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Abstract. For adequate risk management in mountainousin avalanches over the whole winter season, 12 of them alone
countries, hazard maps for extreme snow events are needeith Evolene on 21 February 1999 (SLF, 2000). Avalanches in
This requires the computation of spatial estimates of returrFebruary 1999 damaged around 230 houses and many other
levels. In this article we use recent developments in extreméuildings, vehicles, etc. (SLF, 2000). An even more disas-
value theory and compare two main approaches for maptrous avalanche winter occurred in 1950-1951 and resulted
ping snow depth return levels from in situ measurementsin 98 fatalities in Switzerland (Bndl et al., 2004).

The first one is based on the spatial interpolation of point- Risk management in mountainous regions such as the
wise extremal distributions (the so-called Generalized Ex-Swiss Alps requires to establish return level maps depicting
treme Value distribution, GEV henceforth) computed at sta-dangerous areas and to take them into account for land-use
tion locations. The second one is new and based on the diregflanning (Lateltin and Bonnard, 1999). The well-founded
estimation of a spatially smooth GEV distribution with the framework for the computation of return levels is extreme
joint use of all stations. We compare and validate the differ-value theory (Coles, 2001). It has been widely used among
ent approaches for modeling annual maximum snow deptlothers in hydrology (Katz et al., 2002; Vasiliev et al., 2007;
measured at 100 sites in Switzerland during winters 1965-Reiss and Thomas, 2007) and climatology (Naveau et al.,
1966 to 2007-2008. The results show a better performancg005; Brown and Katz, 1995; Palutikof et al., 1999). How-
of the smooth GEV distribution fitting, in particular where ever, its use for snow events is limited with a few exceptions
the station network is sparser. Smooth return level mapgBocchiola et al., 2006, 2008; Blanchet et al., 2009). We
can be computed from the fitted model without any further revealed in a previous article (Blanchet et al., 2009) how ex-
interpolation. Their regional variability can be revealed by treme snowfall is spatially distributed over Switzerland and
removing the altitudinal dependent covariates in the modelargued that this spread is determined by the main climato-
We show how return levels and their regional variability are |ogical patterns. Nevertheless, the methodology developed
linked to the main climatological patterns of Switzerland.  in Blanchet et al. (2009) is based on univariate extreme value
theory and does not allow the calculation sgfatial return
levels. This article can be seen as a next step towards a spa-
tial modeling of extreme snow events, allowing spatial return
levels to be computed.

Heavy snow events are among the most severe natural haz- Quite a wide range of literature exists on the issue of spa-
ards in mountainous countries. In the European Alps, ondial mapping (or spatial interpolation) of snow depth. A
of the most exceptional avalanche winters occurred in win-broad range of spatial interpolation techniques are compared
ter 1998-1999, mainly due to continued and heavy snowfalin Erxleben et al. (2002) and Molotch et al. (2005), including
events in February 1999. A multitude of large avalanches regeostatistics, binary regression trees and combined methods
leased in the northern sectors of the alpine regions in Austria®f both techniques. Other statistical methods include gen-

Italy, France, and Switzerland. In Switzerland 36 people diederalized additive models (e.g.opez-Moreno and Nods-
Bravo, 2005) allowing a non-linear dependence between
snow depth and topographical variables. Several studies use

Correspondence tal. Blanchet a different approach by taking advantage of remotely sensed
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2003, for example). More recently, interpolation has beenthis article more sophisticated response surfaces for model-
constrained by remotely sensed estimates of snow-coveremg the GEV parameters but within a less complicated statis-
area. For the special case of snow depth mapping in Switzettical framework in which the property of max-stability will
land, Foppa et al. (2007) described a first practical methochot be accounted for. Note that this is also the underlying
and Harshburger et al. (2010) proposed to mix a multiple re-assumption made in all papers on spatial interpolation of ex-
gression method with satellite-based information. It is im-tremes. We argue that this simplification does not affect the
portant to stress at this point that all of the aforementioned arcomputation of return level maps, which is the goal of this
ticles deal with interpolation adaily or monthlysnow depth  paper. Smooth GEV modeling is already a practical improve-
and not ofannual maximunsnow depth as we do in this ar- ment over simple interpolation as is commonly done in ap-
ticle. The difference between the two problems is two-fold. plication oriented work.
First here only the largest events (namely the annual maxima) The article is organized as follows. We first recall the prin-
are studied and the framework for that is Extreme Value The-<iple of extreme value theory and show in particular how re-
ory. Second, the process of annual maxima does in generalirn levels can be computed from it. We then present the
not correspond to a one-day event since annual maxima iglata under study in Sect. 3 and perform an analysis of ex-
Switzerland usually do not occur simultaneously. They maytreme snow depth at station locations in Sect. 4. This allows
occur simultaneously on some neighboring stations but nous to derive pointwise estimates of return levels in Switzer-
across larger areas. The problem of how to model the spatand. In Sect. 5 we present a first method for obtaining spa-
tial characteristics of snow depth applies to mean as well asial estimates of return levels, based on the interpolation of
extreme values: just as daily snow depth, annual maximunhe individual GEV distributions obtained in Sect. 4. We
snow depth is likely to vary smoothly over space. Investigat-give some results for the Swiss snow depth data and show
ing its spatial mapping on the basis of Extreme Value theorythe limitations of this methodology. In Sect. 6 we develop
is the subject of this article. a better approach based on the estimation of a smooth GEV
Studies on the spatial mapping of extreme events in gendistribution using all stations jointly. Finally, a comparison
eral can be divided into two main groups. The first one isof the different methods based on a validation data set is used
based on the spatial interpolation of in-situ estimates in orto draw conclusions as to which method should be preferred
der to enable the construction of return level maps. Kolnov in practical applications.
etal. (2009) and Beguerand Vicente-Serrano (2006) for ex-
ample interpolated the in-situ extremal distributions, whereas
Loukas et al. (2001) and Weisse and Bois (2001, 2002) inter2 Extreme value theory
polated directly the in-situ (100-year) return levels. A com-
parison of different interpolation methods for mapping ex- We only provide a short overview of the statistical theory of
treme precipitation can be found in Szolgay et al. (2009).extreme values. We focus here on “block maxima approach”
The second group of studies is based on the direct estimatioim the univariate case. For more details, we refer to Coles
of the spatial extremal distribution, without requiring any in- (2001), chapter 3, for example. Extreme value theory fo-
terpolation. This is a well-founded approach that should thecuses then on the asymptotic behavior of the so-célleck
oretically be preferred to any interpolation method. Cooleymaxima
et al. (2007) proposed a Bayesian modeling whereas Padoan

et al. (2010) made use of max-stable modeling for spatial exZ; = max{Yy, ..., Y.}, Q)
tremes. Return level maps are also obtained in Gardes and
Girard (2010) based on nearest neighbor estimators. HowwhereYs, ..., Y, is a sequence random variables. Here

ever, all the aforementioned statistical papers aim at propos-asymptotic” means that the theory predicts the behavior as
ing new methods for the spatial modeling of extreme eventsthe block length. goes to infinity, but one usually requirés

but none of them make a comparison with more naive in-to be “large enough”. In practic&y, ..., Y is usually atime
terpolation routines that are practical for operational appli-series, of daily observations for examplg, is then the max-
cations. In this article, we propose to compare these twamum of the measured process over a block abservations
main approaches for the first time — the interpolation-baseda year for examplel, = 365.25). Ideally, extreme value the-
approach and the spatial statistics-based approach — for mapry requires the (e.g. daily) observations/=1, ..., L, to

ping extreme snow depth in Switzerland. More precisely,be independent. However this hypothesis can be relaxed to
throughout this paper we make use of the Generalized Exthe case of shortly dependert More specifically, extreme
treme Value (GEV) distribution and compare the GEV pa- value theory still applies if theP(u,,) condition” of Lead-
rameter interpolation approach with a smooth GEV model-better et al. (1983) is satisfied, i.e. if distant maxima of the
ing approach, i.e. a GEV modeling in which the parame-(e.g. daily) proces¥s, ..., Y, are near-independent. For in-
ters are modeled as smooth functions in space through thdependent or shortly dependéftand if the lengthl of the

use of spatial covariates. Compared to Padoan et al. (201®ample is large enough, the probability that the sample max-
where smooth GEV distributions are also used, we will use inimum Z; does not exceed a certain lexel.e. P(Z; <z), is
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Fig. 1. lllustration of the GEV distribution. Upper panel: example of GEV densifi€s; i, 0,&) when varying the locatiop parameter
(left plot), the scaler parameter (middle plot) or the shap@arameter (right plot). Lower panel: corresponding return level plots.

approximately given by the GEV distribution, with cumula- & > 0), such extremes are still rare but more probable. An
tive distribution function: illustration of the influence of the three GEV parameters is
depicted in Fig. 1, upper panel, for arbitrary snow-like GEV

G (z; u, 0,8 = exp {_[1 + £ <Z ; M)]_g} ) parameters.

