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Abstract. For adequate risk management in mountainous
countries, hazard maps for extreme snow events are needed.
This requires the computation of spatial estimates of return
levels. In this article we use recent developments in extreme
value theory and compare two main approaches for map-
ping snow depth return levels from in situ measurements.
The first one is based on the spatial interpolation of point-
wise extremal distributions (the so-called Generalized Ex-
treme Value distribution, GEV henceforth) computed at sta-
tion locations. The second one is new and based on the direct
estimation of a spatially smooth GEV distribution with the
joint use of all stations. We compare and validate the differ-
ent approaches for modeling annual maximum snow depth
measured at 100 sites in Switzerland during winters 1965–
1966 to 2007–2008. The results show a better performance
of the smooth GEV distribution fitting, in particular where
the station network is sparser. Smooth return level maps
can be computed from the fitted model without any further
interpolation. Their regional variability can be revealed by
removing the altitudinal dependent covariates in the model.
We show how return levels and their regional variability are
linked to the main climatological patterns of Switzerland.

1 Introduction

Heavy snow events are among the most severe natural haz-
ards in mountainous countries. In the European Alps, one
of the most exceptional avalanche winters occurred in win-
ter 1998–1999, mainly due to continued and heavy snowfall
events in February 1999. A multitude of large avalanches re-
leased in the northern sectors of the alpine regions in Austria,
Italy, France, and Switzerland. In Switzerland 36 people died
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in avalanches over the whole winter season, 12 of them alone
in Evolène on 21 February 1999 (SLF, 2000). Avalanches in
February 1999 damaged around 230 houses and many other
buildings, vehicles, etc. (SLF, 2000). An even more disas-
trous avalanche winter occurred in 1950–1951 and resulted
in 98 fatalities in Switzerland (Bründl et al., 2004).

Risk management in mountainous regions such as the
Swiss Alps requires to establish return level maps depicting
dangerous areas and to take them into account for land-use
planning (Lateltin and Bonnard, 1999). The well-founded
framework for the computation of return levels is extreme
value theory (Coles, 2001). It has been widely used among
others in hydrology (Katz et al., 2002; Vasiliev et al., 2007;
Reiss and Thomas, 2007) and climatology (Naveau et al.,
2005; Brown and Katz, 1995; Palutikof et al., 1999). How-
ever, its use for snow events is limited with a few exceptions
(Bocchiola et al., 2006, 2008; Blanchet et al., 2009). We
revealed in a previous article (Blanchet et al., 2009) how ex-
treme snowfall is spatially distributed over Switzerland and
argued that this spread is determined by the main climato-
logical patterns. Nevertheless, the methodology developed
in Blanchet et al. (2009) is based on univariate extreme value
theory and does not allow the calculation ofspatial return
levels. This article can be seen as a next step towards a spa-
tial modeling of extreme snow events, allowing spatial return
levels to be computed.

Quite a wide range of literature exists on the issue of spa-
tial mapping (or spatial interpolation) of snow depth. A
broad range of spatial interpolation techniques are compared
in Erxleben et al. (2002) and Molotch et al. (2005), including
geostatistics, binary regression trees and combined methods
of both techniques. Other statistical methods include gen-
eralized additive models (e.g., López-Moreno and Nogués-
Bravo, 2005) allowing a non-linear dependence between
snow depth and topographical variables. Several studies use
a different approach by taking advantage of remotely sensed
data for estimating snow depth (georadar in Marchand et al.,
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2003, for example). More recently, interpolation has been
constrained by remotely sensed estimates of snow-covered
area. For the special case of snow depth mapping in Switzer-
land, Foppa et al. (2007) described a first practical method
and Harshburger et al. (2010) proposed to mix a multiple re-
gression method with satellite-based information. It is im-
portant to stress at this point that all of the aforementioned ar-
ticles deal with interpolation ofdaily or monthlysnow depth
and not ofannual maximumsnow depth as we do in this ar-
ticle. The difference between the two problems is two-fold.
First here only the largest events (namely the annual maxima)
are studied and the framework for that is Extreme Value The-
ory. Second, the process of annual maxima does in general
not correspond to a one-day event since annual maxima in
Switzerland usually do not occur simultaneously. They may
occur simultaneously on some neighboring stations but not
across larger areas. The problem of how to model the spa-
tial characteristics of snow depth applies to mean as well as
extreme values: just as daily snow depth, annual maximum
snow depth is likely to vary smoothly over space. Investigat-
ing its spatial mapping on the basis of Extreme Value theory
is the subject of this article.

Studies on the spatial mapping of extreme events in gen-
eral can be divided into two main groups. The first one is
based on the spatial interpolation of in-situ estimates in or-
der to enable the construction of return level maps. Kohnová
et al. (2009) and Beguerı́a and Vicente-Serrano (2006) for ex-
ample interpolated the in-situ extremal distributions, whereas
Loukas et al. (2001) and Weisse and Bois (2001, 2002) inter-
polated directly the in-situ (100-year) return levels. A com-
parison of different interpolation methods for mapping ex-
treme precipitation can be found in Szolgay et al. (2009).
The second group of studies is based on the direct estimation
of the spatial extremal distribution, without requiring any in-
terpolation. This is a well-founded approach that should the-
oretically be preferred to any interpolation method. Cooley
et al. (2007) proposed a Bayesian modeling whereas Padoan
et al. (2010) made use of max-stable modeling for spatial ex-
tremes. Return level maps are also obtained in Gardes and
Girard (2010) based on nearest neighbor estimators. How-
ever, all the aforementioned statistical papers aim at propos-
ing new methods for the spatial modeling of extreme events,
but none of them make a comparison with more naive in-
terpolation routines that are practical for operational appli-
cations. In this article, we propose to compare these two
main approaches for the first time – the interpolation-based
approach and the spatial statistics-based approach – for map-
ping extreme snow depth in Switzerland. More precisely,
throughout this paper we make use of the Generalized Ex-
treme Value (GEV) distribution and compare the GEV pa-
rameter interpolation approach with a smooth GEV model-
ing approach, i.e. a GEV modeling in which the parame-
ters are modeled as smooth functions in space through the
use of spatial covariates. Compared to Padoan et al. (2010)
where smooth GEV distributions are also used, we will use in

this article more sophisticated response surfaces for model-
ing the GEV parameters but within a less complicated statis-
tical framework in which the property of max-stability will
not be accounted for. Note that this is also the underlying
assumption made in all papers on spatial interpolation of ex-
tremes. We argue that this simplification does not affect the
computation of return level maps, which is the goal of this
paper. Smooth GEV modeling is already a practical improve-
ment over simple interpolation as is commonly done in ap-
plication oriented work.

The article is organized as follows. We first recall the prin-
ciple of extreme value theory and show in particular how re-
turn levels can be computed from it. We then present the
data under study in Sect. 3 and perform an analysis of ex-
treme snow depth at station locations in Sect. 4. This allows
us to derive pointwise estimates of return levels in Switzer-
land. In Sect. 5 we present a first method for obtaining spa-
tial estimates of return levels, based on the interpolation of
the individual GEV distributions obtained in Sect. 4. We
give some results for the Swiss snow depth data and show
the limitations of this methodology. In Sect. 6 we develop
a better approach based on the estimation of a smooth GEV
distribution using all stations jointly. Finally, a comparison
of the different methods based on a validation data set is used
to draw conclusions as to which method should be preferred
in practical applications.

2 Extreme value theory

We only provide a short overview of the statistical theory of
extreme values. We focus here on “block maxima approach”
in the univariate case. For more details, we refer to Coles
(2001), chapter 3, for example. Extreme value theory fo-
cuses then on the asymptotic behavior of the so-calledblock
maxima

ZL = max{Y1, ..., YL}, (1)

whereY1, ..., YL is a sequence random variables. Here
“asymptotic” means that the theory predicts the behavior as
the block lengthL goes to infinity, but one usually requiresL

to be “large enough”. In practice,Y1, ..., YL is usually a time
series, of daily observations for example.ZL is then the max-
imum of the measured process over a block ofL observations
(a year for example,L = 365.25). Ideally, extreme value the-
ory requires the (e.g. daily) observationsYl , l = 1, ..., L, to
be independent. However this hypothesis can be relaxed to
the case of shortly dependentYl . More specifically, extreme
value theory still applies if the “D(un) condition” of Lead-
better et al. (1983) is satisfied, i.e. if distant maxima of the
(e.g. daily) processY1, ..., YL are near-independent. For in-
dependent or shortly dependentYl and if the lengthL of the
sample is large enough, the probability that the sample max-
imumZL does not exceed a certain levelz, i.e.P(ZL≤z), is
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Table 3. Scores of quantile comparison when using a DEM and the mean snow depth as covariates. For the

validation stations, either the kriged mean snow depths or the observed mean snow depths (scores in brackets)

are used. Methods (a) to (d) are interpolation methods of section 5. Method (e) refers to section 6.

Fitting stations Validation stations

RMSE MAE MPE Bias RMSE MAE MPE Bias

(a) IDW 6.7 3.6 227.9 0.1 14.0 (12.8) 10.3 (9.3) 69.9 (68.8) -1.1 (-0.5)

(b) Linear regression 10.7 6.6 181.7 0.3 13.5 (12.1) 10.1 (8.9) 73.5 (72.6) -1.2 (-0.7)

(c) Spline regression 9.5 6.0 123.1 0.2 12.8 (11.6) 9.3 (8.1) 87.5 (86.6) -1.0 (-0.5)

(d) Kriging 6.7 3.6 227.9 0.1 12.9 (11.7) 9.4 (8.2) 61.9 (60.9) -0.7 (-0.4)

(e) Smooth GEV 8.6 5.7 118.9 0.3 9.2 (8.3) 6.5 (5.4) 50.9 (48.6) 1.0 (0.6)
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Fig. 1. Illustration of the GEV distribution. Upper panel: exampleof GEV densitiesf(x;µ,σ,ξ) when varying

the locationµ parameter (left plot), the scaleσ parameter (middle plot) or the shapeξ parameter (right plot).

