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ABSTRACT

A simple matching game played with binary strings is related to the Fibonacci numbers.
Using a counting argument, we show that the number of strings of length n that cannot result
in a win is an integer multiple of the (n —2)’nd Fibonacci number, not counting certain trivial
strings.

This paper is concerned with what is called the same game, a game played with binary
strings. The object of the game is to eliminate a binary string by removing runs of consecutive
identical digits. Stephan [2] conjectured that the number of winning strings of length n is

2" —9nF,_ o —(-1)" -1,
or equivalently, the number of Iosing-strings is
nFy_a+(-1)" +1. (1)

At heart, our proof is this: by excluding two trivial losing strings that only occur when n is
even, we will show that under an equivalence relation, the losing strings can be partitioned
into F,_» sets of size 2n, thus establishing Stephan’s conjecture.

We define the same game as follows. Let S be a binary n-string with a run of k > 1
consecutive identical digits. Then we define a reduction rule by removing those consecutive
identical digits thus producing an (n — k)-string. Strings that can be reduced to null by a
sequence of reduction rules are called winning strings. Losing strings are those strings that
are not winning strings. The reduction rules along with the binary strings constitute the same
game. When n is even, we call the two losing strings which repeat ‘10’ n/2 times or ‘01’ n/2
times the trivial losing strings or just trivial strings. These are just the strings we exclude
from account in formula (1). All other strings are non-trivial.

Let @, be the set of binary strings of length n. We proceed by defining two functions
r,¢: Qn — Qn. The function r rotates a string; it is defined by

a1a9 -+ Qn Hr G203 " " AnQ1.

The function ¢ maps a string to its complement, i.e., each element a; is mapped to 0 if a; = 1
and 1 if a; = 0. We now define an equivalence relation ~ on ), as the least equivalence
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relation such that S; ~ S2 when rS; = 82 or ¢Sy = S for two binary strings S1,S2 € @Qn. An
equivalence class that contains a binary string S is called the orbit of S. We now come to our
first proposition.

Proposition 1: Every orbit of Qn consists entirely of winning strings or entirely of losing
strings.

Proof: Assume S is a winning string of length n that begins with 0. Then there is some
sequence of removals that reduces S to null, one of which removes the first 0 in S along with
at least one other 0. Notice that removing this 0 cannot bring together a run of consecutive
identical digits. Therefore, we can choose to save this run of 0’s for the end, making its removal
the final removal. Similarly, we can choose to save any 0s at the end of the string for our final
removal.

Now consider rS. This string resembles S, except that the 0 at the beginning is now on
the end. Notice that we can perform moves on S analogous to those performed on S above
except for the last move that takes S to null. This is because in the previous paragraph we
“protect” any 0’s on the ends of S. Thus, if we follow the same sequence of removals as before,
but this time on rS, we will be left with a single run of 0’s. We can remove these so that rS is
also a winning string. What is more, this argument can be repeated for S beginning with 1.

It is obvious that ¢S must also be a winning string. Thus we have shown that, given
a winning string S, ¢S and rS also win, proving that any orbit containing a winning string
contains only winning strings since the functions ¢ and r generate our equivalence relation.
This implies that any orbit containing a losing string contains only losing strings. 0O

_ Thus we may now refer unambiguously to losing orbits and winning orbits. Moreover,
we will use Proposition 1 for a corollary, which concerns a related game with nicer properties.
Consider a variant of the same game we call the wraparound same game (or wraparound game).
In this variant all reduction rules in the same game are valid and we also allow removal of runs
of consecutive identical digits that wrap around the end of the string. Thus

0010 — 1

is a reduction rule in the wraparound game.

Corollary 2: S is a winning string in the same game if and only if S is a winning string in
the wraparound game.

