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ABSTRACT
Website fingerprinting attacks[10] enable an adversary to
infer which website a victim is visiting, even if the victim
uses an encrypting proxy, such as Tor[19]. Previous work
has shown that all proposed defenses against website finger-
printing attacks are ineffective[6, 4]. This paper advances
the study of website fingerprinting defenses by first laying
out the complete specifications of the Congestion-Sensitive
BuFLO scheme outlined by Cai, et al. [4]. CS-BuFLO, which
is based on the BuFLO defense proposed by Dyer, et al.[6],
was not fully-specified by Cai, et al, but has nonetheless at-
tracted the attention of the Tor developers [16, 17]. Next,
a full working implementation of CS-BuFLO is provided.
Finally, a thorough evaluation of CS-BuFLO is performed
using empirical data (rather than data from simulations).
Our experiments find that Congestion-Sensitive BuFLO has
high overhead (around 2.3-2.8x) but can get 6× closer to the
bandwidth/security trade-off lower bound than Tor or SSH.

1. INTRODUCTION
Website fingerprinting attacks have emerged as a serious

threat against web browsing privacy mechanisms, such as
SSL, Tor, and encrypting tunnels. These privacy mech-
anisms encrypt the content transferred between the web
server and client, but they do not effectively hide the size,
timing, and direction of packets. A website fingerprinting at-
tack uses these features to infer the web page being loaded
by a client.

Researchers have engaged in a war of escalation in devel-
oping website fingerprinting attacks and defenses, with two
recent papers demonstrating that all previously-proposed
defenses provide little security[6, 4]. At the 2012 Oakland
conference, Dyer, et al. showed that an attacker could infer,
with a success rate over 80%, which of 128 pages a victim
was visiting, even if the victim used network-level counter-
measures. They also performed a simulation-based evalua-
tion of a hypothetical defense, which they call BuFLO, and
found that it required over 400% bandwidth overhead in or-
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der to reduce the success rate of the best attack to 5%, which
is still well-above the ideal 0.7% success rate from random
guessing. At CCS 2012, Cai et al. proposed the DLSVM fin-
gerprinting attack and demonstrated that it could achieve a
greater than 75% success rate against numerous defenses[4],
including application-level defenses, such as HTTPOS[13]
and randomized pipelining[15]. As a result, it is not cur-
rently known whether there exists any efficient and secure
defense against website fingerprinting attacks.

Cai, et al. also proposed Congestion-Sensitive BuFLO,
which extended Dyer’s BuFLO scheme to include congestion
sensitivity and some rate adaptation, but they left many
details unspecified and did not implement or evaluate their
scheme. Despite the lack of data on CS-BuFLO, the Tor
project has indicated interest in incorporating CS-BuFLO
into the Tor browser [17, 16].

In order to get a better understanding of the performance
and security of the CS-BuFLO protocol, this paper presents
a complete specification of CS-BuFLO, describes an SSH-
based implementation, and evaluates its bandwidth over-
head, latency overhead, and security against current attacks.

Cai’s description of the CS-BuFLO protocol outlines so-
lutions to several performance and practicality problems in
the original BuFLO protocol – CS-BuFLO is TCP-friendly,
it pads streams in a uniform way, and it uses information
collected offline to tune BuFLO’s parameters to the web-
site being loaded. We propose two further improvements:
we modify CS-BuFLO to adapt its transmission rate dy-
namically, and we improve its stream padding to use less
bandwidth while hiding more information about the website
being loaded. Dynamic rate adaptation makes CS-BuFLO
much more practical to deploy, since it does not require an
infrastructure for performing offline collection of statistics
about websites, but poses a challenge: adapting too quickly
to the website’s transmission rate can reveal information
about which website the victim is visiting. CS-BuFLO bal-
ances these performance and security constraints by limiting
the rate and precision of adaptation.

We have implemented CS-BuFLO in a custom version
of OpenSSH. Our implementation also includes a Firefox
browser plugin that informs the SSH client when the browser
has finished loading a web page. The CS-BuFLO implemen-
tation uses this information to reduce the amount of padding
performed after the page load has completed.

We evaluate CS-BuFLO, and compare it to Tor, on the
Alexa top 200 websites in the closed-world setting. The
Alexa top 200 websites represent approximately 91% of page
loads on the internet [1], so these results reflect the security



