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Abstract 
The next generation of cloud hosting is known as serverless or function-as-a-service (Faas). The                           
popularity of these easily deployable and infinitely scalable functions has skyrocketed since                       
AWS announced their Lambda service in 2014. One primary concern regarding the                       
performance of these functions is the effect of “cold starts”. A cold start is the time it takes to                                     
boot a new container when the platform needs to increase its capacity for that function. We                               
investigate the possibility of restoring function containers as an alternative to starting new                         
containers. Our method focuses on Linux process primitives. We store and modify state such                           
as raw memory and registers in order to reset the process to the way it was before the user’s                                     
function was loaded. We discuss how to ensure temporal isolation in order to provide security                             
guarantees in such a system. We find that it is possible to restore container processes in a                                 
variety of runtimes. Using this approach can decrease the effect of cold starts by up to 20x                                 
and increase the overall throughput of such systems.  
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Introduction 
The rise of virtualisation and cloud computing has made sharing computing resources ever                         
easier and more lightweight. As our demand for the cloud increases, we increase the size of                               
our data centres and purchase new devices to consume our data. The total cost of these                               
services is around 2% of greenhouse gas emissions [1][2], on par with the aviation industry                             
and set to multiply in the coming years. The efficient use of these resources is therefore a                                 
pressing concern. 
 
The latest trend in cloud computing is known as serverless. Rather than renting a portion of a                                 
server via a container or VM on a monthly basis, serverless platforms promise billing by the                               
1/10th of a second and infinite scaling exactly according to demand with almost no                           
configuration. These features promise reduced developer operations, a lower barrier to entry                       
for the cloud and reduced running costs. 
 
The properties of serverless systems come from its event-driven design. Upon receiving an                         
“event” (ranging from a http request to a trigger from another function), a container is                             
deployed on an available server to handle the request. The code needed to respond to the                               
request is downloaded, run and the response sent back. Code that responds to an event is                               
known as a function, which should be small, simple and perhaps stateless. The container                           
where the function was deployed remains alive for a grace period (usually around half an                             
hour) to speed up response times for subsequent requests. As a developer does not need to                               
configure or run their server processes in such a system, the system is server-less. 
 
Many suitable use cases have been found for this kind of event-driven system, such as image                               
post-processing and notification control, but it is not yet considered suitable for all kinds of                             
workload. Developers might choose not to use serverless functions either because of a lack                           
of best practice or because of performance issues. 
 
Since serverless is a fairly immature technology, standard “good practice” methods for                       
debugging, deploying and keep state in serverless systems are not yet clear. While we expect                             
that best practice will develop as the technology matures, inherent performance issues may                         
hinder serverless from being considered suitable for general use. This report will mainly                         
focus on one major performance problem for serverless containers - its startup latency,                         
known as a “cold start”. 
 
A cold start is the time it takes to initialise a container in response to an increase in requests                                     
for a function. Depending on the system, cold starts are usually in the order of a second [3].                                   
Much of this time is spent just starting the container itself, after which the runtime must be                                 
started and libraries loaded before the function can be run. In a system with hard latency                               
requirements, these tail latencies make the use of serverless platforms out of the question [4]. 
 
This report aims to explore the possibility of reusing containers when running serverless                         
functions so that different users can use the same container, one after another, with a                             
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cleanup step in between. As opposed to typical container isolation (isolating containers from                         
each other), temporal isolation must now be considered. This means that a user should not be                               
able to modify the container in a way that will affect future runs. Various kinds of linux                                 
process inspection tools will be used to enforce temporal isolation, primarily ptrace & the                           
/proc file system. 
 
Checkpointing and restoring a process is something that has been done in the past [5]. Given                               
that a container is a unix process attached to namespaces and cgroups, applying                         
checkpoint/restore theory may allow containers to be safely transitioned back to their                       
starting point after a function has run. Although checkpointing/restoring is otherwise a                       
fairly heavyweight operation, the simple and often stateless nature of serverless functions                       
make it possible to restore their processes in a small time frame. 
 
A serverless system with a lower worst-case latency would benefit both developers and                         
providers. First and foremost, it may make it possible for many workloads with stricter                           
latency requirements to be considered suitable for serverless platforms. We also expect a                         
much greater throughput to be possible, as fast restores replace costly evictions, potentially                         
further reducing costs for developers. We would also eliminate the need for “keep warm”                           
functions that are sometimes used by developers to stop their functions from going “cold”. 
 
