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Abstract
The multiple kernel k-means (MKKM) and its vari-
ants utilize complementary information from dif-
ferent kernels, achieving better performance than
kernel k-means (KKM). However, the optimiza-
tion procedures of previous works all comprise two
stages, learning the continuous relaxed label ma-
trix and obtaining the discrete one by extra dis-
cretization procedures. Such a two-stage strategy
gives rise to a mismatched problem and severe in-
formation loss. To address this problem, we elab-
orate a novel Discrete Multiple Kernel k-means
(DMKKM) model solved by an optimization algo-
rithm that directly obtains the cluster indicator ma-
trix without subsequent discretization procedures.
Moreover, DMKKM can strictly measure the cor-
relations among kernels, which is capable of en-
hancing kernel fusion by reducing redundancy and
improving diversity. What’s more, DMKKM is
parameter-free avoiding intractable hyperparameter
tuning, which makes it feasible in practical applica-
tions. Extensive experiments illustrated the effec-
tiveness and superiority of the proposed model.

1 Introduction
Clustering is one of the most fundamental topics in ma-
chine learning and data mining. Out of various cluster-
ing algorithms, k-means [Hartigan and Wong, 1979] en-
joys a huge popularity because of efficiency and simple-
ness, but it fails to cope with non-globular clusters which
are very common in practice. Thus, researchers put for-
ward a series of models to solve this problem, e.g., ker-
nel k-means clustering (KKM) [Schölkopf et al., 1998] us-
ing a kernel function to embed the original data into a
high-dimensional Reproducing Kernel Hilbert Space (RKHS)
where standard k-means clustering is performed with lin-
early separable mapped data [Van Laarhoven and Marchiori,
2016; He and Zhang, 2018; Calandriello and Rosasco, 2018;
Wang et al., 2019a; Vankadara and Ghoshdastidar, 2020].
Although KKM intends to improve the clustering perfor-
mance by introducing kernel functions, it is unable to iden-
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tify whether a specific kernel function is suitable for a par-
ticular task in advance. To alleviate this problem, it’s a good
idea to allow the algorithm to adaptively choose the appropri-
ate kernels, exploiting complementary information from dif-
ferent kernels to enhance learning, which is known as mul-
tiple kernel learning [Zhao et al., 2009; Xu et al., 2017;
Kang et al., 2018].

Huang et al. proposed multiple kernel k-means cluster-
ing (MKKM) applying multiple kernel learning settings to
kernel k-means clustering [Huang et al., 2011], which uni-
fies the kernel fusion process and clustering into a single
optimization framework. A concurrent work OKKC opti-
mizes the kernel coefficients and cluster membership based
on the same Rayleigh quotient objective and claims to have
less complexity [Yu et al., 2011]. In the past decades, many
studies have been devoted to improving MKKM. Gönen et
al. proposed localized multiple kernel k-means (LMKKM)
to adaptively change the kernel coefficients with a localized
data fusion approach acquiring sample-specific characteris-
tics of the data [Gönen and Margolin, 2014]. Besides, Du et
al. replaced the squared error term of k-means with `2,1-norm
based one and proposed a robust multiple kernel k-means
clustering (RMKKM) algorithm to improve the robustness
with respect to noises and outliers [Du et al., 2015]. Liu et
al. argued that previous works haven’t significantly consid-
ered the correlation among different kernels and proposed a
MKKM-MR model which conducts a matrix-induced regu-
larization to reduce the redundancy and enhance the diversity
of selected kernels [Liu et al., 2016].

Although previous works made some progress in MKKM
clustering performance, they suffer from various problems.
Dealing with the NP-hard cluster assignment problem, they
all utilize the two-stage process: learning the continuous re-
laxation matrix and obtaining the discrete clustering indica-
tor matrix by extra discretization process, which result in a
mismatched problem and severe information loss. Moreover,
existing MKKM models overlook the correlation among dif-
ferent kernels, leading to fusion of mutually redundant ker-
nels and bad effect on the diversity of information sources.
What’s worse, most existing models achieve desirable clus-
tering performance by tuning hyperparameters from regular-
ization terms, which is intractable in practice owing to tedious
setting and hard searching of hyperparameters.