Defense n Method Source Panchenko VNG++ DLSVM BW Latency

CS-BuFLO (CTSP) 200 Empirical this paper 18.0 13.0 20.6 2.796 3.271
CS-BuFLO (CPSP) 200 Empirical this paper 24.2 16.5 34.3 2.289 2.708
CS-BuFLO (CTSP) 120 Empirical this paper 23.4 20.9 28.9 2.799 3.444
CS-BuFLO (CPSP) 120 Empirical this paper 30.6 22.5 40.5 2.300 2.733
BuFLO (τ = 0, ρ = 40, d = 1000) 128 Simulation [6] 27.3 22.0 N/A 1.935 N/A
BuFLO (τ = 0, ρ = 40, d = 1500) 128 Simulation [6] 23.3 18.3 N/A 2.200 N/A
BuFLO (τ = 0, ρ = 20, d = 1000) 128 Simulation [6] 20.9 15.6 N/A 2.405 N/A
BuFLO (τ = 0, ρ = 20, d = 1500) 128 Simulation [6] 24.1 18.4 N/A 3.013 N/A
BuFLO (τ = 105, ρ = 40, d = 1000) 128 Simulation [6] 14.1 12.5 N/A 2.292 N/A
BuFLO (τ = 105, ρ = 40, d = 1500) 128 Simulation [6] 9.4 8.2 N/A 2.975 N/A
BuFLO (τ = 105, ρ = 20, d = 1000) 128 Simulation [6] 7.3 5.9 N/A 4.645 N/A
BuFLO (τ = 105, ρ = 20, d = 1500) 128 Simulation [6] 5.1 4.1 N/A 5.188 N/A
HTTPOS 100 Empirical [4] 57.4 N/A 75.8 1.361 N/A
Tor+rand. pipe. 100 Empirical [4] 62.8 N/A 87.3 1.745 N/A
Tor 100 Empirical [4] 65.4 N/A 83.7 N/A N/A
Tor 120 Empirical this paper 56.3 36.8 77.4 1.247 4.583 a

Tor 200 Empirical this paper 50.1 31.8 75.1 1.244 4.919
Tor 775 Empirical [14] 54.6 N/A N/A N/A N/A
Tor 800 Empirical [4] 40.1 N/A 50.6 N/A N/A
SSH 120 Empirical this paper 86.5 75.0 80.7 1.128 1
SSH 200 Empirical this paper 84.4 72.9 79.4 1.111 1

Table 1: Main evaluation results for CS-BuFLO, and comparison to results on other schemes reported in
other papers. Bandwidth and Latency are reported as overhead ratios.

users will obtain when using these schemes in the real world.
Furthermore, prior work on website fingerprinting attacks
has found that an attackers success rate only goes down as
the number of websites increases, so our results give a high-
confidence upper bounds on the success rate these attacks
may achieve in larger settings.

In our experiments, CS-BuFLO uses 2.8 times as much
bandwidth as SSH (i.e. no defense) and the best known
attack had only a 20% success rate at inferring which of
200 websites a victim was visiting. This is a substantial
improvement over previously-proposed schemes – the same
attack had a success rate over 75% against Tor and SSH
under the same conditions.

Table 1 compares our results with results reported in other
papers. These comparisons must be done carefully, since the
experiments used different numbers of websites and method-
ologies. Nonetheless, the following conclusions are clear from
the data:

• CS-BuFLO hides more information than Tor, SSH,
HTTPOS, and Tor with randomized pipelining, albeit
with higher cost. For example, the DLSVM attack
has a lower success rate against CS-BuFLO in a closed-
world experiment with 100 websites than it has against
Tor with 800 websites.

• Overall, CS-BuFLO achieves approximately the same
bandwidth/security trade-off in our empirical analy-
sis as BuFLO achieved in Dyer’s simulated evaluation.
For example, CS-BuFLO in CTSP mode had a band-
width ratio of 2.8 and Panchenko’s attack had a success
rate of 23.4% on 120 websites. BuFLO with τ = 0,
ρ = 40, and d = 1500 had almost identical security,
but a bandwidth ratio of 2.2. Although CS-BuFLO
optimizes many aspects of the BuFLO protocol, an
empirical evaluation presents issues that do not arise

in a simulation, such as dropped packets, retransmis-
sions, and application-level timing dependencies.

We use results from previous work [3] to compare defenses
that offer different security/bandwidth trade-offs by com-
paring how close they are to the lower bound. We find
that Congestion-Sensitive BuFLO gets over 6× closer to
the bandwidth/security trade-off lower bound than Tor or
plain SSH. Dyer’s reported experiments with BuFLO showed
somewhat better trade-off performance, but those results
were based on simulations and are not directly comparable.
Despite the improvement of CS-BuFLO over Tor and SSH,
there is still a large gap between the lower bounds and the
best defenses.

In summary, this paper makes the following contribu-
tions: Section 4 gives a complete specification of the CS-
BuFLO protocol, describing optimizations to make the pro-
tocol congestion sensitive, rate adaptive, and efficient at hid-
ing macroscopic website features, such as total size and the
size of the last object. Section 5 describes our prototype
implementation in SSH, which also includes a Firefox plu-
gin to notify the proxy when the browser finishes loading
a web page. Section 6 presents empirical evaluation results
for CS-BuFLO, Tor, and SSH, and shows that CS-BuFLO
provides better security, albeit at higher bandwidth costs.
We also show that CS-BuFLO is closer to the lower bound
on the security/bandwidth trade-off than Tor and SSH.