Lower panel: corresponding return level plots.
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Fig. 1. Illustration of the GEV distribution. Upper panel: example of GEV densitiesf (x;µ,σ,ξ) when varying the locationµ parameter
(left plot), the scaleσ parameter (middle plot) or the shapeξ parameter (right plot). Lower panel: corresponding return level plots.

approximately given by the GEV distribution, with cumula-
tive distribution function:

G (z; µ, σ, ξ) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−
1
ξ

}
(2)

if 1 + ξ

(
z − µ

σ

)
> 0, 0 otherwise.

The GEV distribution has three parameters (Eq. 2): aloca-
tion parameterµ, a scaleparameterσ > 0 and ashapepa-
rameterξ . The location specifies where the distribution is
centered and the scale its spread. The shape parameterξ de-
scribes the tail behavior of the distribution, leading to three
types of GEV distributions:

– whenξ > 0, a heavy-tailed (or Fréchet) distribution,

– whenξ = 0, a light-tailed (or Gumbel) distribution,

– whenξ < 0, a bounded (or Weibull) distribution.

The Gumbel distribution withξ = 0 is interpreted in Eq. (2)
as the limit whenξ → 0, leading to the distribution function

G (z; µ, σ, ξ = 0) = exp

{
−exp

[
−

(
z − µ

σ

)]}
.

In case of a bounded distribution (Weibull,ξ < 0), the vari-
able of interestZn has a finite upper point, meaning that theo-
retically no value above this upper bound can be observed. A
light tailed distribution (Gumbel,ξ = 0) has an infinite upper
point and any value could theoretically be observed. Never-
theless, very extreme values (i.e. far from average observa-
tions) are very rare. In a heavy-tailed distribution (Fréchet,

ξ > 0), such extremes are still rare but more probable. An
illustration of the influence of the three GEV parameters is
depicted in Fig. 1, upper panel, for arbitrary snow-like GEV
parameters.

In practice return levels are commonly used for opera-
tional purposes. Thereturn levelqp associated with there-
turn period 1

p
(0< p ≤ 1) is the(1−p)-th quantile of the

GEV distribution; it is expected to be exceeded on average
once every1

p
years. Estimates of return levels are obtained

by setting in Eq. (2)G(qp; µ, σ, ξ) = 1−p and by inverting
it:

qp =

{
µ −

σ
ξ

[1 − {−log (1 − p)}−ξ
], for ξ 6= 0,

µ − σ log {−log (1 − p)}, for ξ = 0.
(3)

The graph ofqp against−log(1−p) on a logarithm scale
(i.e. the plot ofqp against log{−log(1−p)}) is areturn level
plot. It is particularly convenient for interpreting extreme
value models. It gives, for any return periodr on the x-axis,
the associated return level, i.e. roughly speaking the highest
value expected to be exceeded once everyr years (for yearly
maxima data). From Eq. (3), ifξ < 0 the plot is convex with
asymptotic limit asp → 0 (infinite return period, i.e.r →

∞) at µ−
σ
ξ

; if ξ > 0 the plot is concave and has no finite
bound; ifξ = 0 it is linear. An illustration is given in Fig. 1,
lower panel. It is usually long return periods, corresponding
to small values ofp, that are of greatest interest. Cases when
ξ is positive are of particular concern for risk management
because very extreme events may occur.
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Fig. 2. Upper row: (a) Elevation map of Switzerland and (b) station locations. Lower row: (c) Histogram of

elevations in Switzerland in a1 km grid spacing and (d) of the stations. Color indicates elevation in meters

above sea level. Among the100 stations,16 are excluded from the analysis for validation (red circles in the

right map corresponding to dashed part of the right histogram).
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Fig. 2. Upper row: (a) elevation map of Switzerland and(b) station locations. Lower row:(c) histogram of elevations in Switzerland in a
1 km grid spacing and(d) of the stations. Color indicates elevation in meters above sea level. Among the 100 stations, 16 are excluded from
the analysis for validation (red circles in the right map corresponding to dashed part of the right histogram).

3 Data

We shall consider annual maximum snow depth from the
100 sites in Switzerland shown in Fig. 2. The stations we
consider belong to two manual networks run by SLF (WSL
Institute for Snow and Avalanche Research) and MeteoSwiss
(Swiss Federal Office for Meteorology and Climatology).
Annual maxima are extracted from daily snow depth mea-
sured manually on a stake at around 07:30 a.m. during the
winter season, i.e. between 1 November and 30 April, for
the winters 1965–1966 to 2007–2008. The study area covers
all of Switzerland with a higher density in the alpine part;
see maps of Fig. 2. The area is characterized by a high den-
sity of population, tourism infrastructure and traffic during
winter. The elevations of the stations range between 250 m
and 2500 m a.s.l. (above sea level), with only two stations
above 2000 m. 16 of these 100 stations are excluded from
the analysis for validation, and thus 84 are used for inference.
These 16 stations have been chosen to cover most of Switzer-
land and are located at various elevations between 300 and
2000 m. Some of these chosen stations are purposely cli-
matologically unique. For example, the easternmost of the
validation stations is the only one in a valley system with
a special local climatology; or the westernmost of the vali-
dation stations is located at least 500 m higher than all the

surrounding stations in a larger region. The choice of these
“unique” stations was made in order to assess performance
of the spatial model in the most difficult case. This has to be
taken into account when interpreting results for the validation
stations in Sects. 5 and 6.

Let Z(s) denote the annual maximum snow depth at sites

of Switzerland, i.e.

Z(s) = max{Y1(s), ..., YL(s)}, (4)

whereYl(s) ≥ 0 denotes the snow depth at sites the l-th day
of the winter (l ∈ {1,...L}) andL = 181 or 182 denote the
number of days in the six winter months from November to
April (note that for shortness, indexL in Z(s) is omitted).
The processZ = {Z(s), s ∈S} whereS denotes Switzerland
can be assumed to be a continuous process, i.e. a smoothly
varying process over space. In the context of extreme value
theory, this means thatZ(s) can be approximated through
a GEV distribution where parametersµ(s), σ(s) and ξ(s)

describing respectively the location, scale and shape parame-
ters over Switzerland should be modeled as smoothly varying
functions. Doing so, it is straightforward to see from Eq. (3)
that return levels will also be smoothly varying over space.
The rest of this paper will be devoted to the specification of
smooth functions forµ(s), σ(s) andξ(s). Applying Eq. (3)
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Fig. 3. Snow depth return level plots for four different stations. The blue curve is the GEV-based curve with standard errors (dashed line).
Points are empirical estimates. Locations of the stations are indicated by the red circle in the lower-right Swiss map. Maximum likelihood
estimates of the GEV parameters are indicated the upper-left corner (with standard errors).

will allow us to compute return levels for everys in Switzer-
land, and therefore to build smooth return level maps.

4 Pointwise estimation of the GEV distributions

Let s1, ..., sN denote theN = 84 station locations at hand
(see Fig. 2). We start by studying the pointwise distributions
of Z(si), i ∈ {1, ..., N}. Spatial estimates of these distribu-
tions will be derived in Sects. 5 and 6. As previously stated,
Z(si) is a block maxima random variable given by Eq. (4)
where locations is replaced by locationsi . TheL daily snow
depthsY1(si), ..., YL(si) are dependent random variables
due to the strong temporal dependence of snow depth. Never-
theless, a separate analysis (not shown) reveals that, for every
winter and every locationsi , i ∈ {1, ..., N}, the time-series
of snow depths exhibit a short-range dependence, which sug-
gests that theD(un) condition mentioned in Sect. 2 is satis-
fied. Furthermore, the block sizeL on which maximaZ(si)

are retrieved is 181 (or 182) corresponding to the six winter
months. This size seems to be large enough to assume that
the statistical theory of extreme values presented in Sect. 2
applies. Annual maximum snow depth at a given locationsi
is then expected to follow a GEV distribution (Eq. 2) with
parameters(µi, σi, ξi) to be estimated.

We adopt a maximum likelihood approach. Let
z
(1)
i , ..., z

(K)
i denote theK = 43 annual snow depth max-

ima measured at locationsi , i.e. realizations of the random
variableZ(si). The log-likelihood for the GEV parameters
at stationi is given by:

l (µi, σi, ξi) = −K log σi −

(
1 +

1

ξi

) K∑
k=1

log (5)

[
1+ ξi

(
z
(k)
i −µi

σi

)]
−

K∑
k=1

[
1+ξi

(
z
(k)
i −µi

σi

)]−
1
ξi

Maximization of Eq. (5) with respect to the parameter vec-
tor (µi, σi, ξi) leads to the maximum likelihood estimate,

denoted by(µ̂i, σ̂i, ξ̂i). There is no analytical solution but
the maximization is straightforward using standard numeri-
cal optimization algorithms.R functionsfgev in package
evd or fit.gev in packageismev for example perform
this maximum likelihood estimation. Whenξi > −0.5, the
maximum likelihood estimate has the usual asymptotic prop-
erties (Smith, 1985):µ̂i , σ̂i and ξ̂i are asymptotically un-
biased and standard errors are approximately given by the
square root of the diagonal of the inverse observed informa-
tion matrix (Coles, 2001, chapter 3).

Return levels for stationi can then be computed by Eq. (3)
where(µ, σ, ξ) are replaced by the maximum likelihood
estimate(µ̂i, σ̂i, ξ̂i). Standard errors and confident in-
tervals can also be obtained with the delta method (Coles,
2001, chapter 3). For illustration, return levels plots for
four stations at low, middle and high altitude are depicted
in Fig. 3, together with empirical estimates of return levels.
These plots can also be used for model validation. If the
GEV model is suitable for the data, the model-based curve
and empirical estimates should be in reasonable agreement.
Figure 3 suggests a reasonably good adequacy of the GEV
model, even at low altitudes where daily snow depth time-
series show a longer time dependence.