Proof: We prove the non-trivial direction by induction on n the length of a winning
string. So assume that any winning string in the wraparound game of length j < n is a
winning string in the standard same game. Assume S is a winning n-string in the wraparound
game. Consider the case where we remove a run of length k that wraps around. Then we can
rotate S to 1S for some integer 4 so that this run does not wrap around and eliminate it in
the same game. This produces a winning (n — k)-string in the wraparound game which by our
induction hypothesis is a winning string in the same game. Thus r*S is a winning string in
the same game so that Proposition 2 implies that S is a winning string in the same game. 0O

For what follows, it is advantageous to use the wraparound game and Corollary 2 allows
us to do this. That is, we may unambiguously refer to a winning or losing string without
reference to a particular game and we also consider the first and last digits of a string as
consecutive.
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Lemma 3: Given any non-trivial losing binary n-string S, there is a rotation r*S that can be
reduced to a single digit in the standard same game.

Proof: Assume S is a non-trivial losing n-string so that S must contain a run of two or
more consecutive identical digits. When we remove this run in the wraparound game, the two
digits on either side are identical, so we bring them together and remove them and any other
identical digits within the run. This brings together two more identical digits which we remove
in a similar fashion. Eventually this must terminate with a single digit a;in Sfor1 <2< n
by our assumption that S is a losing string.

Consider the rotation r*~1S making a; the first digit. Because we do not remove a,
placing it as the first digit ensures that no run we removed in S will wrap around in r*~1S.
Thus, all the removals performed on S become allowable removals in the standard same game
when performed on #i71S. O

We now consider the losing orbits: the following two propositions establish that every
losing orbit of @, has size 2n. We will see that this relates to the 2n term in formula (1).

Proposition 4: Let S be a non-trivial binary n-string. Assume that v*S = S for some k,
0 <k <n. Then S is a winning string.

Proof: Choose the smallest positive k for which 7¥S = S. Then any two digits separated
by k places (mod n) are identical. Because 7™(S) = & it follows by properties of the greatest
common denominator that r&d(:n)(8) = S. Thus, because of our choice of k, we have that
ged(k,n) = k and S repeats its first k digits n/k times.

Let the string T of length k be the first k digits of S. If T’ is a winning string, then it
follows that S is a winning string. So assume T is a losing string. Because S is non-trivial,
T must also be non-trivial. By Lemma 3 there is a rotation of T, 77T which can be reduced
to a single digit using the standard same game rulés. Then the first k digits of /S are r’T
which repeat n/k times. Now reduce each copy of rIT to a single digit, leaving a single run of
n/k consecutive identical digits. Finally, we remove this run of digits, proving that 775, and
therefore S, is a winning string. O

Proposition 5: Let S be a non-trivial binary n-string. Assume that cr®S = S for some
integer k. Then S is a winning string.

Proof: Let the integer k satisfy cr¥S = S. By applying r* twice, it follows that r2*S = S.
Let p denote the remainder of 2k upon division by n so that 0 < p <mn, if 2k is not a multiple
of n. In that case we also have that 7S = S, hence we may apply the previous proposition.
Thus we may assume that 2k is a multiple of n. '

Notice that the first % digits of § must be the complement of the next k digits. Similarly,
the next k digits must be the complement of these, meaning they are the same as the first k
digits. Therefore, the first 2k digits of S will be repeated over the length of S. If n > 2k, then
this pattern is repeated at least twice and by the previous result S must be a winning string.
So we reduce to the case where n = 2k, and the pattern appears only once.

