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Abstract—An increasing number of countries implement In-
ternet censorship at different levels and for a variety of reasons.
The link between the censored client and entry point to the
uncensored communication system is a frequent target of cen-
sorship due to the ease with which a nation-state censor can
control this. The diversity of a censor’s attack landscape has led
to an arms race, leading to a dramatic speed of evolution of
censorship resistance schemes (CRSs) (we note that at least six
CRSs have been written in 2014 so far). Despite the inherent
complexity of CRSs and the breadth of work in this area, there
is no principled way to evaluate individual systems and compare
them against each other.

In this paper, we (i) sketch an attack model to comprehensively
explore a censor’s capabilities, (ii) present an abstract model
of a Pluggable Transport (PT)–a system that helps a censored
client communicate with a server over the Internet while resisting
censorship, (iii) describe an evaluation stack that presents a
layered approach to evaluate PT, and (iv) survey 34 existing PTs
and present a detailed evaluation of 6 of these corresponding
to our attack model and evaluation framework. We highlight
the inflexibility of current PTs to lend themselves to feature
sharability for broader defense coverage. To address this, we
present Tweakable Transports-PTs built out of re-usable compo-
nents following the evaluation stack architecture with a view to
flexibly combine complementary PT features. We also list a set
of challenges to guide future work on Tweakable Transports.

I. INTRODUCTION

As the Internet becomes an increasingly important means
to engage in civil society, those who wish to control the
flow of information are turning to measures to suppress
speech which is considered undesirable. While blocking can
take place at any point(s) in the network, the link between
the censored client and entry point to the uncensored com-
munication system has been a frequent target1. This is so
because the censor is typically a powerful nation-state ad-
versary, and has control over network infrastructure within
the censored region. Consequently there is a growing demand
for Censorship Resistance Schemes (CRSs) which can bypass
these blocks. A comprehensive CRS must defend against all
blocking techniques available to censors, and so the schemes
have become increasingly complex. As no one scheme has
proved resistant to all potential adversaries, an arms race has
developed resulting in the evolution of blocking resistance
techniques to have dramatically sped up. This is well captured
in Figure 1 on page 1 which shows work in this area over the
last five years as per our survey.

The diversity of a censor’s attack landscape and the profu-
sion of CRSs that defend against different attack paths makes

1Through the rest of this paper, we limit our scope to this link.

Fig. 1: Surveyed systems (literature and implementation) from the last five
years that concern link obfuscation.

it hard to evaluate individual tools2 and compare them against
each other to identify gaps. In this paper, we sketch a compre-
hensive attack model to understand a censor’s capabilities and
the circumvention scope of various CRSs. Next we propose
an abstract model of a system–a Pluggable Transport (PT)–that
enables a client application in censored region to communicate
with a server application over the Internet, even though direct
connections are blocked.3 We then outline an evaluation stack
that can be used to understand capabilities of various PTs in
terms of the attack path(s) these protect. In this paper, we
survey 34 papers and map them to three high level classes
according to the path on attack diagram these seek to protect.
For each class, we evaluate the significant work in that area in
a systematic way according to our attack model and evaluation
stack.

We note that combining complementary PT features pro-
vides broader defense on censor’s attack model, however
this is not practical because most PTs have been designed
as monolithic systems. There has been some effort to chain
Pluggable Transports in a blackbox fashion [65] or by adap-
tation of source code. This approach however does not offer
seamless integration and suffers from temporal overhead: fast

2Adversary Lab [5] has done some preliminary work on how to evaluate
individual tools by running them in a standard environment.

3The concept of PTs is not entirely novel and has been the de facto API
for anonymous communication systems to integrate with censorship resistance
schemes [69], however, we purposely maintain a broad focus to accommodate
CRSs that have not been written strictly as PT but can fit the broad model
with minor adaptation.
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development is particularly important for censorship resistance
because there is no one approach which is optimally efficient
and resistant to all attackers. Given these issues, we propose
an extension of Pluggable Transports–Tweakable Transports.
Tweakable Transports are Pluggable Transports built out of
re-usable components following the evaluation stack architec-
ture. Each component can be replaced with another which is
compatible and components can be inserted or removed. This
approach allows code-reuse because a component developed
for one Tweakable Transport can be used for another. In so
doing, more collaboration opportunities are allowed, better
testing can be performed on frequently required components
improving reliability and both spatial and temporal agility.
As a result Tweakable Transports exponentially increase the
number of possible CRSs.

The contributions of this paper are as follows:
• We present an attack model from a censor’s perspective

that captures the diversity of censorship mechanisms and
models the capabilities of a censor (Section II).

• We present an abstract model of a Pluggable Transport–
a system that facilitates communication between a cen-
sored client and server in a censorship resistant fashion
(Section III). Our model is derived from the existing
protocol specification [69], but is generic enough that
most CRSs not originally written as PTs can fit it with
minor modifications.

• We outline an evaluation stack for representing PT ca-
pabilities (Section III). This stack is based on functional
capabilities of a PT as per attack paths these seek to
protect.

• We survey 34 PTs and identify broad classes with re-
spect to the attack path(s) that these seek to protect
(Sections IV, V and VI). Furthermore, we use our attack
model and evaluation stack to comprehensively under-
stand the assumed threat landscape and defenses offered
by these PTs. We find that most PTs tend to cluster
either around content filtering resistance or IP filtering
resistance. This is an unrealistic assumption because
most censors are capable of performing both kinds of
censorship.

• We note that a comprehensive circumvention scheme can
benefit from integration of complementary PT features.
This is, however, not possible as most PTs have been
designed in a monolithic fashion. Motivated by this
observation, we propose Tweakable Transports–PTs built
out of re-usable components following the evaluation
stack architecture (Section VII).

II. A CENSOR’S ATTACK MODEL

The circumvention technologies discussed in this paper will
be evaluated against the censor’s attack model illustrated in
Figure 2 on page 3. The overall goal of an attacker is to
disrupt access to certain material, while minimising disruption
to other material and to do so the targeting may be direct
or indirect. With direct targeting, there is a static feature of
traffic that efficiently and accurately identifies that the traffic
should be disrupted (e.g. by matching the IP address against

an accurate blacklist). Indirect targeting is used when direct
targeting is not possible, i.e. when no suitable static fealearture
exists. In this case traffic is first fingerprinted (e.g. based on
timing characteristics) so as to derive a set of features (e.g. IP
addresses to which traffic matches the fingerprint) which can
then be used for direct targeting.

Once a decision to disrupt traffic has been made, a censor
can either corrupt it by inserting false information, by deleting
and/or modifying existing information or by disabling its
access and/or distribution4. In Figure 2 on page 3, this is
represented using green and blue color codes. A censor can
realize these goals on any (combination) of points along
the information dissemination infrastructure: client side–the
information consumer, server side–the information server, or
the channel over which information travels.

A. Blocking

On Client System (CEN.CLI).
A censor can directly enforce blocking on the client-side
system, for example by installing surveillance software openly,
or discretely by compromising the system (for example by
means of malware or insider attacks). Once a censor has gained
the desired control over client system, there is a range of things
it can do, including but not limited to corruption of incoming
network traffic before it reaches the application program,
scanning data for blacklisted keywords and communicating
results to an upstream server for subsequent blocking, and
blocking outgoing connections to a blacklist of destination IP
addresses. Effectively, a censor can disable access as well as
corrupt information on the client system. China’s Green Dam,
a filtering software product purported to prevent children from
harmful Internet content, was mandated to be installed on all
new Chinese computers in 2009 [29]. The software was found
to be far more intrusive than officially portrayed, blocking
access to a large blacklist of websites in diverse categories,
and monitored and disrupted operation of various programs
if found to be engaging in censored activity. TOM-Skype, a
joint venture between a Chinese telephony company TOM
Online and Skype Limited, is a Voice-over-IP (VoIP)/chat
client program that uses a list of keywords to censor chat
messages in either direction [35].