2. RELATED WORK
Network-level website fingerprinting defenses pad pack-

ets, split packets into multiple packets, or insert dummy
packets. Dyer, et al., list numerous approaches to padding
individual packets, including pad-to-MTU, pad-to-power-of-
two, random padding, etc.[6]. They showed that none of the
padding schemes was effective against the attacks they eval-
uated. Wright, et al., proposed traffic morphing, in which



packets are padded and/or fragmented so that they conform
to a specified target distribution[21]. Dyer, et al., defeated
this defense, as well[6]. Lu, et al., extended traffic morphing
to operate on n-grams of packet sizes, i.e. their scheme pads
and fragments packets so that n-grams of packet sizes match
a target distribution[12]. Dyer, et al. also proposed BuFLO,
which pads or fragments all packets to a fixed size, sends
packets at fixed intervals, injecting dummy packets when
necessary, and always transmits for at least a fixed amount
of time[6]. They found that they could reduce their best
attack’s success rate to 5% (when guessing from 128 web-
sites), at a bandwidth overhead of 400%. Fu, et al., found
in early work that changes in CPU load can cause slight
variations in the time between packets in schemes that at-
tempt to send packets at fixed intervals, and recommended
randomized inter-packet intervals instead[7].

Application-level defenses alter the sequence of HTTP re-
quests and responses to further obfuscate the user’s activ-
ity. For example, HTTPOS uses HTTP pipelining, HTTP
Range requests, dummy requests, extraneous HTTP head-
ers, multiple TCP connections, and munges TCP window
sizes and maximum segment size (MSS) fields[13]. Tor has
also released an experimental version of Firefox that ran-
domizes the order in which embedded objects are requested,
and the level of pipelining used by the browser during the
requests[15]. Both schemes were defeated by Cai, et al[4].

Researchers have proposed numerous attacks on basic en-
crypting tunnels, such as HTTPS, link-level encryption, VPNs,
and IPSec[2, 5, 8, 9, 10, 11, 12, 18, 22, 23, 6]. These attacks
focus primarily on packet sizes, which carry a lot of infor-
mation when no padding scheme is in use. Herrmann, et
al., developed an attack based on packet sizes that worked
well on simple encrypting tunnels[9], but performed quite
poorly against Tor, which transmits data in 512-byte cells.
Panchenko, et al., designed an attack that used packet sizes,
along with some ad hoc features designed to capture higher-
level information about the HTTP protocol, and achieved
good success against Tor[14]. Dyer, et al. performed a com-
prehensive evaluation of attacks and defenses, and developed
their own attack, called VNG++, that achieved good success
against many network-level defenses[6]. Cai, et al., proposed
an attack, based on string edit distance, that performs well
against a wide variety of defenses, included application-level
defenses, such as HTTPOS and Tor’s randomized pipelin-
ing[4]. Wang, et al. improved this attack’s performance
against Tor by incorporating information about the struc-
ture of the Tor protocol [20]. Danezis, Yu, et al., and Cai,
et al., all proposed to use HMMs to extend web page fin-
gerprinting attacks to web site fingerprinting attacks[5, 22,
4].

3. WEBSITE FINGERPRINTING ATTACKS
In a website fingerprinting attack, an adversary is able to

monitor the communications between a victim’s computer
and a private web browsing proxy. The private browsing
proxy may be an SSH proxy, VPN server, Tor, or other
privacy service. The traffic between the user and proxy is
encrypted, so the attacker can only see the timing, direc-
tion, and size of packets exchanged between the user and
the proxy. Based on this information, the attacker attempts
to infer the website(s) that the user is visiting via the proxy.
The attacker can prepare for the attack by collecting infor-
mation about websites in advance. For example, he can visit

websites using the same privacy service as the victim, col-
lecting a set of website “fingerprints”, which he later uses to
recognize the victim’s site.

Website fingerprinting attacks are an important class of
attacks on private browsing systems. For example, Tor states
that it“prevents anyone from learning your location or brows-
ing habits.”[19] Successful fingerprinting attacks undermine
this security goal. Fingerprinting attacks are also a natural
fit for governments that monitor their citizens’ web brows-
ing habits. The government may choose not to (or be unable
to) block the privacy service, but nonetheless wish to infer
citizens’ activities when using the service. Since it can mon-
itor international network connections, the government is in
a good position to mount website fingerprinting attacks.

Researchers have proposed two scenarios for evaluating
website fingerprinting attacks and defenses: closed-world
models and open-world models. A closed-world model con-
sists of a finite number, n, of web pages. Typical values of n
used in past work range from 100 to 800 [6, 4, 14]. The at-
tacker can collect traces and train his attack on the websites
in the world. The victim then selects one website uniformly
at random, loads it using some defense mechanism, such as
Tor or SSH, and the attacker attempts to guess which web-
site the victim loaded. The key performance metric is the
attacker’s average success rate. In an open-world model,
there is a population of victims, each of which may visit any
website in the real world, and may select the website using
a probability distribution of their choice. The attacker does
not know any individual victim’s distribution over websites,
but has aggregate statistics about website popularity. The
attacker’s goal is to infer which of the victims are visiting
a particular “website of interest”, i.e. an illegal or censored
site. In this case, the primary evaluation criteria are false
positives and false negatives. Perry has critiqued the closed-
world model for its artificiality [16]. However, the two mod-
els are connected: Cai, et al., showed how to bootstrap a
closed-world attack into an open-world attack, such that
better closed-world performance yields better open-world
performance [4]. Thus, although experiments in the closed-
world cannot tell us whether an attack or defense will be
successful in the real world, we can use closed-world exper-
iments to compare different attacks and defenses.

4. Congestion-Sensitive BuFLO
Dyer, et al., described BuFLO, a hypothetical defense

scheme that hides all information about a website, except
possibly its size, and performed a simulation-based evalua-
tion that found that, although BuFLO is able to offer good
security, it incurs a high cost to do so.

