relevance. First, multiplicity

27



obtains only if the shorting cost is so high that φ > 4σ which is very unlikely to occur. For

example, in the ten year sample that we use in Hugonnier and Prieto (2023) this condition

is satisfied in 66 of 308, 618 (0.021%) return/month observations associated to 54 different

stocks. Second, and perhaps more importantly, the multiplicity of the equilibrium implies

that the interest rate and the market price of risk in (35)–(36) experience predictable

jumps at every point in time where the equilibrium switches from one branch of the

lending yield solution to the other.

4.2 Two risky assets

Consider now the model with two risky assets. Equation (27) shows that in order to

compute the equilibrium asset prices it is sufficient to compute the price-dividend ratio

of asset 2 or, equivalently, its market share

wt ≡
S2t

Mt

= ρE
(o)
t

[∫ ∞
t

ξ
(o)
t,ue2udu

]
= ρη2E

(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]
.

This expression makes it clear that wt and thus the asset prices

(S1t, S2t) = (1− wt, wt)Mt

depend on an expectation over the future path of the endogenous state variable. On the

other hand, since

σ1tS1t = ((1− wt)σ − difft(w))Mt, (38)

it follows from (24) that the drift and diffusion of st on the shorting region depend on wt

and its diffusion coefficient

difft(w) =
1

dt
d
〈
wt, Z

(o)
t

〉
through the lending market clearing condition (20). Therefore, the triple (st, wt, difft(w))

is the solution to a Forward Backward Stochastic Differential Equation over an infinite

horizon (FBSDE, see Ma and Yong (1999) for a thorough introduction).

Since the evolution of the process st is fully determined by (st, wt, difft(w)), it is

natural to look for Markovian equilibria in which wt = w(st) for some sufficiently regular
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bounded function such that

w(0) = w(1) = η2, (39)

where the equalities follow from the fact that the endogenous state variable is absorbed

at the endpoints of the unit interval. Furthermore, Itô’s lemma and (38) show that for

such a solution we have

difft(w) = st (1− st) v (st, γt)w
′(st)

and therefore

σ1tS1t = ((1− w(st))σ − st (1− st) v (st, γt)w
′(st))Mt,

where the function v(st, γt) is defined by (24a). Substituting into the short market clearing

condition (20), gives a quadratic equation

γtσ

1− st
=
γt (γt + ∆ + σ)w′(st)

(1− w(st)) (1 + st)
+

(st∆− γt − σ) ((γt + ∆)st − σ)

(1− w(st)) (1 + st)
2

that implicitly determines the lending fee

γt = γ (st, w(st), w
′(st))

as a function of st, w(st), and w′(st) for all st > s∗. Substituting this function into

(24) then shows that the endogenous state variable evolves according to the autonomous

stochastic differential equation defined by

dst = m[w](st)dt+ v[w](st)dZ
(o)
t ,

with the deterministic functions

(m[w](s), v[w](s)) ≡ s (1− s) (m, v) (s, γ (s, w(s), w′(s))) .

This implies that st is a Markov diffusion and, since the process

e−ρt
w(st)

st
+ ρη2

∫ t

0

e−ρu
du

su
= ρη2E

(o)
t

[∫ ∞
0

e−ρu
du

su

]
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is by construction a martingale, it follows that the market weight is a piecewise twice

continuously differentiable solution to

ρ

(
w(s)

s

)
= m[w](s)

(
w(s)

s

)′
+

1

2
(v[w](s))2

(
w(s)

s

)′′
+
ρη2

s
, (40)

subject to the boundary condition (39).

This nonlinear boundary value problem is too complex to admit an explicit solution.

We therefore resort to numerical methods to illustrate the quantitative implications of the

model. As a first step, we start by observing that on the long region [0, s∗] the differential

equation simplifies to

ρw(s) = ρη2 +
1

2
s2(1− s)2∆2w′′(s).

A direct calculation shows that, for any given ε ∈ (0, η2), the unique solution to this

equation with w(0) = η2 and w(s∗) = ε is explicitly given by

w(s; ε) = η2 + (ε− η2)
( s
s∗

) 1
2

+ 1
2

√
1+ 8ρ

∆2

(
1− s
1− s∗

) 1
2
− 1

2

√
1+ 8ρ

∆2

.