We proceed by induction on n. So assume any non-trivial string of length j < n composed
of a string followed by its complement is a winning string. Because S is non-trivial, we can
rotate it to r*S for some i so that the first k digits begin with a run of consecutive identical
digits. Let T be the first k digits of 7%, so that r*S consists of T followed by cT'. From our
construction, T' and ¢T" begin with a run of consecutive identical digits, so we remove those -
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runs to form a string S’ of length of less than n. If S’ is trivial, then r*S must consist of a
single run of 1’s and a single run of 0’s and so it is a winning string. Our induction hypothesis
covers the other case. O

These propositions imply that the cardinality of the orbit of a losing n-string S is 2n.
This is the case since we must have r¥S # S and ¢r*S # S for any k such that 0 < k <n,
hence the strings 7S, ¢riS for i ranging from 0 to n — 1 are all different, and there are 2n
such strings. Thus all that remains is to find Fy,_» losing orbits of @, excluding the orbit
of trivial strings in order to establish formula (1). We proceed by introducing a string that
indexes where a string of the same game alternates. As it turns out, we can tell a losing string
from the indexing string from a very simple inspection; no moves of the game are necessary.

Definition: Given a binary string S = a; - - - a5, of length n, we define I(S) to be the indezing
string of S as follows. For i < n, S is a binary n-string such that the i’th element is 1 if
a; # aj+1 and 0 otherwise. For the n’th element we compare a, and a;.

Notice the following properties of indexing strings. First, for any binary string S, / (5=
I(cS). Second, 1{rS) =rI(S). We also have the following proposition.

Proposition 6: Given S, The number of 1’s in the indexing string I(S) is even.

Proof: The number of 1’s counts the number of times that S alternates from 0 to 1 or 1
to 0. If S alternates from 0 to 1 it must at some point alternate back from 1 to 0 because we
consider S as wrapping around at the end. O

We now define a third game, the indezing same game (or indez game). The moves of
this game are performed on finite binary strings containing an even number of 1’s. Let S be
an n-string in the index game with a run of k > 1 consecutive 0’s (where the first digit is
consecutive to the n’th). Then this run of 0’s is flanked by two 1’s, one on each side. We
define a indezing reduction rule by removing the run of 0’s and replacing the two flanking 1’s
with a single zero, producing an (n — k — 1)-string (there is an example below). A winning
indezing string is a string in the index game that can be reduced to a single run of k > 1
consecutive 0’s.

Proposition 7: Let T' be a binary n-string with an even number of 1’s. Then T = I (S) for
some binary string S. T is a winning string in the index game if and only if S is a winning
string in the wraparound game.

Proof: Let T be defined as above. It is trivial to note that T = I(S) for some binary
n-string §. We will reduce I(S) and S simultaneously using corresponding reduction rules.
Notice that corresponding to a run of length & in S, we have (k — 1) 0’s in T'. If our run takes
up the entire string S, then T is just 0’s. Then S and T = I(S) are both winning strings in
their respective games. If our run ends, then it alternates to the opposite digit at both ends.
Thus, we must have 1’s flanking our corresponding 0’s in I(S). When we eliminate the run
in S to create a binary (n — k)-string S, we bring flanking digits together to create another
run. Thus, removing the (k.— 1) 0’s in I(S) in the index game will reduce T = I(S) to I(S').
If S is a winning string, then some sequence of removals takes a S to a single run of identical
digits. Then some sequence of removals takes I(S) to a single run of two or more 0’s and the
converse is also true. O

Example: The winning string § = 11101100 can be reduced to null in the same game by the
steps ;
1110{11}00 — 111{000} = {111} — 0.
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In each step above the digits within brackets are simply removed. The transform I(S) =
00110101 can be reduced analogously in the index game with the steps

001{101}01 ++ 00{1001} ~+ {000}.

In the above the brackets are replaced with a single 0 until we have a run of 0’s.

Notice that an indexing string composed of a single run of 1’s and a single run of 0’s is
always a losing string in the index game and that the even indexing string consisting of all 1’s
corresponds to the trivial losing strings. We now present a very simple condition for telling
when S is a losing string by looking at I(S).

Proposition 8: Let S be a non-trivial binary n-string so that I(S) is a binary n-string that
contains an even number 2m of 1’s, where 0 < m < n/2. Then S is a losing string if and only
if there is a run of consecutive 1’s in I(S) strictly greater than m.