In this section, we describe Congestion-Sensitive BuFLO
(CS-BuFLO), an extension to BuFLO that includes numer-
ous security and efficiency improvements. CS-BuFLO rep-
resents a new approach to the design of fingerprinting de-
fenses. Most previously-proposed defenses were designed in
response to known attacks, and therefore took a black-listing
approach to information leaks, i.e. they tried to hide specific
features, such as packet sizes. In designing CS-BuFLO, we
take a white-listing approach – we start with a design that
hides all traffic features, and iteratively refine the design
to reveal certain traffic features that enable us to achieve
significant performance improvements without significantly
harming security.



4.1 Review of BuFLO
The Buffered Fixed-Length Obfuscator (BuFLO) of Dyer,

et al., transmits a packet of size d bytes every ρ milliseconds,
and continues doing so for at least τ milliseconds. If b < d
bytes of application data are available when a packet is to
be sent, then the packet is padded with d− b extra bytes of
junk. The protocol assumes that the junk bytes are marked
so that the receiver can discard them. If the website does
not finish loading within τ milliseconds, then BuFLO contin-
ues transmitting until the website finishes loading and then
stops immediately. Dyer, et al., did not specify how Bu-
FLO detects when the website has finished loading. They
also did not specify how BuFLO handles bidirectional com-
munication – presumably independent BuFLO instances are
run at each end-point. BuFLO effectively hides everything
about the website, except possibly its size, but has several
shortcomings:

• It either completely hides the size of the website or
completely reveals it (±d bytes). Thus it does not
provide the same level of security to all websites.

• BuFLO has large overheads for small websites. Thus
its overhead is also unevenly distributed.

• BuFLO is not TCP-friendly. In fact, it is the epitome
of a bad network citizen. Further, BuFLO does not
adapt when the user is visiting fast or slow websites. It
wastes bandwidth when loading slow sites, and causes
large latency when loading fast websites.

• BuFLO must be tuned to each user’s network connec-
tion. If the BuFLO bandwidth, 1000d

ρ
B/s, exceeds the

user’s connection speed, then BuFLO will incur addi-
tional delay without improving security.

• Past research by Fu, et al., showed that transmitting
at fixed intervals can reveal load information at the
sender, which an attacker can use to infer partial in-
formation about the data being transmitted[7].

Dyer, et al., proposed BuFLO as a straw-man defense sys-
tem, so it is understandable that they did not bother ad-
dressing these problems. However, we show below that sev-
eral of these problems have common solutions, e.g. we can
simultaneously improve overhead and TCP-friendliness, si-
multaneously make security and overhead more uniform, etc.
Thus, as our evaluation will show, CS-BuFLO may be a
practical and efficient defense for users requiring a high level
of security.

Further, as noted by its authors, BuFLO’s simulation
based results “reflect an ideal implementation that assumes
the feasibility of implementing fixed packet timing intervals.
This is at the very least difficult and clearly impossible for
certain values of ρ. Simulation also ignores the complexities
of cross-layer communication in the network stack” [6]. As a
result, it remains unclear how well the defense performs in
the real world.

4.2 Overview of Congestion-Sensitive BuFLO
Algorithm 1 shows the main loop of the CS-BuFLO server.

The client loop is similar, except for the few differences
discussed throughout this section. Similar to BuFLO, CS-
BuFLO delivers fixed-size chunks of data at semi-regular in-
tervals. CS-BuFLO randomizes the timing of network writes

in order to counter the attack of Fu, et al.[7], but it main-
tains a target average inter-packet time, ρ∗. CS-BuFLO
periodically updates ρ∗ to match its bandwidth to the rate
of the sender (Section 4.3). Since updating ρ∗ based on
the sender’s rate reveals information about the sender, CS-
BuFLO performs these updates infrequently. CS-BuFLO
uses TCP to be congestion friendly, and uses feedback from
the TCP stack in order to reduce the amount of junk data it
needs to send (Section 4.4). Also like BuFLO, CS-BuFLO
transmits extra junk data after the website has finished load-
ing in order to hide the total size of the website. However,
CS-BuFLO uses a scale-independent padding scheme (Sec-
tion 4.5) and monitors the state of the page loading process
to avoid some unnecessary overheads (Section 4.6).

Algorithm 1 The main loop of the Congestion-Sensitive
BuFLO server.