Relying on this solution over the long region, we now combine a traditional shooting

approach with a collocation method (see, e.g., Miranda and Fackler (2004) and Dangl and

Wirl (2004)) to construct a global solution as follows: For each value of ε we implement a

Chebyshev collocation to numerically solve equation (40) on the shorting interval [s∗, 1]

subject to the initial conditions

0 = w(s∗)− w(s∗; ε) = w′(s∗)− w′(s∗; ε),

and then numerically vary the value of the free constant until the solution satisfies the

terminal boundary condition w(1) = η2 required by (39).

To illustrate the quantitative implications of the model in the two asset case, we fix

the underlying parameters (σ, δ, ρ) = (10, 5, 1)% and set et = 1 so that the equilibrium

value of the market portfolio is normalized to 100. In the left panel of Figure 4, we plot

the equilibrium price of asset 1

S1t = Mt − S2t = (1− w(st))Mt
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and the present value of its future dividends, i.e., its fundamental value,

f1(st)Mt ≡ E
(o)
t

[∫ ∞
t

ξ
(o)
t,ue1udu

]
=
η1w(st)Mt

1− η1

when η1 = 50%, so that half of the asset supply is available for shorting. In a frictionless

environment, these functions would be constant and equal to η1Mt = 50 because, absent

shorting costs, asset 1 only entitles its owner to a constant share of dividends. As shown

by the figure, this is no longer the case in the presence of a shorting friction. Indeed,

since s∗ = σ2/δ = 0.2 < 1, we have S 6= ∅ and it follows that asset 1 entitles its owners

to strictly more than its share of dividends. Since the value of the market is fixed, this

implies that the equilibrium price of asset 2, given by the risk-adjusted present value of

its dividends, must account for less than 1− η1 = 50% of the market, and it follows that

the price of asset 1 must strictly exceed its frictionless value η1Mt = 50, which in turn

must exceed the fundamental value of the asset.

The difference between the market value of the asset and the risk-adjusted present

value of its dividends, that is

`(st)Mt ≡ E
(o)
t

[∫ ∞
t

ξ
(o)
t,uS1uΓudu

]
=

(
1− w(st)

1− η1

)
Mt,

represents the risk-adjusted present value of the lending fees associated with ownership

of asset 1. The figure shows that this difference is bell-shaped as function of the state

variable and can amount to as much as 10% of the market portfolio when half of the

asset supply can be shorted. To illustrate the impact of the supply parameter η1 on the

lending component, we plot in the right panel the relative contribution

`(st)

1− w(st)
=

1− η1 − w(st)

(1− η1)(1− w(st))

of this component to the price of asset 1 for different values of η1 ranging from 1% to

100%. As shown by the figure, this contribution is also single-peaked as a function of the

state variable and monotone decreasing in η1. The latter property is intuitive. Indeed,

as η1 decreases, the dividend component of the asset cash flows naturally decreases but

the lending fees component remains essentially unchanged because the demand for short

positions is not directly affected by the supply parameter η1, and it follows that lending

fees must account for a larger share of the equilibrium asset price.

As discussed in Section 3.4, the nonlinearity of the equilibrium pricing rule can help

explain apparent mispricing episodes such as the partial spin-off of Palm by 3Com. To
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Figure 4: Decomposition of the equilibrium price. The left panel plots the price of

the asset 1 (solid line) and the risk-adjusted present value of its dividends (dashed line) when

half of the supply is available for shorting. The right panel plots the present value of lending

fees as a fraction of the asset price for different values of η1. In both panels the parameters of

the model are set to σ = 10%, δ = 5%, ρ = 1%, et = 1, and the hatched region indicates the

interval over which no shorting activity takes place in equilibrium.

illustrate this point, we identify asset 1 with the 5% of shortable Palm shares and asset 2

with the remaining shares held by 3Com. From the figure, we read that the equilibrium

price of the block of shortable Palm shares evaluated at the point s∗ is given by (1 −
w(s∗))Mt = 5.87 and includes 15.5% of lending fees. Extrapolating this price to the

remaining Palm shares values asset 2 at (0.95/0.05)(1−w(s∗))Mt = 111.41 which exceeds

the value Mt = 100 of the conglomerate and represents a premium of(
0.95

0.05

)(
1− w(s∗)

w(s∗)

)
− 1 = 18.35%

relative to the equilibrium price w(s∗)Mt = 94.14 of asset 2. Note that these figures are

conservative because they are evaluated at the point s∗ that signals the entry into the

shorting region. If instead we used as reference the point argmax (1− w(s)) ≈ 0.62, then

the price of the block of shortable Palm shares would include 32% of lending fees and the

relative premium on asset 2 would increase to 46.84%.
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Figure 5: Equilibrium with two risky assets. This figure plots the PD ratio and the

volatility of the shortable asset (1st row), the shorting cost and the lending yield per unit of

volatility (2nd row), and the shorting cost and the lending yield (3rd row) as functions of the

consumption share of the optimist for different values of η1 in a model with σ = 10%, δ = 5%,