On Server System (CEN.SER).
Information can be censored on the server-side system. A
censor can compromise and corrupt information on the system
surreptitiously (for example by means of malware or insider
attacks). A more explicit censorship policy is to make it
mandatory for servers to run censorship software that ‘neu-
tralizes’ content before it is served, or drops server responses
containing blacklisted keywords. Consequently, it is possible
for a censor to both corrupt information and disable its access
on the server system. A number of studies investigate Chinese
government’s censorship of posts on the national microblog-
ging site Sina Weibo. Bamman et al. [15] analyze three months
of Weibo data and find that 16% of politically-driven content
is deleted. Zhu et al. [82] note that Weibo’s user-generated
content is mainly removed during the hour following the post

4We refer to information access/distribution as access alone henceforth.
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Fig. 2: Censor’s attack model, showing both direct targeting (information corruption or disabling access) and indirect targeting (fingerprinting to develop new
features for information corruption or disabling access)

with ∼ 30% of removals occurring within 30 minutes and
∼ 90% within 24 hours. Another study observes posts from
politically active Weibo users over 44 days and finds that
censorship varies across topics, with the highest deletion rate
culminating at 82%. They further note the use of morphs–
adapted variants of words to avoid keyword-based censorship.
Weiboscope [31], a data collection, image aggregation and
visualization tool, makes censored Sina Weibo posts by a set
of Chinese microbloggers publicly available.

Degrade Performance (DEG.PER).
A censor can degrade network performance as a soft form
of blocking. The induced performance overhead discourages
users from using a service while at the same time affording de-
niability to the censor. As a result, information access is hurt.
Anderson [6] uses a set of diagnostics data (such as network
congestion, packet loss, latency, bottlenecks) to study the use
of throttling of Internet connectivity in Iran between January
2010 and 2013. He uncovers two extended periods with a 77%
and 69% decrease in download throughput respectively; as
well as eight to nine shorter periods. These often coincide
with holidays, protest events, international political turmoil
and important anniversaries, and are sometimes corroborated
by overt filtering of online services or jamming of international
broadcast television.

Block Routing Information (BLK.ROU).
While the client and server systems are not generally under
control of the censor, the communication channel may be
run by the government or a government-authorised telecoms
provider, so blocking on the channel is generally easier than
at the edges. A censor can enforce a blocking policy based
on elements of the connection tuple used in routing policies:
source IP address, source port, destination IP address and
destination port. The block can continue for a short period of
time to create a chilling effect and encourage self-censorship
on part of the client. One study notes that t The Great Firewall
of China (GFW) has blocked communication from a client IP
address to a destination IP address and port combination for

90 seconds after observing ‘objectionable’ activity over that
flow [1]. It is unusual for a censor to block source port, but
can potentially be used as part of a censorship policy where the
source port is known to be associated with a circumvention
software. To reduce collateral damage, GFW drops packets
originating from Tor bridges based on both source IP address
and port [76]. Blocking of this kind leads to information
becoming inaccessible.

Corrupt Routing Information (COR.ROU).
Instead of blocking endpoints, a censor can corrupt infor-
mation that supports correct routing of packets. This can be
done by changing routing entries on an intermediate censor-
controlled router. Alternatively, a censor can effect the same
by manipulating information that supports the routing process,
for example BGP hijacking and DNS manipulation. Border
Gateway Protocol (BGP) is the de facto protocol for inter-
AS routing. A censor can block a network’s connectivity to
the Internet by withdrawing previously advertised network
prefixes or re-advertising them with different properties (rogue
BGP route advertisements). Many countries have attempted
to effect complete or partial Internet outages in recent years
by withdrawing their networks in the Internets global routing
table (Egypt [51], Libya [52], Sudan [54], Myanmar [53]).
Like BGP, DNS is another vital service over the Internet that
supports its operation by mapping names given to different
Internet resources to IP addresses. DNS is a hierarchical
distributed system and a censor can manipulate its operation on
portions of DNS that fall under its control. This may involve
redirecting DNS queries for blacklisted domain names to a
censor-controlled IP address (DNS redirection/poisoning), a
non-existent IP address (DNS blackholing) or simply dropping
DNS responses for blacklisted domains. China’s injection of
forged DNS responses to queries for blocked domain names is
well known, and causes large scale collateral damage by apply-
ing the same censorship policy to outside traffic that traverses
Chinese links [7]. Regardless of the vector chosen to corrupt
routing information, its consequence is that information access
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is disabled.
Corrupt Flow Content (COR.CON).

A censor can compromise information integrity by corrupting
flow content (COR.CON). In the current context, content of
a flow refers to the information content as perceived by the
application layer (for example an HTML document transferred
over HTTP). A censor can delete, modify or insert information
into original content, effectively modifying its interpretation
from the one originally intended by its sender. For example, a
censor can inject HTTP 404 Not Found message in response to
requests for censored content and drop the original response.
Alternatively, a censor can modify the body of original HTTP
responses with something of its choice. Corruption of flow
content implies corruption of information and/or blocking of
access.

Corrupt Protocol Semantics (COR.SEM).
Another class of attacks achieves censorship by manipulating
protocol semantics (COR.SEM). A censor can exploit knowl-
edge of protocol specification to induce disruption on a flow;
for example injecting forged TCP reset packets into the flow
will cause both endpoints to tear down the connection. A
censor can combine its knowledge of protocol semantics with
manipulation of flow timing to induce flow interpretation of its
choice on the destination. Consequently, corruption of protocol
semantics can disrupt both information access and integrity.

B. Fingerprinting

A censor needs some criteria to refine the blocking decisions
described in the previous section–indiscriminately applying
these to all traffic/systems would lead to the disruption of a
large volume of legitimate traffic which could be unacceptable
to the censor depending on various factors including cost,
policy and technology [71]. Consequently, a censor performs
a range of activities (flow fingerprinting) to scrape information
(e.g. blacklist of IP addresses, keywords) to aid its blocking
decision.

Routing Information (FPR.ROU).
A flow can be associated with a protocol based on elements of
the connection tuple used by routing policies, namely source
and destination IP addresses and ports. Destination port is a
typical target of censorship (e.g. 80 for HTTP); less commonly,
flows to an IP address known to be exclusively associated
with a blocked service can be disrupted by implication. Flow
fingerprinting of this kind can form part of a multi-stage
blocking policy, possibly followed by a blocking step. Clayton
examines the hybrid two-stage censorship system CleanFeed
deployed by British ISP BT. In the first stage, it redirects
suspicious traffic (based on destination IP and port) to an
HTTP proxy. In the next stage it performs content filtering on
the redirected traffic and returns an error message if requested
content is in the Internet Watch Foundation (IWF) list [13].

Content (FPR.CON).
Another method is to inspect flows for the presence of content
indicative of a protocol to be blocked, or matching a blacklist
of keywords, domain names and HTTP hosts etc. A number of
DPI boxes can perform regex-based traffic classification [36],
[10], [60], [46], however it remains unclear what are the true

costs of performing deep packet inspection (DPI) at scale [16],
[61]. Alternatively, flows can be fingerprinted based on some
property of the content being carried. For example, a censor
that does not allow encrypted content can block flows where
content has high entropy [17].