function CSBUFLO-Server(s)
while true do

(m, ρ) = read-message(ρ)
if m is application data from website then

output-buff ← output-buff ‖ data
real-bytes ← real-bytes + length(m)
last-site-response-time ← current-time

else if m is application data from client then
send m to the website
ρ-stats ← ρ-stats ‖ ⊥
onLoadEvent ← 0, padding-done ← 0

else if m is onLoad message then
onLoadEvent ← 1

else if m is padding-done message then
padding-done ← 1

else if m is a time-out then
if output-buff is not empty then

ρ-stats ← ρ-stats ‖ current-time
end if
(output-buff, j) ← cs-send(s, output-buff )
junk-bytes ← junk-bytes + j

end if
if done-xmitting then

reset all variables
else . ρ∗ : Average time between sends to client

if ρ∗ =∞ then
ρ∗ ← initial-rho

else if crossed-threshold(real-bytes, junk-
bytes) then

ρ∗ ← rho-estimator(ρ-stats,ρ∗)
ρ-stats ← ∅

end if

if m is a time-out then
ρ← random number in [0, 2ρ∗]

end if
end if

end while
end function

4.3 Rate Adaptation
CS-BuFLO adapts its transmission rate to match the rate

of the sender. This reduces wasted bandwidth when proxy-
ing slow senders, and it reduces latency when proxying fast
senders. However, adapting CS-BuFLO’s transmission rate



packet that contains only junk
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Figure 1: Rate adaptation in CS-BuFLO. ρ∗ is updated based on the packets transmitted to the other end
between T2 and T15. Time intervals between two consecutive packets are stored in an array Intervals[]. The
two packets under consideration both contain some real payload data and they belong to the same burst. i.e.
Intervals = [T3 − T2, T5 − T3, T9 − T8, T12 − T11, T14 − T12, T15 − T14] and ρ∗ = 2blog2Median(Intervals[])c.

Algorithm 2 Algorithm for estimating new value of ρ∗

based on past network performance.

function rho-estimator(ρ-stats, ρ∗)
I ← [ρ-statsi+1 − ρ-statsi | ρ-statsi 6=⊥ ∧ρ-statsi+1 6=⊥]
if I is empty list then

return ρ∗

else
return 2blog2 median(I)c

end if
end function

to match the sender’s reveals information about the sender,
and therefore may harm security.

As shown in Figure 1, CS-BuFLO takes several steps to
limit the information that is leaked through rate adapta-
tion. First, it only adapts after transmitting 2k bytes, for
some integer k. Thus, during a session in which CS-BuFLO
transmits n bytes, CS-BuFLO will perform log2 n rate ad-
justments, limiting the information leaked from these ad-
justments. This choice also allows CS-BuFLO to adapt more
quickly during the beginning of a session, when the sender
is likely to be performing a TCP slow start. During this
phase, CS-BuFLO is able to ramp up its transmission rate
just as quickly as the sender can.

CS-BuFLO further limits information leakage by using a
robust statistic to update ρ∗. Between adjustments, it col-
lects estimates of the sender’s instantaneous bandwidth. It
then sets ρ∗ so as to match the sender’s median instanta-
neous bandwidth. Median is a robust statistic, meaning that
the new ρ∗ value will not be strongly influenced by band-
width bursts and lulls, and hence ρ∗ will not reveal much
about the sender’s transmission pattern.

Note that the estimator only collects measurements during
uninterrupted bursts from the sender. This ensures that the
bandwidth measurements do not include delays caused by
dependencies between requests and responses. For example,
if the estimator sees a packet p1 from the website, then a
packet p2 from the client, and then another packet p3 from

Algorithm 3 Algorithm for sending data and using feed-
back from TCP. Socket s should be configured with
O_NONBLOCK.

function cs-send(s, output-buff )
n←length(output-buff )
j ← 0
if n < packet-size then

j ← packet-size− n
output-buff ← output-buff ‖ j

end if
r ← write(s, output-buff, packet-size)
if r ≥ n then . Optional: reclaim unsent junk

output-buff← empty buffer
j ← r − n

else
remove last j bytes from output-buff
remove first r bytes from output-buff
j ← 0

end if
return (output-buff, j)

end function

the website, it may be the case that p3 is a response to p2.
In this case, the time between p1 and p3 is constrained by
the round trip time, not the website’s bandwidth.

Finally, CS-BuFLO rounds all ρ∗ values up to a power of
two. This further hides information about the sender’s true
rate, and gives the sender room to increase it’s transmission
rate, e.g. during slow start.

4.4 Congestion-Sensitivity
There’s a trivial way to make BuFLO congestion sensitive

and TCP friendly: run the protocol over TCP. With this
approach, we grab an additional opportunity for increasing
efficiency: when the network is congested, CS-BuFLO does
not need to insert junk data to fill the output buffer.

Algorithm 3 shows our method for taking advantage of
congestion to reduce the amount of junk data sent by CS-
BuFLO. Note first that cs-send always writes exactly d



Padding
Schemes

Payload Sent
Before Padding

Junk Sent
Before Padding

Total Bytes Sent
After Padding

payload
padding

R J c2dlog2 Re

total
padding

R J 2dlog2(R+J)e

Table 2: Two different padding schemes for CS-
BuFLO.

bytes to the TCP socket. Since the amount of data presented
to the TCP socket is always the same, this algorithm reveals
no information about the timing or size of application-data
packets from the website that have arrived at the CS-BuFLO
proxy.

This algorithm takes advantage of congestion to reduce
the amount of junk data it sends. To see why, imagine the
TCP connection to the client stalls for an extended period
of time. Eventually, the kernel’s TCP send queue for socket
s will fill up, and the call to write will return 0. From
then until the TCP congestion clears up, CS-BuFLO calls
to cs-send will not append any further junk data to B.

4.5 Stream Padding
CS-BuFLO hides the total size of real data transmitted

by continuing to transmit extra junk data after the browser
and web server have stopped transmitting.