ρ = 1% and et = 1. In each panel the hatched region indicates the interval of states over which

no shorting activity takes place in equilibrium.
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Turning to the lending market, Figure 5 plots the price-dividend ratio of the shortable

asset PD1t and its volatility σ1t, as well as the shorting cost and lending fees both per unit

of volatility (φt, γt) and unscaled (Φt,Γt). The middle panels show that, when expressed

in units of risk, the shorting cost and the lending yield are decreasing in the dividend

share η1 and otherwise behave similarly as in the one asset case of Section 4.1 which here

corresponds to the dash-dotted lines. The former feature can be understood as follows:

As η1 decreases, asset 1 becomes more scarce. Therefore, the share of total lending fees

that each share entitles to also increases. This tends to push the asset price up and the

market price of risk down which in turn implies that the intermediary can charge a higher

cost to optimists per unit of volatility as shown by the middle panels of the figure. As

the fraction η1 approaches zero the economy barely includes any shortable stocks but

the figure shows that shorting cost and lending yield per unit of volatility continue to

increase. This indicates that the shorting market remains active despite the vanishing

supply and suggests that the equilibrium is not continuous at η1 = 0 because at that

point our one asset model coincides with that of Gallmeyer and Hollifield (2008) who

analyze the equilibrium effects of a short sale ban.

The bottom panels show that these intuitive properties no longer hold when the

shorting cost and the lending yield are expressed as flow rates per dollar of short. This

change can be traced back to the oscillatory behavior of the asset volatility in the top

right panel, which in turn is implied by the behavior of the PD ratio in the top left

panel of the figure. Indeed, since the PD ratio is hump-shaped and the diffusion of the

endogenous state variable st(1 − st)v[w](st) ≥ 0 vanishes at the endpoints of the state

space, we have that the excess volatility

σ1t − σ =
st(1− st)v[w](st)(−w′(st))

1− w(st)

is positive (negative) over the interval where the PD ratio (1−w(st))/(η1ρ) is increasing

(decreasing) and equal to zero at st = 0, st = 1, and at the point where the PD ratio

reaches its maximum. The top right and bottom panels of the figure show that the

amplitude of the volatility oscillation is decreasing in the dividend share η1 and gets

gradually transferred to the shorting costs and the lending yield as the shortable asset

becomes scarce.
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5 Conclusion

We study a dynamic equilibrium model with costly short sales and heterogeneous beliefs.

The closed-form solution to the model reveals how costly short sales drive a wedge between

the valuation of assets that promise identical cash flows but are subject to different

trading arrangements. In particular, we show that the price of an asset is given by the

risk-adjusted present value of future cash flows provided that these are augmented to

include not only dividends but also an endogenous lending yield.

This asset pricing formula implies that, after adjusting for lending revenues, returns

satisfy a standard intertemporal capital asset pricing model and sheds light on recent

findings about the explanatory power of shorting costs in the cross-section of stock

returns. Specifically, it follows from (1), (5), and (7) that, in equilibrium, the expected

excess returns on the two risky assets can be expressed as

1

dt
E

(o)
t

[
dSit + ηietdt

Sit

]
− rt = σitθ

(o)
2t − 1{i=1}Γt

= σitθ
(o)
2t − 1{i=1}

(
Υt

1 + Υt

)
Φt,

where Φt is the shorting cost, Γt is the lending yield, and Υt captures the fraction of the

available inventory that is on loan. This shows that, within our simple framework, the two

assets offer the same risk-return tradeoff once the lending revenues of the shortable asset

are accounted for. Importantly, the same logic would apply in an extension of the model

with multiple shortable stocks paying out imperfectly correlated dividends. Developing

such an extension would be very interesting as it would allow to study the cross-sectional

effects of costly short sales. Unfortunately, the resulting model would have to be solved

numerically because, with more than one shortable asset, the endogenous partition of the

state space into disjoint trading regions can no longer be guessed a priori. We leave this

challenging extension of the model for future research.
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Gârleanu, N.B., Panageas, S., Zheng, G.X., 2021. A Long and a Short Leg Make For a

Wobbly Equilibrium. Technical Report. National Bureau of Economic Research.

Gensler, G., 2021. Proposed Updates to Securities Lending Market. Technical Report.