In this paper, we elaborate a novel Discrete Multiple Kernel
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k-means (DMKKM) clustering model, which aims at over-
coming the limitations and weaknesses caused by the above
problems. The major contributions of our model can be sum-
marized as follows. Firstly, DMKKM is able to directly ob-
tain cluster indicator matrix without subsequent steps, which
works as the first model to directly solve the cluster assign-
ment problem avoiding information loss and over reliance on
extra discretization procedures. Secondly, our model is ca-
pable of measuring the correlation among kernels by penal-
izing the selection of highly correlated kernels, which suc-
cessfully enhances kernel fusion by reducing redundancy and
improving diversity. Thirdly, the proposed model is com-
pletely parameter-free avoiding intractable hyperparameter
tuning, which makes it more feasible in practice. Lastly, ex-
tensive experiments conducted on several real-world bench-
mark datasets demonstrate the effectiveness and efficiency of
our proposed model.

2 Related Work
2.1 Kernel k-means (KKM)
Given a data matrix X = [x1, · · · ,xn] ∈ Rd×n where n is
the number of data points and d is the dimension of features.
Let φ(·) : Rd → H be a kernel mapping that maps X onto
a reproducing kernel Hilbert space H. Let F ∈ Bn×c denote
the cluster indicator matrix represented by F ∈ Ind where
c is the number of clusters. If φ(xi) is assigned to the j-
th cluster then Fij = 1, otherwise Fij = 0. The objective of
kernel k-means (KKM) is to minimize the sum of the squared
errors defined by

min
mj ,F∈Ind

n∑
i=1

c∑
j=1

‖φ(xi)−mj‖22Fij , (1)

where mj denotes the center of the j-th cluster. Problem (1)
can be reformulated in matrix form:

min
M ,F∈Ind

‖φ(X)−MF T ‖2F , (2)

where φ(X) = [φ(x1), · · · , φ(xn)] and M =
[m1, · · · ,mc] denotes the clustering centroid matrix.
Taking the derivative of Eq. (2) w.r.t. M and setting it to
zero, we have

M = φ(X)F (F TF )−1. (3)

Substituting Eq. (3) to Eq. (2) yields

min
F∈Ind

Tr(K)− Tr((F TF )−
1
2F TKF (F TF )−

1
2 ), (4)

where K = φ(X)Tφ(X) ∈ Rn×n is a kernel matrix with
the 〈i, j〉-th element K(i, j) = φ(xi)

Tφ(xj). Problem (4)
is NP-hard since the elements of F are constrained to be dis-
crete values. A widely used way is to relax the discrete con-
straint of F and allow F̃ = F (F TF )−

1
2 to take arbitrary

real values, so problem (4) becomes

max
F̃ T F̃=I

Tr(F̃ TKF̃ ), (5)

where I denotes the identity matrix. The optimal solution to
problem (5) is formed by the eigenvectors of K correspond-
ing to its largest c eigenvalues. Since F̃ is now in relaxed

continuous form and has mixed signs, we have to lean upon
other discretization procedures, such as k-means, so as to ob-
tain the discrete cluster indicator matrix F .

2.2 Multiple Kernel k-means (MKKM)
In multiple kernel settings, each data point has multi-
ple feature representations via a group of kernel map-
pings {φp(·)}vp=1 which is represented as φγ(xi) =

[γ1φ1(xi); · · · ; γvφv(xi)], where γ = [γ1, · · · , γv]T de-
notes the coefficients of each base kernel and needs to
be optimized through learning. Kγ =

∑v
p=1 γ

2
pKp de-

notes kernel matrix with the 〈i, j〉-th element Kγ(i, j) =
φγ(xi)

Tφγ(xj) =
∑v
p=1 γ

2
pφp(xi)

Tφp(xj).
By replacing the kernel matrix K in Eq. (4) with Kγ , the

objective of multiple kernel k-means (MKKM) can be formu-
lated as

min
F∈Ind,γT 1=1,γp>0,∀p

Tr(Kγ(I − F (F TF )−1F T )), (6)

where 1 is a column vector with all elements being 1. This
problem can be solved by alternatively updating F and γ:

1) Update F with γ fixed. Taking the same two-stage strat-
egy as KKM does, problem (6) becomes

max
F̃ T F̃=I

Tr(F̃ TKγF̃ ), (7)

where F̃ denotes the continuous relaxation of F (F TF )−
1
2 .