Table 2 shows two related padding schemes we experi-
mented with in CS-BuFLO. Both schemes introduce at most
a constant factor of additional cost, but reveal at most a log-
arithmic amount of information about the size of the web-
site. The first scheme, which we call payload padding, con-
tinues transmitting until the total amount of transmitted
data (R+J) is a multiple of 2dlog2 Re. This padding scheme

will transmit at most 2dlog2 Re additional bytes, so it in-
creases the cost by at most a factor of 2, but it reveals only
log2R.

The second scheme, which we call total padding, continues
transmitting until R+J is a power of 2. This also increases
the cost by at most a factor of 2 and reveals, in the worst
case, log2R, but it will in practice hide more information
about R than payload padding.

Note that the CS-BuFLO server and the CS-BuFLO client
do not have to use the same stream padding scheme. Thus,
there are four possible padding configurations, which we de-
note CPSP (client payload, server payload), CPST (client
payload, server total), CTSP (client total, server payload)
and CTST (client total, server total).

In order to determine when to stop padding, the CS-
BuFLO server must know when the website has finished
transmitting. Congestion-Sensitive BuFLO uses two mecha-
nisms to recognize that the page has finished loading. First,
the CS-BuFLO client proxy monitors for the browser’s on-
Load event. The CS-BuFLO client notifies the CS-BuFLO
server when it receives the onLoad event from the browser.
Once the CS-BuFLO server receives the onLoad message
from the client, it considers the web server to be idle (see
Algorithm 4) and will stop transmitting as soon as it adds
sufficient stream padding and empties its transmit buffer.
As a backup mechanism, the CS-BuFLO server considers
the website idle if quiet-time seconds pass without receiv-

Algorithm 4 Definition of the done-xmitting function.

function done-xmitting
return length(output-buff) ← 0

∧channel-idle(onLoadEvent,last-site-response-time)∧
(padding-done ∨ crossed-threshold(real-bytes + junk-bytes))
end function

function channel-idle(onLoadEvent,
last-site-response-time)

return onLoadEvent ∨ (last-site-response-time +
quiet-time < current-time)
end function

function crossed-threshold(x)
return blog2(x− packet-size)c < blog2 xc

end function

ing new data from the website. We used a quiet-time of 2
seconds in our prototype implementation.

4.6 Early Termination
As described above, the CS-BuFLO server is likely to fin-

ish each page load by sending a relatively long tail of pure
junk packets. This tail can be a significant source of over-
head and, somewhat surprisingly, may not provide much
additional security.

Our initial investigations revealed that the long tail served
two purposes which could also be served through other, more
efficient means. As mentioned above, the long tail helps
hide the total size of the website. However, the interior
padding performed by cs-send also obscures the total size
of the website. Our evaluation in Section 6 investigates the
security impact of additional stream padding.

In the specific context of web browsing, the long tail also
hides the size of the last object sent from the web server to
the client. The attacker can infer some information about
the size of this object by measuring the amount of data
the CS-BuFLO server sends to the CS-BuFLO client after
the CS-BuFLO client stops transmitting to the CS-BuFLO
server. However, this information can also be hidden by
having the CS-BuFLO client continue to send junk pack-
ets to the CS-BuFLO server, i.e. more aggressive stream
padding from the CS-BuFLO client may obviate the need
for aggressive padding at the CS-BuFLO server.

Based on these ideas, we implemented an early termina-
tion feature in our CS-BuFLO prototype. The CS-BuFLO
client notifies the CS-BuFLO server that it is done padding.
After receiving this message, the CS-BuFLO server will stop
transmitting as soon as the web server becomes idle and its
buffers are empty.

Figure 2 illustrates how the padding scheme used by the
client and server can interact, including the impact of early
termination. Additional client padding can hide the size
of the last HTTP object, and early termination can avoid
unnecessary padding. Our evaluation investigates the secu-
rity/efficiency trade-offs between different padding regimes
at the client and server, and how they interact with early
termination.

4.7 Packet Sizes
Sending fixed-length packets hides packet size information

from the attacker. Although any fixed length should work, it
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Figure 2: The interaction between client and server
padding schemes and early termination. More
padding at the client can help hide the size of the
last object sent from the server to the client. Early
termination can avoid unnecessary padding at the
end of a page load.

is important to choose a packet length that maximizes per-
formance. Since we may transmit pure junk packets during
the transmission, larger packets tend to cause higher band-
width overhead, and on the other hand, smaller packets may
not make full use of the link between the client and server,
thus increase the loading time.

Preliminary investigations revealed that over 95.7% of all
upstream packet transmissions are under 600 bytes, there-
fore, this was used as the standard packet size in our exper-
iments.

5. PROTOTYPE IMPLEMENTATION
We modified OpenSSH5.9p1 to implement Algorithm 1.

However, the optional junk recovery algorithm described in
Algorithm 3 was not implemented.