U.S. Securities and Exchange Commission. URL: https://www.sec.gov/news/

statement/gensler-securities-lending-market-20211118.

Goldstein, I., Guembel, A., 2008. Manipulation and the allocational role of prices. Review

of Economic Studies 75, 133–164.

Goldstein, I., Ozdenoren, E., Yuan, K., 2013. Trading frenzies and their impact on real

investment. Journal of Financial Economics 109, 566–582.

Gromb, D., Vayanos, D., 2010. Limits of arbitrage. Annual Review of Financial

Economics 2, 251–275.

Hajek, B., 1985. Mean stochastic comparison of diffusions. Zeitschrift für Wahrschein-

lichkeitstheorie und verwandte Gebiete 68, 315–329.

Hanson, S.G., Sunderam, A., 2014. The growth and limits of arbitrage: Evidence from

short interest. The Review of Financial Studies 27, 1238–1286.

Harrison, J., Kreps, D., 1978. Speculative investor behavior in a stock market with

heterogeneous expectations. Quarterly Journal of Economics , 323–336.

37

https://www.sec.gov/news/statement/gensler-securities-lending-market-20211118
https://www.sec.gov/news/statement/gensler-securities-lending-market-20211118


Hugonnier, J., Kramkov, D., 2004. Optimal investment with random endowments in

incomplete markets. Annals of Applied Probability 14, 845 – 864.

Hugonnier, J., Kramkov, D., Schachermayer, W., 2005. On utility-based pricing of

contingent claims in incomplete markets. Mathematical Finance 15, 203–212.

Hugonnier, J., Prieto, R., 2023. Asset pricing with costly short sales: empirical exercise .

Jiang, H., Habib, A., Hasan, M., 2020. Short selling: A review of the literature and

implications for future research. European Accounting Review , 1–31.

Jones, C., Lamont, O., 2002. Short-sale constraints and stock returns. Journal of

Financial Economics 66.

Karatzas, I., Shreve, S., 1988. Brownian motion and stochastic calculus. second ed.,

Springer Verlag.

Kashyap, A., Kovrijnykh, N., Li, J., Pavlova, A., 2020. Is There Too Much Benchmarking

in Asset Management? Technical Report. University of Chicago Working Paper.

Kogan, L., Makarov, I., Uppal, R., 2007. The equity risk premium and the riskfree rate

in an economy with borrowing constraints. Mathematics and Financial Economics 1,

1–19.

Krishnamurthy, A., 2002. The bond/old-bond spread. Journal of Financial Economics

66, 463–506.

Lamont, O.A., Thaler, R.H., 2003. Can the market add and subtract? Mispricing in tech

stock carve-outs. Journal of Political Economy 111, 227–268.

Ma, J., Yong, J., 1999. Forward-backward stochastic differential equations and their

applications. Lecture Notes in Mathematics, Springer.

Mei, J., Scheinkman, J.A., Xiong, W., 2009. Speculative trading and stock prices:

Evidence from Chinese A B share premia. Annals of Economics and Finance 10,

225–255.

Miller, E., 1977. Risk, uncertainty, and divergence of opinion. Journal of Finance 32,

1151–1168.

Miranda, M.J., Fackler, P.L., 2004. Applied Computational Economics and Finance. The

MIT Press.

Mitchell, M., Pulvino, T., Stafford, E., 2002. Limited arbitrage in equity markets. Journal

of Finance 57, 551–584.

Muravyev, D., Pearson, N.D., Pollet, J.M., 2018. Is there a risk premium in the stock

lending market? evidence from equity options. Working paper, Boston College .

Nezafat, M., Schroder, M., 2022. Private information, securities lending, and asset prices.

Review of Financial Studies 35, 1009–1063.

Nutz, M., Scheinkman, J.A., 2020. Shorting in speculative markets. Journal of Finance

75, 995–1036.

Ofek, E., Richardson, M., Whitelaw, R., 2004. Limited arbitrage and short-sales

restrictions: evidence from the options markets. Journal of Financial Economics 74,

305–342.

Radner, R., 1972. Existence of equilibrium of plans, prices and prices expectations in a

sequence of markets. Econometrica 40, 289–303.

38



Reed, A.V., 2013. Short selling. Annual Review of Financial Economics 5.

Scheinkman, J.A., Xiong, W., 2003. Overconfidence and speculative bubbles. Journal of

Political Economy 111, 1183–1220.

Seneca, J.J., 1967. Short interest: bearish or bullish? Journal of Finance 22, 67–70.

Vayanos, D., Weill, P.O., 2008. A search-based theory of the on-the-run phenomenon.