In practice return levels are commonly used for opera-
tional purposes. Theeturn levelg, associated with thee-

if1+ & (Z — '“) ~ 0, 0 otherwise turn period% (0 < p <1) is the(1— p)-th quantile of the

o GEV distribution; it is expected to be exceeded on average
The GEV distribution has three parameters (Eq. 2loca- once every% years. Estimates of return levels are obtained
tion parameter, ascaleparameter > 0 and ashapepa- by setting in Eq. (2)5(g,; i, 0, §) = 1— p and by inverting
rameteré. The location specifies where the distribution is it
centered and the scale its spread. The shape paraingter Y e
scribes the tail behavior of the distribution, leading to three, _ {H — [ —{-log @ — p)} ], for§ # 0, 3)
types of GEV distributions: d w — o log {—log (1 — p)}, for§ = 0.

— whené > 0, a heavy-tailed (or xchet) distribution, The graph ofg, against—log(1— p) on a logarithm scale
(i.e. the plot ofg,, against log—log(1— p)}) is areturn level
plot. It is particularly convenient for interpreting extreme
— whené < 0, a bounded (or Weibull) distribution. value models. It gives, for any return perioan the x-axis,
the associated return level, i.e. roughly speaking the highest
value expected to be exceeded once evergars (for yearly
maxima data). From Eq. (3), & < 0 the plot is convex with
-l asymptotic limit asp — 0 (infinite return period, i.er —

)} } oo) at u — Z; if &£ > 0 the plot is concave and has no finite
o ) ) bound; if¢ =0 itis linear. An illustration is given in Fig. 1,
In case of a bounded distribution (Weibujli< 0), the vari-  qer panel. It is usually long return periods, corresponding
able of interest, has a finite upper point, meaning that theo- {5 small values op, that are of greatest interest. Cases when
retically no value above this upper bound can be observed. % is positive are of particular concern for risk management

light tailed distribution (Gumbek = 0) has an infinite upper  pecause very extreme events may occur.
point and any value could theoretically be observed. Never-

theless, very extreme values (i.e. far from average observa-
tions) are very rare. In a heavy-tailed distributiongétnet,

— wheng =0, a light-tailed (or Gumbel) distribution,

The Gumbel distribution witly =0 is interpreted in Eq. (2)
as the limit whert — 0, leading to the distribution function

G(z; u,0,6 =0 = exp{—exp [—(
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Fig. 2. Upper row: (a) elevation map of Switzerland ar{tl) station locations. Lower row(c) histogram of elevations in Switzerland in a
1km grid spacing and) of the stations. Color indicates elevation in meters above sea level. Among the 100 stations, 16 are excluded from
the analysis for validation (red circles in the right map corresponding to dashed part of the right histogram).

3 Data surrounding stations in a larger region. The choice of these
“unique” stations was made in order to assess performance
of the spatial model in the most difficult case. This has to be

We shall consider annual maximum snow depth from thetaken into account when interpreting results for the validation
100 sites in Switzerland shown in Fig. 2. The stations wWegiations in Sects. 5 and 6.

consider belong to two manual networks run by SLF (WSL
Institute for Snow and Avalanche Research) and MeteoSWis%f
(Swiss Federal Office for Meteorology and Climatology).
Annual maxima are extracted from daily snow depth mea-
sured manually on a stake at around 07:30 a.m. during the (8) = max{Yi(s), ..., Y(s)}, (4)
winter season, i.e. between 1 November and 30 April, for

the winters 1965-1966 to 2007—-2008. The study area covergthereY;(s) > 0 denotes the snow depth at sitthel-th day

all of Switzerland with a higher density in the alpine part; of the winter (€ {1,...L}) and L =181 or 182 denote the
see maps of Fig. 2. The area is characterized by a high demumber of days in the six winter months from November to
sity of population, tourism infrastructure and traffic during April (note that for shortness, indek in Z(s) is omitted).
winter. The elevations of the stations range between 250 nThe proces¥ = {Z(s), s € S} whereS denotes Switzerland
and 2500 ma.s.l. (above sea level), with only two stationscan be assumed to be a continuous process, i.e. a smoothly
above 2000m. 16 of these 100 stations are excluded fronvarying process over space. In the context of extreme value
the analysis for validation, and thus 84 are used for inferencetheory, this means that(s) can be approximated through
These 16 stations have been chosen to cover most of Switzea GEV distribution where parameterss), o (s) and&(s)

land and are located at various elevations between 300 andescribing respectively the location, scale and shape parame-
2000m. Some of these chosen stations are purposely cliters over Switzerland should be modeled as smoothly varying
matologically unique. For example, the easternmost of thefunctions. Doing so, it is straightforward to see from Eq. (3)
validation stations is the only one in a valley system with that return levels will also be smoothly varying over space.
a special local climatology; or the westernmost of the vali- The rest of this paper will be devoted to the specification of
dation stations is located at least 500 m higher than all thesmooth functions fog(s), o (s) and&(s). Applying Eq. (3)

Let Z(s) denote the annual maximum snow depth atsite
Switzerland, i.e.
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Fig. 3. Snow depth return level plots for four different stations. The blue curve is the GEV-based curve with standard errors (dashed line).
Points are empirical estimates. Locations of the stations are indicated by the red circle in the lower-right Swiss map. Maximum likelihood
estimates of the GEV parameters are indicated the upper-left corner (with standard errors).

will allow us to compute return levels for everyin Switzer-  denoted by(i:, &;, &). There is no analytical solution but
land, and therefore to build smooth return level maps. the maximization is straightforward using standard numeri-
cal optimization algorithmsR functionsfgev in package
evd or fit.gev in packagasmev for example perform
this maximum likelihood estimation. Whexn > —0.5, the
maximum likelihood estimate has the usual asymptotic prop-
erties (Smith, 1985):4;, 6; and§; are asymptotically un-
biased and standard errors are approximately given by the
square root of the diagonal of the inverse observed informa-
"tion matrix (Coles, 2001, chapter 3).

Return levels for statiohcan then be computed by Eq. (3)

4 Pointwise estimation of the GEV distributions

Lets1, ..., sy denote theV =84 station locations at hand
(see Fig. 2). We start by studying the pointwise distributions
of Z(s;),i €{1, ..., N}. Spatial estimates of these distribu-
tions will be derived in Sects. 5 and 6. As previously stated
Z(s;) is a block maxima random variable given by Eq. (4)

where location is replaced by locatioky. The L daily snow ! -
depthsYi(s;), ..., Y.(s;) are dependent random variables Wsht?r;iég’f’ 5) a[g repslf‘;r?éja?g ;Tfogagégugr:;r;;'gf?ﬁ
due tothe strong temporal dependence of snow depth. Neve ervals cg: ’algg bgelz).obtained with the delta method (Coles
theless, a separate analysis (not shown) reveals that, for eve . . '
winter and every location;, i € {1, ..., N}, the time-series 001, chapter 3). For illustration, return levels plots for

of snow depths exhibit a short-range dependence, which sug{l—? uFr. St%t'?gse?;é?w’ , t?:'gg:e.?é]; legt'%ZIttclat:%? rzrte rgelg'(gfsd
gests that thé (u,,) condition mentioned in Sect. 2 is satis- 9. 3, log Wi pirt : u VEIS.

fied. Furthermore, the block siZeon which maximaZz (s;) '(I;jhEe\?e pIgtT can i\lsbcl) bfe utieddfotr mtﬁdel vr:tjllclieguon.d If the
are retrieved is 181 (or 182) corresponding to the six winter maodel Is surtab’e Tor the data, the moder-based curve

months. This size seems to be large enough to assume th§| dufems? ':Sal :Ec,m:iz;(?r?:tl)? beolg drzf:\jseor:;bcle ;g{ﬁ:rgg}
the statistical theory of extreme values presented in Sect. 9 99 Y9 quacy

applies. Annual maximum snow depth at a given location model, even at low altitudes where daily snow depth time-

is then expected to follow a GEV distribution (Eq. 2) with Se:isirfpe?\évszéon?:srutmg ?ﬁ;e&iegﬁg e parameterare
parametergu;, o;, &) to be estimated. 9 pep fe