The optimal solution F̃ is obtained as the c eigenvectors of
Kγ corresponding to the largest c eigenvalues. Then, F is
obtained from F̃ through other discretization procedures.

2) Update γ with F fixed. Problem (6) becomes

min
γT 1=1,γp>0,∀p

v∑
p=1

γ2pTr(Kp(I − F (F TF )−1F T )), (8)

where γ can be optimized via solving the above quadratic
programming (QP) problem with linear constraints.

2.3 MKKM with Matrix-induced Regularization
(MKKM-MR)

By observing that MKKM does not sufficiently consider the
correlation among base kernels, Liu et al. proposed to reduce
the redundancy and enhance the diversity of selected kernels
by incorporating a matrix-induced regularization [Liu et al.,
2016], as fulfilled in the following

min
F∈Ind,γT 1=1,

γp>0,∀p

Tr(Kγ(I−F (F TF )−1F T ))+
λ

2
γTMγ, (9)

where M denotes a matrix with M(p, q) = Tr(KT
pKq) and

λ denotes the regularization parameter. This problem can be
solved by alternatively updating F and γ:

1) Update F with γ fixed. The solution of F is the same
as MKKM.

2) Update γ with F fixed. Problem (8) becomes

min
γT 1=1,γp>0,∀p

γT (D +
λ

2
M)γ, (10)

where D is a diagonal matrix with the i-th diagonal element
Dii = Tr(Kp(I−F (F TF )−1F T )) and γ can be optimized
via solving the above quadratic programming problem with
linear constraints.
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3 The Proposed Discrete Multiple Kernel
k-means (DMKKM)

In this section, we elaborate the Discrete Multiple Kernel k-
means (DMKKM) model. We first present the formulation
and then develop an efficient algorithm for optimization.

3.1 The Proposed DMKKM Model
As mentioned above, the solutions of F in KKM, MKKM
and MKKM-MR comprise two independent stages: first
learning continuous relaxation F̃ and then learning F from
F̃ by the discretization procedures. Such two-stage solutions
are likely to result in severe information loss and unsatisfy-
ing clustering performance. To avoid this situation, we intend
to devise a novel multiple kernel k-means (DMKKM) model
which is able to directly generate the discrete clustering indi-
cator matrix F .

In the multiple kernel setting, each data point φα(xi) is
represented as φα(xi) = [

√
α1φ1(xi); · · · ;

√
αvφv(xi)],

where α = [α1, · · · , αv]T denotes the coefficients of each
base kernel and needs to be optimized during learning. Kα =∑v
p=1 αpKp is the kernel matrix with the 〈i, j〉-th element

Kα(i, j) =
∑v
p=1 αpφp(xi)

Tφp(xj). Our discrete multiple
kernel k-means (DMKKM) model can be formulated as

min
F ,α
‖Kα − F (F TF )−1F T ‖2F ,

s.t. F ∈ Ind,αT1 = 1, αp > 0, ∀p,
(11)

where Kα = KT
α is a symmetric matrix, F ∈ Ind denote

the cluster indicator matrix and ‖ · ‖F denotes the Frobenius
norm. Problem (11) can be further reduced to

min
F ,α

Tr(KαKα)− 2Tr(F TKαF (F TF )−1),

s.t. F ∈ Ind,αT1 = 1, αp > 0, ∀p.
(12)

In problem (12), minimizing Tr(KαKα) is equiva-
lent to minimizing

∑v
p=1

∑v
q=1 αpαqTr(KpKq), where

Tr(KpKq) measures the correlation between Kp and Kq .
To be specific, the larger the value of Tr(KpKq) is, the
higher correlation between Kp and Kq , and vice versa. On
the one hand, if Kp and Kq are more correlated, minimiz-
ing the value of αpαq Tr(KpKq) is able to greatly reduce
the risk of simultaneously assigning αp and αq with large
weights. On the other hand, if Kp and Kq are less cor-
related, minimizing the value of αpαqTr(KpKq) is able to
greatly reduce the risk of simultaneously assigning αp and
αq with small weights. Therefore, minimizing Tr(KαKα)
can significantly contribute to reducing the redundancy and
enforcing the diversity of selected kernels.