To summarise, this project aims to: 
 

● Develop a generic method of checkpointing/restoring a container while it runs 
● Develop the ability to restore different language runtimes after running various                     

functions 
● Evaluate the performance and speed of this method in a larger serverless platform (in                           

our case OpenWhisk) 
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Background 

The Need for Containers and the Genesis of Serverless 
Ever since the introduction of mainframes in the ‘50s, engineers have sought to make it as                               
simple as possible to compute at scale. From time-sharing to the cloud, our demands in                             
terms of power, storage and speed have skyrocketed. At the same time, developers striving                           
to maximise their velocity expect it to be simpler than ever to deploy, maintain and even                               
instantly scale their systems. These systems must also be completely secure and fully                         
isolated from one another. 
 
As a result of these strict requirements, code deployment has changed drastically. From the                           
difficulty of maintaining physical servers, we saw the rise of virtualisation technology and                         
virtual machines (VMs), which led to the creation of a publicly available cloud. There were,                             
however, downsides to using VMs. It was still necessary to maintain a full operating system                             
on each VM, and startup times of around a minute left much to be desired. Developments in                                 
the linux kernel and the layered file-system of Docker led to the popularisation of containers.                             
This pushed deployment from the OS to the process/application level, paving the way for                           
container orchestration technologies such as kubernetes [6]. 
 
Where does this leave us now? In a survey of 600 IT decision makers, 72% stated they were                                   
using or evaluating containers [7], Google starts 2 billion containers each week [8] and of                             
Datadog’s 10,000 customers, half deploy their containers with an orchestrator [9]. Containers                       
have undoubtedly become a pervasive technology, yet developers are still faced with                       
challenges when it comes to code deployment. The questions we ask are the same as they                               
have been for decades - “How many do I need?”, “How do I configure them?”, and “How                                 
do I scale them as demand increases?”. Although configuring and scaling containers is                         
vastly easier than working out how to maintain as many operating systems, let alone                           
servers, these questions remain non-trivial. Recent trends in sustainable software                   
engineering involve splitting large codebases into microservices, as opposed to traditional                     
monoliths [10], the result of this is that developers may have to begin answering scaling and                               
configuration questions for hundreds of services, rather than just a small handful. 
 
We may also observe a long-standing trend of low utilization of data-centre resources.                         
Developers have a tendency to over-provision resources in preparation for unexpected                     
increases in usage (spikes). Over-provisioning leads to a large proportion of on, but unused                           
resources. A 2012 study of Google data centres revealed that while resource allocation was                           
near its limit, utilization of CPU and memory struggled to reach 50% [11]. As data centres                               
alone are responsible for around 0.3% of global greenhouse gas emissions [2], better                         
utilization has become an important problem. 

Serverless - the next frontier 
Enter, then, the next wave of code deployment, coined “serverless”. Named as such because                           
the management of a server (or container), is taken away from the developer and automated                             
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by a system. The core idea of a serverless platform is to deploy small stateless functions                               
independently, that respond to events. Such a system is therefore also known as                         
“Function-as-a-Service” (FaaS). These functions are ephemeral, run on-demand, and are                   
billed only for actual execution time. In a serverless platform, almost all operational logic is                             
delegated to the infrastructure, so scaling and management is completely automatic [12].                       
Event triggers include file updates, DNS events or other functions.  
 
Due to their properties, serverless platforms promise greatly reduced operational and                     
scaling costs. For example Adzic et al. present a 66 to 95% cost reduction in two industrial                                 
case studies [13], but these platforms also have drawbacks. Different cloud vendors define                         
their functions differently, so migrating to serverless can cause vendor lock-in. There are no                           
well-defined ways of testing and debugging serverless systems when deployed or locally, and                         
these platforms can have very slow tail latencies. This report will focus on tail latency                             
response times of serverless platforms, known as “cold starts”. 

Architecture of a FaaS Platform 
The ability to scale serverless functions rapidly and infinitely comes from the design of such                             
systems. In short, a serverless platform is a “controller” (entry point) connected to a database                             
(containing all function code) and a fleet of servers (to run them on). When the controller                               
receives an event, a new container is created to run the target function code on one of the                                   
worker servers, if such a container does not already exist. Containers have so far been the                               
standard runtime used in serverless platforms due to their industry-proven stability and                       
relatively fast startup times, although alternatives are beginning to surface [14]. We will                         
demonstrate three use cases of serverless platforms to highlight how they work. 
 
The initial case is when no container exists containing the target function code. This may be                               
because the developer has just uploaded the function, or if the function has not been used in                                 
a while. Here, the controller selects a worker with available capacity to handle the request.                             
The worker then starts a new container for the target language. This involves starting the                             
container itself, loading the runtime and loading necessary dependencies. Starting a                     
container takes a few hundred milliseconds, and then depending on the runtime and the                           
function’s dependencies, the total startup time can take a second or more. This is what is                               
known as a cold start. 
 