We adopt a maximum likelihood approach Let usually positive at low altitudes, close to 0 at middle altitudes
@ (K) ' (about 1000 m) and negative at higher altitudes, as illustrated
7,7, ..., z; ~ denote theK =43 annual snow depth max-

) . . o in Fig. 3. The positivity of; means that at low altitudes, the
ima measured at Iocathia, €. realizations of the random distribution of annual maximum snow depth is heavy tailed,
varlab!eZ(si)._ The Igg-llkellhood for the GEV parameters i.e. that very large snow depth compared to “usual” snow
at stationy Is given by: depth can occur. This heaviness is even more pronounced
1\ K in the low altitude region of Ticino in southern Switzerland
I (ui, 0i, &) = —K logo; — (1 + f> Z log (5)  (see Bellinzona compared to Behont in Fig. 3) where very
5/ = intense snowfalls sometimes occur due to the vicinity of the
® P ® ~4 I\/_Iediter_ranean sea and .the. ste.ep Fopography. By conFrast, at
|:1+ £ (z,» — i )} _ Z [1+§i (Z,- — M )} ' high altitudes the GEV distribution is bounded (see Weissflu-
joch in Fig. 3), meaning that no real extremes occur with re-
gards to other events. Similar results were found in Blanchet
et al. (2009) regarding extreme snowfall in Switzerland.

i k=1 i
Maximization of Eq. (5) with respect to the parameter vec-

tor (ui, o;, &) leads to the maximum likelihood estimate,

www.hydrol-earth-syst-sci.net/14/2527/2010/ Hydrol. Earth Syst. Sci., 14, 2527-2544, 2010
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Figure 4 depicts the 50-year return levels obtained from 50-year return level
the fitted GEV distributions at th& = 84 station locations.
Such a map is nevertheless difficult to interpret and can only
give information for the few locations where data are avail-
able. In practice spatial return levels rather than pointwise
estimates would be of much higher value. The rest of this
paper will be devoted to this issue.

5 Interpolating the GEV parameters

With the aim of producing return level maps, we would like
to have estimates of the smooth surfaggs), o (s), £(s)
for every locations in Switzerland. The pointwise analysis
of Sect. 4 allowed us to have estimates at isolated locations. 36_32:22‘%;‘:‘:'::_415

The most naive way of deriving spatial estimates foro

andg is to spatially interpolate the point estimafes 4, &;, Fig. 4. Pointwise 50-year snow depth return level map (in centime-
i €{1,...,N}. This is the subject of this section where differ- ters).

ent interpolation techniques are compared. This is also the

approach adopted in Kohnaet al. (2009) and Beguarand

Vicente-Serrano (2006) both regarding precipitation. Hereb.1.2 Linear regression models

the functions to be interpolated are then the three GEV pa- )

rameterss, o, £. They are assumed to be known at all station L€t XLs, .-+, Xp,s denotep exploratory variables known for
locationss;, i € {1,..., N} with values/i;, &;, & of Sect. 4. the whole of SW|tzerIano_I (i.e. for eachs S). Fo_r example
The interpolation problem consists of specifying values atth€? =3 exploratory variables of longitude, latitude and el-
arbitrary locations € S. In the followingn will denote one  €vation could be used, or polynomials of these variables. To
of the three functiong, o andé to be interpolated angk its ~ Predicty atsites givenxy s, ..., xp ; one might consider the
known value at location;. The goal is then to get smooth following model:

estimatesij(s) for all locationss in Switzerland, based on
valuesn;,i €{1, ..., N}.

n(s) = Bo + ,lel,s + ...+ ,Bp Xp,s + €, (7)

where go, B1, ..., B, are the regression parameters to be
estimated and, is an error term. Errors, are supposed to

We give in this section a general overview of the different follow the ordinary least squares assumptions, in particular to
interpolation techniques that will be used for interpolating P€ i-i-d. The model is estimated by minimizing with respect

5.1 Interpolation methods

the GEV parameters. to the8s the least squares error at locations € {1,..., N},
where valyesﬁi of n(s;) are known. This gives least square
5.1.1 Inverse distance weighted estimatesfy, B1, ..., Bp. The predicted value at unknown

locations is then given by
In inverse distance weighting (IDW), interpolated values are _ _ _
a function of the distance to surrounding locations. The in-7(s) = Bo + B1x1s + ... + Bp Xps (8)
verse distance weight is used to attenuate the influence of
distant points. The interpolated valyat locations is given ~ This is not an exact interpolation: at station locatipnpre-
by: dicted valuef(s;) given by Eq. (8) and known valug are
usually not equal (the error is given by of Eq. 7).

N i
fi(s) = Z’NL”YT” (6) 5.1.3 Spline-based regression model
Dim1 ToosTl
Consider the nonparametric regression model defined as
where||s —s;|| is the distance from the interpolating location
5; to the interpolated location Often the squared distance n(s) = F (x1, ..., Xp5) + € 9

is used. IDW is an exact interpolation: at station location

s;, interpolated valuej(s;) given by Eq. (6) is equal to the WhereF is a function and; is an error term. Errors, are

known value?); used in the interpolation. supposed to follow the classical regression assumptions, in
particular to be i.i.d. IfF is linear with respect to each vari-
ablex, then Eq. (9) is the linear regression model of Eq. (7).
For a more complex behavior than a linear dependence, one
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may modelF as a smooth non-linear function of the covari- F is stochastic (a Gaussian process). A formal connection
atesx’s. A particularly convenient model results whéh ~ between spline and kriging exists, see for example Cressie
is taken as a penalized spline (P-spline henceforth) with ra{1993), p. 180 and references therein.
dial basis function of ordep, p being odd (Marx and Eil- Estimation of Eq. (13) involves estimating ths parame-
ers, 1998). Estimation of Eq. (9) based on known valiyes ters and the variogram describing the dependence structure in
is then performed by minimizing the sum of squared errorsthe Gaussian proce$s which can be realized by maximum
subject to some constraints to avoid overfitting. Technicallikelihood (see Diggle and Ribeiro, 2007, chapter 5). The
details can be found in Appendix A. minimum mean square error predictpof » at locations is

A drawback of model Eg. (9) is that estimation may in- then given by an equation of the form (Diggle and Ribeiro,
volve a very large number of free parameters, even for a lon2007, chapter 6)
numberp of covariatesry g, ..., xp . In order to reduce the
number of parameters to be estimated while still usinggthe ~ N . ~
covariatesxy s, ..., X5, ONe may combine the approaches n(s) = Bls) + Z wi($){ni — B($)} (14)
Egs. (7) and (9) by considering a partially linear model of the i=1

form where B(s) is the estimated mean at locatierand w; (s)

are called prediction weights. This shows that the predicted
n(s) = Po+Prxrst...+Bg Xgs+F (Xg11s. - Xps)tes  valuedi(s) is basically a weighted mean of the known val-
(20) uesn;. However, unlike IDW of Sect. 5.1.1, weights (s),

) ) . i €{1,...,N}, depend on the target locationThese weights
where F is a P-spline. Equation (10) belongs then to the can pe positive, zero or negative depending on the correlation
family of generalized additive models (GAM) of Hastie and petween locations ands;. When no nugget effect is consid-
Tibshirani (1990). Estimation and prediction of such a modelgreq (i.e. when the variogram is supposed to be continuous at

can be performed similarly to the spline regression modekne origin), kriging is an exact interpolation method.
Eq. (9) by using a straightforward modification of matkx

of Appendix A. If Bs denote the estimate ¢ andF the 5.2 Choice of covariates
estimated P-spline in Eqg. (10) then predicted value @it

locations is given by The interpolation methods presented in the previous sec-
tion are applied for interpolating the three GEV parameters,
fi(s) = o+ Prxrs + ... + By Xg5 + F (Xg415, .oy Xps). 1€ Withn being either the locatiop parameter, the scale

(11) o parameter, or the shageparameter. The first question to
answer regards the choice of the covariatgsto be used.

This is usually not an exact interpolation (error at locatipn As the final goal of this work is the mapping of return levels,

is given bye;, of Eq. 10). maps of these covariates would be needed, or at least gridded
values in Switzerland.
5.1.4 Kriging It is natural to consider the three geographical coordinates

(longitude, latitude, altitude) as covariates in the interpola-
Kriging is a stochastic interpolation method that computestion methods. For snow events, altitude plays the most im-
the best linear unbiased estimafp) of n(s) based on a portant role. As shown in Table 1, there is a strong linear
Gaussian model of the spatial dependence. Different kindgjependence of the GEV parameters with altitude. The mag-
of kriging methods exist depending on the assumptions abougitude (modeled by.) and spread (modeled by) of extreme
the mean structurg(n(s)] of the model. The most general snow depth strongly increase with elevation. On the contrary,
case, universal kriging, assumes that the mean is unknowgs discussed in Sect. & pasically decreases with elevation,
but depends linearly op covariatescy s, ..., xp s with positive values (heavy tailed distributions) at low alti-

tudes and negative values (bounded distributions) at high al-
Eln()] = B(s) = o+ Prxrs + . + Bpxps. (12)  iyydes. Similar results were found in Blanchet et al. (2009)
regarding extreme snowfall in the Swiss Alps.