An interesting result is that the shape parametersξi are
usually positive at low altitudes, close to 0 at middle altitudes
(about 1000 m) and negative at higher altitudes, as illustrated
in Fig. 3. The positivity ofξi means that at low altitudes, the
distribution of annual maximum snow depth is heavy tailed,
i.e. that very large snow depth compared to “usual” snow
depth can occur. This heaviness is even more pronounced
in the low altitude region of Ticino in southern Switzerland
(see Bellinzona compared to Delémont in Fig. 3) where very
intense snowfalls sometimes occur due to the vicinity of the
Mediterranean sea and the steep topography. By contrast, at
high altitudes the GEV distribution is bounded (see Weissflu-
joch in Fig. 3), meaning that no real extremes occur with re-
gards to other events. Similar results were found in Blanchet
et al. (2009) regarding extreme snowfall in Switzerland.
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Figure 4 depicts the 50-year return levels obtained from
the fitted GEV distributions at theN = 84 station locations.
Such a map is nevertheless difficult to interpret and can only
give information for the few locations where data are avail-
able. In practice spatial return levels rather than pointwise
estimates would be of much higher value. The rest of this
paper will be devoted to this issue.

5 Interpolating the GEV parameters

With the aim of producing return level maps, we would like
to have estimates of the smooth surfacesµ(s), σ(s), ξ(s)

for every locations in Switzerland. The pointwise analysis
of Sect. 4 allowed us to have estimates at isolated locations.
The most naive way of deriving spatial estimates forµ, σ

andξ is to spatially interpolate the point estimatesµ̂i , σ̂i , ξ̂i ,
i ∈ {1,...,N}. This is the subject of this section where differ-
ent interpolation techniques are compared. This is also the
approach adopted in Kohnová et al. (2009) and Beguerı́a and
Vicente-Serrano (2006) both regarding precipitation. Here
the functions to be interpolated are then the three GEV pa-
rametersµ, σ , ξ . They are assumed to be known at all station
locationssi , i ∈ {1,...,N} with valuesµ̂i , σ̂i , ξ̂i of Sect. 4.
The interpolation problem consists of specifying values at
arbitrary locationss ∈S. In the followingη will denote one
of the three functionsµ, σ andξ to be interpolated and̂ηi its
known value at locationsi . The goal is then to get smooth
estimatesη̃(s) for all locationss in Switzerland, based on
valuesη̂i , i ∈ {1, ..., N}.

5.1 Interpolation methods

We give in this section a general overview of the different
interpolation techniques that will be used for interpolating
the GEV parameters.

5.1.1 Inverse distance weighted

In inverse distance weighting (IDW), interpolated values are
a function of the distance to surrounding locations. The in-
verse distance weight is used to attenuate the influence of
distant points. The interpolated valueη at locations is given
by:

η̃(s) =

∑N
i=1

η̂i

||s−si ||∑N
i=1

1
||s−si ||

, (6)

where||s−si || is the distance from the interpolating location
si to the interpolated locations. Often the squared distance
is used. IDW is an exact interpolation: at station location
si , interpolated valuẽη(si) given by Eq. (6) is equal to the
known valueη̂i used in the interpolation.

0.2 1.0 5.0 20.0 100.0

0
20

40
60

80

Return period (years)

R
et

ur
n 

le
ve

l (
cm

)

µ =7.42 (1.2)
σ =6.81 (1.17)
ξ =0.52 (0.16)

+
+

++ +++ ++
+

++
+

+++++
+

+++
++

++++++

++++
++++++

+
+

+
++

++++
++ +
+
+

++
+++

+
+

+
+

+
++++

++
++
+
+

+
+

+
+ +

+ +

+

++

Bellinzona (230m)

0.2 1.0 5.0 20.0 100.0

10
20

30
40

Return period (years)

R
et

ur
n 

le
ve

l (
cm

)

µ =10.02 (1.04)
σ =5.82 (0.81)
ξ =0.14 (0.14)

+
+

++ +++ ++
+

++
+

+++++
+

+++
++

++++++

++++
++++++

+
+

+
++

++++
++ +
+
+

++
+++

+
+

+
+

+
++++

++
++
+
+

+
+

+
+ +

+ +

+

++

Delémont (416m)

0.2 1.0 5.0 20.0 100.0

50
10

0
15

0
20

0
25

0
30

0

Return period (years)

R
et

ur
n 

le
ve

l (
cm

)

µ =122.2 (7.85)
σ =47 (5.36)
ξ =−0.11 (0.08)

+
+

++ +++ ++
+

++
+

+++++
+

+++
++

++++++

++++
++++++

+
+

+
++

++++
++ +
+
+

++
+++

+
+

+
+

+
++++

++
++
+
+

+
+

+
+ +

+ +

+

++

Gadmen (1190m)

0.2 1.0 5.0 20.0 100.0

15
0

20
0

25
0

30
0

35
0

Return period (years)

R
et

ur
n 

le
ve

l (
cm

)

µ =237.78 (8.11)
σ =49.06 (5.74)
ξ =−0.36 (0.08)

+
+

++ +++ ++
+

++
+

+++++
+

+++
++

++++++

++++
++++++

+
+

+
++

++++
++ +
+
+

++
+++

+
+

+
+

+
++++

++
++
+
+

+
+

+
+ +

+ +

+

++

Weissflujoch (2540m)

Fig. 3. Snow depth return level plots for four different stations. The blue curve is the GEV-based curve with

standard errors (dashed line). Points are empirical estimates. Locations of the stations are indicated by the red
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Fig. 4. Pointwise 50-year snow depth return level map (in centime-
ters).

5.1.2 Linear regression models

Let x1,s, ..., xp,s denotep exploratory variables known for
the whole of Switzerland (i.e. for eachs ∈ S). For example
thep = 3 exploratory variables of longitude, latitude and el-
evation could be used, or polynomials of these variables. To
predictη at sites givenx1,s, ..., xp,s one might consider the
following model:

η(s) = β0 + β1 x1,s + ... + βp xp,s + εs, (7)

whereβ0, β1, ..., βp are the regression parameters to be
estimated andεs is an error term. Errorsεs are supposed to
follow the ordinary least squares assumptions, in particular to
be i.i.d. The model is estimated by minimizing with respect
to theβs the least squares error at locationssi , i ∈ {1,...,N},
where valueŝηi of η(si) are known. This gives least square
estimatesβ̃0, β̃1, ..., β̃p. The predicted value at unknown
locations is then given by

η̃(s) = β̃0 + β̃1 x1,s + ... + β̃p xp,s (8)

This is not an exact interpolation: at station locationsi , pre-
dicted valueη̃(si) given by Eq. (8) and known valuêηi are
usually not equal (the error is given byεsi of Eq. 7).

5.1.3 Spline-based regression model

Consider the nonparametric regression model defined as

η(s) = F
(
x1,s, ..., xp,s

)
+ εs (9)

whereF is a function andεs is an error term. Errorsεs are
supposed to follow the classical regression assumptions, in
particular to be i.i.d. IfF is linear with respect to each vari-
ablex, then Eq. (9) is the linear regression model of Eq. (7).
For a more complex behavior than a linear dependence, one
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may modelF as a smooth non-linear function of the covari-
atesx’s. A particularly convenient model results whenF
is taken as a penalized spline (P-spline henceforth) with ra-
dial basis function of orderp, p being odd (Marx and Eil-
ers, 1998). Estimation of Eq. (9) based on known valuesη̂i

is then performed by minimizing the sum of squared errors
subject to some constraints to avoid overfitting. Technical
details can be found in Appendix A.

A drawback of model Eq. (9) is that estimation may in-
volve a very large number of free parameters, even for a low
numberp of covariatesx1,s, ..., xp,s . In order to reduce the
number of parameters to be estimated while still using thep

covariatesx1,s, ..., xp,s , one may combine the approaches
Eqs. (7) and (9) by considering a partially linear model of the
form

η(s) = β0+β1 x1,s +...+βq xq,s +F
(
xq+1,s, ..., xp,s

)
+εs

(10)

whereF is a P-spline. Equation (10) belongs then to the
family of generalized additive models (GAM) of Hastie and
Tibshirani (1990). Estimation and prediction of such a model
can be performed similarly to the spline regression model
Eq. (9) by using a straightforward modification of matrixX
of Appendix A. If β̃s denote the estimate ofβs andF̃ the
estimated P-spline in Eq. (10) then predicted value ofη at
locations is given by

η̃(s) = β̃0 + β̃1 x1,s + ... + β̃q xq,s + F̃
(
xq+1,s, ..., xp,s

)
.

(11)

This is usually not an exact interpolation (error at locationsi
is given byεsi of Eq. 10).

5.1.4 Kriging

Kriging is a stochastic interpolation method that computes
the best linear unbiased estimatorη̃(s) of η(s) based on a
Gaussian model of the spatial dependence. Different kinds
of kriging methods exist depending on the assumptions about
the mean structure
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[η(s)] = β(s) ≡ β0 + β1 x1,s + ... + βp xp,s, (12)

where coefficientsβs have to be estimated. In other words,η

at locations is modeled as

η(s) = β0 + β1 x1,s + ... + βp xp,s + F(s) (13)

where{F(s), s ∈S} is a zero-mean Gaussian process. Model
Eq. (13) belongs to the family of generalized linear geosta-
tistical models as described by Diggle and Ribeiro (2007).
Equations (10) and (13) are similar but differ in that in the
former F is deterministic (a P-spline) whereas in the latter

F is stochastic (a Gaussian process). A formal connection
between spline and kriging exists, see for example Cressie
(1993), p. 180 and references therein.

Estimation of Eq. (13) involves estimating theβs parame-
ters and the variogram describing the dependence structure in
the Gaussian processF , which can be realized by maximum
likelihood (see Diggle and Ribeiro, 2007, chapter 5). The
minimum mean square error predictorη̃ of η at locations is
then given by an equation of the form (Diggle and Ribeiro,
2007, chapter 6)

η̃(s) = β̃(s) +

N∑
i=1

wi(s){η̂i − β̃(s)} (14)

where β̃(s) is the estimated mean at locations and wi(s)

are called prediction weights. This shows that the predicted
value η̃(s) is basically a weighted mean of the known val-
uesη̂i . However, unlike IDW of Sect. 5.1.1, weightswi(s),
i ∈ {1,...,N}, depend on the target locations. These weights
can be positive, zero or negative depending on the correlation
between locationss andsi . When no nugget effect is consid-
ered (i.e. when the variogram is supposed to be continuous at
the origin), kriging is an exact interpolation method.