3.2 Optimization Algorithm
Problem (12) can be solved with an alternative optimization
approach. Concretely, the following shows the alternative op-
timization procedures updating F and α.
Step 1: Update F when α is fixed. Problem (12) becomes
the following objective function:

max
F∈Ind

Tr(F TKαF (F TF )−1), (13)

Algorithm 1 Coordinate descent to solve problem (13)

Input: Kα ∈ Rn×n, initial cluster label F ∈ Ind
Output: Final cluster label F ∈ Ind

1: Precompute fTl Kαfl and fTl fl, ∀l ∈ {1, . . . , c}.
2: while not converge do
3: for i = 1 . . . n do
4: Let m be the location of 1 in the i-th row of F .
5: for s = 1 . . . c do
6: Calculate L(s) by Eq. (22) or Eq. (27).
7: end for
8: s∗ ← argmaxs L(s).
9: F (i, s∗)← 1, F (i,m)← 0.

10: end for
11: end while

which is equivalent to the following vector form:

max
F∈Ind

c∑
l=1

fTl Kαfl
fTl fl

, (14)

where fl denotes the l-th column of F , which denotes indica-
tor clustering matrix obtained from the latest iteration. Now,
we are going to obtain the discrete clustering indicator matrix
F directly by utilizing coordinate descent technique [Wright,
2015], during which all variables are fixed except the i-th row
being updated to its optimal value.

When we aim at updating the i-th row of F , it’s
clear that there are c kinds of possible situations including
{[1, 0, · · · , 0], . . . , [0, 0, · · · , 1]} with varying position of el-
ement 1. To be specific, we denote F (s) with s ∈ {1, . . . , c}
as {F (1), · · · ,F (c)} varying from different situations of the
i-th row of F . For example, F (s) denotes that only the s-th
element in the i-th row of F is 1 and the rest ones are 0’s, not-
ing that F (s) and F are identical except the i-th row. Hence,
the objective function of updating a row can be expressed as

max
s∈{1,...,c}

c∑
l=1

f
(s)T
l Kαf

(s)
l

f
(s)T
l f

(s)
l

, (15)

where f (s)
l is the l-th column of F (s). It’s viable to solve

problem (15) by directly iterating through all s to find the
optimal one, but the computational complexity of the brute-
force search is expensive. Next, we introduce how the com-
putational burden can be skillfully reduced. Let’s introduce
a constant F (0) in which all elements in the i-th row are
0, while the rest rows are identical to F . Therefore, prob-
lem (15) is equivalent to

max
s∈{1,...,c}

c∑
l=1

(
f
(s)T
l Kαf

(s)
l

f
(s)T
l f

(s)
l

−
f
(0)T
l Kαf

(0)
l

f
(0)T
l f

(0)
l

), (16)

where f (0)
l is the l-th column of F (0). It’s clear that F (s) and

F (0) are identical except the s-th column, so problem (16)
can be simplified as

max
s∈{1,...,c}

L(s) = f
(s)T
s Kαf

(s)
s

f
(s)T
s f

(s)
s

− f
(0)T
s Kαf

(0)
s

f
(0)T
s f

(0)
s

. (17)
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Algorithm 2 The procedure to solve problem (11)

Input: Kernels {Kp ∈ Rn×n}vp=1, number of clusters c
Output: Final cluster label F ∈ Ind

1: Let α = 1v/v, random initialize cluster labels F .
2: while not converge do
3: Update F by Algorithm 1.
4: Update α by Eq. (29).
5: end while

In order to find the optimal s of problem (17), we need to
calculate its numerators and denominators corresponding to
different s ∈ {1, 2, · · · , c}, but directly calculating them is
still time-consuming. Inspired by the fact that F (s) is closely
related to F , we then demonstrate how to efficiently calculate
the numerators and denominators in Eq. (17) by reusing pre-
viously calculated intermediate variables. For convenience,
we denote the position of element 1 in the i-th row of F as
m, i.e., F (s) = F when s = m. To be more detailed, we
separately discuss as:

When s = m, we gain f (s)
s = fs, and f (0)

s = f
(s)
s − δ

denoting δ ∈ Rn as a column vector with i-th element being
1 and the rest being 0, so the numerators and denominators of
Eq. (17) can be obtained by

f (s)T
s Kαf

(s)
s = fTs Kαfs, (18)

f (s)T
s f (s)

s = fTs fs, (19)

f (0)T
s Kαf

(0)
s =fTs Kαfs− 2fTs Kα(:, i)+Kα(i, i), (20)

f (0)T
s f (0)

s = fTs fs − 1, (21)

whereKα(:, i) is the i-th column ofKα, and Kα(i, i) is the
element settled in the i-th row ofKα(:, i), and thus we have

L(s)= f
T
sKαfs
fTs fs

− f
T
sKαfs−2fTsKα(:, i)+Kα(i, i)

fTs fs − 1
. (22)

When s 6= m, we gain f (0)
s = fs, and f (s)

s = fs + δ, so
the numerators and denominators can be obtained by

f (s)T
s Kαf

(s)
s = fTs Kαfs+2fTs Kα(:, i)+Kα(i, i), (23)

f (s)T
s f (s)

s = fTs fs + 1, (24)

f (0)T
s Kαf

(0)
s = fTs Kαfs, (25)

f (0)T
s f (0)

s = fTs fs, (26)

so we have

L(s)= f
T
sKαfs+2fTsKα(:, i)+Kα(i, i)

fTs fs + 1
− f

T
sKαfs
fTs fs

. (27)

According to Eq. (22) or Eq. (27), we gain the ideal value
of s reaching the optimal L(s) and denote it as s∗, which is
the position of element 1 in the i-th row. Through the repeated
iteration, we finish updating the i-th row of updated optimal
F as shown in Algorithm 1. In practice, we break the iteration
once the increasing rate of Eq. (13) is less than the threshold
with the value of 10−3.

Step 2: Update α when F is fixed. Problem (12) becomes:

min
α

v∑
p=1

v∑
q=1

αpαq Tr(KpKq)

−
v∑
p=1

2αp Tr(F
TKpF (F TF )−1),

s.t. αT1 = 1, αp > 0, ∀p.

(28)

For simplicity, let us introduce a matrix M ∈
Rv×v whose 〈p, q〉-th element is defined as
M(p, q) = Tr(KpKq) and a vector d ∈ Rv =
[Tr(F TK1F (F TF )−1), · · · ,Tr(F TKvF (F TF )−1)]T .
Problem (28) can be transformed into the following quadratic
programming (QP) problem with linear constraints

min
α

αTMα− 2dTα,

s.t. αT1 = 1, αp > 0, ∀p,
(29)

which can be solved by any standard QP solver.
The overall optimization procedure for our proposed

DMKKM model is summarized in Algorithm 2.

3.3 Complexity Analysis
The time complexities of calculating Eqs. (22) and (27) are
both O(n), so finding the optimal s∗ is O(nc). Considering
F contains only n 1s while the rest are all 0s, the complex-
ity can be regarded asO(n). Suppose Algorithm 1 converges
after t1 iterations, its time complexity is O(n2t1). The time
complexity of the rest of Algorithm 2 is dominated by calcu-
lating the vector d, which takes O(n2v). Since the number
of kernels v is usually very small, the QP solver converges
very fast in practice, and thus can be ignored. In summary,
the time complexity of Algorithm 2 is O((n2t1 + n2v)t) de-
noting the number of the outer loop as t. Our algorithm is
highly efficient comparing with other MKKM models utiliz-
ing the two-stage optimization algorithm, in which the time
complexity of eigenvalue decomposition is cubic to n.

4 Experiments
In this section, we evaluate the clustering performance of
the proposed DMKKM model on a number of real-world
datasets. Besides, we meticulously analyze the properties of
coefficients obtained by learning, meanwhile showing con-
vergence curves to verify the efficiency of the algorithm.