Additional covariates may help the prediction of extreme
snow depth. Table 1 reveals that for the location and scale
n(s) = Bo + B1Lx1s + .. + BpXps + F(5) (13) parameters, thg mean snow depth.is even more informa-

tive than elevation (higher?). The importance of mean
where{F (s), s € S} is a zero-mean Gaussian process. Modelsnow depth shows that snow distribution in Switzerland can-
Eqg. (13) belongs to the family of generalized linear geosta-not be completely described by the three geographical co-
tistical models as described by Diggle and Ribeiro (2007).ordinates. Mean snow depth may contain additional infor-
Equations (10) and (13) are similar but differ in that in the mation on local maxima and minima in snow distribution
former F is deterministic (a P-spline) whereas in the latter such as caused by individual mountain ranges. The positive

where coefficientgs have to be estimated. In other worgls,
at locations is modeled as
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Table 1. Summary of linear dependence of the GEV parametersnOt expect them to h?'p explain Qur Snow dePth data’. which
of Sect. 4 with altitude (columns 3 and 4) and with the mean snoware collected on flat fields. We will return to this point in the

depth (columns 5 and 6). In all cases, covariates are very signifidiSCUSS?On (Sect. 7). Here the considered covariates f(?f in-
cant (p-values lower than 16). Altitude ranges between 230 and terpolating the GEV parameters are then the four covariates
2540 m, mean snow depth between 0.5 and 146 cm. The range dbngitude, latitude, altitude and mean snow depth.

the N =84 estimated GEV parameters is indicated in the first col-
umn. 5.3 Considered models

range ofthe  versus altitude  versus mean snow depth  \We detail below the models used for interpolating the GEV

GEVparam. R?  slope/km R? slope/cm parameters. As in Sect. 5.1, we dengteny of the three
Locationg [4,238] 0.68 84 0.98 1.65 functionsu, o or & to be interpolated. For sake of concise-
Scales [5,61] 051 218 078 0.44 ness, we only detail in this section models when the four co-
Shape: 038088 040 —-023 0.28 —0.003

variates longitude, latitude, altitude and mean snow depth are

considered. Embedded models (in particular models when

the mean snow depth is not accounted for) are particular

cases which are straightforward to derive.

correlation between mean snowfall and the location param-

eter . of extreme snowfall has already been discussed byp-3.1 Inverse distance weighting

Blanchet et al. (2009) and it is therefore reasonable to have

a positive correlation between mean and extreme snow deptl! Order to account for the strong dependence of the GEV

as well. It is also reasonable to have a generally wider disParameters with altitude and mean snow depth, one might

tribution of snow depth values if snow depth is large, i.e. a'@ther use IDW with gradient correction as proposed in

positive correlation between mean snow depth and the scal-9- Nalder and Wein (1998):

parametery . Note, however, that for both snowfall and snow N i+ Ba (as — a5;) + B (my — my;)

depth the shape parametgr,is negatively correlated to the . . Yin1 s = Il

mean as discussed in Blanchet et al. (2009). This is partly é7(s) o Z{V 1

result of having many zero-events (rain instead of snow and =L =

zero snow depths) and a few much larger events for stationghereq, is the altitude of location, m; its mean snow depth,

with a low mean. ls is the two-dimensional coordinate of this site (longitude,
To use it as a possible covariate in the spatial interpolationlatitude), 8, and 8, are parameters. Compared to Eq. (6),

a map of the mean snow depth is needed, which is not availEd- (15) has the advantage of giving more weight to altitude

able. However’ the mean snow depth isa very smooth proand mean snow depth This corrected IDW method is still an

cess, even much smoother than a one-day event process su@kact interpolation. Parametes and,, can be estimated

as maximum annual values or daily values. Its spatial interRY cross-validation by choosing values minimizing the score

polation is therefore easier than mapping daily snow depth N

as in Erxleben et al. (2002), Molotch et al. (2005) or FoppacCV (B, Bm) =Y (i —i—i(si)?,

et al. (2007) for example. A universal kriging interpolation i=1

(see section 5.1.4) with a linear trend on altitude gives very, h

accurate interpolated mean values, with a root mean squareﬁ

error (RMSE) of less than 5 cm (not shown). Using a digital

elevation model (DEM henceforth) of Switzerland, grldded 5.3.2 Linear regression models

maps of mean snow depth can then be obtained and used as

covariate for the location and scale GEV parameters. Models of the form Eq. (7) are used where the covariates are

Other meteorological variables, such as wind speed, windPolynomials of longitude, latitude, altitude and mean snow
direction and temperature, are also measured at the station I6epth with a maximum degree of 3. We consider all possible
cations. Nevertheless, a separate analysis did not reveal afgPmbinations of these covariates with a maximum number of
significant influence of these variables on the GEV parame£ovariates g in Eq. 7) equal to 6. We select the “best” linear
ters. This may be part|y due to the poor qua“ty of these datd'egreSSion model with the help of AIC, a penalized likelihood
and to the fact that many values are missing‘ Topographicaq:riteria (Akaike, 1974) Results of Sect. 5.5 will Correspond
variables such as slope, aspect, net solar radiation or vegeti this model.
tion used in Erxleben et al. (2002), Molotch et al. (2005), or
Grinewald et al. (2010) could also be used as supplementar?'
information, but are not considered in this work. Since lo-
cal topographical variables are already of limited use in fine-
scale snow depth analysis (@ewald et al., 2010), we do n(s) = Bo + Bras + Bams + F (Iy) + €. (16)

: (15)

ereq_;(s;) is the interpolated value at sitg¢ when this
ation is omitted in Eq. (15).

3.3 Spline regression models

We use models of the form
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whereF is a P-spline of order 3. Spline-regression modelsinterpolatedi(s;), & (s;) andé (s;) compared respectively to
require to choose fix knots (see Appendix A). Choosing thethe individual valuesi;, 6; and&; of Sect. 4. This would
best number of knots, and the best locations for them, is &owever result in a comparison between two estimators, and
difficult task. Here we fixed the number of knots to 15 which not between an estimator and an observation. Furthermore,
seems to be a good compromise between flexibility (largestrictly speaking, it would not answer the question as to how
number of knots) and simplicity (low number of knots) of well the data distribution is captured: the three best mod-
the model. These 15 knots are considered among/'the84 els for u, o and& separately might not be the best triplet
station locations only. The best position for these 15 knots,of (u, o, &) since the GEV parameters are not orthogonal
from 10 000 of the total offg) possibilities, is made by gen- parameters. A better comparison is to assess goodness-of-fit
eralized cross-validation. More precisely, 10 000 estimationsof the quantiles of the interpolated GEV distribution com-
with different choices of positions for the 15 knots are per- pared to the observed ones. [z&, ZZ?K) be thek =43
formed. Among the 10000 estimated models, the one withquantiles (i.e. sorted values) observed at a given station

the lowest GCV value (see Appendix A) is selected as thethe probability associated to theth valuez* is usually
best” model and results of Sect. 5.5 will correspond to this Dr = k—[&/Z (function ppoints i R). Zlgk) can therefore be

model. compared with thél — p;) quantile of the interpolated GEV
distribution at statiori, denoted;,, ;. It is given by Eq. (3),
where u, o and & are replaced by their interpolated val-
ues fi(s;), &(s;) and&(s;) and p is replaced byp;. The
Igoodness—of-fit scores for quantile comparison are then given

5.3.4 Kriging

Model Eqg. (16) is used witl being a Gaussian process with
mean zero. No nugget effect is considered here, i.e. the va
iogram modeling the dependence structure is supposed to b
continuous at the origin. Computation of this variogram in-
. . . . 1 N K 2
volves the choice of a covariance function for Nine of the (k) ~
| _ RMSE= | — > > (s = dpi) .
most commonly used covariance functions are used, namely NK 4
the spherical, circular, cubic, Gneiting, exponential, &at
Gaussian, powered-exponential and Cauchy covariance func- 1 N.K
tions (Schabenberger and Gotway, 2005). These covarianggAE = ——— Z Z | 7P dpils
. NK “ '
functions have one or two degrees of freedom and the four i=1 k=1
first ones have an upper-bound. Maximum likelihood es- ® -
timation is performed with librangeoR of R The “best” ~ MPE = MaXeq, . v} M1k} 12 — dpiils
model (i.e. the best covariance function) is then selected with 1 NOK
the help of the AIC criteria (Akaike, 1974). Note that as no Bjas = ——— Z Z (z(k) — Gy, l.).
nu NN i ; ; NK 4 ! ’
gget effects are used here, kriging is an exact interpolation i=1 k=1
method.