5.2 Choice of covariates

The interpolation methods presented in the previous sec-
tion are applied for interpolating the three GEV parameters,
i.e. with η being either the locationµ parameter, the scale
σ parameter, or the shapeξ parameter. The first question to
answer regards the choice of the covariatesx.,s to be used.
As the final goal of this work is the mapping of return levels,
maps of these covariates would be needed, or at least gridded
values in Switzerland.

It is natural to consider the three geographical coordinates
(longitude, latitude, altitude) as covariates in the interpola-
tion methods. For snow events, altitude plays the most im-
portant role. As shown in Table 1, there is a strong linear
dependence of the GEV parameters with altitude. The mag-
nitude (modeled byµ) and spread (modeled byσ ) of extreme
snow depth strongly increase with elevation. On the contrary,
as discussed in Sect. 4,ξ basically decreases with elevation,
with positive values (heavy tailed distributions) at low alti-
tudes and negative values (bounded distributions) at high al-
titudes. Similar results were found in Blanchet et al. (2009)
regarding extreme snowfall in the Swiss Alps.

Additional covariates may help the prediction of extreme
snow depth. Table 1 reveals that for the location and scale
parameters, the mean snow depth is even more informa-
tive than elevation (higherR2). The importance of mean
snow depth shows that snow distribution in Switzerland can-
not be completely described by the three geographical co-
ordinates. Mean snow depth may contain additional infor-
mation on local maxima and minima in snow distribution
such as caused by individual mountain ranges. The positive

www.hydrol-earth-syst-sci.net/14/2527/2010/ Hydrol. Earth Syst. Sci., 14, 2527–2544, 2010



2534 J. Blanchet and M. Lehning: Mapping snow depth return levels

Table 1. Summary of linear dependence of the GEV parameters
of Sect. 4 with altitude (columns 3 and 4) and with the mean snow
depth (columns 5 and 6). In all cases, covariates are very signifi-
cant (p-values lower than 10−6). Altitude ranges between 230 and
2540 m, mean snow depth between 0.5 and 146 cm. The range of
theN = 84 estimated GEV parameters is indicated in the first col-
umn.

range of the versus altitude versus mean snow depth
GEV param. R2 slope/km R2 slope/cm

Locationµ [4,238] 0.68 84 0.98 1.65
Scaleσ [5,61] 0.51 21.8 0.78 0.44
Shapeξ [−0.38,0.88] 0.40 −0.23 0.28 −0.003

correlation between mean snowfall and the location param-
eter µ of extreme snowfall has already been discussed by
Blanchet et al. (2009) and it is therefore reasonable to have
a positive correlation between mean and extreme snow depth
as well. It is also reasonable to have a generally wider dis-
tribution of snow depth values if snow depth is large, i.e. a
positive correlation between mean snow depth and the scale
parameter,σ . Note, however, that for both snowfall and snow
depth the shape parameter,ξ , is negatively correlated to the
mean as discussed in Blanchet et al. (2009). This is partly a
result of having many zero-events (rain instead of snow and
zero snow depths) and a few much larger events for stations
with a low mean.

To use it as a possible covariate in the spatial interpolation,
a map of the mean snow depth is needed, which is not avail-
able. However, the mean snow depth is a very smooth pro-
cess, even much smoother than a one-day event process such
as maximum annual values or daily values. Its spatial inter-
polation is therefore easier than mapping daily snow depth
as in Erxleben et al. (2002), Molotch et al. (2005) or Foppa
et al. (2007) for example. A universal kriging interpolation
(see section 5.1.4) with a linear trend on altitude gives very
accurate interpolated mean values, with a root mean squared
error (RMSE) of less than 5 cm (not shown). Using a digital
elevation model (DEM henceforth) of Switzerland, gridded
maps of mean snow depth can then be obtained and used as
covariate for the location and scale GEV parameters.

Other meteorological variables, such as wind speed, wind
direction and temperature, are also measured at the station lo-
cations. Nevertheless, a separate analysis did not reveal any
significant influence of these variables on the GEV parame-
ters. This may be partly due to the poor quality of these data
and to the fact that many values are missing. Topographical
variables such as slope, aspect, net solar radiation or vegeta-
tion used in Erxleben et al. (2002), Molotch et al. (2005), or
Grünewald et al. (2010) could also be used as supplementary
information, but are not considered in this work. Since lo-
cal topographical variables are already of limited use in fine-
scale snow depth analysis (Grünewald et al., 2010), we do

not expect them to help explain our snow depth data, which
are collected on flat fields. We will return to this point in the
discussion (Sect. 7). Here the considered covariates for in-
terpolating the GEV parameters are then the four covariates
longitude, latitude, altitude and mean snow depth.

5.3 Considered models

We detail below the models used for interpolating the GEV
parameters. As in Sect. 5.1, we denoteη any of the three
functionsµ, σ or ξ to be interpolated. For sake of concise-
ness, we only detail in this section models when the four co-
variates longitude, latitude, altitude and mean snow depth are
considered. Embedded models (in particular models when
the mean snow depth is not accounted for) are particular
cases which are straightforward to derive.

5.3.1 Inverse distance weighting

In order to account for the strong dependence of the GEV
parameters with altitude and mean snow depth, one might
rather use IDW with gradient correction as proposed in
e.g. Nalder and Wein (1998):

η̃(s) =

∑N
i=1

η̂i + βa

(
as − asi

)
+ βm

(
ms − msi

)
||ls − lsi ||∑N

i=1
1

||ls − lsi ||

, (15)

whereas is the altitude of locations, ms its mean snow depth,
ls is the two-dimensional coordinate of this site (longitude,
latitude),βa andβm are parameters. Compared to Eq. (6),
Eq. (15) has the advantage of giving more weight to altitude
and mean snow depth. This corrected IDW method is still an
exact interpolation. Parametersβa andβm can be estimated
by cross-validation by choosing values minimizing the score

CV (βa, βm) =

N∑
i=1

(η̂i − η̃−i(si))
2,

whereη̃−i(si) is the interpolated value at sitesi when this
station is omitted in Eq. (15).

5.3.2 Linear regression models

Models of the form Eq. (7) are used where the covariates are
polynomials of longitude, latitude, altitude and mean snow
depth with a maximum degree of 3. We consider all possible
combinations of these covariates with a maximum number of
covariates (p in Eq. 7) equal to 6. We select the “best” linear
regression model with the help of AIC, a penalized likelihood
criteria (Akaike, 1974). Results of Sect. 5.5 will correspond
to this model.

5.3.3 Spline regression models

We use models of the form

η(s) = β0 + β1 as + β2 ms + F (ls) + εs . (16)
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whereF is a P-spline of order 3. Spline-regression models
require to choose fix knots (see Appendix A). Choosing the
best number of knots, and the best locations for them, is a
difficult task. Here we fixed the number of knots to 15 which
seems to be a good compromise between flexibility (large
number of knots) and simplicity (low number of knots) of
the model. These 15 knots are considered among theN = 84
station locations only. The best position for these 15 knots,
from 10 000 of the total of

(84
15

)
possibilities, is made by gen-

eralized cross-validation. More precisely, 10 000 estimations
with different choices of positions for the 15 knots are per-
formed. Among the 10 000 estimated models, the one with
the lowest GCV value (see Appendix A) is selected as the
“best” model and results of Sect. 5.5 will correspond to this
model.

5.3.4 Kriging

Model Eq. (16) is used withF being a Gaussian process with
mean zero. No nugget effect is considered here, i.e. the var-
iogram modeling the dependence structure is supposed to be
continuous at the origin. Computation of this variogram in-
volves the choice of a covariance function forF . Nine of the
most commonly used covariance functions are used, namely
the spherical, circular, cubic, Gneiting, exponential, Matérn,
Gaussian, powered-exponential and Cauchy covariance func-
tions (Schabenberger and Gotway, 2005). These covariance
functions have one or two degrees of freedom and the four
first ones have an upper-bound. Maximum likelihood es-
timation is performed with librarygeoR of R. The “best”
model (i.e. the best covariance function) is then selected with
the help of the AIC criteria (Akaike, 1974). Note that as no
nugget effects are used here, kriging is an exact interpolation
method.

5.4 Prediction comparison

To assess quality of the predictions, measures of accuracy
will be used. The most stringent comparison is obviously to
compute such measures for the validation stations. Note that
validation stations were mainly selected for their climatolog-
ical properties and not in order to achieve a high score in the
validation (see Sect. 3). Therefore, the validation tests the
reliability and stability of the predictions over all of Switzer-
land, or at least below 2500 m. However, it may also be of
interest to assess the quality of the interpolated distributions
for the fitted stations, in particular for the linear and spline
regression models which are non-exact methods. Large dif-
ferences between measures for theN = 84 fitting stations and
theM = 16 validation stations indicate models that are ques-
tionable.

Here four measures of accuracy are used: the root mean-
squared error (RMSE), the mean absolute error (MAE),
the maximum prediction error (MPE) and the bias. These
measures could be computed for assessing quality of the

interpolatedµ̃(si), σ̃ (si) andξ̃ (si) compared respectively to
the individual valuesµ̂i , σ̂i and ξ̂i of Sect. 4. This would
however result in a comparison between two estimators, and
not between an estimator and an observation. Furthermore,
strictly speaking, it would not answer the question as to how
well the data distribution is captured: the three best mod-
els for µ, σ and ξ separately might not be the best triplet
of (µ, σ, ξ) since the GEV parameters are not orthogonal
parameters. A better comparison is to assess goodness-of-fit
of the quantiles of the interpolated GEV distribution com-
pared to the observed ones. Letz

(1)
i , ..., z

(K)
i be theK = 43

quantiles (i.e. sorted values) observed at a given stationi.
The probability associated to thek-th valuez

(k)
i is usually

pk =
k−1/2

K
(functionppoints in R). z

(k)
i can therefore be

compared with the(1−pk) quantile of the interpolated GEV
distribution at stationi, denotedq̃pk,i . It is given by Eq. (3),
where µ, σ and ξ are replaced by their interpolated val-
ues µ̃(si), σ̃ (si) and ξ̃ (si) and p is replaced bypk. The
goodness-of-fit scores for quantile comparison are then given
by

RMSE =

√√√√ 1

NK

N∑
i=1

K∑
k=1

(
z
(k)
i − q̃pk,i

)2
,

MAE =
1

NK

N∑
i=1

K∑
k=1

| z
(k)
i − q̃pk,i |,

MPE = maxi∈{1,...,N} maxk∈{1,...,K} | z
(k)
i − q̃pk,i |,

Bias =
1

NK

N∑
i=1

K∑
k=1

(
z
(k)
i − q̃pk,i

)
.