Flow Properties (FPR.LEN and FPR.TIM).
A censor can fingerprint a protocol by creating a statistical
model based on its flow features such as packet length,
and timing-related features (inter-arrival times, burstiness etc).
With this model, a censor can simply censor a protocol based
on flow resemblance/anomaly to it [8], [78]. Wiley [74] used
Bayesian models created from sample traffic to fingerprint
obfuscated protocols (Dust [75], SSL, obfs-openssh [38])
based on flow features, and found that across these protocols
length and timing detectors achieved accuracy of 16% and
89% respectively over entire packet streams, while the entropy
detector was 94% accurate using only the first packet. Another
vein of work classifies traffic flows by application using a
host’s transport layer behavior (such as the number of a host’s
outgoing connections). Flow properties can also be used to
fingerprint the website a user is visiting even if the flow is
encrypted [48], [63], [25], [9].

Protocol Semantics(FPR.SEM).
A censor can fingerprint flows based on protocol behaviour
triggered through different kinds of active manipulation: drop,
inject, modify and delay packets. Regardless of the mechanism
used, the key idea is to elicit some information by leveraging
knowledge of the protocol’s semantic properties. If any of
these techniques elicit the behaviour of a known protocol, the
flow can be flagged for subsequent blocking. Alternatively, a
censor can perform several fingerprinting cycles to elicit the
information on which to base subsequent blocking decisions.
In 2011, Wilde [64] investigated how China blocked Tor
bridges and found that unpublished Tor bridges are first
scanned and then blocked by GFW. Wilde’s analysis showed
that bridges were blocked in the following fashion: (i) When a
Tor client within China connects to a Tor bridge/relay, GFW’s
DPI box flags the flow as potentially Tor flow, (ii) random
Chinese IP addresses then connect to the bridge and try to
establish a Tor connection; if it succeeds, the bridge IP/port
combination is blocked.

III. A PLUGGABLE TRANSPORT MODEL FOR LINK
OBFUSCATION

We now turn our attention from a censor’s attack landscape
to censorship resistance systems (CRSs). The link between
information client and server (On Channel in Figure 2 on
page 3) is a frequent target of censorship and hence the
assumed threat model of most CRSs. Most CRSs involve an
intermediate proxy that divides the link into two parts, (i) client
to proxy and (ii) proxy to server. The former is located within
the censored region and is handled by CRS’s link obfuscation
module, while the latter is outside the censored region and
the proxy module manages it. Link obfuscation, being located
in the censored region, is the source of arms race between
censorship and circumvention and an active area of research.
We present the link obfuscation role of CRS as an abstract
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Fig. 3: A proxy relays traffic between a client in the censored region and an external server, and effectively divides the channel into two portions which
circumvention tools handle separately via different modules: (i) client to proxy (link obfuscation module), and (ii) proxy to server (proxy module). The
Pluggable Transport (PT) client allows the client application to construct a communication channel to the server application through a PT server, which can
optionally be facilitated by an intermediate device (PT Facilitator) that partially implements the PT protocol.

model we call a Pluggable Transport. We further introduce an
evaluation stack that represents functional components of a PT
as a multi-layer stack. Effectively, we can use the evaluation
stack as a common benchmark to visualize capabilities of
different Pluggable Transports.

A. Background

A censor typically targets data in transit due to its less
intrusive nature compared to edge-based censorship mecha-
nisms, and because the communication infrastructure is usually
under the censor’s direct control. Consequently, most cen-
sorship resistance systems (CRS) focus on circumvention of
censorship on the link between information client and server.
This encompasses resistance against blocking of link endpoints
(IP address blocking), and fingerprinting/corruption of the
content being carried over the link. To achieve these goals,
CRSs typically employ a proxy, an intermediate unblocked
system that relays traffic back and forth between client and
server. A proxy divides the link between client and server
into two distinct portions: (i) client to proxy (within censored
region), and (ii) proxy to server (outside censored region).
This has been illustrated in Figure 3 on page 5. A design
trend is for CRSs to treat these two portions separately (via
link obfuscation module and proxy module, respectively) as
these lend themselves to different design, implementation, and
software distribution practices.

The proxy module, being in uncensored region, may sim-
ply provide access to server, without offering any additional
security properties and could be simply implemented as a
HTTP or SOCKS proxy, or as a VPN. Alternatively, the proxy
module may be an anonymity system like Tor [70] which not
only provides access to the server but also prevents attackers
from being able to identify which user is accessing which
resource. Proxying is a well studied problem with widely
accepted protocols for both simple proxying and anonymous
communication.

In contrast to proxy module, link-obfuscation is a less
mature area so it is unclear which design decisions are optimal.
Efficient link obfuscation systems all have known vulnerabil-

ities which certain attackers might be capable of exploiting.
There is a strong case for the public description of anonymity
system designs as they can be designed in compliance with
Kerckhoff’s principle – only the key must be secret in order
for their security to be met. In contrast, no link-obfuscation
system meets this goal while maintaining good usability, so
there is a case that some link-obfuscation modules should be
distributed in obfuscated binary form.

We represent the link-obfuscation role of recent CRSs as
an abstract model we call a Pluggable Transport (PT). Any
module which implements the abstract model can be ‘plugged-
in’ to any CRS, whether it is a simple proxy or full blown
anonymity system.

B. Abstract Model of a Pluggable Transport

The goal of a Pluggable Transport (PT) is to enable a client
application to communicate with a server application over
the Internet, even though direct connections are blocked. The
PT-client exposes an API whereby the client application can
request that a communication channel to the server application
be opened. The PT-client then connects to the PT-server over a
blocking-resistant communication channel, and the PT-server
connects to the server application. The client application can
then communicate with the PT-client, as if it is communicating
directly with the server.

The communication channel provided by the PT-client and
server has similar properties to TCP. Data sent through the
channel will either be delivered to the other end without
corruption in the same order as it was sent, or an error will be
reported to the sender. It is the responsibility of the PT to route
communications between the PT-client and PT-server, avoid
blocking, and recover from any corruption of data (whether
by the censor or due to other network disruption).

The PT-client and PT-server may be able to communicate
directly over the Internet, in that any intermediate networks or
routers are not aware of the protocol the PT is using. However
in some cases there may be a PT-router which implements part
of the PT protocol so as to facilitate the blocking resistant
communication channel.
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The PT communication channel does not offer authenticity,
so it is the responsibility of the client and server applications to
confirm that data received on the channel originated from the
expected party and has not been corrupted in transit. However
many practical PTs will provide some degree of authenticity
so as to meet the goal of blocking resistance.

Ideally the latency of the communication channel will not
be much higher than that of the direct communication channel,
but in some cases a much higher latency is unavoidable. In
which cases a client application which is designed for a normal
TCP connection may malfunction.

This abstract model is implemented through the de-facto
Pluggable Transport standard (PT) [69]. This API specifies
how PT modules are invoked (i.e. as separate executable),
how the communication channel is implemented (i.e. as an
extension to the SOCKS protocol), how configuration and
status information is communicated between client/server ap-
plications and PT client/server (i.e. through a combination of
environment variables, command-line parameters, and stan-
dard in/out/error descriptors). Although this specification was
written for the Tor anonymity system, it also is implemented
in the Lantern [37] and Psiphon [50] simple proxy CRSs. The
link-obfuscation systems discussed in the remainder of the
paper comply with the abstract PT model and either implement
the Pluggable Transport specification or could be adapted to
do so without great difficulty.

