INTERNATIONAL FRAMEWORK FOR NUCLEAR ENERGY COOPERATION INFRASTRUCTURE DEVELOPMENT WORKING GROUP MEETING **Nuclear energy beyond electricity**

Chinese HTR Program

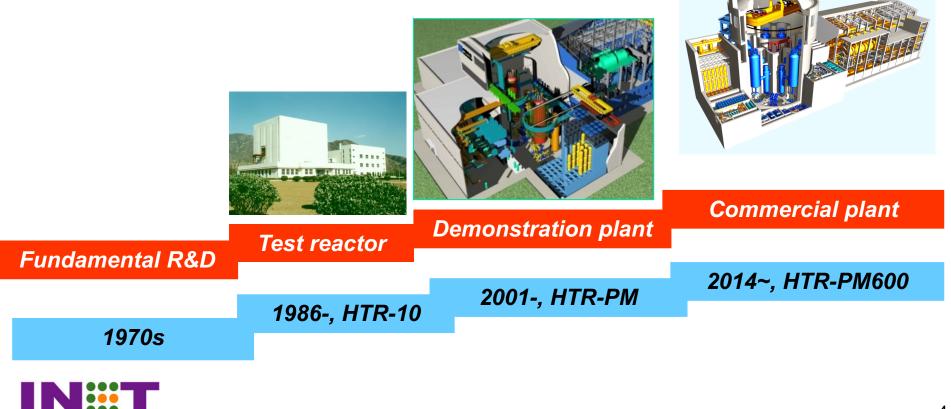
LI, Fu

INET, Tsinghua University, China lifu@tsinghua.edu.cn

24 September 2019 Ministry of Energy, Warsaw, Poland

Outline

- 1 Mission of HTR in China
- 2 Overview of Chinese HTR program
- 3 HTR-PM progress
- 4 HTR-PM600
- 5 Process heat application

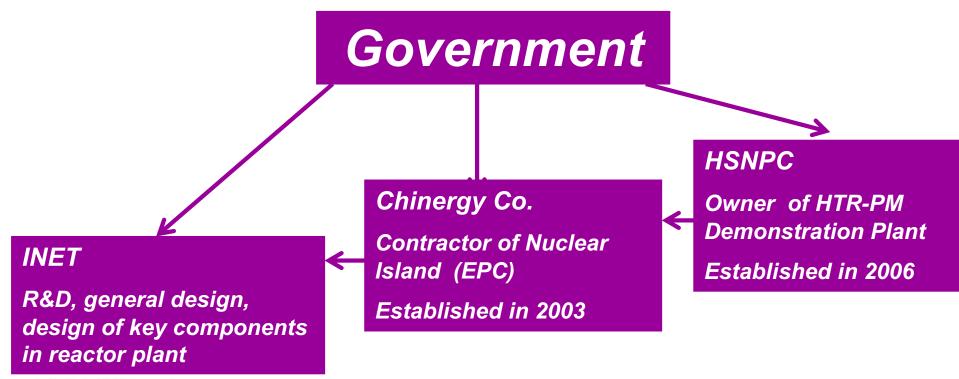

1 Mission of HTR in China

- Supplement to PWRs
 - for power generation, especially to replace coal-fired power plant in popular region
- Co-generation
 - of steam and electricity,
 - & Hydrogen production
- Technology Innovation

2 Overview of Chinese HTR program

- China chose pebble bed HTR
- Research was started in 1970s
- Benifited from international cooperation