All these criteria involve quantities of the form(z(k)
i −

q̃pk,i) which is the error of predicting the(1−pk) quantile
of station i when using the interpolated GEV distribution.
Quantile comparison should be made for both theN = 84 fit-
ting stations and theM = 16 validation stations (replacingN
by M is the previous scores). Note that, in the context of
extremes, an alternative quantile validation score is used in
Friederichs and Hense (2007) and in Maraun et al. (2010),
still based on differences of the form(z(k)

i − q̃pk,i) but where

cases of overestimation (i.e. whenz(k)
i − q̃pk,i < 0) and of

underestimation (i.e. whenz(k)
i − q̃pk,i > 0) of the observed

quantilesz(k)
i are differently penalized. There is no reason to

use this additional functionality in our case.

5.5 Results

The different interpolation methods presented in Sect. 5.3 are
used for interpolating the three GEV parameters. Tables 2
and 3 summarize the scores of Sect. 5.4. In Table 2 only a
DEM is used as covariates for the three GEV parameters. In
Table 3, the mean snow depth is used as additional covariate
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Table 2. Scores of quantile comparison when (a) fitting a GEV to each station separately as in Sect. 4; (b)–(e) interpolating the GEV
parameters with a DEM as covariate.

Fitting stations Validation stations

RMSE MAE MPE Bias RMSE MAE MPE Bias

(a) Pointwise GEV 6.7 3.6 227.9 0.1 5.4 3.3 53.0 0.2
(b) IDW 6.7 3.6 227.9 0.1 17.7 14.8 62.5−2.2
(c) Linear regression 34.7 26.7 234.6 0.4 33 27.9 107.3−4.8
(d) Spline regression 19 14.4 131.2 0.2 27.5 21.7 102.7−6.4
(e) Kriging 6.7 3.6 227.9 0.1 16.2 12.7 71.6−1.3

Table 3. Scores of quantile comparison when using a DEM and the mean snow depth as covariates. For the validation stations, either the
kriged mean snow depths or the observed mean snow depths (scores in brackets) are used. Methods (a) to (d) are interpolation methods of
Sect. 5. Method (e) refers to Sect. 6.

Fitting stations Validation stations

RMSE MAE MPE Bias RMSE MAE MPE Bias

(a) IDW 6.7 3.6 227.9 0.1 14.0 (12.8) 10.3 (9.3) 69.9 (68.8)−1.1 (−0.5)
(b) Linear regression 10.7 6.6 181.7 0.3 13.5 (12.1) 10.1 (8.9) 73.5 (72.6)−1.2 (−0.7)
(c) Spline regression 9.5 6.0 123.1 0.2 12.8 (11.6) 9.3 (8.1) 87.5 (86.6)−1.0 (−0.5)
(d) Kriging 6.7 3.6 227.9 0.1 12.9 (11.7) 9.4 (8.2) 61.9 (60.9)−0.7 (−0.4)
(e) Smooth GEV 8.6 5.7 118.9 0.3 9.2 (8.3) 6.5 (5.4) 50.9 (48.6) 1.0 (0.6)

for the location and scale parameters, using either the kriged
mean values (see Sect. 5.2) or the observed ones. For com-
parison, we also indicate in Table 2 the scores correspond-
ing to fitting a GEV distribution to each station separately,
including the validation stations, without any spatial model
(see Sect. 4). For the validation stations, these scores thus
do not correspond to predictions but to fittings, unlike all the
other scores (lines b to e). They can thus only be interpreted
as lower bounds of the error that would result from a predic-
tion.

Table 2 suggests that, when using only longitude, latitude
and elevation as covariates, kriging performs better as almost
all scores are lower. IDW is the second best model. For both
methods, results for the validation stations are relatively poor
compared to those for the fitting stations, in particular for
RMSE and MAE. This suggests that the prediction quickly
deteriorates away from the fitting stations. Note that krig-
ing and IDW are exact interpolation methods. This implies
for example that the interpolated locationµ̃(si) for the fitting
stationi is equal to the individual valuêµi used in the inter-
polation. The same applies for the scaleσ(s) and shapeξ(s).
Interpolated and individual GEV distributions of the fitting
stations are then identical (see lines a, b and e of Table 2).
These scores are all low, with the exception of a very large
MPE value (227.9) due to one single observation at the sta-
tion Lugano in southern Ticino. Parameterξi is likely to be
overestimated which produces a strong overestimation of the
largest observation.

Table 3 (lines a to d) compared to Table 2 confirms that
using the mean snow depth as covariate for the location and
scale parameters is helpful. There is a clear improvement
in the spline and linear regression models for both the fitted
and validation stations. For kriging and IDW, results for the
validation stations are only slightly better and results for the
fitted stations are exactly the same since they are exact inter-
polation techniques. All interpolation methods now have a
similar performance but kriging still performs slightly better.
Scores for the validation stations when using the observed
mean snow depth as a covariate are better than when using
the kriged mean snow depth but differences are low. This
confirms again that the kriged mean snow depth is a very ac-
curate estimation of the observed mean, as already discussed
in Sect. 5.2. Note that even when using the observed mean
snow depth, error measures from the smooth model are quite
high compared to those when a GEV is fitted to each station
separately (first line of Table 2). The errors cannot strictly be
compared since the individual GEV fitting uses all available
information at the validation stations for parameter estima-
tion, while this information is not used in the parameter es-
timation of the smooth GEV. However, the difference in the
errors shows that further improvements in the spatial aspect
of the smooth GEV model may be possible.

Table 3 merely gives a global picture of the goodness-of-
fit. A closer look at how well each station is fitted may be
interesting. A way of summarizing goodness-of-fit of the
quantiles for a given stationi is to plot all observed quantiles
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Fig. 5. QQ-plots of all four validation stations located in the Plateau, with kriging interpolation (green squares)

and smooth GEV fitting (blue triangles). With both methods, longitude, latitude and elevation are used as

covariates for the GEV parameters. The kriged mean snow depth is an additional covariate for the location and

scale. Kriging interpolation is related to section 5. Smooth GEV fitting is related to section 6.
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32

Fig. 5. QQ-plots of all four validation stations located in the Plateau, with kriging interpolation (green squares) and smooth GEV fitting (blue
triangles). With both methods, longitude, latitude and elevation are used as covariates for the GEV parameters. The kriged mean snow depth
is an additional covariate for the location and scale. Kriging interpolation is related to Sect. 5. Smooth GEV fitting is related to Sect. 6.

z
(k)
i , k ∈ {1, ..., 43}, against the modeled quantilesq̃pk,i : this

is a QQ-plot. Figure 5 (green squares) depicts QQ-plots of
all four validation stations located on the Swiss Plateau with
kriging interpolation of Table 3. With a perfect fit, all points
would lie on the diagonal line. In Fig. 5 the kriged mean
snow depth is used as a covariate but results with the ob-
served mean are almost similar. The figure reveals that the
interpolated GEV distributions in the low elevation Plateau
are quite poor. A comparison with QQ-plots of the valida-
tion stations located in the Alps (not shown) reveals a better
fit in the Alps. One reason is that the station network in the
Plateau is much less dense than in the Alpine region (see
Fig. 2). The interpolation process will then produce a better
fit in the Alps than on the Plateau, which has fewer stations.
In addition, the statistically more extreme snow depth values
on the Plateau (due to positive shape parameters, see Sect. 4)
are by their very nature more difficult to model. However, the
main drawback of the methodology is that the interpolation
is done independently of the data. Of course, individual esti-
mationsµ̂i , σ̂i andξ̂i in Sect. 4 were done based on observed
data. However, once the GEV parameters are estimated, they
are considered as true values in the interpolation process, as
if they were really observed. A bad individual estimate will
therefore induce a bad interpolated value and may lead to
models that are very unlikely for the data. This is no longer
the case when a smooth GEV model is directly fitted to the
data, as described in the next section.

6 Fitting a smooth GEV model

6.1 Smooth GEV modeling

There are crucial differences between the interpolation meth-
ods of Sect. 5. Unlike kriging and IDW, linear and spline
regressions are generic models: once the model parameters
have been estimated, prediction does not involve the indi-
vidual valuesη̂i anymore, which are only used for inference

(see Eqs. 8 and 11 compared to Eqs. 6 and 14). For these two
cases, another approach is to directly estimate the regression
parameters from the data, without involving the individual
valuesη̂i . This method will be termed “smooth GEV mod-
eling” because the GEV parameters are directly modeled as
smooth functions in space. The main difference with the ap-
proach of Sect. 5 is that in interpolation methods, the spatial
information is derived by interpolating individual GEV es-
timates whereas in the smooth GEV modeling it can be di-
rectly estimated from the data. More precisely, letη denote
the surface model for either the locationµ, scaleσ or scale
ξ parameter. We model the surfaceη at locations with the
linear model

η(s) = β0 + β1 x1,s + ... + βp xp,s (17)

as in linear regression prediction (Eq. 8), or with the more
general additive model

η(s) = β0 + β1 x1,s + ... + βq xq,s + F
(
xq+1,s, ..., xp,s

)
(18)

where F is a P-spline as in spline regression prediction
(Eq. 11). Note that compared to the regression models
Eqs. (7) and (10), models Eqs. (17) and (18) are determin-
istic as they do not comprise the stochastic part contained in
the (Gaussian) residualsεs .