The SSH client was also modified to accept a new SOCKS
proxy command code, onLoadCmd. This command was
used to communicate to the server when to stop padding
(as described in Section 4.5). A Firefox plugin, Onload-
Notify, that, upon detecting the page onLoad event, con-
nects to the SSH client’s SOCKS port and issues the on-
LoadCmd, was also developed. In addition, the following
OpenSSH message types were used: (1) The OpenSSH mes-
sage type SSH_MSG_IGNORE, which means all payload in a
packet of this type can be ignored, was used to insert junk
data whenever needed. (2) The SSH_MSG_NOTIFY_ONLOAD

message was created to be used by the client to commu-
nicate reception of onLoadCmd from the browser, to the
server. Upon receiving this message from the client, the
CS-BuFLO server stops transmitting as soon as it emp-
ties its buffer and adds sufficient stream padding. (3) The
SSH_MSG_NOTIFY_PADDINGDONE message was created to im-
plement the early termination feature of CS-BuFLO. Upon
receiving this message from the client, the CS-BuFLO server
stops transmitting as soon as the web server becomes idle
and its buffers are empty.

All the above messages were buffered and transmitted just
like other messages in Algorithm 1, i.e. using cs-send,
therefore an attacker is unable distinguish these messages
from other traffic.

6. EVALUATION

We investigated several questions during our evaluation:
(1) How do the different stream padding schemes affect per-
formance and security of CS-BuFLO? What is the effect of
adding early termination to the protocol? (2) How does CS-
BuFLO’s security and overhead compare to Tor’s, and how
do they both compare to the theoretical minimums derived
in [3]? (3) Can we use the theoretical lower bounds to enable
us to compare defenses that have different security/overhead
trade-offs?

6.1 Experimental Setup
For our main experiments, we collected traffic from the

Alexa top 200 functioning, non-redirecting web pages us-
ing four different defenses: plain SSH, Tor, CS-BuFLO with
the CTSP padding and early termination, and CS-BuFLO
with CPSP padding and early termination. We also col-
lected several smaller data sets using other configurations of
CS-BuFLO, but these are only used in the padding scheme
evaluations (Table 3).

We constructed a list of the Alexa top 200 functioning,
non-redirecting, unique pages, as follows. We removed web
pages that failed to load in Firefox (without Tor or any other
proxy). We replaced URLs that redirected the browser to
another URL with their redirect target. Some websites dis-
play different languages and contents depending on where
the page is loaded, e.g. www.google.com and www.google.de.
We kept only one URL for this type of website, i.e. we only
had www.google.com in our set. Our data set consisted of
Alexa’s 200 highest-ranked pages that met these criteria.

We collected 20 traces of each URL, clearing the browser
cache between each page load. We collected traces from each
web page in a round-robin fashion. As a result, each load of
the same URL occurred about 5 hours apart.

Measuring the precise latency of a fingerprinting defense
scheme poses a challenge: we can easily measure the time
it takes to load a page using the defense, but we cannot
infer the exact time it would have taken to load the page
without the defense. Therefore, every time we loaded a page
using a defense, we immediately loaded it again using SSH
to get an estimate of the time it would have taken to load
the page without the defense in place. We then compute
latency ratios the same way we compute bandwidth ratios,
i.e. if L(t) is the total duration of a packet trace, the latency

ratio of a defense scheme is
E[L(TD

W )]
E[L(TW )]

.

We collected network traffic using several different com-
puters with slightly different versions of Ubuntu Linux –
ranging from 9.10 to 11.10. We used Firefox 3.6.23-3.6.24
and Tor 0.2.1.30 with polipo HTTP Proxy. All Firefox plug-
ins were disabled during data collection, except when collect-
ing CS-BuFLO traffic, where we enabled the OnloadNotify
plugin. Three of the computers had 2.8GHz Intel Pentium
CPUs and 2GB of RAM, one computer had a 2.4GHz Intel
Core 2 Duo CPU with 2GB of RAM. We scripted Firefox us-
ing Ruby and captured packets using tshark, the command-
line version of wireshark. For the SSH experiments, we used
OpenSSH5.3p1. Our Tor clients used the default configu-
ration. SSH tunnels passed between two machines on the
same local network.

We measured the security of each defense by using the
three best traffic analysis attacks in the literature: VNG++
[6], the Panchenko SVM [14], and DLSVM [4]. We ran each
of the above classifiers against the traces generated by each
defense using stratified 10-fold cross validation.



Padding Early
Termination

Bandwidth
Ratio

Latency
Ratio

VNG++
Accuracy

CTSP Yes 3.59 3.91 29.0%

CTSP No 3.73 3.51 29.6%

CPSP Yes 2.60 2.87 34.2%

CPSP No 3.42 3.52 36.0%

Table 3: Security and performance of Congestion-
Sensitive BuFLO variants. VNG++ success rate is
the probability that the attack was able to correctly
guess which of 50 web pages the user was visiting.
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Figure 4: Bandwidth ratios of various defense
schemes as a function of the number of possible web
pages.

6.2 Results
Padding Schemes: Table 3 shows the bandwidth ratio,

latency ratio, and security (estimated using the VNG++
attack) of four different versions of CS-BuFLO on a data
set of 50 websites. Note that early termination does not
appear to affect security, although it can significantly reduce
overhead in some configurations. All other experiments in
this paper use early termination. The client padding scheme,
on the other hand, appears to control a trade-off between
security and overhead. Therefore we report the rest of our
results for both CPSP and CTSP padding.