HTR-PM: High temperature gas cooled reactor--pebble bed module


HTR-PM demonstration plant

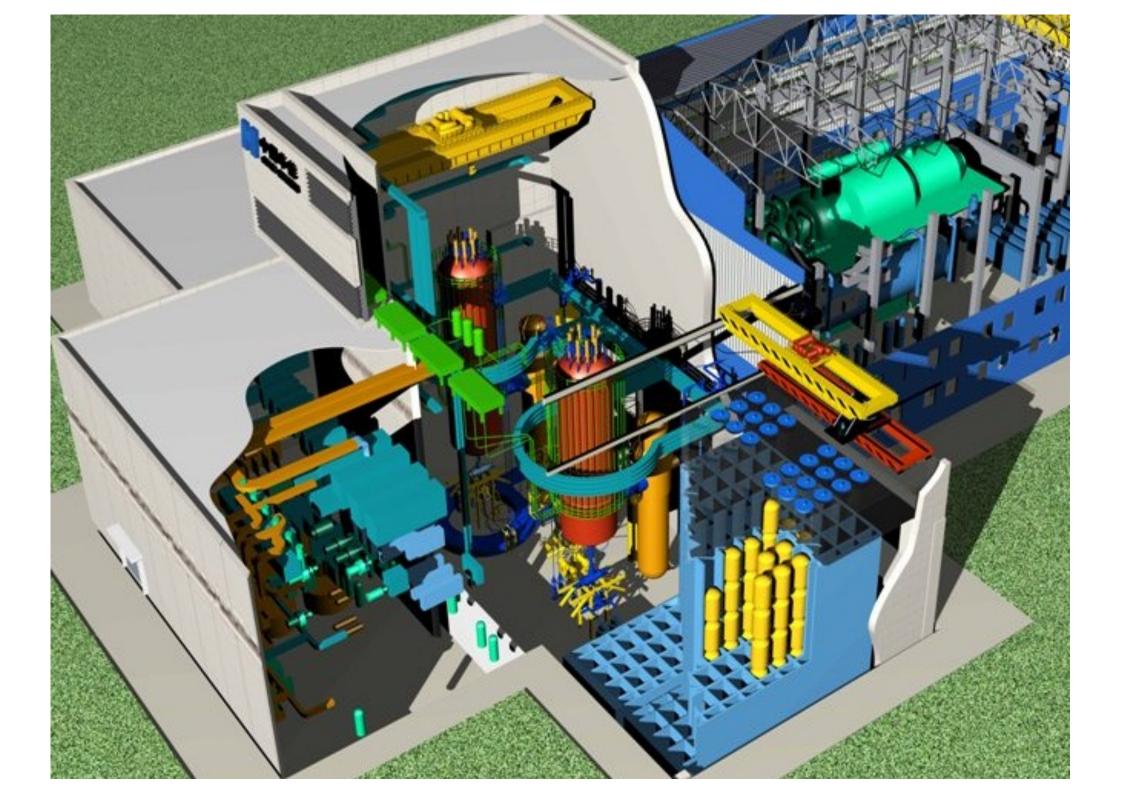
- Supported by the Chinese National Key Science and Technology Project (1 of 16 projects)
 - Government support the R&D
 - Commercial operation
- Located in Shidao Bay, Shangdong Province

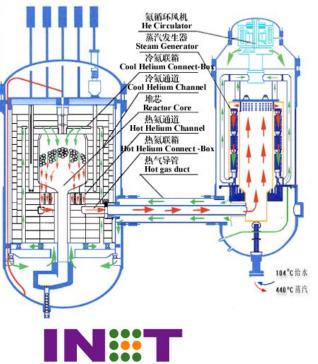
HTR-PM development team

As one of national key S&T projects, including research, design, licensing, manufacturing, construction, fuel fabrication, operation, ..., with many partners