Smooth spline-based models similar to Eq. (18) have also
been used for example in Hall and Tajvidi (2000), Ramesh
and Davison (2002) and Padoan and Wand (2008) but for
modeling smooth temporal trends of the GEV parameters at
individual locations (i.e. with time as a covariate), rather than
smooth spatial surfaces as in this article. In the spatial frame-
work, recently quite simple linear regression models as in
Eq. (17) have been used in Padoan et al. (2010) regarding US
precipitation, using only latitude and elevation as covariates.
The GEV modeling involves there in total only 7 parame-
ters with a constant modelξ(s) = ξ0 for the shape. However,
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only 46 gauging stations were used over an area equivalent
to 10 times Switzerland, with much flatter topography (max-
imum elevation around 1500 m). Due to the denser network
used in this analysis, the rougher topography and the larger
variability of snow depth in Switzerland, the surfaces re-
sponses given by Eqs. (17) and (18) to be used on our data are
likely to be more complicated, i.e. to involve more covariates
x.,s .

As in Sect. 5, we will consider as possible covariates the
three geographical coordinates (longitude, latitude, eleva-
tion) and the mean snow depth, with the GEV parameters
µ, σ andξ being modeled by either Eqs. (17) or (18). Each
combination of these three models then leads to a smooth
GEV modeling of extreme snow depth in Switzerland. How-
ever, considering all possible combinations of models forµ,
σ andξ and all possible covariate choices would clearly be
too computationally intensive: ifKµ models are considered
for µ, Kσ models forσ andKξ for ξ , then in total, by com-
bination of all possible models for each of the three parame-
ters, this means thatKµ×Kσ ×Kξ smooth GEV models have
to be fitted. This gives many thousands of models in our
case. In order to limit the number of considered GEV mod-
els, we restrict our analysis to the best combinations of co-
variates found in the previous section using the linear Eq. (7)
and spline Eq. (10) regression models. The linear regression
models fitted in Sect. 5 used as possible covariate polynomi-
als of longitude, latitude, altitude and mean snow depth with
a maximum degree of 3 (see Sect. 5.3.2). Spline linear re-
gression models used P-spline of order 3 with 15 knots and
an additional possible linear dependence in elevation and in
the mean (see Sect. 5.3.3). Among all those linear and spline
regression models, we only select here as possible models for
µ, σ andξ in the smooth GEV model:

– for the locationµ: the best two regression models with
a DEM as covariate and the best four regression models
with a DEM and the mean snow depth as covariates;

– for the scaleσ : the best two regression models with a
DEM as covariate and the best four regression models
with a DEM and the mean snow depth as covariates. As
σ (which models the spread of the GEV distribution)
andµ (which models the center) are usually very cor-
related, we also allow the location to be a covariate for
σ by considering the best four regression models with a
DEM and the location as covariates;

– for the shapeξ : the best six regression models with a
DEM as covariates.

Note that here only the equations of the best models forµ,
σ and ξ are used, and not the values of theβs which will
in fact be directly estimated from the data (see Sect. 6.2).
This gives a total number of 6×10×6= 360 smooth GEV
models. These models have between 10 and 57 degrees of
freedom. The only model with 57 degrees of freedom is

whenµ, σ andξ are all modeled as in Eq. (18) with a linear
dependence with the mean (forµ andσ ) or with elevation
(for ξ ) and a smooth dependence in space (modeled in Eq.18
through the P-splineF of order 3 with 15 knots).

6.2 Model estimation and selection

Unlike in Sect. 5, we wish to estimate the smooth GEV mod-
els directly from the data, which are considered jointly, with-
out any individual fitting. We adopt a likelihood approach.
This requires to consider the joint distribution of annual max-
imum snow depth at theN fitting locations. For the sake of
simplicity, we will assume here that theN -variate density
can be approximated by the product of marginal densities.
This is equivalent to considering that theN annual maxima
are approximately independent. This approximation is actu-
ally very unlikely to be fulfilled in reality due to the spatial
dependence of annual maxima. However, it is applicable and
gives satisfying results if the marginal distributions only are
of interest, which is the case in this study. We will return
to this approximation and its limits in the concluding discus-
sion (Sect. 7). The log-likelihood of theN stations is then
approximated by

la (µ, σ, ξ) =

N∑
i=1

l{µ (si), σ (si), ξ (si)} (19)

where µ, σ and ξ are smooth surfaces and
l{µ(si), σ (si), ξ(si)} is the GEV log-likelihood of
Eq. (5) when parameters(µi, σi, ξi) are replaced by
(µ(si), σ (si), ξ(si)). Approximation Eq. (19) is a special
case of composite likelihood (Varin and Vidoni, 2005; Varin,
2008). Maximizing Eq. (19) consists then in finding the best
smooth surfacesµ, σ andξ for the observed data. It involves
10 to 57 unknown parameters. Note that in the individual
fitting of Sect. 4, many more parameters were estimated:
each individual GEV involves three parameters, leading to a
total number of 3×N = 252 parameters.

Let β̆ denote the vector of all estimated parameters when
maximizing Eq. (19) (we use notation “β̆” instead of “β̃”
to differentiate with the estimated parameters of Sect. 5).
As Eq. (19) is an approximated likelihood, usual properties
of maximum likelihood estimates do not hold forβ̆. Nev-
ertheless, theoretical properties are available from the the-
ory of composite likelihood estimation (Varin and Vidoni,
2005; Varin, 2008). Under suitable regularity conditions,β̆

is asymptotically unbiased and normal. Approximate con-
fidence intervals for the GEV parameters can be computed
based on the diagonal elements of its covariance matrix, es-
timable byH(β̆)−1J (β̆)H(β̆) whereH(β̆) is the observed
information matrix andJ (β̆) the squared score statistics cor-
responding tola in Eq. (19) (see e.g. Cox and Hinkley, 1974
for a definition of the information matrix and of the score
statistics). Return levels can be computed at every sites by
Eq. (3) with the estimated GEV parametersµ̆(s), σ̆ (s) and
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ξ̆ (s) corresponding tŏβ. Approximate confidence intervals
can be obtained by the delta method (Coles, 2001).

In our case, 360 smooth GEV models are estimated by
maximizing Eq. (19) for different regression models ofµ,
σ andξ . Model selection criteria are then needed to decide
which of the fitted model should be preferred. We use the
Takeuchi Information Criterion, TIC, (Takeuchi, 1976; Varin
and Vidoni, 2005) defined as

TIC = −2 la (β̆) + 2 Tr {H(β̆)−1 J (β̆)}, (20)

wherela is the approximated likelihood Eq. (19). TIC is sim-
ply the AIC criterion (Akaike, 1974) extended to a misspec-
ified likelihood function. As with the AIC, the best model
will be that having the lowest value of TIC.

6.3 Results

The 360 smooth GEV models are fitted by maximizing
the approximated log-likelihood Eq. (19), usingR function
optim initialized with the parameters obtained in Sect. 5.
Values of TIC for the 360 estimated models range be-
tween 34 590 and 36 255. A clear feature is that models with
µ depending only on a DEM always have higher values of
TIC than those withµ depending on a DEM and the mean
snow depth, regardless of the models forσ andξ . This is
illustrated in Fig. 6 where the 60 TIC values obtained for
two differentµ models (out of the six considered ones) are
depicted as an example: models 1 to 60 use a DEM as covari-
ates forµ; models 61 to 120 use a DEM and the mean snow
depth as covariates forµ. As the best model is that having
the lowest value of TIC, these results confirm that using the
mean snow depth for modelingµ is helpful. Mean values
have also been shown to be informative for spatial modeling
of extreme precipitation in Cooley et al. (2007) and Blanchet
et al. (2009) have pointed out similar regional trends in mean
and extreme snowfalls.

Figure 6 also highlights that once a relatively good model
has been chosen forµ (i.e. a model with the mean as covari-
ate, models 61 to 120), using the mean or location as covari-
ate forσ is preferable: models 61 to 73 (blue points) have
clearly higher values of TIC than models 74 to 120 (green
and red points), which use the location as additional informa-
tion. Using the location as covariate forσ (in red) is usually
preferred over using the mean (in green) but values of TIC
barely differ: likelihoods are almost similar but less param-
eters have to be estimated. Last but not least, it seems from
Fig. 6 that the model choice forξ is not determining: each
block delimited by two dotted lines corresponds to a given
model forµ andσ , when all the six different models forξ
are used (each block then contains six values of TIC). Val-
ues of TIC change barely inside each block, meaning that the
model for ξ does not really matter. This is partly because
all models forξ use exactly the same covariates (a DEM).
A second reason is that actually, in terms of likelihood, it is
much more important to fit the center of the distribution well
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Fig. 5. QQ-plots of all four validation stations located in the Plateau, with kriging interpolation (green squares)
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scale. Kriging interpolation is related to section 5. Smooth GEV fitting is related to section 6.
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Fig. 6. Model comparison using TIC for two out of the six con-
sideredµ models. Models 1 to 60 use a DEM as covariates forµ;
models 61 to 120 use a DEM and the mean snow depth as covariate
for µ. Each block delimited by two dotted lines corresponds to a
given model forµ andσ , when all the six different models forξ are
used.

(i.e. the locationµ) than the tail which basically concerns
only the largest values. Values of TIC may differ strongly
between two models forµ, but differ usually less between
two models forξ . Over the 360 estimated models, the best
smooth GEV model (number 114 in Fig. 6 corresponding to
the lowest of the 360 values of TIC) has 19 degrees of free-
dom with linear regression models (Eq. 17) forµ, σ andξ .
More precisely, for this selected model,µ is a polynomial
of longitude, latitude, elevation and mean snow depth (9◦

of freedom),σ is a polynomial of elevation and locationµ
(5 degrees of freedom) andξ is a polynomial of longitude,
latitude and elevation (5 degrees of freedom).