C. Evaluation Stack

In order to defend against the multiple avenues of attacks
available to a censor, a Pluggable Transport (PT) is typically
designed as a series of components, with each component
defending against one or more attacks, either by itself or in
conjunction with other components. In order to describe the
capability of each PT, we will map each of them to a generic
set of components shown in Figure 4 on page 7, arranged in
layers analogous to a network protocol stack.

The primary flow of payload information is between adja-
cent layers in the stack, with the client/server application at
the top and network at the bottom. However just as with real-
world network stacks, control information does not always
exactly follow this abstraction and may skip layers. Also not
all layers will be present in all PTs, as certain exclude some
attacks from their threat model.

An uppermost layer is Session Initialisation (SI ), which
does not carry payload data and so is not directly connected
to the application. SI is responsible for the handshake between
PT-client and PT-server which may include negotiating con-
nection parameters, performing authentication, and deriving
session keys.

Also on the uppermost layer is Encryption (ENC ) which
takes application traffic which has consistent patterns and
converts it to data which the adversary cannot distinguish from
random. The key for performing the encryption is provided by
the SI layer.

Next is the Multiplexing (MUX ) layer, which allows
multiple application channels to be multipexed over a single
PT channel, or a single application channel to be split over

multiple PT channels. This layer is also responsible for error
detection and re-assembly, if the lower layers do not provide
this.

Then Content Obfuscation (OBF ) transforms the ‘random’
data into traffic which appears to be a different protocol, e.g.
HTTP or VoIP.

Next Timing Obfuscation and Length Obfuscation
(TIM-LEN ) hide the application’s timing and packet length
patterns. The layer may perform the obfuscation itself, or may
just compute the changes which are necessary and transmit this
as control data to other layers which actually delay and/or pad
payload data.

Finally Transport (TRN ) is responsible for taking the
transformed payload data and sending it to the other side of
the PT client/server pair.

We survey 34 existing CRSs that fit our abstract PT model
and broadly systematise them according to the threat landscape
these assume, i.e. the path(s) on the attack model (Figure 2 on
page 3) that they protect. We describe six Pluggable Transports
at length using our evaluation stack. We believe that the PTs
we select are a good representation of their corresponding
class. We review multiple PTs within a class to reflect the
diversity of implementation, and provide brief description of
other tools to show breadth of the area.

IV. IP ADDRESS/HOST FILTERING RESISTANCE SYSTEMS

A censor can disrupt access to a service by blocking the
IP address of the server, or a key hop directly on path to
the server (corresponding to BLK.ROU in Figure 2 on page
3). A number of tools have emerged to resist IP address
filtering, of which proxies are the most prevalent. A proxy
relays traffic between the source and destination effectively
obfuscating the latter [72], [19]. However, simple proxies with
long-lived IP addresses can be easily enumerated and blocked
by a censor, thus motivating development of more sophis-
ticated mechanisms to resist IP address, domain name and
host filtering. We classify existing work into two categories
based on the approach they take to achieve circumvention.
Techniques under censorship surface augmentation hide the
censorship target (e.g. IP address) among a crowd such that
censoring the target incurs larger collateral damage than if
it is blocked in isolation. In decoy routing, a cooperative
hop between client and server applies circumvention-friendly
treatment to packets containing a special steganographic mark.

A. Censorship Surface Augmentation

A censor’s blocking decision has associated accuracy de-
pending on a number of factors, such as the blocking mech-
anism employed and the quality of target set to block (e.g.
how representative is a blacklist of IP addresses of a block
category such as ‘porn’). In particular, the censor’s policy must
make consideration for the acceptable false positive rate as
these have political and economic ramifications. Mechanisms
under this category leverage this observation by obfuscating
the censorship target in such a way that censoring it incurs
large collateral damage in terms of false positives.
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1) Flashproxy: A popular means to resist IP address fil-
tering is to proxy traffic between client and blocked server
through an intermediate host, this effectively hides the IP
address and name of a blocked server. By pretending to
be a genuine client, a censor could enumerate long-lived
proxies and subsequently block them (FPR.ROU, COR.ROU
and BLK.ROU nodes in the attack diagram in Figure 2 on
page 3).

To protect against these attacks, Flashproxy introduces two
new entities, i.e. facilitators (Figure 4b on page 7, left) and
flashproxies (Figure 4b on page 7, right). A facilitator is a
volunteer website outside the filtered region which may be
blocked by the censor, yet remains reachable through low-
bandwidth channels such as email. Over this channel, the
Session Initialisation module (SI ) of a censored user registers
itself; that is, it sends its IP address and a port where it awaits
incoming connections. On the facilitator side, the SI adds a
special badge in all the web pages it serves to uncensored
users, typically a piece of javascript. When an uncensored
user visits a web page on the facilitator website, the badge
turns his web browser into a so-a called flashproxy. The SI of
a flashproxy (running in the web browser of an uncensored
user) connects to the facilitator to retrieve an IP/port pair
for a censored user and initiates a connection to it. The SI
of the censored user accepts the connection to complete the
rendezvous between the two entities. Thereafter, the Content
Obfuscation (OBF ) of the flashproxy relays censored content
for the censored user through HTTP (“HTTP framing” in
Figure 4b on page 7).

Flashproxy offers resistance against IP address blocking
only, consequently leaving a number of paths on the attack di-
agram exposed. A censor could block traffic based on content
(COR.CON), use statistical traffic properties (FPR.LEN and
FPR.TIM) to detect the protocol or content to block, or observe
characteristic patterns in incoming connections to censored
hosts (FPR.SEM). The authors suggest using Flashproxy in
combination with Tor to thwart COR.CON attacks.

2) Others: One design trend is to use a widely used
service as a proxy to fetch censored content. Meek [43]
employs a technique called domain fronting to evade host
based censorship by using an innocuous domain name (front
domain) in the unencrypted request header (TLS Server Name
Indication header – SNI), while hiding the domain of a proxy

(inside-domain) in the encapsulated encrypted request
(HTTP Host header). The front domain is an intermediate
web service hosting many domains (typically a CDN) which
decrypts the inside-domain and internally routes the traffic
to the relevant host within its network. This host serves
as a proxy for censored clients to access blocked servers.
OSS [21] turns any existing Online Scanning Service (OSS)
into a proxy. These are web services that take a URL as user
input and then fetch the web page behind that URL (e.g.
PDFmyURL [49]). A censored client Alice transmits a request
to a non-blocked machine Bob by providing the OSS with
a URL such as www.bob.com/censored-request. This makes
the OSS connect to Bob with the censored-request encoded
in the URL. Bob responds using a redirection mechanism
such as HTTP 302 Found with a Location header of the
form www.alice.com/censored-response that points back to
Alice. If the OSS follows redirections, it connects back to
Alice with the censored-response embedded in the url. A
variation of this scheme is for clients and servers to rendezvous
on an intermediate host, blocking which incurs significant
collateral damage. CloudTransport [44] clients and bridges
share a common account on a cloud storage which they use
to share files containing client requests and bridge responses
in real time. Collage [11] peers exchange data through so-
cial networking and photo sharing websites by embedding
hidden messages into user-generated content such as posts
and images. The popularity of these websites and the bulk
of volume generated on them makes it a hard for a censor
to accurately spot and block censored content. MIAB [30]
improves Collage’s rendezvous by leveraging blog pings, i.e.
real-time notifications a blog sends to a centralized network
service (a ping server) when content is updated. By monitoring
ping servers, MIAB peers automatically learn within minutes
when a new message is available. Defiance [40] allocates
ephemeral IP addresses to its gateways and bridges from a
large pool of diverse IP addresses. The transiency and diversity
of IP addresses make it hard for a censor to block or enumerate
them. To access blocked websites, a Defiance client must
connect to a shorted-lived bridge which acts as a proxy. To
learn an ephemeral bridge location, a client must successfully
complete a dance; that is, make a sequence of pre-agreed timed
short-lived connections to ephemeral gateways.