Name # Samples # Kernels # Classes

Handwritten 2000 6 10
Pima 768 8 2

ProteinFold 694 12 27
SensITVehicle 1500 2 3

UCI DIGIT 2000 3 10
Washington 230 2 5
Wisconsin 265 2 5

Table 1: Dataset descriptions

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3114



Dataset Metric MKKM OKKC LMKKM RMKKM MKKM-MR ONKC MVC-LFA DMKKM

Handwritten
ACC 0.6825 0.6870 0.6550 0.6410 0.8910 0.9235 0.9355 0.9160
NMI 0.6598 0.6703 0.6475 0.6742 0.8265 0.8454 0.8670 0.8472
ARI 0.5411 0.5510 0.5033 0.5384 0.7811 0.8398 0.8631 0.8267

Pima
ACC 0.5716 0.5104 0.5208 0.5065 0.6536 0.6549 0.6471 0.6563
NMI 0.0010 0.0005 0.0048 0.0000 0.0646 0.0753 0.0819 0.0824
ARI 0.0073 -0.0008 -0.0006 -0.0012 0.0928 0.0949 0.0852 0.0966

ProteinFold
ACC 0.2853 0.2997 0.2262 0.2882 0.3732 0.3732 0.3646 0.3862
NMI 0.3507 0.3988 0.3537 0.3940 0.4454 0.4471 0.4280 0.4717
ARI 0.1456 0.1385 0.0844 0.1425 0.1911 0.1927 0.1916 0.1932

SensITVehicle
ACC 0.5787 0.5567 0.4240 0.4120 0.6560 0.5433 0.6927 0.6813
NMI 0.1389 0.1388 0.0674 0.0537 0.2113 0.1143 0.2681 0.2405
ARI 0.1454 0.1584 0.0605 0.0473 0.2400 0.1149 0.2967 0.2739

UCI DIGIT
ACC 0.4225 0.4725 0.4780 0.4150 0.9090 0.9125 0.9020 0.9330
NMI 0.4548 0.4813 0.4846 0.4687 0.8368 0.8425 0.8295 0.8715
ARI 0.3272 0.3066 0.3111 0.3173 0.8131 0.8206 0.8008 0.8589

Washington
ACC 0.4478 0.4783 0.4957 0.4696 0.5609 0.6087 0.5870 0.6130
NMI 0.0491 0.0571 0.1433 0.0433 0.3172 0.3494 0.3335 0.3799
ARI 0.0662 0.0390 0.1203 0.0594 0.3086 0.3904 0.3561 0.4033

Wisconsin
ACC 0.5547 0.5623 0.4566 0.5245 0.5585 0.5962 0.5623 0.5925
NMI 0.2288 0.2532 0.1629 0.2474 0.3323 0.3360 0.3505 0.3565
ARI 0.2188 0.2028 0.0730 0.2339 0.2660 0.3073 0.2878 0.3166

Table 2: Clustering result on real-world benchmark datasets, the best ones are in bold.

4.1 Dataset Descriptions
Seven real-world benchmark datasets are employed to evalu-
ate the clustering performance, including Handwritten, Pima,
ProteinFold, SensITVehicle, UCI DIGIT, Washington and
Wisconsin. All these datasets are downloaded from Xinwang
Liu’s page1 and more details can be found in their published
papers. More importantly, we summarize their statistical
properties in Table 1.

4.2 Comparison Models
We compare our proposed DMKKM model with several
multi-kernel k-means clustering models, including:

• Multiple Kernel k-means (MKKM) [Huang et al.,
2011]: The algorithm performs kernel k-means and up-
dates kernel coefficients alternately, as introduced in
Section 2.2.

• Optimized Kernel k-means Clustering (OKKC) [Yu et
al., 2011]: This is a concurrent work of MKKM, but
optimizes the kernel coefficients and cluster membership
based on the same Rayleigh quotient objective.

• Localized Multiple Kernel k-means (LMKKM) [Gönen
and Margolin, 2014]: The model learns the kernel coef-
ficients with a localized approach.

• Robust Multiple Kernel k-means (RMKKM) [Du et al.,
2015]: RMKKM replaced the squared error term of k-
means with `2,1-norm based one to make it more robust.

1https://xinwangliu.github.io

• Multiple Kernel k-means with Matrix-induced Regular-
ization (MKKM-MR) [Liu et al., 2016]: The model in-
troduced a matrix-induced regularization to reduce the
redundancy and enhance the diversity of selected ker-
nels.

