
Glove: A Bespoke Website Fingerprinting Defense

Rishab Nithyanand
Stony Brook University

rnithyanand@cs.stonybrook.edu

Xiang Cai
Stony Brook University
xcai@cs.stonybrook.edu

Rob Johnson
Stony Brook University
rob@cs.stonybrook.edu

ABSTRACT
Website fingerprinting attacks have emerged as a serious
threat against web browsing privacy mechanisms, such as
SSL, Tor, and encrypting tunnels. Researchers have pro-
posed numerous attacks and defenses, and the Tor project
now includes both network- and browser-level defenses against
these attacks, but published defenses have high overhead,
poor security, or both. In this paper we present preliminary
results of Glove, a new SSH based defense. Glove is based on
the observation that current defenses are expensive not be-
cause website traces are different, but because the defense,
operating blindly, does not know how to add cover traffic and
therefore, puts it everywhere. Instead, Glove uses existing
knowledge of a websites traces to add cover traffic conser-
vatively while maintaining high levels of security. Further,
Glove satisfies the information theoretic definitions of secu-
rity defined in prior work [3] – i.e., it is resistant to any
fingerprinting adversary. Our simulations show that Glove
performs better than all currently proposed SSH based de-
fenses in terms of the security-overhead trade-off.

1. INTRODUCTION
Glove demonstrates that efficient and secure website fin-

gerprinting defenses are possible. The fundamental idea be-
hind Glove is simple: although web pages vary widely in
size and structure, they can be clustered into large groups of
highly similar web pages. A defense system therefore need
add only a small amount of cover traffic to make all the
pages in a cluster indistinguishable to an attacker. When a
user loads a page using Glove, the attacker can identify the
cluster to which the page belongs, but gains no additional
information about which page within that cluster is loaded.

Glove consists of an offline training phase and an online
defending phase. During the training phase, Glove collects
traces of web pages, clusters the pages by their network-
level features, and computes, for each cluster, a transcript
of packet sizes and timings that it replays whenever a user
loads one of the pages in that cluster during the defending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

phase. Glove can be viewed as an extension of the main
idea behind efficient traffic morphing [7]. Durng the train-
ing phase, the morphing system learns the distribution of
packet sizes of two websites and computes a transformation
matrix that can efficiently convert one distribution into the
other. During the defending phase, it uses the matrix to
fragment or pad packets generated by the first website so
that the resulting sizes match the distribution of the sec-
ond website. Glove extends this offline-online approach to
cover all traffic features, not just packet sizes. It may also
be viewed as simply optimizing for the common case in Bu-
FLO based defenses [4, 2]. Both BuFLO based defenses
send packets between the proxy end-points at fixed sched-
ules that reveal little information about which website is
being loaded. Glove optimizes this approach by using prior
knowledge about popular websites to select a packet sched-
ule that uses less bandwidth but still hides the identity of
the website. For websites that Glove does not have prior
knowledge, it falls back to BuFLO type defenses.

2. THE GLOVE DEFENSE
We believe the efficacy of a defense does not equal to its

security against a specific attack. Future attacks may ex-
ploit the vulnerability of the defense even if it was secure in
the past. As a result, Glove is designed to defeat an ideal
attacker, who can not distinguish two websites if and only
if they generate the exact same sequence of network traffic
observations. Glove is a provably secure defense, because
it gives an upper bound on the success rate of any attacks,
regardless of their attacking methods.

The network traffic generated by loading a web page con-
sists of a sequence of packets, which we call a trace. Packets
in a trace can be divided into two categories: request packets
that transmitted from a client to a web server, and response
packets that directed to the client. From a different point of
view, we can say the contents of a web page are covered by
its trace. We also define super-trace as follows:

Definition 1 (Super-Trace). We say that a trace S
is the super-trace of traces t1, . . . , tn iff each trace ti may be
transformed into trace S by some sequence of the following
actions:

• Inserting: Inserting request or response packets.

• Merging: Merging consecutive requests or responses.

• Splitting: Splitting a packet into a set of smaller sized
packets such that the sum of their sizes is maintained.

• Delaying: Increasing delays between a response packet
and its succeeding request packet, and vice-versa.

Clearly, from Definition 1 we can see that, trace ti of
web page wi can be replaced by super-trace S (at the cost
of additional bandwidth and latency overhead). This is be-
cause S has enough data packets to cover the contents in wi,
while maintaining the dependencies between requests and re-
sponses in ti. To protect n websites w1, . . . , wn, Glove does
two things: First, it divides the traces of these websites into
k clusters based on rules we will describe later. Second,
for all the traces within a cluster, Glove computes a single
super-trace.