www.bob.com/censored-request
www.alice.com/censored-response
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B. Decoy Routing

This approach resists IP address filtering by having clients
covertly signal a cooperating router along the way to deflect
their traffic intended to a non-blocked destination to a blocked
one. This thwarts attacks on the FPR.ROU, COR.ROU and
BLK.ROU nodes. To deflect traffic, deflecting routers must
be located on the forward network path from the client to
the non-blocked destination. These routers must therefore be
strategically positioned to optimise the number of censored
users that can be served [12]. It is theoretically possible for
a censor to defeat decoy routing by routing traffic around the
deflecting routers [57]. However, in practice this is believed
to be too costly for a censor because of business relationships
with other ISPs, and monetary, performance and quality of
service degradation issues thereby induced [28].

1) Cirripede: Its main contribution is resistance against
IP address filtering (BLK.ROU, FPR.ROU and COR.ROU).
In addition to this, it also resists content-based fingerprinting
(FPR.CON) and tampering/blocking (COR.CON) through its
authenticated encryption layer. Its corresponding evaluation
stack is presented in Figure 4c on page 7.

To use Cirrepede, a censored user must first register its
IP address and a shared secret with a Registration Server
(RS). A client never “talks” directly to this server. Instead,
a friendly ISP deploys Deflecting Routers (DRs) that redirect
non-registered client traffic to the Registration Server. To
register, the Session Initialisation (SI ), Transport (TRN ) and
Encryption (ENC ) module of a client coordinate to encode
a covert registration signal into the TCP Initial Sequence
Number (ISN) of a series of packets destined to a non-blocked
destination. The registration packets are deflected by the De-
flecting Routers (DRs) and reach the Registration Server where
they are inspected. If the Registration Server successfully
recognises the signal in the packets, its SI instructs all Deflect-
ing Routers within the ISP network to deflect subsequent client
traffic to a Service Proxy (SP). The registration is opportunistic
in the sense that there is a chance that no Deflecting Router is
located on the forward path between the client and the non-
blocked destination; and therefore that the registration packets
never reach the Registration Server.

After sending the registration packets, a client selects an
innocuous non-blocked destination and initiates a TLS hand-
shake to it. The packets are deflected by the Deflecting Routers
to the Service Proxy which observes the communication.
When the TLS handshake completes, the Service Proxy takes
over the connection; that is, it closes the TCP connection with
the decoy server on behalf of the client whilst keeping the
client side of the connection open. Importantly, it blocks all
subsequent traffic from the decoy server to the client so as not
to arouse the censor’s suspicion. This is sometimes referred to
as “inline flow blocking” because the Service Proxy must be
between the client and the decoy destination. At this point, the
SI of the client and Service Proxy derive a new cryptographic
key based on the shared secret exchanged during registration.
To ensure both parties have successfully derived the new key,
the SI of the Service Proxy encrypts a known value and
sends it to the client over the existing TCP connection. If the

client successfully decrypts it, the new key is kept and used
to encrypt further communication between the two parties.
Thereafter, the Service Proxy acts a a web proxy to censored
content.

A censor could still attack unprotected nodes of the attack
diagram. Traffic from/to different websites generally have
different characteristic patterns, therefore a censor could de-
termine that traffic allegedly originating from a non-blocked
website comes from a different (FPR.LEN and FPR.TIM). It
could also detect protocol implementation inconsistencies due
to the non-blocked and blocked destination running different
software stacks (FPR.SEM). Cirrepede is also vulnerable to
replay attacks: a censor who replays the registration packets
will find itself incapable of decrypting the TLS traffic after
the handshake: this hints that a new key is covertly negotiated
during the TLS handshake.

2) Others: Telex [80], TapDance [79] and Curveball [32],
[33] can selectively tag individual connections on-the-fly (in
contrast to Cirrepede that deflects client traffic after regis-
tration). Telex and Curveball embed their tag in the random
nonce of a TLS handshake with a non-blocked destination.
TapDance encodes it in a connection’s incomplete HTTPS
request destined to a decoy server using a novel steganogra-
phy scheme. As Cirrepede, TapDance and Curveball support
asymmetric flows where upstream and downstream traffic do
not follow the same path because of ISP’s internal routing.
TapDance is the only solution that does not require active
“inline flow blocking” to prevent further decoy-server client
communication, for this reason it is believed to be easier to
deploy by ISPs without disturbing existing traffic and quality
of service. IBS [55] improves decoy routing solutions in
general by simplifying key distribution and providing forward
secrecy. These are achieved with the use of identity-based
encryption instead of traditional public-key cryptography.

V. FLOW FINGERPRINTING RESISTANCE SYSTEMS

There has been significant work on obfuscating blocked
traffic such that it evades a censor’s protocol fingerprinting
machinery. These approaches can be divided into ones that
provide resistance against fingerprinting of protocol semantics,
while others mimic a supposedly whitelisted category. Some
tools transform a flow such that the censor’s analysis limita-
tions fail to trigger censorship (monitor-driven flow transfor-
mation).

A. Fingerprinting of Protocol Semantics

A number of schemes offers resistance against protocol
scanning. These are techniques currently used by censors to
confirm that a server is indeed part of an anti-censorship
system. Typically, a censor would probe for an open port
and attempt to “speak” the anti-censorship protocol. To defeat
protocol scanning, a SilentKnock [73] server accepts incom-
ing connections on a particular port only from clients that
authenticate with a special “knock”. This knock is a one-
way authentication mechanism embedded in TCP headers, it
is indistinguishable from an ordinary TCP/IP connection and
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Fig. 5: Evaluation Stacks for ScrambleSuit, StegoTorus, CensorSpoofer and Khattak et al. [34].

resists forgery and replay attacks. BridgeSPA [59] (originally
known as SPATor [58]) builds upon SilentKnock’s design but
relaxes server-side memory constraints associated with per-
client housekeeping. It replaces counters with rounded-to-
the-minute UTC timestamps and long-lived keys with short-
lived ones. Defiance [40] imposes several levels of address
indirection to prevent unauthenticated access to bridges from
subsequent protocol fingerprinting.

B. Mimicry

Mimicry-based mechanisms transform traffic to look like
whitelisted communication. The transformation can be applied
at both transport and application layers, and the transformed
traffic resembles the syntax and/or content of an allowed
protocol, or randomness. Additionally, some of these solutions
also resist protocol fingerprinting and scanning.

1) Mimic Existing Protocol or Content: A large body of
work evades censorship by imitating an innocuous protocol
(e.g. HTTP) or content (e.g. HTML). By mimicking widely
deployed protocols and content, a PT increases the censor’s
work load as there is more volume of traffic to inspect. Fur-
thermore, a censor is reluctant to conduct wholesale censorship
of a popular protocol/content due to the associated collateral
damage.