Journal of Finance 63, 1361–1398.

A Proofs

Proof of Proposition 1. The solution follows from a direct application of the Karush,

Kuhn, and Tucker conditions to (8) subject to (6) and (7). �

Proof of Proposition 2. Let ξt = ξ
(o)
t with

−dξt
ξt

= rtdt+ θ
(o)
2t dZ

(o)
t

denote the marginal utility of the optimist. By construction, we have that

Nit = ξtSit +

∫ t

0

ξu
(
eiu + 1{i=1}S1uΓu

)
du

are local martingales under P (o) and it follows from Lemma 1 below that these processes

are martingales over any finite horizon. In particular, we have that

ξ
(o)
t Sit = E

(o)
t

[
ξTSiT +

∫ T

t

ξu
(
eiu + 1{i=1}ΓuS1u

)
du

]
for all finite T <∞ and therefore

ξ
(o)
t Sit = lim

T→∞
E

(o)
t [ξTSiT ] + E

(o)
t

[∫ ∞
t

ξu
(
eiu + 1{i=1}ΓuS1u

)
du

]
by monotone convergence, since the terms below the integral are all nonnegative. To

complete the proof, it remains to show that the limit is zero. Let λt = 1/st−1. As shown

in the proof of Lemma 1 below, we have that

ξTSiT ≤ ξTMT = e−ρTM0

(
s0

sT

)
= e−ρTM0

(
1 + λT
1 + λ0

)
≤ e−ρTM0

(
1 + ΛT

1 + λ0

)
for some P (o)−martingale Λt with initial value λ0 and therefore

lim
T→∞

E
(o)
t [ξTSiT ] ≤ lim

T→∞

e−ρTM0

1 + λ0

(
1 + E

(o)
t [ΛT ]

)
= lim

T→∞
e−ρTM0 = 0,
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where the last equality uses the fact that ρ > 0. Since ξTSiT ≥ 0, this in turn implies

that the limit is zero and the proof is complete. �

Lemma 1. The process Nit is a P (o)−martingale on [0, T ] for any T <∞.

Proof. By construction, we have that

0 ≤ Nit ≤ Nt ≡ N1t +N2t = ξtMt +

∫ t

0

ξu (eu + S1uΓu) du,

and it is thus sufficient to show that the process Nt is a martingale under P (o) over the

finite time interval [0, T ]. Since Sitσit ≥ 0 we have that

Sitσit ≤
2∑
j=1

Sjtσjt = Mtσ.

On the other hand, using (30) and the fact that γt ≤ φt shows that we have

γt ≤ φt = 1{st>s∗}
st∆− (γt + σ)

1 + st
≤ ∆.

Combining this inequality with the definition of ξt, we deduce that there are strictly

positive constants such that

|Nt| ≤ ξtMt +

∫ t

0

ξuMu (ρ+ γuσ) du

≤ ξtMt +

∫ t

0

ξuMu (ρ+ ∆σ) du ≤ C + C ′ sup
u∈[0,T ]

λu (41)

for all t ∈ [0, T ], where λt ≡ 1/st − 1. Using Itô’s lemma and the dynamics of the

consumption share process in (24) shows that

dλt = λt

(
g(st, γt)dZ

(o)
t − f(st, γt)dt

)
for some functions f, g : [0, 1] × [0, φ] → R such that f(s, γ) ≥ 0 and |g(s, γ)| ≤ ∆.

Therefore, Novikov’s condition implies that

Λt ≡ e
∫ t
0 f(su,γu)duλt = λ0 exp

(
−
∫ t

0

g(su, γu)dZ
(o)
u −

1

2

∫ t

0

|g(su, γu)|2du
)

is a P (o)−martingale on any finite time interval and it thus follows from Doob’s maximal

inequality that for any q > 1 we have:

E(o)

[
sup
u∈[0,T ]

λqu

]
≤ E(o)

[
sup
u∈[0,T ]

Λq
u

]
≤ q

q − q
E(o) [Λq

T ] .
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Now, since |g(s, γ)| ≤ ∆ and the function xq is convex for any q > 1, it follows from the

mean comparison results of Hajek (1985, e.g., Theorem 1.3) that

E(o) [Λq
T ] ≤ Λq

0E
(o)
[
eq∆Z

(o)
T −

1
2
q∆2T

]
= e

1
2
q(q−1)∆2Tλq0.