Proof: (<) If a string has a run of m + 1 or more 1’s we call this a main run. So '
assume I(S) has a main run. Notice that there are at most (m — 1) 1’s not in the main run.
Each elimination step that removes a 1 from the main run also removes a 1 that is not in the
main run. Since there are more 1’s in the main run than 1’s outside the main run, we cannot
eliminate the main run and leave a run of two or more 0’s.

(=) We prove this by induction on n, the length of our indexing string. Thus assume any
indexing string of length j < n without a main run is a winning string. Say an n-string I(S)
has no run of m + 1 or more 1’s where 2m is the number of 1’s in I(S). We wish to prove
that I(S) is a winning string. Find a run g of 1’s in I(S) that has the maximal number of 1’s.
Reduce I(S) to I(S') by removing a 1 from this maximal run and a 1 from some other run.
Then I(S") has (2m —2) 1’s. ‘

Suppose (for the sake of contradiction) I(S") has a run s’ of I’s of length m —1+1=m
or greater so that I(S’) is a losing string. Then we did not remove from a run s in I(S) to
produce s'. Otherwise, s would have m + 1 or more 1’s. Then s has m 1’s (it cannot have
more), must be a maximal run, and must be different from g which we now know must have m
1’s. Then there are only two runs because there are only 2m 1’s. But when we removed from
our maximal run, we must have removed from s as well which gives our contradiction. O

Thus given an indexing string with 2m 1’s, we know that it is a losing string just by
looking at the configuration of its 1’s. It loses if it has a run of m + 1 or more 1’s and wins
if it has no such run. Also notice that a losing string cannot have more than one main run
because it only has 2m 1’s.

Any losing indexing string must have at least two 1’s. Thus, we can choose our losing
indexing n-strings by picking an even number 2m, 0 < m < n/2, of 1’s, making sure we have
at least m + 1 gathered together in a group and throwing the rest of the 1’s anywhere else in
the string. This group of m + 1 or more 1’s we once again call the main run. At this point we
now present our main theorem.

Theorem 9: The number of non-trivial losing strings of length n in the same game is 2nF, _o
for all n.

Proof: We define an oriented losing string to be an indexing losing string with 2m 1’s
such that the first m + 1 digits are all 1’s and the last digit is a 0. That is, we place the main
run at the beginning of the string. Let T be an oriented losing string. Then T' = I(S) for
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some losing string S in the same game. Notice that T' = I(cS) and rT = I(rS). Thus, we
use T' = I(S) as the unique representative of the orbit of S under G. There is a way to count
these oriented losing strings that gives the Fibonacci recurrence.

Because we exclude the trivial strings, we exclude the case where an even indexing string
is entirely composed of 1’s. Consider all the oriented losing indexing n-strings where we have
a 1 placed two slots to the right of our main run (there is a 0 separating this 1 from the end
of our main group). We claim that the number of losing strings of this form is equal to the
number of losing strings of length n — 2. The one-to-one correspondence is given by removing
the 1 that is two slots to the right of our main run and removing a 1 in our main run to
produce a losing (n — 2)-string. By removing a 1 both from outside and inside the main run,
we ensure that the resulting (n — 2)-string is still a losing string (that it has a main run of
requisite length). The inverse of this is taking an (n — 2)-losing string, inserting a 1 to the
main run and inserting a 1 two slots to the right of the main run. The above is illustrated
with the following corresponding strings,

1111{1}0{1}0110 <> 111100110.

The first is a losing oriented indexing 11-string, the second is its corresponding losing oriented
indexing 9-string. We remove or add the bracketed digits depending on the direction of the
correspondence.

Tt is trivial to note that the number of losing indexing n-strings with a 0 placed two slots
the right of the main group is the number of losing (n — 1)-strings. We simply add or remove
that 0. Thus we have the recurrence. Notice that the number of non-trivial oriented indexing
losing 2-strings is Fy = 0 and there is only Fy =1 oriented indexing losing 3-string: that is
110. Thus we have our theorem. 0O
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