StegoTorus.
StegoTorus obfuscates Tor packet lengths (FPR.LEN) and
inter-packet timings (FPR.TIM). It also prevents content fin-
gerprinting (FPR.CON) and tampering/blocking (COR.CON)
with authenticated encryption. Optionally it can mimic a set
of innocuous protocols over which covert traffic is sent. The
corresponding evaluation stack is presented in Figure 5b on
page 9.

StegoTorus comprises two modules, both of which can be
implemented by a combination of PT components. To start a
session, the SI of a client and server (i.e. proxy) first establish
a shared key through a key-exchange that only contains
random bytes, this thwarts content-based filtering (FPR.CON).
Once a session is established, the TIM-LEN module chops
fixed-length input packets into random-sized messages. Sizes
are taken from a trace of an innocuous protocol session pre-
recorded by the user or bundled with the software (FPR.LEN).
A 32-byte ID is added to messages so they can be re-ordered

by the recipient. The ENC module then encrypts messages
individually (COR.CON and FPR.CON) and passes them
again to the TIM-LEN module which adjusts their sending
time in accordance with packet inter-arrival times derived from
a pre-recorded traffic trace (FPR.TIM). Optionally, the Content
Obfuscation (OBF ) component of StegoTorus can mimic a
known protocol such as unencrypted HTTP. For example the
OBF of a client may embed the encrypted messages into the
HTTP Cookie header and url part of requests, and the OBF of
a server may reply by steganographically embedding content
into the body of HTTP responses.

StegoTorus uses long-lived server locations. So if a censor
manages to harvest them, it could block them by injecting
TCP RST packets or erroneous DNS responses (COR.ROU,
BLK.ROU and FPR.ROU).

Others.
FOE [22] and MailMyWeb [41] proxies send users static web
pages as email attachments in response to censored URLs
they receive in an email Subject field. These solutions assume
that SMTP is not monitored or email traffic is encrypted.
SWEET [81] creates a bi-directional communication channel
by encapsulating censored traffic into email attachments such
as images. To prevent a censor from blocking all emails sent
to the proxy, each client sends requests to a unique email
address. SkypeMorph [45] shapes inter-packet timing and
packet size distribution so as to mimic a Skype video call. The
shaping resists both low and high order statistical inference
attacks. TransTeg [42] negotiates an overt codec during a
VoIP call initialisation, but thereafter encodes the raw voice
stream with a different lower-bitrate codec (the covert codec).
This effectively reduces the length of packets to transmit.
The space freed is filled with low-bandwidth covert traffic.
FTE [18] extends conventional symmetric encryption with the
ability to specify the format of the ciphertext with a regex.
This effectively transforms a blocked source application-layer
protocol into an unblocked target application-layer protocol,
so that DPI boxes mis-identify a blocked protocol as a non-
blocked one.

Protocol imitation has a number of limitations that make it
possible to distinguish imitated traffic from legitimate traffic.
An ideal protocol imitation must not only adhere to its
specification, but also mimick (i) other protocols it depends
on (e.g. HTTP relies on DNS to find a host IP address),
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(ii) dependencies between multiple connections (e.g. a VoIP
must start with SIP messages and be followed by UDP traffic
and RTP/RTCP connections in that order), (iii) reaction to
network disruption (e.g. packet congestion), (iv) geolocation
optimisations (e.g. Web services minimise round-trip time
by locating their servers close to clients), and (v) software
artefacts introduced by specific implementation stacks, oper-
ating systems or programs. Houmansadr et al. [26] therefore
conclude that protocol imitation is a flawed approach because
a comprehensive mimicry must exhibit every observable aspect
of it, but this is challenging, time-consuming and error prone.
Geddes et al. [23] show that solutions that embed covert traffic
into voice and video streams are inherently flawed because
of fundamental differences in channel requirements of the
overt and covert protocol. The overt protocol is peer-to-peer
and loss tolerant while the covert one is client-proxy and
loss intolerant. Consequently, a censor can disrupt the covert
communication without affecting legitimate traffic. To avoid
the above pitfalls, another approach to mimicry is to re-use
genuine software and libraries and tunnel covert traffic through
them. Facet [39] streams video over a video-conferencing calls
such as Skype, Google Hangout or FaceTime calls. Client
requests are sent to a Facet server through a low-bandwidth
upstream channel such as email or IM. In response, the server
initiates a voice-conferencing session and streams the censored
video. Freewave [27] modulates traffic into accoustic signals
and streams them directly into an existing VoIP application
such as Skype.

2) Mimic Unknown Protocol or Content: Another approach
is to make traffic look like an unknown protocol, either by
imitating randomness or arbitrarily deviating from a known
blocked one. This idea is motivated by the general assumption
that a censor implements blacklisting of known protocols and
is unwilling to incur high collateral damage associated with
whitelisting.

ScrambleSuit.
ScrambleSuit [77] obfuscates a censored protocol with
random-looking bytes for all its traffic including during session
initialisation (FPR.CON). The encryption provides content
obfuscation (FPR.CON), confidentiality and resistance against
tampering (COR.CON). Packet lengths and inter-arrival times
are also randomised (FPR.LEN and FPR.TIM). The protocol
used to bootstrap a session resists tampering (COR.CON) and
protocol scanning (FPR.SEM). Its corresponding evaluation
stack is presented in Figure 5a on page 9.

To connect to a ScrambleSuit proxy, the SI of a client
redeems a short-lived ticket retrieved from a low-bandwidth
out-of-band channel. After the first authentication, the server
gives the client a ticket for the next connection; so it need not
retrieve one out-of-band again. This ticket provides mutual
authentication and therefore resistance against protocol scan-
ning from a censor (FPR.SEM). Furthermore, it only contains
random bytes to evade content-based detection (FPR.CON).
Once a session is initialised, the ENC component turns all
traffic into random-looking bytes, thereby thwarting content-
based fingerprinting and blocking (FPR.CON). It also provides
authentication and confidentiality, except in systems where
multiple clients share the same bridge (COR.CON). The

TIM-LEN component randomises packet lengths (FPR.LEN)
and timing of flows (FPR.TIM) using discrete probability
distributions provided by the ENC module.

Despite protecting many nodes in the attack diagram,
ScrambleSuit still leaves some of them for the censor to
attack on. For example, it does not hide the IP addresses of
proxies. Therefore, if a censor manages to learn them, it could
subsequently block them (COR.ROU and BLK.ROU).

Others.
MSE [56] is the de-facto obfuscation mechanism used by
BitTorrent. The key exchange and traffic contain only random-
looking bytes. Padding is added to all traffic including the
handshake. Dust [75] follows the same methodology but
can shape packet sizes based on an arbitrary distribution.
obfs2 [67] also obfuscates traffic content with encryption,
but the key exchange does not provide authentication against
passive and active attackers. obfs3 [68], initially adopted
by ScrambleSuit, improves obfs2 by negotiating keys using
anonymous Diffie Hellman (DH) with a special encoding so
as to be indistinguishable from a random string. This forces
a censor to actively probe the server or perform a man-
in-the-middle to detect the key exchange. obfs4 [66] adds
authentication to obfs3 using the ntor handshake [24], [47]
and is now used by ScrambleSuit. Unlike ScrambleSuit, obfs2
and obfs3 do not randomise packet lengths and inter-packet
timings.