All these criteria involve quantities of the formfk) —

5.4 Prediction comparison Gpe,i) Which is the error of predicting thél — p;) quantile
of stationi when using the interpolated GEV distribution.

To assess quality of the predictions, measures of accurac?uam”‘? comparison should be made for bothihe 84 fit-
will be used. The most stringent comparison is obviously toling stations and thaf = 16 validation stations (replacing
compute such measures for the validation stations. Note thaty # iS the previous scores). Note that, in the context of
validation stations were mainly selected for their climatolog- €Xirémes, an alternative quantile validation score is used in
ical properties and not in order to achieve a high score in the "iederichs and Hense (2007) and in Maraun et al. (2010),
validation (see Sect. 3). Therefore, the validation tests théStill based on differences of the for@,™ —g,,.;) but where
reliability and stability of the predictions over all of Switzer- cases of overestimation (i.e. Wheﬁ() —qp.i <0) and of
land, or at least below 2500 m. However, it may also be ofunderestimation (i.e. whezf") —Gp.i > 0) of the observed

interest to assess the quality of the interpolated distribution%‘uam”eszgk) are differently penalized. There is no reason to
for the fitted stations, in particular for the linear and spline |,cq this éaditional functionality in our case.

regression models which are non-exact methods. Large dif-

ferences between measures forthe- 84 fitting stationsand 55 Results

the M =16 validation stations indicate models that are ques-

tionable. The different interpolation methods presented in Sect. 5.3 are
Here four measures of accuracy are used: the root meanised for interpolating the three GEV parameters. Tables 2

squared error (RMSE), the mean absolute error (MAE),and 3 summarize the scores of Sect. 5.4. In Table 2 only a

the maximum prediction error (MPE) and the bias. TheseDEM is used as covariates for the three GEV parameters. In

measures could be computed for assessing quality of th&able 3, the mean snow depth is used as additional covariate
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Table 2. Scores of quantile comparison when (a) fitting a GEV to each station separately as in Sect. 4; (b)—(e) interpolating the GEV
parameters with a DEM as covariate.

Fitting stations Validation stations
RMSE MAE MPE Bias RMSE MAE MPE Bias
(a) Pointwise GEV 6.7 36 2279 0.1 5.4 33 530 0.2
(b) IDW 6.7 36 2279 0.1 177 148 625-22
(c) Linear regression 34.7 26.7 2346 04 33 279 107:34.8
(d) Spline regression 19 144 131.2 0.2 275 21.7 102:76.4
(e) Kriging 6.7 36 2279 0.1 16.2 127 71.6-13

Table 3. Scores of quantile comparison when using a DEM and the mean snow depth as covariates. For the validation stations, either the
kriged mean snow depths or the observed mean snow depths (scores in brackets) are used. Methods (a) to (d) are interpolation methods «
Sect. 5. Method (e) refers to Sect. 6.

Fitting stations Validation stations
RMSE MAE MPE Bias RMSE MAE MPE Bias
(a) IDW 6.7 36 2279 01 14.0(12.8) 10.3(9.3) 69.9(68.8}1.1(-0.5)
(b) Linear regression 10.7 6.6 181.7 0.3 13.5(12.1) 10.1(8.9) 73.5(72-68).2 (-0.7)
(c) Spline regression 9.5 6.0 1231 0.2 12.8 (11.6) 9.3(8.1) 87.5(86:6).0(—0.5)
(d) Kriging 6.7 36 2279 01 129(11.7) 9.4(8.2) 61.9(60.9-0.7 (-0.4)
(e) Smooth GEV 86 57 1189 0.3 9.2(8.3) 6.5(5.4) 50.9(48.6) 1.0(0.6)

for the location and scale parameters, using either the kriged Table 3 (lines a to d) compared to Table 2 confirms that
mean values (see Sect. 5.2) or the observed ones. For corasing the mean snow depth as covariate for the location and
parison, we also indicate in Table 2 the scores correspondscale parameters is helpful. There is a clear improvement
ing to fitting a GEV distribution to each station separately, in the spline and linear regression models for both the fitted
including the validation stations, without any spatial model and validation stations. For kriging and IDW, results for the
(see Sect. 4). For the validation stations, these scores thuslidation stations are only slightly better and results for the
do not correspond to predictions but to fittings, unlike all the fitted stations are exactly the same since they are exact inter-
other scores (lines b to €). They can thus only be interpretegbolation techniques. All interpolation methods now have a
as lower bounds of the error that would result from a predic-similar performance but kriging still performs slightly better.
tion. Scores for the validation stations when using the observed

Table 2 suggests that, when using only longitude, latitudemean snow depth as a covariate are better than when using
and elevation as covariates, kriging performs better as almoghe kriged mean snow depth but differences are low. This
all scores are lower. IDW is the second best model. For bottconfirms again that the kriged mean snow depth is a very ac-
methods, results for the validation stations are relatively poorcurate estimation of the observed mean, as already discussed
compared to those for the fitting stations, in particular forin Sect. 5.2. Note that even when using the observed mean
RMSE and MAE. This suggests that the prediction quickly snow depth, error measures from the smooth model are quite
deteriorates away from the fitting stations. Note that krig- high compared to those when a GEV is fitted to each station
ing and IDW are exact interpolation methods. This implies separately (first line of Table 2). The errors cannot strictly be
for example that the interpolated locatifus;) for the fitting compared since the individual GEYV fitting uses all available
stationi is equal to the individual valug; used in the inter-  information at the validation stations for parameter estima-
polation. The same applies for the scalg) and shapé(s). tion, while this information is not used in the parameter es-
Interpolated and individual GEV distributions of the fitting timation of the smooth GEV. However, the difference in the
stations are then identical (see lines a, b and e of Table 2)errors shows that further improvements in the spatial aspect
These scores are all low, with the exception of a very largeof the smooth GEV model may be possible.

MPE value (227.9) due to one single observation at the sta- Taple 3 merely gives a global picture of the goodness-of-
tion Lugano in southern Ticino. Parametens likely to be fit. A closer look at how well each station is fitted may be
overestimated which produces a strong overestimation of theyteresting. A way of summarizing goodness-of-fit of the

largest observation. quantiles for a given statianis to plot all observed quantiles
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Fig. 5. QQ-plots of all four validation stations located in the Plateau, with kriging interpolation (green squares) and smooth GEV fitting (blue
triangles). With both methods, longitude, latitude and elevation are used as covariates for the GEV parameters. The kriged mean snow dept!
is an additional covariate for the location and scale. Kriging interpolation is related to Sect. 5. Smooth GEV fitting is related to Sect. 6.

zl@, ke{l, ..., 43}, against the modeled quantilgs, ;: this (see Egs. 8 and 11 compared to Eqgs. 6 and 14). For these two
is a QQ-plot. Figure 5 (green squares) depicts QQ-plots ofcases, another approach is to directly estimate the regression
all four validation stations located on the Swiss Plateau withparameters from the data, without involving the individual
kriging interpolation of Table 3. With a perfect fit, all points valuessn;. This method will be termed “smooth GEV mod-
would lie on the diagonal line. In Fig. 5 the kriged mean eling” because the GEV parameters are directly modeled as
snow depth is used as a covariate but results with the obsmooth functions in space. The main difference with the ap-
served mean are almost similar. The figure reveals that th@roach of Sect. 5 is that in interpolation methods, the spatial
interpolated GEV distributions in the low elevation Plateau information is derived by interpolating individual GEV es-
are quite poor. A comparison with QQ-plots of the valida- timates whereas in the smooth GEV modeling it can be di-
tion stations located in the Alps (not shown) reveals a betterectly estimated from the data. More precisely,/jetenote
fitin the Alps. One reason is that the station network in thethe surface model for either the locatipn scales or scale
Plateau is much less dense than in the Alpine region (se€ parameter. We model the surfaget locations with the
Fig. 2). The interpolation process will then produce a betterlinear model
fit in the Alps than on the Plateau, which has fewer stations.
In addition, the statistically more extreme snow depth valuesi(s) = Bo + Brxis + ... + Bp Xps (17)
on the Plateau (due to positive shape parameters, see Sect. 4)
are by their very nature more difficult to model. However, the s in linear regression prediction (Eg. 8), or with the more
main drawback of the methodology is that the interpolation9eneral additive model
is done independently of the data. Of course, individual esti-
mationsii;, 6; andé; in Sect. 4 were done based on observedn(s) = Bo + f1x1s5 + ... + Bgxgs + F (xq+1,s, x,,,s)
data. However, once the GEV parameters are estimated, they (18)
are considered as true values in the interpolation process, as
if they were really observed. A bad individual estimate will where F is a P-spline as in spline regression prediction
therefore induce a bad interpolated value and may lead t§Eg. 11). Note that compared to the regression models
models that are very unlikely for the data. This is no longerEgs. (7) and (10), models Egs. (17) and (18) are determin-
the case when a smooth GEV model is directly fitted to theistic as they do not comprise the stochastic part contained in
data, as described in the next section. the (Gaussian) residuads.
Smooth spline-based models similar to Eq. (18) have also
been used for example in Hall and Tajvidi (2000), Ramesh