Table 3, line e, gives the goodness-of-fit measures for this
selected model. The smooth GEV shows a better perfor-
mance than all interpolation methods of Sect. 5 since all
scores for the validation stations are lower. When using the
observed or kriged mean as covariate, the results are very
similar. A closer look at how well each station is fitted re-
veals that the smooth GEV distribution slightly outperforms
the kriged GEV distribution in the Swiss Alps but that its
better performance is more pronounced in the Swiss Plateau.
This is visible in Fig. 5 depicting QQ-plots of all four val-
idation stations located in the Plateau. The figure confirms
a relatively good fit of the stations with the smooth GEV
(blue triangles), with the exception of the largest quantiles
of station Fribourg (right plot) which are overestimated due
to an overestimation of the scale parameter. All the stations
(even Fribourg) are clearly better fitted with the smooth GEV
than with the kriged GEV. Annual maximum snow depth in
the Plateau therefore seems to be better predicted. As pre-
viously mentioned (Sect. 5.5), the station network in this
region is much less dense than in the Alps. The interpola-
tion method seems to be more sensitive to this issue than our

www.hydrol-earth-syst-sci.net/14/2527/2010/ Hydrol. Earth Syst. Sci., 14, 2527–2544, 2010
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Fig. 7. Snow depth return level plots with the best smooth GEV model for theM = 16 validation stations, with

95% confident intervals (dotted lines). The kriged mean snowdepth is used as an additional covariate. Red

points in the Swiss map indicate the location of the station;its altitude is mentioned in the upper left corner.

Crosses in the Swiss map locate theN = 84 stations used for fitting. Return levels (y-axis) are in centimeters

(note the different scales among the plots); return periods(x-axis) are in years.
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Fig. 8. 50-year return level map (left panel) and regional variability after removing the altitudinal effect (right

panel) with the smooth GEV model. Units are centimeters.
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Fig. 7. Snow depth return level plots with the best smooth GEV model for theM = 16 validation stations, with 95% confident intervals
(dotted lines). The kriged mean snow depth is used as an additional covariate. Red points in the Swiss map indicate the location of the
station; its altitude is mentioned in the upper left corner. Crosses in the Swiss map locate theN = 84 stations used for fitting. Return levels
(y-axis) are in centimeters (note the different scales among the plots); return periods (x-axis) are in years.

new likelihood-based approach in which all stations have the
same weight.

Another advantage of smooth GEV modeling is that addi-
tional information regarding model uncertainty is available
(see Sect. 6.2) which is not the case for all interpolation
methods. Figure 7 depicts return level plots for theM = 16
validation stations together with 95% confidence intervals
obtained by the delta method (see Sect. 6.2). This is also a
way of assessing quality of the predicted distributions. Note
that some of the validation stations show quite specific fea-
tures compared to the surrounding stations (see Sect. 3), and
therefore Fig. 7 corresponds to a quite difficult case of spa-
tial prediction. The figure confirms a fairly good fit of the
predicted distributions even in these difficult cases.

Smooth return level maps for any return period, which was
the goal of this paper, can be computed from the smooth
GEV model. For illustration, the 50-year return level map
is depicted in the left panel of Fig. 8. The lowest 50-year
return levels (around 10 cm) are obtained at the lowest el-
evations in the Plateau region but only for a few locations.
The return level is approximately 40–50 cm in the main part
of the Plateau (at 300–400 m elevation). The low region of
Ticino lies at even lower altitude but its 50-year return level
is slightly higher: it is around 70–80 cm in southern Ticino
at 200–300 m elevation. The highest return levels (almost
8 m) are in the Gotthard region. This is a mountainous area
but not the highest one in Switzerland (maximum elevation

around 3000 m). Even in the altitude range of the analyzed
stations (basically below 2500 m), i.e. without relying on ex-
trapolation, this is still the region having the largest return
levels.

More information about regional variability of the 50-year
return level can be obtained by removing the altitudinal ef-
fect from the parametric models ofµ, σ and ξ . This is
simply done by setting theβ coefficients involving altitude
in Eq. (17) to 0. This leads to “normalized” GEV param-
eters (i.e. without altitudinal dependency), from which one
can compute “normalized” return levels. The normalized 50-
year return level map is depicted in the right panel of Fig. 8.
It shows that Grisons and part of southern Valais (reddish
regions) have highly negative normalized return levels. This
means that the 50-year return level in this region is lower than
expected. These regions are indeed inner alpine dry valleys
protected by high mountains all around, which usually shade
the region from heavy snowfall events, and therefore annual
maximum snow depths are usually quite low. In Fig. 8 the
southern Valais is divided into three subareas: two areas with
low residuals (red) separated by an area with higher residuals
(green). However, boundaries between these three regions
might be too sharp on the map due to the fact that there is
only one station in the green area in between (see Fig. 2).
Contrary to southern Valais, the Gotthard region (green area
to the north of Ticino in Fig. 8) is open towards the direc-
tion of the main precipitation systems originating from the

Hydrol. Earth Syst. Sci., 14, 2527–2544, 2010 www.hydrol-earth-syst-sci.net/14/2527/2010/
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Fig. 7. Snow depth return level plots with the best smooth GEV model for theM = 16 validation stations, with

95% confident intervals (dotted lines). The kriged mean snowdepth is used as an additional covariate. Red

points in the Swiss map indicate the location of the station;its altitude is mentioned in the upper left corner.
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north and south of the Alps. Annual maximum snow depths
are therefore usually higher than expected at this altitude.
Note that similar results have also been found in Blanchet
et al. (2009) regarding extreme snowfall, which unsurpris-
ingly appears to have similar regional variability to extreme
snow depth.

A comparison with the 50-year return level map obtained
by kriging the GEV parameters (Sect. 5) reveals the same
main regional patterns. The kriging method seems to under-
estimate the 50-year return level in the Gotthard region and
to overestimate it in the southern Valais. These two regions
correspond respectively to the highest and lowest normalized
return levels. This then basically means that kriging the GEV
parameters gives maps which are too smooth. This is not
surprising since the three GEV parameters are smoothed in-
dependently of the data. Each kriging is an interpolation of
few points (namely theN = 84 individual estimates) which
usually produces too smooth interpolated fields. Return lev-
els are then computed as combinations of likely too smooth
GEV parameters by Eq. (3), which then produces too smooth
maps.

7 Discussion and outlook

This paper compares different techniques for mapping ex-
treme snow depth in Switzerland. It suggests a better per-
formance of a smooth GEV fitting than the most commonly
used interpolation techniques, in particular where the station
network is sparse. Suggestions for further developments are
discussed below.

Several studies on snow depth mapping showed that in
addition to elevation, using variables such as net solar ra-
diation, slope, aspect or vegetation type can deliver useful
information (Erxleben et al., 2002; Molotch et al., 2005).
Improvements have also been obtained by the inclusion of
variables representing wind redistribution of snow (Molotch
et al., 2005). None of these variable has been used in this
study. They could however easily be incorporated as covari-
ates in the smooth GEV fitting, in the same way as we used

the mean snow depth. Nevertheless their influence on the
GEV parameters might be difficult to assess here because the
data used in this article are basically gathered in “ideal” con-
ditions from flat, open and not overly exposed (to the wind)
fields. The analysis here aims therefore to assess extreme
snow depth and return levels independently from any modifi-
cation through the small scale local terrain. A way to increase
the data basis for our analysis further would be to incorporate
the SLF automatic IMIS stations (Interkantonales Mess- und
Informationssystem), which are located at higher elevations
(typically above 2200 m) and therefore often in more rugged
environments but still in locally flat terrain. We have not done
this here because of the relatively short-time series available
for SLF automatic stations. Only approximately 10 years of
data are available, which is short, particularly in the frame-
work of block maxima. Using a model for exceedances over
high thresholds (Davison and Smith, 1990) could work in
this case. However, care must be taken that extremely snowy
winters (such as winter 1999 in the Swiss Alps) or extremely
snow-scarce winters do not bias the GEV fitting of short-term
stations compared to long-term ones. Another issue is the
potential impact of climate change on extreme snow depth,
particularly when combining short- and long-term data. A
potential trend effect has not been addressed in this article.
It could however easily be accounted for by using time as a
covariate in the smooth GEV modeling. Many studies show
that mean snow levels and snow days have been affected by
climate change (Marty, 2008; Beniston et al., 2003; Scher-
rer et al., 2004; Bavay et al., 2009; Bocchiola and Diolaiuti,
2010). However, the impact of climate change onextremeis
unclear at present, as shown in Bocchiola et al. (2008). Nev-
ertheless, there is, to our knowledge, no study on long-term
trend in extreme snow events based exclusively on extreme
value theory and a large potential area of research still re-
mains open on this subject (Katz, 2010).

The smooth GEV modeling intends to model that snow
depth return levels at neighboring locations are likely to be
similar. This means for example that the maximum snow
depth value expected once every 50 years at neighboring lo-
cations is likely to be similar. However, the model does not
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assume that this maximum is expected to occur the same
year, or more generally that in a given year annual values are
likely to be similar. On the contrary, the underlying assump-
tion made in the likelihood fitting of Sect. 6 is that annual val-
ues are approximately independent, which permitted to write
the likelihood as being a sum of GEV likelihoods (Eq. 19).
This is a simplifying approximation which is unlikely to be
met in reality: if a location has received a large amount of
snow in a given year, a neighboring location is also likely to
have received a large amount of snow that same year. This
type of spatial dependence is not accounted for in the present
methodology. Approximation Eq. (19) gives satisfying re-
sults for computing local return levels but is not likely to give
the best possible results for computing regional return levels,
i.e. probabilities of exceeding some specific level anywhere
in a region a given year. This is, however, the type of ques-
tion that often needs to be answered in risk management and
land-use planning. For such issues, spatial dependence be-
tween annual maximum values would have to be accounted
for. This is possible by using the exact framework ofspa-
tial extremes. The most natural way for the specification of
spatial extremes is provided by the theory of max-stable pro-
cesses which is a current active topic of research in the sta-
tistical community. Modeling of spatial dependence of ex-
treme snow depth in Switzerland in the framework of max-
stable processes has been provided in Blanchet and Davison
(revised), based on normalized time-series to get rid of the
GEV margins. Combining both, the smooth GEV model-
ing of this article and the spatial dependence of Blanchet
and Davison (revised) would provide a complete modeling
of extreme snow depth in Switzerland and will be attempted
in future. Both, the smooth intensities (through the smooth
GEV model) and the spatial dependence (through the max-
stable process) would be explicitly modeled. This has been
achieved in Padoan et al. (2010) for US precipitation using
a simpler model and smoother data (due to the flatter topog-
raphy and the relative sparcity of the stations): simpler GEV
models than those of this article and less sophisticated max-
stable model than Blanchet and Davison (revised) allowed
this to be combined. Future work will show whether this can
also be achieved for our more complicated problem. In the
meantime, the presented smooth solution to GEV and return
period calculations presented here is a practical improvement
over simple interpolation as is commonly done in application
oriented work.