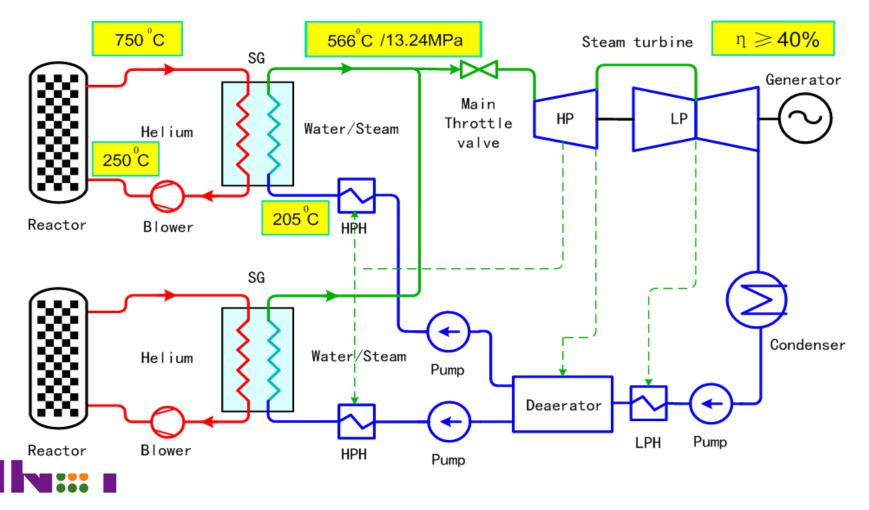
HTR-PM demonstration plant in Shidao Bay, Shandong

The overview of the HTR-PM site




Milestones for whole project:

- 2003: finished pre-concept design and decided to use steam cycle
- **2004**: signed industry investment agreement
- 2004: start the design of 458MWt with annual core
- 2006.01: became a National Key S&T Project
- **2006.09:** decided to use 2×250 MWt reactors with a 200 MWe turbine
- **2008.02:** government approved the HTR-PM project
- 2008.10: issued procurement contracts of the leading components
- 2008.4-2009.9: PSAR review
- **2012.12.09: FCD**



- Technology based on HTR-10
 - Single zone core
 - Side by side arrangement of reactor & SC
 - Super heat steam
 - Modular desgin

......

- 2 NSSS modules connected with 1 turbine in HTR-PM
 - 6 modules will be connected with 1 turbine in HTR-PM600

HTR-PM Design Parameters

Plant electrical power, MWe	211
Core thermal power, MW	250
Number of NSSS Modules	2
Core diameter, m	3
Core height, m	11
Primary helium pressure, MPa	7
Core outlet temperature, °C	750
Core inlet temperature, °C	250
Fuel enrichment, %	8.5
Steam pressure, MPa	13.25
Steam temperature, °C	567

- Milestones for construction:
 - **2012/12/09:FCD**
 - 2015/06/30: Reactor building
 - 2015/12: Full scope simulator
 - 2016/03/20: 1st RPV installed
 - 2016/08: Start of fuel fabrication
 - 2016/09: 2nd RPV installed
 - 2019/04: 1st SG installed
 - 2019/07: 2nd SG installed

- Ongoing work
 - Finish installation in this year
 - Fix the RPV, HDPV, SGPV soon
 - Commissioning test
 - Test of auxiliary/supporting system started in 2016
 - Criticality and power operation is scheduled in 2020
 - Full power operation in 2021

Main achievements

- Standard NSSS module with full scale test and operation demonstration
- Experience & team covering design, manufacturing, licensing, construction & installation, commissioning test, operation, ...
- Licensing framework
- Test facilities for future development
- Whole supply chain
- Fuel fabrication capability
- Operation experience feedback for future plants