This implies that the right hand side of (41) is P (o)−integrable and the required result

finally follows from the dominated convergence theorem. �

Proof of equation (15). If θ
(p)
2t ≥ 0 then it follows from γt ≤ φt and (7) that we have

θ
(p)
1t + φt ≥ θ

(p)
1t + γt = θ

(p)
2t ≥ 0,

and therefore γt = 0 due to (14). To establish the converse implication, assume towards

a contradiction that we have the lending yield γt = 0 but θ
(p)
2t < 0. Then it follows from

(7), (13) and (14) that we have

0 = φt

(
θ

(p)
1t + φt

)−
W

(p)
t =

1

4

{
θ

(p)
2t

−}2

W
(p)
t

and therefore θ
(p)
2t ≥ 0, since the wealth of the pessimist is strictly positive. �

Proof of equation (18). If θ
(p)
2t < 0 then

θ
(p)
1t + φt = θ

(p)
1t + max

{
γt,−1

2
θ

(p)
1t

}
= max

{
θ

(p)
1t + γt,

1
2
θ

(p)
1t

}
= max

{
θ

(p)
2t ,

1
2

(
θ

(p)
2t − γt

)}
< 0,

where the first equality follows from (13) and the third follows from (7). �

Proof of Proposition 3. For st > s∗ we have that (30) is equivalent to gt(γ) = 0 with

the quadratic function defined by

gt(γ) ≡ (1− st)(st∆− γ − σ)((γ + ∆)st − σ)− γσ(1 + st)
2.

Since

gt(0) = (1− st) (st∆− σ)2 > 0,

g′t(0) = −σ(1 + st)
2 − (1− st)2(st∆− σ) < 0,

g′′t (γ) = −st(1− st) < 0,

and

lim
γ→∞

gt(γ) = −∞,
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it is clear that (30) admits a unique strictly positive solution. A direct calculation shows

that this solution is given by (32) and substituting into (29) gives (31). The comparative

statics follow by (31), (33), and (34) by differentiation. We omit the details. �

Proof of equation (28). First observe that

P
(o)
t

[{
sup
u≥t

su ∈ S
}]

= P
(o)
t [{τ ∗ <∞}] ,

where the stopping time

τ ∗ ≡ inf{u ≥ t : st ≥ s∗}

denotes the first time at or after t ≥ 0 that the Itô process st finds itself in the shorting

region. To obtain the required probability, we will compute

gt ≡ E
(o)
t

[
e−λτ

∗]
= E

(o)
t

[
e−λτ

∗
1{τ∗<∞}

]
,

and then let λ ↓ 0. On the time interval [t, τ ∗], we have from (24) that the consumption

share of the optimist evolves according to the autonomous SDE

dst = st(1− st)∆
(
dZ

(o)
t + (1− st)∆dt

)
.

Therefore, it follows from well-known results (see, e.g., Karatzas and Shreve (1988,

Chapter 5.7.A)) that gt = g(st), where the function g : [0, 1]→ R is the unique bounded

function such that

λg(s) = s(1− s)2∆2

(
g′(s) +

1

2
sg′′(s)

)
, 0 ≤ s ≤ s∗,

g(s) = 1, s∗ ≤ s ≤ 1.

Solving this differential equation gives

g(st) = 1{st>s∗} + 1{st≤s∗}

{
s∗

st

(
1− st
1− s∗

)} 1
2
− 1

2

√
1+ 8λ

∆2

,

and the desired result now follows from the dominated convergence theorem by letting

the constant λ ↓ 0 in the definition of gt. �

B Stochastic disagreement

In this appendix, we discuss the construction of an equilibrium in an extension of the

model where the divergence in beliefs is stochastic and time-varying.

Assume that the economy is populated by two agents indexed by a ∈ {1, 2} who have

different perceptions of the evolution of the aggregate dividend process. Specifically,
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assume that in the eyes of agent a

det
et

= µ
(a)
t dt+ σdZ

(a)
t ,

for some agent-specific Brownian motions Z(a) and growth rate process µ
(a)
t such that the

scaled divergence in beliefs

∆t ≡
1

σ

(
µ

(1)
t − µ

(2)
t

)
is adapted to the filtration generated by the observation of the aggregate dividend

process. As a typical example, one could consider an Ornstein-Uhlenbeck process for

the disagreement, i.e., a process of the form

d∆t = −λ∆tdt+ dZ
(o)
t = −(1 + λ)∆tdt+ dZ

(p)
t ,

for some strictly positive constant λ, but the exact specification of the divergence process

is unimportant for the arguments of this appendix. All the other building blocks of the

model, i.e., the agents’ preferences, the assets they trade, and the shorting mechanism

remain the same as in the benchmark model of Section 2.