C. Monitor-driven Flow Transformation

Censorship systems have an analysis model to identify
targets to filter (flow fingerprinting). The model employed
likely has some limitation with respect to traffic analysis. Tools
under this category shape traffic such that it evades a censor
due to limitations in its traffic analysis model. Effectively,
this mechanism can provide unobservability to even cleartext
traffic which is particularly useful for countries that disallow
encrypted traffic.

1) Khattak et al. [34]: This work explores protection
against content-based filtering (FPR.CON and COR.CON) by
exploiting characteristics of the implementation of DPI boxes.
The evaluation stack is presented in Figure 5d on page 9.

Since DPI boxes operate in the same manner as Network
Intrusion Detection Systems (NIDS), they are vulnerable to
the same evasion techniques. The authors treat DPI boxes
as black-boxes. They assume a set of evasion classes that
DPI boxes may be vulnerable to, and test their hypotheses
by sending specially crafted packets. A DPI box typically
operates in the following order to keep track of traffic. First
it identifies new TCP flows based on a full or partial TCP
handshake: this triggers the creation of a Transmission Control
Block (TCB) in memory to keep a flow’s current state and
properties. Subsequent packets belonging to this stream can
be examined for content. A box discards its TCB upon TCP
tear-down, typically in the presence of an RST packet or FIN-
ACK exchange. However there may also be connectivity issues
that can lead to a connection tear-down which the box must
account for. Furthermore, a box generally has an incomplete
view of a flow since packets within the same stream may be
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routed through different paths and therefore be unobservable.
Other inaccuracies can arise if the implementation does not
validate header fields or when messages diverging from the
protocol specification are observed. Overlapping IP fragments
and TCP segments must also be re-constructed under certain
CPU and latency constraints. DPI boxes from different vendors
take different views on these, but it is generally a source of
vulnerabilities. As a proof-of-concept, the authors perform a
series of tests on GFW. They find that by sending an RST
packet with a low TTL value for an existing connection,
subsequent packets containing censored keywords are received
by the end point. This confirms that the DPI box has freed its
TCB for the flow even if the RST packet is never received by
the destination.

Most nodes of the attack diagram are not protected by this
approach. Even without a clear view of the entire stream,
a censor could still block traffic on a per-packet basis, for
example by filtering those destined to known server IP ad-
dresses (FPR.ROU, COR.ROU and BLK.ROU) or those with
a particular length such as Tor’s (FPR.LEN).

2) Others: Clayton et al.[14] note that GFW terminates a
connection containing blacklisted keywords by sending to both
ends packets with TCP RST flag. A client can circumvent this
by ignoring all RST packets received. West Chamber [2], [3],
[4] evades GFW by misleading it to believe that a connection
has terminated. To achieve this, end points exchange specially
crafted RST packets that are ignored by their TCP stack but
considered by GFW.

VI. COMPOSITE CENSORSHIP RESISTANCE SYTEMS

These systems offer resistance against filtering of both IP
address/host (Section IV) and flows (Section V).

A. CensorSpoofer

CensorSpoofer provides resistance against IP address har-
vesting (BLK.ROU, COR.ROU, FPR.ROU) using spoofed
source IP address, and resistance against content-based block-
ing (FPR.CON and COR.CON) by mimicking encrypted VoIP
traffic. It does not reveals the IP address of proxies to clients.
The evaluation stack is presented in Figure 5c on page 9.

To use the system, a client must first register with the
CensorSpoofer proxy (called the spoofer). For this, the SI
of a client creates four accounts: two email accounts (one
from a local provider and one from a foreign one), and
two VoIP accounts (one from a local registrar and one from
a foreign one). It creates a registration message containing
the credentials of the two foreign accounts, the addresses
of the local accounts (without credentials), and a shared
cryptographic key. To complete the registration, the client
must ask an existing client to send the registration on his
behalf to the spoofer. Upon reception of the registration, the
spoofer logs in the foreign accounts (VoIP and email) and
starts monitoring incoming messages from the local accounts
(i.e. from the client).

Once registered, the SI of a client initiates a session
by calling the foreign VoIP account (which is used by the

spoofer). The spoofer accepts the call and provides its location
(IP address and port) where it awaits incoming UDP voice
packets. The subterfuge is that it does not provide its real
IP address but a dummy one that belongs to a device on
the Internet. Upon reception of the reply, the client starts
sending decoy UDP traffic to the IP address provided by
the censor, as would a typical client do. This traffic is never
received by the spoofer though: it reaches the dummy host
who simply ignores it without replying. This works because
Internet standards require a host not to send reply packets to
incoming packets on a port that is not “closed”. Meanwhile,
the client sends censored requests via email (to the foreign
email address registered). The spoofer receives the email and
sends the encrypted response in UDP traffic by spoofing
the source IP address of the dummy host. The session is
thereby established: the censor thinks the censored user is
in a voice call with an innocuous person outside the filtered
region; whereas it is covertly communicating with the spoofer.
The ENC module of CensorSpoofer prevents content-based
detection (FPR.CON) and provides data confidentiality and
authentication (COR.CON).

CensorSpoofer does not shape traffic, therefore a censor
may be able to detect discrepancies between a real voice call
and the web traffic sent over UDP (FPR.LEN and FPR.TIM).
Furthermore, there may be an indicative correlation between
the time of a VoIP call and the time of STMP traffic
(FPR.SEM).

B. Others

Freewave [27] mimics VoIP traffic whilst hiding proxy IP
addresses. It modulates traffic into accoustic signals and sends
them over a VoIP network such as Skype, Vonage or iCal. To
hide the IP address of a proxy, client traffic is relayed through
multiple VoIP peers. In the case of Skype, this is achieved by
configuring the Freewave proxy as an ordinary node so that
VoIP traffic is routed via Skype super nodes. Infranet [20]
thwarts IP blocking by turning a non-blocked cooperative
website into a proxy. Besides relaying censored content, proxy
websites continue to serve their usual uncensored content.
For its upstream channel, Infranet encodes covert traffic in
sequences of HTTP requests; for its downstream channel, it
steganographically embeds content in uncensored images.

VII. DISCUSSION AND CHALLENGES

Effective circumvention should offer resistance against all
paths on the attack diagram (Figure 2 on page 3) for a given
component in the information system. In particular we focus
on channel-based systems as we note in Section II that this
is the primary focus of censorship and by implication that
of most circumvention tools. However, a concise summary
of all PTs (Table I on page 12) reveals that this is typically
not the case and there is a tendency for tools to cluster
around resistance against either IP address/host filtering or
flow fingerprinting. We also note that no current PT provides
protection against the manipulation of protocol semantics
(COR.SEM), maybe because it is hard and because we do
not know how to model this type of resistance correctly. We
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TABLE I: Summary of Pluggable Transports. Columns represent a node of the attack diagram (Figure 2 on page 3) and a symbol in a column means that
the tool protects this node. To achieve the protection, a tool uses a combination of components which we represent with a different symbol as follows: N
is the Session Initialisation (SI ), ♠ is the Encryption (ENC), ♣ is the Multiplexing layer (MUX), � is the Content Obfuscation (OBF), � is the Timing
Obfuscation , H is the Length Obfuscation and F is the Transport layer.