Observe that Glove plays the same trace Sc whenever a
web page in cluster c is loaded, thus generating the same
observation to an attacker. Glove therefore meets the infor-
mation theoretic definitions of security as defined in prior
work [3]. For e.g., let C be the smallest cluster among all k
clusters. Because loading all web pages in C yield the same
observation to an attacker A, the probability that A can
correctly guess which web page is loaded is 1

|C| . Since C is

the smallest cluster, Glove is a uniformly ε-secure defense,
where ε = 1

|C| here. Similarly, Glove can be tuned to achieve

non-uniformly ε security.

2.1 Clustering Webpages
On a high level, to cluster webpages based on their network-

level features, we employ k-medoids clustering on the Dy-
namic Time Warping (DTW) based distance matrix com-
puted on input webpage traces.

2.1.1 Finding Representative Traces
In reality, not all webpages are static and the network

condition changes from time to time, so the trace varies
each time a webpage is loaded. Before clustering webpages,
we need to choose a “representative” trace for each webpage,
i.e., the trace that is likely to be most easily transformed
into other traces generated by the same page. To do this,
we load a webpage n times and record n traces. We then
compute pair-wise Damerau-Levenshtein edit distances [6]
among them, and find the trace t with the minimum average
distance to others. t is chosen as the representative trace for
the web-page.

2.1.2 k-medoids clustering
Since a trace can be viewed as a time-series, we com-

pute the Dynamic Time Warping (DTW) [1] distances be-
tween every pair of representative traces. Once this pairwise
distance matrix is computed, we use the k-medoids [5] al-
gorithm to group similar webpages into a pre-determined
number of clusters. The number of clusters determines the
security and overhead of the Glove defense.

Simulations revealed that the clusters generated by DTW
had lower overhead super-traces than other distance metrics.
This is likely because DTW implicitly takes into account
the time between packets while computing edit distances –
an important factor when considering that supertraces need
to maintain the inter-packet time dependencies between re-
quests and responses in their constituent traces.

k-medoids is preferred for clustering as it was designed
with the idea of enabling custom distance metrics between
points (unlike k-means and other clustering methods which
assume a euclidean space).

In our implementation of k-medoids, the cost of a clus-
ter configuration was the lower-bound on bandwidth over-
head which can be computed as:

∑k
i |ci|(max(reqj∈ci) +

max(resj∈ci)). Here, c1, . . . , ck are the k clusters and reqj ,
resj denote the number of request and response bytes of the
jth site. The idea is that any super-trace of a group of traces
must contain atleast as many request and response bytes as
its constituent traces with the most number of request and
response bytes.

2.2 Computing Super-traces
The super-trace of a cluster is a single trace which cov-

ers all traces contained in that cluster. If all webpages are
static, a defense that plays this supertrace while loading any
webpage within the cluster, effectively hides all information
about the page being loaded (except the cluster it belongs
to). However, since most webpages are dynamic, we com-
pute a supertrace which aims to conservatively cover a large
(tunable) percentage of all traces that one of its constituent
webpages might generate. To do this, we use the heuristic
demonstrated in Algorithm 1 to approximate the minimum
bandwidth super-trace for each cluster. The following nota-
tion is used:

• Minimum site coverage (µmin): This parameter deter-
mines the minimum number of traces of each webpage
to be covered by the super-trace. The parameter µ
denotes the average coverage of all pages. Larger µmin

values provide more resistance to the dynamicity of
webpages, often times at the cost of larger overheads
(not always).

• Bandwidth-Latency tuner (τ): This parameter allows
us to tune the defense to produce super-traces that
optimize some combination of bandwidth and latency
overheads. The lower the value of τ , the lower the
latency overhead (at the cost of bandwidth), and vice
versa. The range of τ is 1 to 100.

• T is the set of input traces that the super-trace is com-
puted over. This is initially ∅. ST denotes the cur-
rently computed super-trace. Ri is the set containing
all the recorded traces of site i. covmin is the index of
the site which is least covered by the current ST . This
value may be initialized randomly.

• F denotes the current frontier packet of each trace in
T and leni denotes the number of packets in the ith

trace in T .

• The function Find-Direction returns +1 if more than
1
6

up-stream packets, else returns -1. Function Find-

Time returns the τ th percentile time of frontier pack-
ets in direction PD. Find-Size returns the maximum
packet size in the frontier with time ≤ PT and direc-
tion = PD. Finally, function Update-Frontiers up-
dates the frontier of each trace (Fi) to the last packet
not covered by the current ST .

The algorithm is simple. The super-trace is computed
over a set of input traces. In each iteration we add a trace
from the least covered site into this input, until all sites have
satisfied the minimum coverage parameter µmin.