6 Fitting a smooth GEV model and Davison (2002) and Padoan and Wand (2008) but for
modeling smooth temporal trends of the GEV parameters at
6.1 Smooth GEV modeling individual locations (i.e. with time as a covariate), rather than

smooth spatial surfaces as in this article. In the spatial frame-
There are crucial differences between the interpolation methwork, recently quite simple linear regression models as in
ods of Sect. 5. Unlike kriging and IDW, linear and spline Eq. (17) have been used in Padoan et al. (2010) regarding US
regressions are generic models: once the model parametepsecipitation, using only latitude and elevation as covariates.
have been estimated, prediction does not involve the indi-The GEV modeling involves there in total only 7 parame-
vidual valuesj; anymore, which are only used for inference ters with a constant modéls) = &g for the shape. However,
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only 46 gauging stations were used over an area equivalenwhenu, o andé are all modeled as in Eq. (18) with a linear
to 10 times Switzerland, with much flatter topography (max- dependence with the mean (farando) or with elevation
imum elevation around 1500 m). Due to the denser network(for £) and a smooth dependence in space (modeled in Eq.18
used in this analysis, the rougher topography and the largethrough the P-spling’ of order 3 with 15 knots).

variability of snow depth in Switzerland, the surfaces re-

sponses given by Egs. (17) and (18) to be used on our data afe2 Model estimation and selection

likely to be more complicated, i.e. to involve more covariates. ) )
X Unlike in Sect. 5, we wish to estimate the smooth GEV mod-
OR . . . .. .
As in Sect. 5, we will consider as possible covariates theels directly from the data, which are considered jointly, with-

three geographical coordinates (longitude, latitude, elevalut any individual fitting. We adopt a likelihood approach.

tion) and the mean snow depth, with the GEV parametersThiS requires to consider the joint distribution of annual max-
1, o andé being modeled by either Egs. (17) or (18). Each imum snow dept.h at th& fitting locations. For the sakg of
combination of these three models then leads to a smootﬁ'mpl'c'ty' we W'" assume here that tm‘-varla_te densﬂy_
GEV modeling of extreme snow depth in Switzerland. How- can be approximated by the product of marginal densities.

ever, considering all possible combinations of modelsfor Thisis equ_lvalenlt t_o gon5|dder|ng$r;]'c_1t theann_ual maxima
o and¢ and all possible covariate choices would clearly be are approximately independent. This approximation Is actu-

too computationally intensive: i, models are considered ally very unlikely to be fulfilled in reality due to the spatial

for u, K, models foro and K forlé then in total, by com- dependence of annual maxima. However, it is applicable and
1 o H 1 . N . . . . . .

bination of all possible models for each of the three parame—g'ves satisfying results if the marginal distributions only are

ters. this means tha. x K. x K= smooth GEV models have of interest, which is the case in this study. We will return

to b,e fitted. This gil\L/es r(;anys thousands of models in ourt® this approximation and its limits in the concluding discus-

case. In order to limit the number of considered GEV mod

_sion (Sect. 7). The log-likelihood of th¥ stations is then
els, we restrict our analysis to the best combinations of Co_apprommated by

variates found in the previous section using the linear Eq. (7) N
and spline Eqg. (10) regression models. The linear regressiofy, (i, o, &) = Z Hu (si), o (i), & (si)} (19)
models fitted in Sect. 5 used as possible covariate polynomi- i=1

als of longitude, latitude, altitude and mean snow depth with, o re u, o and & are smooth surfaces and

a maximum degree of 3 (see Sect. 5.3.2). Spline linear rez{u(si)’ o(si), £(s))) is the GEV log-likelihood of
gression models used P-spline of order 3 with 15 knots anctq_ (5) when parameter§u;, o;, &) are replaced by
an additional possible linear dependence in elevation and iy, .\ (s}, £(s:)). Approxli;natli;)n lEq_ (19) is a special

the mean (see Sect. 5.3.3). Among all those linear and spling,se of composite likelihood (Varin and Vidoni, 2005: Varin,
regressmn_models, we only select here as possible models fc2'008). Maximizing Eq. (19) consists then in finding the best
1, o andg in the smooth GEV model: smooth surfaces, o andé for the observed data. It involves

_ for the locationu: the best two regression models with 10 to 57 unknown parameters. Note that in the individual

a DEM as covariate and the best four regression modelé'tt'ng_ of_S_ect. 4, many more parameters were est_|mated:
with a DEM and the mean snow depth as covariates: each individual GEV involves three parameters, leading to a
total number of X N = 252 parameters.
— for the scaler: the best two regression models with a Let B denote the vector of all estimated parameters when
DEM as covariate and the best four regression modelsnaximizing Eq. (19) (we use notatio8® instead of “8”
with a DEM and the mean snow depth as covariates. Aso differentiate with the estimated parameters of Sect. 5).
o (which models the spread of the GEV distribution) As Eq. (19) is an approximated likelihood, usual properties
and . (which models the center) are usually very cor- of maximum likelihood estimates do not hold fr Nev-
related, we also allow the location to be a covariate forertheless, theoretical properties are available from the the-
o by considering the best four regression models with aory of composite likelihood estimation (Varin and Vidoni,
DEM and the location as covariates; 2005; Varin, 2008). Under suitable regularity conditiofis,
is asymptotically unbiased and normal. Approximate con-
fidence intervals for the GEV parameters can be computed
based on the diagonal elements of its covariance matrix, es-

Note that here only the equations of the best modelgifor ~timable by H (8)~J(8)H (8) where H (B) is the observed
o and¢ are used, and not the values of the which will information matrix and/ (8) the squared score statistics cor-
in fact be directly estimated from the data (see Sect. 6.2)responding td, in Eq. (19) (see e.g. Cox and Hinkley, 1974
This gives a total number of610x 6 =360 smooth GEV  for a definition of the information matrix and of the score
models. These models have between 10 and 57 degrees efatistics). Return levels can be computed at everyssitg
freedom. The only model with 57 degrees of freedom isEq. (3) with the estimated GEV parametgr&), o (s) and

— for the shapé: the best six regression models with a
DEM as covariates.
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£(s) corresponding tcﬁ. Approximate confidence intervals Model comparison: TIC values
can be obtained by the delta method (Coles, 2001). DT T T T covariates or: :
In our case, 360 smooth GEV models are estimated by Lo A e men

36000
I

maximizing Eq. (19) for different regression modelsof

o and. Model selection criteria are then needed to decide P
which of the fitted model should be preferred. We use the R T,
Takeuchi Information Criterion, TIC, (Takeuchi, 1976; Varin 2 R
and Vidoni, 2005) defined as L [ Covarmesore| |

e aDEM and p

35500

I

Y -
°

Covariates for p:
a DEM and the mean :

TIC= -2, (B) + 2Tr(HB) LT B)), (20) g e

S T S S S S S VY o T S S S S S S S
wherel,, is the approximated likelihood Eq. (19). TIC is sim- R ™ e e STV Y,
ply the AIC criterion (Akaike, 1974) extended to a misspec- 0 20 40 60 80 100 120
ified likelihood function. As with the AIC, the best model Model number

will be that having the lowest value of TIC. , i , )
Fig. 6. Model comparison using TIC for two out of the six con-