Luckily once a container has started it is common practice to leave loaded containers around                             
for a while, normally around half an hour. This is known as a “warm” state. If the controller                                   
receives a request when there are warm containers, the request can be forwarded to the                             
container and the function run immediately. Warm responses are typically fast. 
 
If all warm containers are currently processing a request, the platform can not wait until a                               
request completes (after all it could take an undefined amount of time). Instead, it must cold                               
start a new container to deal with the request, thus increasing the number of available warm                               
containers and as such the capacity of the system for that function. This is how scalable                               
platforms can scale quickly and infinitely in response to demand, but we also note that cold                               
starts must occur as the platform scales.  

10 



 
Figure 1: Simplified FaaS Architecture 

 

OpenWhisk 
OpenWhisk is the serverless platform of choice for this project. Although not the most                           
popular, it is an apache foundation project and so open source and free to modify.                             
OpenWhisk was started by and is used extensively by IBM in their bluemix platform.                           
Amazon, Microsoft and Google, on the other hand, keep the code for their serverless                           
platforms under wraps, so how they work can only be inferred by talks, articles and black                               
box testing. 
 
The OpenWhisk platform generally works as described in the general platform description                       
above. The controller assigns requests to invokers, which it sends via a kafka messaging                           
queue. The invoker fetches the function code from CouchDB if it is not already available,                             
runs the code and returns the result again via kafka. As well as each invoker having a pool                                   
of containers in cold or warm states, OpenWhisk has support for “prewarm” containers,                         
where it can preemptively start containers for a particular runtime. 
 
Scheduling in OpenWhisk follows a “sharded load balancing” algorithm, where a hash of                         
the function modulo no. invokers decides which invoker to start looking for capacity on. If                             
the invoker has no capacity for the function, the rest of the invokers are checked in a                                 
deterministic fashion. The aim of this algorithm is to send the same function to the same                               
invoker as much as possible in order to maximise warm invocations.  

State of Cold Starts 
In reality, the granularity of cold starts is more complex, depending on if it is the first time a                                     
request is sent to the provider, the virtual machine (worker), or the container. Different                           
platforms also tend to handle cold starts differently, and approaches involving alternate                       
runtimes such as unikernels should also be considered. Lloyd et al. demonstrate that the                           
differences between traditional cold start states can cause up to a 15x change in performance                             

11 



[15]. The performance of a cold start varies further based on the provider and runtime. In                               
another recent study from Wang et al., AWS/python cold starts (the fastest combination)                         
were recorded around 170ms and AWS/java cold starts were around 900ms, while the                         
median Azure cold start time was 3600ms [3]. The variance in their observations was also                             
very large. 
 
Although interest in serverless platforms is large, with 46% of IT decision makers evaluating                           
serverless [7], these performance insecurities are one of the reasons why serverless platforms                         
are only used in specific scenarios at the moment. Such typical use cases include image                             
post-processing [16] or entry level data processing [17]. Serverless platforms are currently                       
not considered to be a feasible alternative for time-critical systems. 
 
Cold starts are also detrimental for other reasons. For it to be feasible to consider using                               
serverless at all, platforms typically use long container-warm times, around 30 minutes for                         
AWS, but potentially an hour or more in Google and Azure cases [3]. This leaves resources                               
idle for long periods of time, even though they may only have been used for hundreds of                                 
milliseconds. Developers also know that this is the case, and some use “keep warm”                           
functions to call their functions before they become dormant. This makes cold starts                         
destructive for developers, providers and the planet. 

Recent Progress in Serverless Technology 
We will now explore what current approaches are being taken to improve the performance                           
of serverless platforms. These approaches can be largely placed in three categories: container                         
optimisations, language isolation and unikernels. All approaches boil down to the choice of                         
isolation method. 

Container Optimisations 
Containers were initially designed for long-running applications that should be isolated                     
from other containers in every possible way. It is worth stopping to consider if the                             
short-lived and often stateless nature of serverless functions requires all of the features of a                             
container, and therefore how containers could be optimised specifically for serverless                     
functions. Further, one should consider that simply starting a given isolation construct is                         
only one step towards running a serverless function. In many cases, starting the language                           
runtime and downloading/installing the relevant libraries may take hundreds of                   
milliseconds before the execution of the function may begin.  
 
Oakes et al. consider a complete perspective of cold start times in serverless platforms,                           
examining and optimising both container startup and dependency loading times in the                       
context of the python runtime [18]. They use three methods to speed up the start time of                                 
their containers. First, they avoid the use of slow to start namespaces (particularly the                           
network namespace), which they argue are redundant in a serverless context. Then they                         
bind-mount the containers file system, rather than using the more costly AUFS, which takes                           
advantage of serverless functions read-only access to all but a small part of the file system.                               
Finally, as a further optimization, they reuse cgroups, which they find to be more effective                             
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than creating new cgroups for each container. This reduces their container cold start times                           
by 2.8x relative to AWS Lambda. 
 