Test Facilities for HTR-PM Project

ETF-HT	Engineering Test Facility- Helium Technology	10MWt test power, 7.0MPa, 250-750℃, helium	Heat source to verify steam generator	Finished
ETF-SG	Engineering Test Facility- Steam generator	10MWt test power, 13.25MPa, 205-570 <i>°С,</i> water	Secondary loop and third loop to verify steam generator	Finished
ETF-HC	Engineering Test Facility- Helium Circulator	4.5MWe, 7.0MPa, 250 <i>°C,</i> helium	Full scale verification of helium circulator	Finished
ETH-FHS	Engineering Test Facility- Fuel Handling System	7.0Мра, 100-250 <i>°C</i> , helium, two chain	Full scale verification of fuel handling system	Finished
TH-FHS	Test Facility- Fuel Handling System	Full geometry size, air, 0.1MPa	Verification of the fuel movement in the FHS system	Finished
ETF-CRDM	Engineering Test Facility- Control Rods Driving Mechanism	1MPa, 100-250 <i>°C</i> , helium	Full scale verification of Control Rods Driving Mechanism	Finished
ETF-SAS	Engineering Test Facility- Small Absorber Sphere System	7.0MPa, 100-250 <i>°С</i> , helium	Full scale verification of small absorber sphere system	Finished
ETF-SFS	Engineering Test Facility- Spent Fuel System	Full geometry size, air, 0.1 MPa	Full scale verification of major components of spent fuel storage system	Finished
TF-SFCD	Test Facility- Spent Fuel Canister Drop	Full geometry size, Full height (30m), Full weight (17t)	Full scale drop verification of spent fuel canister	Finished
ETF-HPS	Engineering Test Facility- Helium Purification System	7.0MPa,25-250 °C,helium Purification flow rate: 40kg/h	Verification of purification efficiency (greater than 95% and system resistance less than 200kPa).	Finished
TF-PBEC	Test Facility- Pebble Bed Equivalent Conductivity	1600 <i>°C, helium/vacuum</i>	Measurement of pebble bed equivalent conductivity	Finished
TF-PBF3D	Test Facility- Pebble Bed Flow 3D	0.1 MPa, room temperature, air	Three-dimensional simulation test for pebble bed flow (1:5 scale)	Constructing
TF-HGM	Test Facility- Hot Gas Mixing	atm,20-150 <i>°C</i> , air	Reduced scale (1:2.5) verification of hot gas mixing at reactor core outlet	Finished
ETF-DCS	Engineering Test Facility- Distributed Control System	Reactor power control system, fuel cycle control system, VDU-based Man- Machine Interface	verification of DCS architecture and major control Systems	Finished
ETF-RPS	Engineering Test Facility- Reactor Protection System	Prototype of Reactor Protect System with 4 channels	Full scale verification of Reactor Protect System	Finished
ETF-MCR	Engineering Test Facility- Main Control Room	1:1MCR control consoles, mimic panels, layouts and inner	Full scale verification of Man-Machine Interface	Finished

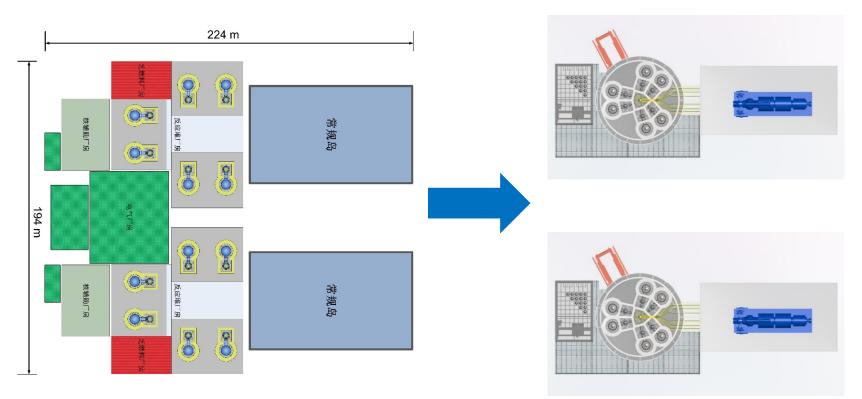
HTR-PM Supply chain:

- Plant Owner (in China): China HUANENG Corp., China National Nuclear Corp.(CNNC), China General Nuclear Power Corp.(CGNPC)
- Main Components Suppliers:
 - Shanghai Electric: RPV, Metallic Reactor Internals, CRDMs, SASs, Steam Turbine, Helium Circulators
 - Harbin Electric: Steam Generator, Generator
 - Toyo Tanso: Graphite
 - **GGNPC:** RPS, DCS, Simulator
- Fuel supplier: CNNC with INET
- Nuclear island EPC Contractor: CHINERGY
- R&D, NSSS and main NI system Engineering: INET