6.3 Results sideredu models. Models 1 to 60 use a DEM as covariatesufpr
models 61 to 120 use a DEM and the mean snow depth as covariate
The 360 smooth GEV models are fitted by maximizing fqr w. Each block delimited by two d_ottgd lines corresponds to a
the approximated log-likelihood Eq. (19), usifgfunction given model forw ando, when all the six different models fgrare
optim initialized with the parameters obtained in Sect. 5. used.
Values of TIC for the 360 estimated models range be-
tween 34590 and 36 255. A clear feature is that models with
w depending only on a DEM always have higher values of(i-e. the locationu) than the tail which basically concerns
TIC than those withu depending on a DEM and the mean only the largest values. Values of TIC may differ strongly
snow depth, regardless of the models doand&. This is between two models for, but differ usually less between
illustrated in Fig. 6 where the 60 TIC values obtained for two models fors. Over the 360 estimated models, the best
two different,. models (out of the six considered ones) are smooth GEV model (number 114 in Fig. 6 corresponding to
depicted as an example: models 1 to 60 use a DEM as covarthe lowest of the 360 values of TIC) has 19 degrees of free-
ates fory; models 61 to 120 use a DEM and the mean snowdom with linear regression models (Eq. 17) foro andé.
depth as covariates for. As the best model is that having More precisely, for this selected modgl,is a polynomial
the lowest value of TIC, these results confirm that using theof longitude, latitude, elevation and mean snow depth (9
mean snow depth for modeling is helpful. Mean values of freedom),o is a polynomial of elevation and locatign
have also been shown to be informative for spatial modeling(5 degrees of freedom) aridis a polynomial of longitude,
of extreme precipitation in Cooley et al. (2007) and Blanchetlatitude and elevation (5 degrees of freedom).
et al. (2009) have pointed out similar regional trends in mean Table 3, line e, gives the goodness-of-fit measures for this
and extreme snowfalls. selected model. The smooth GEV shows a better perfor-
Figure 6 also highlights that once a relatively good modelmance than all interpolation methods of Sect. 5 since all
has been chosen for (i.e. a model with the mean as covari- scores for the validation stations are lower. When using the
ate, models 61 to 120), using the mean or location as covariebserved or kriged mean as covariate, the results are very
ate foro is preferable: models 61 to 73 (blue points) have similar. A closer look at how well each station is fitted re-
clearly higher values of TIC than models 74 to 120 (greenveals that the smooth GEV distribution slightly outperforms
and red points), which use the location as additional informa-the kriged GEV distribution in the Swiss Alps but that its
tion. Using the location as covariate fer(in red) is usually  better performance is more pronounced in the Swiss Plateau.
preferred over using the mean (in green) but values of TICThis is visible in Fig. 5 depicting QQ-plots of all four val-
barely differ: likelihoods are almost similar but less param- idation stations located in the Plateau. The figure confirms
eters have to be estimated. Last but not least, it seems frora relatively good fit of the stations with the smooth GEV
Fig. 6 that the model choice fdr is not determining: each (blue triangles), with the exception of the largest quantiles
block delimited by two dotted lines corresponds to a givenof station Fribourg (right plot) which are overestimated due
model foru ando, when all the six different models fdr to an overestimation of the scale parameter. All the stations
are used (each block then contains six values of TIC). Val-(even Fribourg) are clearly better fitted with the smooth GEV
ues of TIC change barely inside each block, meaning that the¢han with the kriged GEV. Annual maximum snow depth in
model for& does not really matter. This is partly because the Plateau therefore seems to be better predicted. As pre-
all models foré use exactly the same covariates (a DEM). viously mentioned (Sect. 5.5), the station network in this
A second reason is that actually, in terms of likelihood, it is region is much less dense than in the Alps. The interpola-
much more important to fit the center of the distribution well tion method seems to be more sensitive to this issue than our
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Fig. 7. Snow depth return level plots with the best smooth GEV model forMhe 16 validation stations, with 95% confident intervals

(dotted lines). The kriged mean snow depth is used as an additional covariate. Red points in the Swiss map indicate the location of the
station; its altitude is mentioned in the upper left corner. Crosses in the Swiss map locaite-1B4 stations used for fitting. Return levels

(y-axis) are in centimeters (note the different scales among the plots); return periods (x-axis) are in years.

new likelihood-based approach in which all stations have thearound 3000 m). Even in the altitude range of the analyzed
same weight. stations (basically below 2500 m), i.e. without relying on ex-
Another advantage of smooth GEV modeling is that addi-trapolation, this is still the region having the largest return
tional information regarding model uncertainty is available levels.
(see Sect. 6.2) which is not the case for all interpolation More information about regional variability of the 50-year
methods. Figure 7 depicts return level plots for fife= 16 return level can be obtained by removing the altitudinal ef-
validation stations together with 95% confidence intervalsfect from the parametric models @f, o and£. This is
obtained by the delta method (see Sect. 6.2). This is also 8imply done by setting thg coefficients involving altitude
way of assessing quality of the predicted distributions. Notein Eq. (17) to 0. This leads to “normalized” GEV param-
that some of the validation stations show quite specific fea-eters (i.e. without altitudinal dependency), from which one
tures compared to the surrounding stations (see Sect. 3), arghn compute “normalized” return levels. The normalized 50-
therefore Fig. 7 corresponds to a quite difficult case of spayear return level map is depicted in the right panel of Fig. 8.
tial prediction. The figure confirms a fairly good fit of the It shows that Grisons and part of southern Valais (reddish
predicted distributions even in these difficult cases. regions) have highly negative normalized return levels. This
Smooth return level maps for any return period, which wasmeans that the 50-year return level in this region is lower than
the goal of this paper, can be computed from the smoothexpected. These regions are indeed inner alpine dry valleys
GEV model. For illustration, the 50-year return level map protected by high mountains all around, which usually shade
is depicted in the left panel of Fig. 8. The lowest 50-year the region from heavy snowfall events, and therefore annual
return levels (around 10cm) are obtained at the lowest elimaximum snow depths are usually quite low. In Fig. 8 the
evations in the Plateau region but only for a few locations.southern Valais is divided into three subareas: two areas with
The return level is approximately 40-50 cm in the main partlow residuals (red) separated by an area with higher residuals
of the Plateau (at 300—400 m elevation). The low region of(green). However, boundaries between these three regions
Ticino lies at even lower altitude but its 50-year return level might be too sharp on the map due to the fact that there is
is slightly higher: it is around 70-80 cm in southern Ticino only one station in the green area in between (see Fig. 2).
at 200—-300m elevation. The highest return levels (almosiContrary to southern Valais, the Gotthard region (green area
8m) are in the Gotthard region. This is a mountainous aredo the north of Ticino in Fig. 8) is open towards the direc-
but not the highest one in Switzerland (maximum elevationtion of the main precipitation systems originating from the
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Fig. 8. 50-year return level map (left panel) and regional variability after removing the altitudinal effect (right panel) with the smooth GEV
model. Units are centimeters.