If the disagreement never changes sign then this model is essentially equivalent to the

benchmark model of Section 2 with the identification [o, p] = [1, 2] if the disagreement is

always positive and [o, p] = [2, 1] in the opposite case. Now assume that the disagreement

is not signed. In this case, the identity of the optimist is a stochastic process that

changes back and forth between ot = 1 when the disagreement is positive and ot = 2

when it is negative. As a result, the equilibrium can be constructed by analogy with

that of the benchmark model by observing that the consumption share of agent 1 evolves

like the consumption share of the optimist in the benchmark model at times where the

disagreement is nonnegative, and as the consumption share of the pessimist at times

where it is negative. For brevity we only outline the main steps.

Let st ∈ [0, 1] denote the consumption share of agent 1 which we will use as an

endogenous state variable. Proceeding along the lines of Sections 3.2 and 3.3 shows that

the equilibrium shorting cost and lending yield satisfy

−φt = 1{S(1)}
1

2
θ

(1)
1t + 1{S(2)}

1

2
θ

(2)
1t (42)

and

γtσ1t (1− wt) = (φt − γt)φt
(

1{S(1)}st + 1{S(2)}(1− st)
)
, (43)

where

S(2) =
{

(ω, t) : θ
(2)
2t < 0 ≤ θ

(1)
2t

}
=
{

(ω, t) : st > s∗
(
∆+
t

)}
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gives the region of the state space over which agent 2 is short in asset 1 and agent 1 holds

long positions in both risky assets, and

S(1) =
{

(ω, t) : θ
(1)
2t < 0 ≤ θ

(2)
2t

}
=
{

(ω, t) : 1− st > s∗
(
∆−t
)}

gives the region over which agent 1 is short in asset 1 and agent 2 holds long positions in

both risky assets. This, in turn, implies that the shorting market is endogenously inactive

over the region given by

L ≡ (Ω× R+)\ ∪a S(a) =
{

(ω, t) : min
a
θ

(a)
2t ≥ 0

}
=
{

(ω, t) : 1− s∗
(
∆−t
)
≤ st ≤ s∗

(
∆+
t

)}
and substituting these expressions into (21) and (24) shows that the equilibrium interest

rate, the equilibrium market price of risk perceived by agent 1, and the equilibrium

evolution of her consumption share are explicitly given by

θ
(1)
2t = θ∗(st)− 1{st>s∗(∆+

t )}
(1− st)

(
st∆

+
t − σ − γt

)
1 + st

− 1{1−st>s∗(∆−
t )}

st
(
(1− st) ∆−t − σ − γt

)
2− st

,

rt = r∗(st) + 1{st>s∗(∆+
t )}

st (1− st)
(
∆+
t + σ + γt

)
(st∆

+ − σ − γt)
(1 + st)2

+ 1{1−st>s∗(∆−
t )}

st (1− st)
(
∆−t + σ + γt

) (
(1− st)∆−t − σ − γt

)
(2− st)2

,

and

dst
st(1− st)

= m
(
st, γt; ∆+

t

)
dt+ v

(
st, γt; ∆+

t

)
dZ

(1)
t (44)

−m
(
1− st, γt; ∆−t

)
dt− v

(
1− st, γt; ∆−t

)
dZ

(1)
t ,

where the functions m(s, γ; ∆) and v(s, γ; ∆) are defined as in (24a) and (24b). See

Figure 6 for an illustration of the equilibrium trading regions.

To complete the construction of the equilibrium, it now remains to solve for the

equilibrium lending yield γt and to compute the asset prices. In the one asset case,

the derivation follows the same steps as in Section 4.1. In particular, we find that the

equilibrium shorting cost and lending yield are given by

(Φt,Γt) = (Φ,Γ)
(
st,∆

+
t

)
+ (Φ,Γ)

(
1− st,∆−t

)
,

with the functions Φ(s,∆) and Γ(s,∆) implicitly defined by the right hand sides of (31)

and (32). The comparative statics are very similar to those of the benchmark model
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Figure 6: Trading regions with a stochastic disagreement. The figure illustrates the

shape of the equilibrium trading regions and allows us to determine the configuration that

occurs for each level of disagreement among agents.

with a constant disagreement. In particular, the flow rates (Γt,Φt) and the equilibrium

utilization ratio

Υt =
1− st
σ2

Φ
(
st,∆

+
t

)
+
st
σ2

Φ
(
1− st,∆−t

)
are all convex and u-shaped in the disagreement ∆t.