Algorithm 1 Algorithm to compute the super-trace of a
cluster

function Input-Gen(µmin, τ , covmin, T , {R1, . . . , Rn})
if coveragecovmin < µmin then

T ← T ∪ t, where t ∈ Rcovmin;
ST ← compute-st(τ , T)

else
return ST

end if
end function
function compute-st(τ , T)

ST ← ∅, F ← {1, . . . , 1}
while F 6= {len1 + 1, . . . , lenm + 1} do

PD ←Find-Direction(T)
PT ←Find-Time(τ , T , PD)
PS ←Find-Size(T , PT , PD)
ST ← ST ||(PD, PT , PS)
F ← Update-Frontiers(ST , T)

end while
end function

Now, for each of these input traces, a counter (starting
at the first packet) indicating the current frontier is main-
tained. We count the number of frontier packets in each di-
rection. If more than 1

6
of the packets are up-stream packets,

we add an up-stream packet to the super-trace, otherwise,
we add a down-stream packet. We use the parameter 1

6
be-

cause in our input traces we found that the average ratio of
up-stream to down-stream packets was 1

6
. The time at which

this newly added packet is to be sent is set to be the time
of the τ th percentile frontier packet (assuming that frontier
packets are ordered by time) in the chosen direction. The
size of the newly added packet is taken to be maximum size
(rounded to the nearest 50 bytes) of all the frontier packets
in the chosen direction. The above process is repeated until
the frontier of all the input traces have passed their final
packet. The final trace ST is guaranteed to cover at-least
µmin% of the traces of each site (although, in practice the
average coverage turns out to be far higher).

3. SIMULATION RESULTS
For our simulations, we collected 50 traces each from the

Alexa top 500 functioning, non-redirecting webpages. The
browser cache was cleared between page-loads. Next, each
of the 50 traces for each site were then ranked by their repre-
sentativeness, and clustering was done. For our simulations,
we varied the number of clusters (k) in the range of 16 and
250, giving us defenses which were between .032 and .5-non
uniformly secure. Once the clusters were found, sets of su-
pertraces were generated for each of the clusters while vary-
ing µmin and τ . Finally, statistics corresponding to expected
site coverage, bandwidth, and latency ratios were computed.

Security-Overhead Trade-off: Figure 1 compares the
trade-off between efficiency of Glove, BuFLO, and CS-BuFLO
and the levels of security provided. Note that in this plot,
Glove is the only defense that provides information theoretic
security against any attacker, while the data for BuFLO
and CS-BuFLO (obtained from [4] and [2]) are relevent only
against Panchenko and DL-SVM attackers, respectively. There-
fore, while the BuFLO and CS-BuFLO trade-offs might vary
depending on the attacker, the Glove trade-off holds against

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50

B
an

dw
id

th
 R

at
io

 (
x)

Best Attack Accuracy (%)

Glove [τ = 99, µmin= 40] vs. any attack
BuFLO vs. Panchenko

CS-BuFLO vs. DL-SVM

Figure 1: Attacker Accuracy vs. Bandwidth Ratio

any attacker. From the figure, it is clear that Glove provides
significantly better trade-off costs than CS-BuFLO (vs. DL-
SVM, for any security level) and BuFLO (vs. Panchenko,
when attack accuracy ≤ 10%). When security is less critical
(attack accuracy > 10%), however, Glove and BuFLO (vs.
Panchenko) provide similar trade-offs.

Tunability of Glove: In figure 2, we demonstrate the
effect of varying the µmin and τ parameters of Glove (on
its bandwidth and latency ratios). In particular, the figures
show that varying µmin to increase resistance to dynamic
content in web-pages has little effect on the bandwidth over-
head of the defense, while significantly increasing its latency
overhead (when τ = 99 – i.e., the defense is optimized for
minimizing bandwidth costs). Further, we see that τ allows
user experience tuning – i.e., reducing τ causes a significant
drop in latency overheads (increasing the usability of the
defense) at the cost of increased bandwidth.

4. DISCUSSION AND CONCLUSIONS
In this paper we presented Glove– a website fingerprint-

ing defense that illustrates a promising new approach to-
wards building efficient fingerprinting defenses. In particu-
lar, Glove is the first SSH-based defense to demonstrate:

Information-Theoretic Security: Unlike previous de-
fenses, Glove provides information-theoretic security guar-
antees, as defined in [3]. This is achieved by computing a
single supertrace for each computed cluster and playing this
each time a page contained in the cluster is loaded. As a
result, in the absence of prior (or, outside) knowledge, any
(current or future) website fingerprinting attackers success
rate is bounded by the size of the computed cluster.

Good Security-Overhead Trade-off: The results il-
lustrated in figure 1 demonstrate the validity of our con-
jecture that using prior information about the structure of
a web-page to add cover traffic conservatively yields bet-
ter website fingerprinting defenses. This approach, used by
Glove, results in it being more secure and efficient than any
previously proposed SSH based defense.