• Optimal Neighborhood Kernel Clustering (ONKC) [Liu
et al., 2017]: This model allows the optimal kernel to
reside in the neighborhood of the base kernels to enlarge
the region from which an optimal kernel can be chosen.

• Multi-view Clustering via Late Fusion Alignment Maxi-
mization (MVC-LFA) [Wang et al., 2019b]: This model
proposes to maximally align the consensus partition
with the weighted base partitions, and they theoretically
prove that it is equivalent to minimize the loss function
of k-means clustering.

Among these models, MKKM, OKKC, LMKKM and
DMKKM are parameter-free, while RMKKM, MKKM-MR
have one hyperparameter, and ONKC, MVC-LFA have two
hyperparameters.

4.3 Experimental Settings

For the sake of fairness, we perform gird search to determine
the hyperparameters for all comparison models with parame-
ters choosing their best results, under the guidance of relative
papers, though our DMKKM is completely parameter-free
model. The source codes are downloaded from the authors’
pages or requested from the authors.
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Figure 1: Learned coefficients αp and KKM accuracy of each kernel

4.4 Result Analyses
Clustering performance. Table 2 presents the results of
three widely-adopted clustering performance metrics, includ-
ing clustering accuracy (ACC), normalized mutual informa-
tion (NMI) and adjusted rand index (ARI). According to the
presented results, we can conclude through observation as
follows: a) Our proposed DMKKM model achieved the best
clustering performance on 5 out of 7 datasets, indicating its
superb performance. b) Comparing to other parameter-free
models, our model not only consistently outperforms them
on all datasets, but also achievs a huge advantage over them,
showing excellent superiority. c) Comparing to other param-
eterized models, our model surpasses them in most of cases.
Despite MVC-LFA achieving better performance on Hand-
written and SensITVehicle datasets with a very small lead.
However, MVC-LFA has 2 hyperparameters and badly re-
lies on rigorous grid search, which makes it impractical for
production use. In reverse, our proposed model is totally pa-
rameter-free which is much more feasible for production use.

Properties of learned coefficients. In this part, we analyse
the properties of the learned coefficients αp of each kernel.
Kernels usually work as various feature representations of
data samples, but some kinds of kernels may be more discrim-
inative than others for particular tasks, which may contribute
to better clustering performance. Thus, such kinds of kernels
deserve more significance, in other word, more weight, so
as to achieve better performance through multi-kernel clus-
tering models. Arguably, the single-kernel clustering mod-
els like KKM will obtain better performance with the help
of more distinctive kernel, so we utilize the clustering accu-
racy (ACC) of KKM as a metric to identify the significance of
kernels. To be specific, the higher clustering accuracy KKM
can achieve, the more discriminative a kernel is. Ideally, our
proposed DMKKM model is supposed to assign larger αp to
the kernels where KKM achieved higher ACC. We plot the
learned αp and corresponding KKM accuracy of each kernel
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Figure 2: Objective value of Eq. (11) after each iteration

on 4 datasets in Figure 1. It can be shown that our model
succeeds in assigning larger coefficients to kernels which are
more discriminative, so our proposed model is able to identify
more discriminative kernels among multiple kernels, which
may help to improve the clustering performance.

Convergence analysis. To demonstrate the effectiveness of
our optimization algorithm, we plot the convergence curves
of Algorithm 2 on 4 datasets in Figure 2, where the x-axes
denotes the number of iterations and the y-axes denotes the
objective value of Eq. (11). It can be shown that the objective
values decrease monotonically until Algorithm 2 converges.
All the curves plateau within 10 iterations, which means that
our optimization algorithm is of high efficiency.

5 Conclusion
In this paper, we propose a novel multiple kernel k-means
clustering model, namely DMKKM, utilizing an efficient it-
erative algorithm to solve it. Our model can directly obtain
the cluster indicator matrix without subsequent discretization
steps, avoiding severe information loss. Moreover, our model
is capable of measuring the correlation among kernels, which
greatly enhances kernel fusion through reducing redundancy
and improving diversity. What’s more, our model is totally
parameter-free, which is more feasible in practice. Extensive
experiments on several real-world datasets demonstrate its su-
perb performance and potentiality in practical applications.
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