Security Comparison: Figure 3 shows the level of se-
curity various defense schemes provide against three differ-
ent attacks, as the number of web pages the attacker needs
to distinguish increases. Note that the CS-BuFLO schemes
have significantly better security than Tor and SSH. For
each defense scheme, we compute its average bandwidth ra-
tio, BO, and plot the lower bound on security that can be
achieved within that ratio, using the algorithm from [3].

Bandwidth Cost: Figure 4 plots the bandwidth ratios
of SSH, Tor, and CS-BuFLO with CTSP and CPSP padding.
SSH has almost no overhead, and Tor’s overhead is about
25% on average. CS-BuFLO with CPSP has an average
overhead of 129%, CTSP has average overhead 180%. Thus
CS-BuFLO’s improved security does come at a price.

Comparisons with Theoretical Bounds: Figure 5
evaluates CS-BuFLO, Tor, SSH, and BuFLO against the
theoretical lower bounds [3]. Figure 5(a) shows the results of

our empirical evaluation of CS-BuFLO, Tor, and SSH on n =
120 sites and using the DLSVM attack to estimate security.
We limit to 120 sites to make it easier to compare with the
BuFLO results reported by Dyer, et al., and which use 128
sites. There is a significant gap between the bandwidth of
CS-BuFLO and the lower bound. However, as can be seen
in Figure 5(c), CS-BuFLO in CTSP mode is over 6× closer
to the trade-off lower bound than Tor for 200 sites, and is
the most efficient scheme across all sizes we measured.

Figure 5(b) presents the results of our empirical evalu-
ation of CS-BuFLO, Tor, and SSH on n = 120 websites,
using the Panchenko attack to estimate security. We also
present Dyer’s reported results from their experiments with
BuFLO on 128 sites, also using the Panchenko attack. Note
that, since Dyer used 128 sites to evaluate BuFLO, this
slightly over-estimates BuFLO’s security compared to the
other schemes plotted in the figure. Also, recall that Dyer’s
experiments with BuFLO were all based on simulation.

Despite the differences in experimental methodology, we
can see that CS-BuFLO offers performance in the same gen-
eral range as the BuFLO configurations from Dyer’s paper,
but has slightly worse security in our experiments.

Figure 5(d) shows that, based on our experiments and
the simulation results of Dyer, et al., all but one BuFLO
configuration get closer to the trade-off lower bound curve
than CS-BuFLO, Tor, and SSH (SSH is omitted from the
graph because its ratio to the lower bound was never less
than 400). This figure also highlights a difference between
the DLSVM and Panchenko attacks. In the DLSVM results
shown in Figure 5(c), Tor and SSH diverge from CS-BuFLO.
In the Panchenko results in Figure 5(d), Tor and CS-BuFLO
appear to be equally close to the lower bound.

7. DISCUSSION AND CONCLUSIONS
Since early termination does not seem to affect security,

the padding results suggest that the padding performed while
transmitting a website sufficiently hides the size of the web-
site, so that additional stream padding at the end of the
transmission has little security benefit. Additional client
padding does improve security, though – probably by ob-
scuring the size of the final object requested by the client.

Overall, CS-BuFLO has better security than any other
defense in our experiments, albeit at greater expense. It has
the best security/overhead trade-off, as well.

CS-BuFLO’s security/overhead trade-off is in the same
range as the estimates Dyer obtained for BuFLO in their
simulations. For example, Dyer, et al., reported that, in one
configuration of BuFLO, bandwidth overhead was 200% and
the Panchenko SVM had an 24.1% success rate on 128 web-
sites. We found that CS-BuFLO with CTSP padding had an
overhead of 180% on 120 websites, and that the Panchenko
SVM had a success rate of 23.4%.

CS-BuFLO’s congestion-sensitivity likely had little im-
pact in these experiments, which were carried out on a fast
local network, so that congestion was rare. However, CS-
BuFLO’s congestion-sensitivity means that, in a real deploy-
ment, it would have even better bandwidth overhead.

CS-BuFLO’s latency overhead is approximately 3 in all
our experiments. This is better than Tor’s latency, although
Tor has the additional overhead of onion routing, so no fair
comparison is possible. We cannot compare with the latency
estimates reported by Dyer, et al., because they gave only
absolute latency values.
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Figure 3: Security of CS-BuFLO, Tor, and SSH compared to the lower bounds defined in [3], as a function
of the number of possible web pages.

CS-BuFLO offers a real world implementation of a high-
security, moderate-overhead solution to website fingerprint-
ing attacks. Compared to SSH and Tor, it achieves a better
security/bandwidth trade-off, i.e. it uses its bandwidth effi-
ciently to provide extra security. Our experiments also show
that it has acceptable latencies. The padding schemes de-
veloped in this paper, along with browser-coordination and
early-termination algorithm, can improve security with less
overhead than previous stream padding schemes. Interest-
ingly, we also found that padding from one end of a connec-
tion can sometimes be an efficient way to hide information
about the data sent from the other side of the connection.

Code and Data Release: To ensure reproducibility
of our results and ease further comparative evaluation of
fingerprinting defenses, a fully working implementation of
CS-BuFLO along with traces used in our experiments are
available for download at https://github.com/xiang-cai/
CSBuFLO.
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