High Tunability: Unlike previous defenses, Glove allows
users to tune their browsing experience by exposing the τ
parameter. Lower τ values significantly reduce latency at
the cost of bandwidth, and vice-versa. This is especially

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20 30 40 50 60 70 80
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
B

an
dw

id
th

 R
at

io
 (

x)

µ
av

g
(%

)

µ min (%)

Average Coverage (µ avg)
Glove (ε = .108, τ = 99)
Glove (ε = .108, τ = 33)

(a) Bandwidth Ratios

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20 30 40 50 60 70 80
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

La
te

nc
y

R
at

io
 (

x)

µ
av

g
(%

)

µ min (%)

Average Coverage (µ avg)
Glove (ε = .108, τ = 99)
Glove (ε = .108, τ = 33)

(b) Latency Ratios

Figure 2: Overhead Ratios and Average Coverage while varying µmin and τ on an ε = .108 Glove

useful in current scenarios where it is likely the case that
bandwidth costs are inconsequential, while even moderately
increased user experienced latency may result in significantly
decreased usability of the defense.

However, Glove also has limitations that may hamper its
adoptability in the real world. We discuss these below.

Infrastructure Requirements: Glove greatly reduces
its overhead by utilizing prior knowledge of web-page struc-
tures. This requires the Glove infrastructure to be able to
collect traces of defended web-pages, cluster these pages, and
compute corresponding super-traces. These tasks are fairly
computationally intensive, making them infeasible for stan-
dard server side proxy nodes to perform on a regular basis.
Instead, using a powerful dedicated central node to compute
clusters/super-traces and distribute them to Glove proxies
(e.g., via Tor bridges – since the security of Glove is inde-
pendent of the secrecy of the computed super-traces) is more
efficient. However, such a node may not be easily available
in the real world. In the absence of such nodes, Glove has
to fall back on less powerful server side proxies which take
as input a list of urls (from the client) and returns a single
super-trace (to be played when the client loads a page in
the input urls). However, in these cases, while Glove retains
its information-theoretic security guarantees, it is no longer
able to user prior knowledge of web-page structures to pro-
vide low overheads. To circumvent these problems, one may
consider developing distributed clustering and super-trace
algorithms for use with Glove.

Effect of Dynamic Content: Two types of dynamic-
ity affect the Glove defense. First, the information-theoretic
guarantees provided by Glove hold only when µmin = 100%.
This, however, is possible to guarantee only when web-pages
do not contain dynamic content (e.g., JS, AJAX, etc.). One
way to address this problem is to force users to disable
scripts while browsing – although this is reasonable for a
few users (who use Glove to avoid life-or-death situations),
it is not reasonable for other more casual users of Glove.
For such users, a more suitable option is to have the Glove
server side proxy simply ignore any packets that may still
be required to be transmitted after the super-trace has been
played to completion. While this may occasionally result
in a user viewing only a partially loaded page, this is rare

enough to prevent a significant drop in the usability of the
system (e.g., at µmin = 80% in figure 2, we see this hap-
pens less than 3% of the time, on average). Second, when
the structure of a Glove defended web-page changes signif-
icantly, its trace may change to a large enough degree that
less than µmin% of its page loads are covered by its cur-
rent super-trace. In this case, re-clustering/super-tracing of
all defended pages may be in order. While our observation
is that this is rare, its occurrence does result in the need
for the Glove infrastructure to occasionally perform this re-
clustering, super-tracing, and distribution.

Code and Data Release: To ensure reproducibility of
our results and ease comparative evaluation, the following
resources will be made available (at https://bitbucket.

org/rishabn/glove), on publication of this paper: a fully
working simulation and implementation of Glove, traces col-
lected, clusters generated, and complete simulation results.

5. REFERENCES
[1] Donald J Berndt and James Clifford. Using dynamic

time warping to find patterns in time series. In KDD
workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[2] Xiang Cai, Rishab Nithyanand, and Rob Johnson.
Cs-buflo: A congestion sensitive website fingerprinting
defense. In In Submission, 2014.

[3] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob
Johnson, and Ian Goldberg. A systematic approach to
developing and evaluating website fingerprinting
defenses. In ACM CCS, 2014.

[4] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In IEEE
Security and Privacy, 2012.

[5] Leonard Kaufman and Peter Rousseeuw. Clustering by
means of medoids. Statistical Data Analysis Based on
the L1-Norm and Related Methods, 1987.

[6] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33:31–88, March 2001.

[7] Charles V. Wright, Scott E. Coull, and Fabian
Monrose. Traffic morphing: An efficient defense against
statistical traffic analysis. In NDSS, 2009.

https://bitbucket.org/rishabn/glove
https://bitbucket.org/rishabn/glove

	Introduction
	The Glove Defense
	Clustering Webpages
	Finding Representative Traces
	k-medoids clustering

	Computing Super-traces

	Simulation Results
	Discussion and Conclusions
	References