Other components : companies inside and outside China

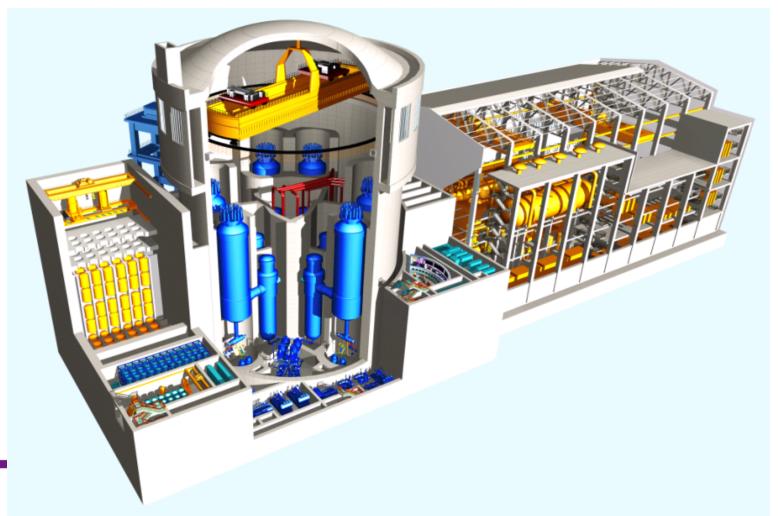
4 HTR-PM600

Batch construction of HTR-PM is possible


Improved version of HTR-PM600 is designed

- 6 NSSS modules connect to 1 steam turbine, comparing with 2 modules in HTR-PM, with
 - the same safety features,
 - the same major components,
 - the same primary circuit parameters,
- With the same site footnote and building volume comparing with the same size PWRs.
- With the interface of steam extraction capability for co-generation
- **With lower construction cost**

Evolution of HTR-PM600 layout:


The volume of seismic qualified building was reduced 50%, the same as PWR

4 HTR-PM600

Optimized layout, economy with proven technology

4 HTR-PM600

Thermal power of one Reactor Module	MW	250
Reactor Module number		6
Plant thermal power	MW	1500
Plant electric power	MW	655
Pressure of the primary circuit	MPa	7
Reactor inlet temperature	°C	250
Reactor inlet temperature	°C	750
Feed water temperature	°C	205
Steam temperature	°C	566
Steam pressure	MPa	13.24
Power generation efficiency	%	44

5 Process heat application

- China has a huge process heat market, like worldwide
 - 290 Mtoe/yr = 385 GW (60/40 heat/electricity) → 231 GWth
 - 15.6% of total primary energy, strongly growing
 - Market for steam (< 650 °C) 138 Mtoe/yr = 183 GWth (doable with conventional HTGR @750 °C, would save 20% of oil imports)
 - District heating in North is also a huge market
 - Currently mainly based on coal
 - Replace with Natural gas & electricity is underway, but expensive

5 Process heat application

- High quality process heat from HTR is straight forward
 - HTR-PM & HTR-PM can provide high temperature steam by extracting from steam turbine/steam generator, with nearly no change to the reactor design
- Hydrogen production with ~900 °C outlet temperature is reasonable
- But harmonization between nuclear island and process heat island need more research and demonstration
- Our strategy is to continuously improve HTR through electricity market, while continuously R&D on process heat application and hydrogen
 Production, and increase of outlet temperature

Conclusion remarks

HTR-PM will provide:

- Proven Technology and Budget: the world first 200MWe pebble-bed modular high temperature gas-cooled reactor demonstration plant (HTR-PM) will soon be operated in China.
- Generation IV Safety: eliminate off-site emergency response through a Meltdown-Proof Reactor.
- Huge Market Potential: provide 200, 600 MWe high efficiency power plant and co-generate steam up to 560 °C.
- Whole supply chain.

Conclusion remarks

- More capability from HTR for process heat application including hydrogen production will be explored and demonstrated, via domestic project and international cooperation.
 - Gen IV International Forum is one of platform
 - All type of international cooperation is welcomed

Thanks for listening & Thanks for comments!