Appendix A

P-splines with radial basis function

Consider the spline-based regression model

η(s) = F (x1,s, ..., xp,s) + εs,

wherex1,s, ..., xp,s arep covariates at locations andF is a
P-spline with radial basis function of orderp, p being odd.
For sake of clarity, we will consider in the following the case
of one single covariatexs . The generalization to p covariates
is straightforward. The considered spline-based regression
model is then

η(s) = F (xs) + εs .

F can be written as

F(x) = β0 + β1x + ... + βm−1 xm−1 (A1)

+

R∑
r=1

βm+r−1 | x − κr |
2m−1,

wherem = (p+1)/2, κ1, ..., κR is a set of fixed knots and
β0, β1, ..., βm+R−1 are coefficients to be estimated. With the
notations of Sect. 5, it is assumed that estimatesη̂1, ..., η̂N

of η atN locationss1, ..., sN are available. The goal is to es-
timate the bestβs in Eq. (A1) based on the known̂ηs. Adopt-
ing a matrix notation, the sum of squared errors can be writ-
ten as||η̂−Xβ||

2 whereη̂ = (η̂1, ..., η̂N )T is a knownN × 1
vector,β = (β0, β1, ..., βm+R−1)

T is a(m+R)-dimensional
vector to be estimated, andX is theN ×(m+R) matrix

X =

1 x1 ... xm−1
1 |x1 − κ1|

2m−1 ... |x1 − κR|
2m−1

...
...

. . .
...

...
. . .

...

1 xN ... xm−1
N |xN − κ1|

2m−1 ... |xN − κR|
2m−1

.

To avoid overfitting, one aims to minimize the sum of
squared errors subject on some constraint on theβ param-
eter i.e.

Minimize ||η̂ − X β||
2 subject toβT M β ≤ c (A2)

for a judicious choice ofc and a given matrixM of dimension
(m+R)×(m+R). One possible choice ofM is M = MT

∗ M∗

with

M∗ =



0 ... 0 0 ... 0
...

. . .
...

...
. . .

...

0 ... 0 0 ... 0
0 ... 0 |κ1 − κ1|

m−1/2 ... |κ1 − κR|
m−1/2

...
. . .

...
...

. . .
...

0 ... 0 |κR − κ1|
m−1/2 ... |κR − κR|

m−1/2


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where the firstm rows andm columns ofM∗ are zeros. Using
the Lagrange multiplier argument, the constraint optimiza-
tion problem Eq. (A2) is equivalent to choosingβ minimiz-
ing

||η̂ − X β||
2

+ λ βT M β (A3)

for someλ ≥ 0, fixed, called thesmoothing parameteras it
controls the amount of smoothing. An automatic choice forλ

is to minimize the cross-validation score. However, in terms
of invariance, it may be preferable (Wood, 2006) to chooseλ

minimizing thegeneralized cross-validation(GCV) score

GCV (λ) = N2
N∑

i=1

(
η̂i − η̃(si)

Tr (Id − Qλ)

)2

,

whereQλ is thesmoother matrixQλ = X(XT X+λM)−1XT .
For any fixedλ ≥ 0, it can be shown that problem Eq. (A3)

has the solution

β̃ = (XT X +λM)−1XT η̂.

The predicted values at locations is then given by

η̃(s) = F̃ (xs) = β̃0 + β̃1 xs + ... + β̃m−1 xm−1
s

+

R∑
r=1

β̃m+r−1|xs − κr |
2m−1.
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Begueŕıa, S. and Vicente-Serrano, S. M.: Mapping the Hazard of
Extreme Rainfall by Peaks over Threshold Extreme Value Analy-
sis and Spatial Regression Techniques, J. Appl. Meteorol. Clim.,
45, 108–124, doi:10.1175/JAM2324.1, 2006.

Beniston, M., Keller, F., Koffi, B., and Goyette, S.: Estimates of
snow accumulation and volume in the Swiss Alps under chang-
ing climatic conditions, Theor. Appl. Climatol., 76, 125–140,
2003.

Blanchet, J. and Davison, A. C.: Spatial modelling of extreme snow
depth, revised, 2010.

Blanchet, J., Marty, C., and Lehning, M.: Extreme value statistics
of snowfall in the Swiss Alpine region, Water Resour. Res., 45,
W05424, doi:10.1029/2009WR007916, 2009.

Bocchiola, D. and Diolaiuti, G.: Evidence of climate change within
the Adamello Glacier of Italy, Theor. Appl. Climatol., 100, 351–
369, doi:10.1007/s00704-009-0186-x, 2010.

Bocchiola, D., Medagliani, M., and Rosso, R.: Regional snow depth
frequency curves for avalanche hazard mapping in central Italian
Alps, Cold Reg. Sci. Technol., 46, 204–221, 2006.

Bocchiola, D., Bianchi Janetti, E., Gorni, E., Marty, C., and Sovilla,
B.: Regional evaluation of three day snow depth for avalanche
hazard mapping in Switzerland, Nat. Hazards Earth Syst. Sci., 8,
685–705, doi:10.5194/nhess-8-685-2008, 2008.

Brown, B. G. and Katz, R. W.: Regional analysis of temperature
extremes: spatial analog for climate change?, J. Climate, 8, 108–
119, 1995.

Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and
Ammann, W. J.: IFKIS – a basis for managing avalanche risk in
settlements and on roads in Switzerland, Nat. Hazards Earth Syst.
Sci., 4, 257–262, doi:10.5194/nhess-4-257-2004, 2004.

Coles, S.: An Introduction to Statistical Modelling of Extreme Val-
ues, Springer, New York, 2001.

Cooley, D., Nychka, D., and Naveau, P.: Bayesian Spatial Modeling
of Extreme Precipitation Return Levels, J. Am. Stat. Assoc., 102,
824–840, doi:10.1198/016214506000000780, 2007.

Cox, D. and Hinkley, D.: Theoretical Statistics, Chapman and Hall,
1974.

Cressie, N. A.: Statistics for spatial data, Wiley Series in Probability
and Statistics, 1993.

Davison, A. C. and Smith, R. L.: Models for exceedances over high
thresholds (with discussion), J. Roy. Stat. Soc. Ser. B, 52, 393–
442, 1990.

Diggle, P. J. and Ribeiro, P. J.: Model-based Geostatistics, Springer
Series in Statistics, New York, 2007.

Erxleben, J., Elder, K., and Davis, R.: Comparison of spatial in-
terpolation methods for estimating snow distribution in the Col-
orado Rocky mountains, Hydrol. Process., 16, 3627–3649, doi:
10.1002/hyp.1239, 2002.

Foppa, N., Stoffel, A., and Meister, R.: Synergy of in situ and space
borne observation for snow depth mapping in the Swiss Alps,
International J. Appl. Earth Obs., 9, 294–310, doi:10.1016/j.jag.
2006.10.001, 2007.

Friederichs, P. and Hense, A.: Statistical Downscaling of Extreme
Precipitation Events Using Censored Quantile Regression, Mon.
Weather Rev., 135, 2365–2378, doi:10.1175/MWR3403.1, 2007.

Gardes, L. and Girard, S.: Conditional extremes from heavy-tailed
distributions: an application to the estimation of extreme rainfall
return levels, Extremes, 13, 177–204, 2010.
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Comparison of Ground-Based and Airborne Snow Depth Mea-
surements with Georadar Systems, Case Study, Nord. Hydrol.,
34, 427–448, doi:10.2166/nh.2003.025, 2003.

Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res.
Lett., 35, L12501, doi:10.1029/2008GL033998, 2008.

Marx, B. D. and Eilers, P. H. C.: Direct generalized additive model-
ing with penalized likelihood, Comput. Stat. Data An., 28, 193–
209, doi:10.1016/S0167-9473(98)00033-4, 1998.

Molotch, N. P., Colee, M. T., Bales, R. C., and Dozier, J.: Estimat-
ing the spatial distribution of snow water equivalent in an alpine
basin using binary regression tree models: the impact of digital
elevation data and independent variable selection, Hydrol. Pro-
cess., 19, 1459–1479, doi:10.1002/hyp.5586, 2005.

Nalder, I. A. and Wein, R. W.: Spatial interpolation of climatic nor-
mals: test of a new method in the Canadian boreal forest, Agr.
Forest Meteorol., 92, 211–225, 1998.

Naveau, P., Nogaj, M., Ammann, C., Yiou, P., Cooley, D., and
Jomelli, V.: Statistical methods for the analysis of climate ex-
tremes, Compt. Rendus Geosci., 337, 1013–1022, 2005.

Padoan, S. and Wand, M.: Mixed model-based additive models for
sample extremes, Stat. Probabil. Lett., 78, 2850–2858, doi:10.
1016/j.spl.2008.04.009, 2008.

Padoan, S. A., Ribatet, M., and Sisson, S. A.: Likelihood-based in-
ference for max-stable processes, J. Am. Stat. Assoc., 105, 263–
277, doi:10.1198/jasa.2009.tm08577, 2010.

Palutikof, J. P., Brabson, B. B., Lister, D. H., and Adcoc, S. T.: A
review of methods to calculate extreme wind speeds, Meteorol.
Appl., 6, 119–132, 1999.

Ramesh, N. I. and Davison, A. C.: Local models for exploratory
analysis of hydrological extremes, J. Hydrol., 256, 106–119, doi:
10.1016/S0022-1694(01)00522-4, 2002.

Reiss, R. D. and Thomas, M.: Statistical Analysis of Extreme
Values with Applications to Insurance, Finance, Hydrology and
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