north and south of the Alps. Annual maximum snow depthsthe mean snow depth. Nevertheless their influence on the
are therefore usually higher than expected at this altitudeGEV parameters might be difficult to assess here because the
Note that similar results have also been found in Blanchetdata used in this article are basically gathered in “ideal” con-
et al. (2009) regarding extreme snowfall, which unsurpris-ditions from flat, open and not overly exposed (to the wind)
ingly appears to have similar regional variability to extreme fields. The analysis here aims therefore to assess extreme
snow depth. snow depth and return levels independently from any modifi-
A comparison with the 50-year return level map obtained cation through the small scale local terrain. Away to increase
by kriging the GEV parameters (Sect. 5) reveals the saméhe data basis for our analysis further would be to incorporate
main regional patterns. The kriging method seems to underthe SLF automatic IMIS stations (Interkantonales Mess- und
estimate the 50-year return level in the Gotthard region andnformationssystem), which are located at higher elevations
to overestimate it in the southern Valais. These two regiongtypically above 2200 m) and therefore often in more rugged
correspond respectively to the highest and lowest normalize@nvironments but still in locally flat terrain. We have not done
return levels. This then basically means that kriging the GEVthis here because of the relatively short-time series available
parameters gives maps which are too smooth. This is notor SLF automatic stations. Only approximately 10 years of
surprising since the three GEV parameters are smoothed irdata are available, which is short, particularly in the frame-
dependently of the data. Each kriging is an interpolation ofwork of block maxima. Using a model for exceedances over
few points (namely theV = 84 individual estimates) which high thresholds (Davison and Smith, 1990) could work in
usually produces too smooth interpolated fields. Return levthis case. However, care must be taken that extremely snowy
els are then computed as combinations of likely too smoothwinters (such as winter 1999 in the Swiss Alps) or extremely
GEV parameters by Eg. (3), which then produces too smootisnow-scarce winters do not bias the GEV fitting of short-term
maps. stations compared to long-term ones. Another issue is the
potential impact of climate change on extreme snow depth,
particularly when combining short- and long-term data. A
7 Discussion and outlook potential trend effect has not been addressed in this article.
It could however easily be accounted for by using time as a
This paper compares different techniques for mapping excovariate in the smooth GEV modeling. Many studies show
treme snow depth in Switzerland. It suggests a better perthat mean snow levels and snow days have been affected by
formance of a smooth GEV fitting than the most commonly climate change (Marty, 2008; Beniston et al., 2003; Scher-
used interpolation techniques, in particular where the statiorfer et al., 2004; Bavay et al., 2009; Bocchiola and Diolaiuti,
network is sparse. Suggestions for further developments ar@010). However, the impact of climate changeestremeis
discussed below. unclear at present, as shown in Bocchiola et al. (2008). Nev-
Several studies on snow depth mapping showed that irertheless, there is, to our knowledge, no study on long-term
addition to elevation, using variables such as net solar rairend in extreme snow events based exclusively on extreme
diation, slope, aspect or vegetation type can deliver usefuvalue theory and a large potential area of research still re-
information (Erxleben et al., 2002; Molotch et al., 2005). mains open on this subject (Katz, 2010).
Improvements have also been obtained by the inclusion of The smooth GEV modeling intends to model that snow
variables representing wind redistribution of snow (Molotch depth return levels at neighboring locations are likely to be
et al., 2005). None of these variable has been used in thisimilar. This means for example that the maximum snow
study. They could however easily be incorporated as covaridepth value expected once every 50 years at neighboring lo-
ates in the smooth GEV fitting, in the same way as we usectations is likely to be similar. However, the model does not
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assume that this maximum is expected to occur the saméppendix A

year, or more generally that in a given year annual values are

likely to be similar. On the contrary, the underlying assump- P-splines with radial basis function

tion made in the likelihood fitting of Sect. 6 is that annual val-

ues are approximately independent, which permitted to writeConsider the spline-based regression model
the likelihood as being a sum of GEV likelihoods (Eq. 19).

This is a simplifying approximation which is unlikely to be 7(s) = F (x1,5, ..., Xp s) + €,
met in reality: if a location has received a large amount of _ _ _
snow in a given year, a neighboring location is also likely to Wherexy s, ..., xp s arep covariates at locationand ' is a

have received a large amount of snow that same year. ThiE-spline with radial basis function of ordgr p being odd.
type of Spatia| dependence is not accounted for in the preserﬁor sake of Clarity, we will consider in the fOIIOWing the case
methodology. Approximation Eq. (19) gives satisfying re- of one single covariate;. The generalization to p covariates
sults for computing local return levels but is not likely to give is straightforward. The considered spline-based regression
the best possible results for computing regional return levelsmodel is then

i.e. probabilities of exceeding some specific level anywhere

in a region a given year. This is, however, the type of ques1(s) = F(xs) + €.

tion that often needs to be answered in risk management and )

land-use planning. For such issues, spatial dependence bé- ¢an be written as

tween annual maximum values would have to be accounted M1
for. This is possible by using the exact frameworkspsa- ) = Po + frx + ... + Bu-1x
tial extremes The most natural way for the specification of
spatial extremes is provided by the theory of max-stable pro-
cesses which is a current active topic of research in the sta-
tistical community. Modeling of spatial dependence of ex-
treme snow depth in Switzerland in the framework of max- wherem = (p+1)/2, k1, ..., kg is a set of fixed knots and
stable processes has been provided in Blanchet and Davisdfo. B1. -, Bn+r—1 are coefficients to be estimated. With the
(revised), based on normalized time-series to get rid of thehotations of Sect. 5, it is assumed that estimates.., 7y
GEV margins. Combining both, the smooth GEV model- of n at N locationsss, ..., sy are available. The goal is to es-
ing of this article and the spatial dependence of Blanchetimate the besfsin Eq. (A1) based on the knowjs. Adopt-
and Davison (revised) would provide a complete modelinging @ matrix notation, the sum of squared errors can be writ-
of extreme snow depth in Switzerland and will be attemptedten asl|j —X 8|2 whereq) = (91, ..., ix) is a knownw x 1

in future. Both, the smooth intensities (through the smoothvector,8 = (o, f1, ... Bu+r-1)" is a(m+ R)-dimensional
GEV model) and the spatial dependence (through the maxvector to be estimated, aidis the N x (m + R) matrix

stable process) would be explicitly modeled. This has been

achieved in Padoan et al. (2010) for US precipitation using LToap o xP 7 vy — k27 L gy — k2R

a simpler model and smoother data (due to the flatter topogx = : : : :
raphy and the relative sparcity of the stations): simpler GEV
models than those of this article and less sophisticated max-
stable model than Blanchet and Davison (revised) allowedrg 4y0id overfitting, one aims to minimize the sum of
this to be co_mblned. Future work will ;how whether this can squared errors subject on some constraint ongthgaram-
also be achieved for our more complicated problem. In thegiar i e.

meantime, the presented smooth solution to GEV and return

(A1)

R
2m—1
+Z,8m+r—l|x_/<r| e

r=1

Do L : T : .
1xy ... xy = lany — k1)2" 1 o xy — kg|?t

period calculations presented here is a practical improvementinimize Il — X B2 subjecttoB” M B < ¢ (A2)
over simple interpolation as is commonly done in application N
oriented work. for a judicious choice of and a given matri¥ of dimension
(m+R) x (m+ R). One possible choice ™ isM =M7M,
with
[0...0 0 0 T
M. — 0...0 0 0
*T 0.0 k1 — k™Y Lk — kg2
| 0...O0lkp — k)" Y2 kg — KR|’”71/2_
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where the firstz rows andn columns ofM , are zeros. Using  Bocchiola, D. and Diolaiuti, G.: Evidence of climate change within
the Lagrange multiplier argument, the constraint optimiza- the Adamello Glacier of Italy, Theor. Appl. Climatol., 100, 351-

tion problem Eq. (A2) is equivalent to choosiggminimiz- 369, doi:10.1007/s00704-009-0186-x, 2010.
ing Bocchiola, D., Medagliani, M., and Rosso, R.: Regional snow depth
frequency curves for avalanche hazard mapping in central Italian
[lg — X ,3||2 + A ﬂT M B (A3) Alps, Cold Reg. Sci. Technol., 46, 204—221, 2006.
Bocchiola, D., Bianchi Janetti, E., Gorni, E., Marty, C., and Sovilla,
for somei > 0, fixed, called thesmoothing parameteas it B.: Regional evaluation of three day snow depth for avalanche

controls the amount of smoothing. An automatic choice.for ~ hazard mapping in Switzerland, Nat. Hazards Earth Syst. Sci., 8,
is to minimize the cross-validation score. However, in terms_ 685-705, doi:10.5194/nhess-8-685-2008, 2008.

of invariance, it may be preferable (Wood, 2006) to chdose Brown, B. G. and_ Katz, R. W.: Reglonal analysis of_temperature
minimizing thegeneralized cross-validatiofGCV) score extremes: spatial analog for climate change?, J. Climate, 8, 108—

119, 1995.
N B — 7 (si) 2 Brundl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and
GCV(L) = NZZ <M> , Ammann, W. J.: IFKIS — a basis for managing avalanche risk in
im1 Tr(d — Q) settlements and on roads in Switzerland, Nat. Hazards Earth Syst.
Sci., 4, 257-262, d0i:10.5194/nhess-4-257-2004, 2004.
whereQ;, is thesmoother matrixQ; = X (X7 X +iM)~1XT. Coles, S.: An Introduction to Statistical Modelling of Extreme Val-
For any fixedh > 0, it can be shown that problem Eq. (A3)  ues, Springer, New York, 2001.
has the solution Cooley, D., Nychka, D., and Naveau, P.: Bayesian Spatial Modeling
5 of Extreme Precipitation Return Levels, J. Am. Stat. Assoc., 102,
B= (XTX +AM )_1XT 7. 824-840, d0i:10.1198/016214506000000780, 2007.
Cox, D. and Hinkley, D.: Theoretical Statistics, Chapman and Hall,
The predicted values at locatiens then given by 1974,
. - - - - 1 Cressie, N. A.: Statistics for spatial data, Wiley Series in Probability
) = F(xg) = fo+ Brxs + ... + Bu—1xy" and Statistics, 1993.
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