Section Blocking Fingerprinting
COR.CON COR.SEM COR.ROU BLK.ROU FPR.LEN FPR.TIM FPR.SEM FPR.ROU FPR.CON

Infranet Composite VI N ♠ F F F �
MSE Mimicry V-B H N ♠
FOE Mimicry V N F F � F �
MailMyWeb Mimicry V N F F � F �
SilentKnock Protocol N � F

Fingerprinting V-A
Traffic Morphing Mimicry V-B H
Collage Composite VI N ♠ F F F N ♠ �
Cirrepede IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F N ♠
Curveball IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F N ♠
TransTeg Mimicry V N ♠ �
SPATor Protocol N � F

Fingerprinting V-A
BridgeSPA Protocol N � F

Fingerprinting V-A
Telex IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F N ♠
Dust Mimicry V-B H N ♠
Defiance IP Filtering IV N ♠ � N ♠ � N ♠ �
SkypeMorph Mimicry V N ♠ �
StegoTorus Mimicry V N ♠ ♣ �
obfs2 Mimicry V N ♠
CensorSpoofer Composite VI N ♠ N F N F N F N ♠
Flashproxy IP Filtering IV N F N F N F N
OSS IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F �
Freewave Composite VI N ♠ N N N N ♠
MIAB IP Filtering IV N ♠ N N N N ♠
IBS IP Filtering IV N ♠ N ♠
ScrambleSuit Composite VI N ♠ H � N ♠ N ♠
SWEET Mimicry V N ♠ F F F �
FTE Mimicry V ♠ ♠ �
obfs3 Mimicry V N ♠ N N ♠
Khattak Monitor-driven V-C � F
TRIST Mimicry V �
Meek IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F N ♠
TapDance IP Filtering IV N ♠ N ♠ F N ♠ F N ♠ F N ♠
CloudTransport IP Filtering IV N ♠ N F N F N F N ♠
obfs4 Composite VI N ♠ H � N ♠ N ♠

also note that due to their monolithic design, these systems do
not lend themselves very well to sharing and modularization.

Recently, there has been a case for combining multiple Plug-
gable Transports with the goal to increase the censorship/attack
paths than those covered by either in isolation. Fog [65] uses
multiple proxies to chain together Pluggable Transports in a
black box fashion. This approach is not suitable for practical
deployment due to a number of limitations, for example, not all
combinations of Pluggable Transports make sense: the chain
obfs3 (flow fingerprinting resistance) followed by Flashproxy
(IP address filtering resistance) will offer more comprehensive
resistance. The reverse, that is Flashproxy followed by obfs3
breaks the former’s network layer assumptions. Consequently,
sharing of Pluggable Transport features has happened not in
a black-box way, but through the sharing of source code. For
example, LibFTE is in use by Tor (in its fteproxy Pluggable
Transport form) and a number of other projects. Similarly,
Meek which was originally developed for Tor now also exists
in a fork by Psiphon [50] with minor adaptations.

The evaluation stack described in Section III-C provides
a more systematic way to develop Pluggable Transports.
Components from a Pluggable Transport can be extracted so
that each component complies with the abstract model the
stack defines. This approach assists the design process by
providing a set of patterns to follow, and a methodology for
evaluating the censorship resistance features which are offered.
Just as abstractions for components have been developed for
compiler design (lexer, parser, code generator) or GUI design
(model, view, controller) a systematic approach to design
reduces development time and improves quality of code.

Speed of development is particularly important for censor-
ship resistance because there is no one approach which is
optimally efficient and resistant to all attackers. Therefore dif-
ferent systems are necessary for different situations, and if the
situation changes a new system may become necessary. The
ability to quickly develop censorship resistance systems for
particular locations (spatial agility) and in response to changes

(temporal ability) will increase the number of users of systems
and the time period that their access will be interrupted. To
achieve this we propose an extension of Pluggable Transports
– Tweakable Transports.

Tweakable Transports are Pluggable Transports built out of
re-usable components following the evaluation stack architec-
ture. Each component can be replaced with another which is
compatible and components can be inserted or removed. This
approach allows code-reuse because a component developed
for one Tweakable Transport can be used for another. In so
doing, more collaboration opportunities are allowed, better
testing can be performed on frequently required components
improving reliability and both spatial and temporal agility.

As a result Tweakable Transports exponentially increases
the number of possible link obfuscation scheme. The de-
velopment effort to add one component adds not just one
new Pluggable Transport, but creates a whole new family
of schemes, each one of which the censor will need to test
against any proposed fingerprinting or blocking technique. The
increased development cost and possibility of false-positives
will reduce the likelihood that a censor will be able to
effectively block the resulting link-obfuscation schemes.

A particular instance of a Tweakable stack may be designed
by an expert familiar with the properties of each component
and a censor’s blocking techniques and so allow the trade-off
between performance and censorship resistance. Alternatively
instances could be automatically generated and tested against
the real censorship system or a simulation of one, so as to
quickly find an adequate link-obfuscation scheme.

From the Pluggable Transports summarised in this paper,
adapting their implementations to be Tweakable Transports
allows weaknesses to be addressed. Missing layers (e.g. resis-
tance to timing and packet-length fingerprinting) leave some
schemes open to attack. Rather than developing a component
from scratch, a component can be imported from another
Pluggable Transport. New schemes can also be created, such
as combining the content obfuscation and timing/length ob-
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fuscation with a common session initialisation and encryption
component, via a multiplexing component.

In an ideal layered model, communication would only be
between adjacent layers and a component need only be aware
of the abstract API that each layer makes available. Practical
systems rarely meet this goal, and so while the transmission
of content will only be between adjacent layers, there will
be control information which might violate the layer bound-
aries. A similar approach is taken for other systems, as for
example socket options for the UNIX socket model, explicit
congestion notification in network protocols, and annotations
in compilers.

A challenge in designing an API for building Tweakable
Transports is how to constrain the model to allow code-reuse
but to still permit cross-layer communication when necessary
(e.g. for traffic shaping). The approach taken by the Tweakable
Transport architecture specification is for each component
to define one or more upward endpoints and zero or more
downward endpoints, for connection to the component directly
above and directly below in the stack. Components are then
arranged in a directed acyclic graph by connecting these
endpoints, forming the data plane.

In addition to the data plane, the control plane is a broadcast
channel by which any component can signal a JSON formatted
event to any (or all) other components. Control events may be
local to the host at which it was generated (e.g. for controlling
the timing characteristics of data which is to be emitted) or
must be transmitted to the other host (e.g. for defining a
protocol which is to be impersonated). In the latter case a
multiplexing layer must be defined that receives control traffic,
encodes it, and transmits it over the data plane endpoint.

To support the above model, while allowing the develop-
ment of innovative components, control and data messages are
sent between components over a single event queue on each
host. A single event queue ensures that the order of control
and data events are ordered. Components are configured on
initialisation with the component graph, and tag events with
a source and destination, with the destination component con-
suming the event. However all components can see all events
to allow them to monitor the performance and behaviour of
other components.

Further details can be found in the Tweakable Transport
API specification [62].

VIII. CONCLUSIONS

This paper has presented a model of both attacker and
defender for censorship resistance schemes. As common cen-
sorship techniques have focussed on disrupting the channel
between client and server, censorship resistance schemes have
been built around the pluggable transport abstract model. This
model has proved useful in building up a diverse ecosystem of
link-obfuscation schemes, but there is no one solution which
offers the optimal choice for all censorship scenarios. The
paper has surveyed the field of Pluggable Transports, in terms
of the threat-model defended against and their evaluation in
terms of an abstract protocol stack. This evaluation has led
to a new design for Pluggable Transports – the Tweakable

Transport: a tool for efficiently building and evaluating a wide
range of Pluggable Transports so as to increase the difficulty
and cost of reliably censoring the communication channel.
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