The representation of equilibrium prices—or of the fundamental value in the one

asset case—is slightly more complex than in the benchmark model because each agent

successively participates on both sides of the shorting market. Proposition 1 and the

above characterization of the equilibrium trading regions imply that the normalized

marginal utility of agent 1 evolves according to

−dξ(1)
t /ξ

(1)
t = rtdt+

(
θ

(1)
1t + 1{S(2)}γt + 1{S(1)}φt

)
dZ

(1)
t .

Under appropriate integrability assumptions on the disagreement process ∆t, this expres-

sion can be combined with arguments similar to those of the proof of Proposition 2 to

show that the equilibrium prices satisfy

S2t = E
(1)
t

[∫ ∞
t

ξ
(1)
t,ue2udu

]
,
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and

S1t = E
(1)
t

[∫ ∞
t

ξ
(1)
t,u

(
e1u + 1{su>s∗(∆+

u )}S1uΓu + 1{1−su>s∗(∆−
u )}S1uΦu

)
du

]
. (45)

To understand this expression, note that from the point of view of agent 1 the cash flows

that are relevant to the equilibrium valuation of asset 1 depend on which side of the

shorting market the agent is. On the set L, the only relevant cash flow is the dividend

e1t since the shorting market is inactive. On the set S(2), the agent is long in asset 1 so

that the relevant cash flows are the dividend and the lending yield S1tΓt associated with

each share of the asset, and finally on S(1), the agent is short so that the relevant cash

flows are now given by the dividend and the shorting cost S1tΦt required to maintain a

short position. Importantly, if the disagreement process is always positive then the latter

region is empty and we recover (17).

To derive a differential equation for the equilibrium price of asset 1, we assume that

the scaled disagreement follows an autonomous diffusion process

d∆t = µ(∆t)dt+ Σ(∆t)dZ
(1)
t ,

with values in some set D ⊂ R and then proceed as in Section 4.2 albeit with an additional

state variable. Specifically, we look for an equilibrium in which

S1t = w (st,∆t)Mt

for some sufficiently regular function w : [0, 1]×D → [0, 1] such that

w(0,∆) = w(1,∆) = η1, ∀∆ ∈ D. (46)

Itô’s lemma and (38) show that, in such a Markovian equilibrium, the diffusion coefficient

of asset 1 satisfies

difft(S1)

Mt

= σw (st,∆) + w′∆(st,∆t)Σ(∆t)

+ w′s(st,∆t)
(
v(st, γt,∆

+
t )− v(1− st, γt,∆−t )

)
.

Substituting into (42) and (43) then gives a linear-quadratic system that implicitly

determines the shorting cost and the lending fee as functions

(Φ[w](st,∆t),Γ[w](st,∆t))

of st, ∆t, w(st,∆t), and the derivatives (w′s, w
′
∆)(st,∆t). Taking these functions as given,

it follows from (44) that the endogenous state variable evolves according to

dst = m[w](st,∆t)dt+ v[w](st,∆t)dZ
(1)
t
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for some explicit drift and diffusion functions (m, v)[w](s,∆). This, in turn, implies that

the pair (st,∆t) forms a Markov process and, since

e−ρt
w(st,∆t)

st
+

∫ t

0

e−ρu
(
ρη1 + 1{su>s∗(∆+

u )}w(su,∆u)Γ[w](su,∆u)

+ 1{1−su>s∗(∆−
u )}w(su,∆u)Φ[w](su,∆u)

)du
su

is a martingale as a result of (45), we deduce that the function u ≡ w/s is a piecewise

twice continuously differentiable solution to

(ρ− β[w](s,∆))u =
ρη1

s
+ µ(∆)u′∆ +

1

2
Σ(∆)2u′′∆∆

+m[w](s,∆)u′s + v[w](s,∆)Σ(∆)u′′s∆ +
1

2
v[w](s,∆)2u′′s∆,

subject to the boundary condition (46), where

β[w](s,∆) ≡ 1{s>s∗(∆+)}Γ[w](s,∆) + 1{1−s>s∗(∆−)}Φ[w](s,∆)

denotes the additional cash flow per dollar of asset value in (45) as a function of the state

variables s, ∆ taking as given w(·) and w′(·).
A numerical solution to this nonlinear boundary value problem can in principle be

constructed using the same collocation approach as in the constant disagreement case

of Section 4.2, albeit in two dimensions and subject to the caveat that the differential

equation no longer admits an explicit solution on the long region in general. We leave

the challenges of this implementation for future research.
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