Oakes SOCK system then makes extensive use of zygotes and package caching to improve                           
complete cold start times. The usage of zygotes is a technique where one forks a process                               
which already has certain dependencies loaded. By keeping a hierarchy of processes with                         
different dependencies loaded readily available, most new requests will be able to fork a                           
running process with the dependencies it needs, doing away with the need to load them at                               
all. This, paired with a cache of commonly used packages led to a 45x speed improvement in                                 
loading python packages, taking only 20ms. 
 
The main weakness of this approach is that it was only designed for the python runtime.                               
While it would certainly be possible to create similar functionality for other dynamic                         
languages like JavaScript, this is not a universally applicable approach, and it may be much                             
harder to see similar speed improvements for all languages. They also speed up container                           
creation by not using a network namespace, arguing that they provide no added security in                             
the context of AWS Lambda. This approach may not be applicable to all deployments, and                             
can not be considered a universal speed improvement either. 
 
Although SOCK focused heavily on the high-level dynamic language python, this approach                       
is still particularly interesting due to its applicability to existing serverless systems. If it were                             
possible to significantly reduce the starting time of containers across many                     
languages/runtimes, it may not be long until serverless platforms could be considered for                         
time critical applications, and its usage could become more widespread. 

Language Isolation 
The reason containers are needed is because running arbitrary code in a process can have                             
side effects that impact the whole machine. Normal processes can read and write to large                             
parts of the file system and use up an almost arbitrary amount of resources. If many                               
processes were to share a machine then, checks and balances would be required, which                           
today are realised in the form of containers. The idea of language based isolation is that                               
users do not necessarily need to run arbitrary code in their process, rather if developers could                               
write their code in a language that cannot interfere with other processes by design, then                             
there would be no need to isolate them at all. 
 
Boucher et al. make use of the safety properties of the Rust language paired with some                               
blocked system calls and limited access to the file system in order to cold start their                               
serverless functions in microseconds [19]. Each function runs in only a lightweight thread,                         
isolated from the worker. The major drawback of this approach is that the functions must be                               
written in an isolatable language (in this case, Rust), and dependent libraries must be trusted                             
by a whitelist. The WebAssembly project aims to create a completely isolatable instruction                         
format, and so any language that could be made to compile to WebAssembly could also be                               
isolated [20]. While this appears to be possible for statically typed languages such as C++ or                               
Rust, compiling dynamic languages like python or javascript will be much harder. Most                         
AWS functions are written in Python (52%), followed by NodeJS (39%) [21], and although it                             
is not yet possible to write serverless functions in Rust at any major providers, this language                               
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selection disadvantage would make it difficult for developers wanting to migrate existing                       
code to serverless or developers who do not know the selected language. This does not rule                               
out the use of language isolation in serverless platforms completely, but limits its feasibility                           
as a universal approach. 

Unikernels 
A normal linux distribution contains all sorts of libraries and binaries for general purpose                           
use. Many of these debuggers, drivers and libraries are not needed in the normal execution                             
of a specific task, especially in the case of running one function in one runtime, as in the case                                     
of serverless. Projects such as MirageOS [22], and others [23] have been built around creating                             
minimal linux distributions known as unikernels. If these unikernels could be small enough                         
in size and memory footprint, it may be possible to reduce the start time of VMs to be a                                     
feasible alternative to containers. By optimising the start flow of the Xen hypervisor, Manco                           
et al. showed that small custom made VM images could be started in 2ms, comparable to the                                 
1ms it takes for linux to fork()[24]. They modified the Xen daemon to “pre-warm” vms in the                                 
background and showed that their system was scalable to thousands of VMs. 
 
While unikernels promise VM level at speed, they face major drawbacks. First, all libraries                           
and runtimes must be ported to run in unikernels, as there is no “user-mode”, although                             
there have been significant efforts to create unikernels for popular languages. Secondly,                       
unikernels, when run as VMs, have the same performance overheads normal VMs face.                         
Finally, they are not debuggable. 
 
One potential solution to these problems was presented by Williams et al., who successfully                           
run their unikernels as processes. Although these unikernels used only 10 system calls,                         
providing a similar level of isolation to VMs, they could make use of many of the native                                 
process performance benefits [25]. These unikernels could be started in milliseconds, but                       
consistently outperformed traditional unikernel throughput. 
 
Due to specialised and simple nature of serverless functions, using unikernels for speed and                           
isolation is an appealing solution. However, the difficulty involved in testing unikernels                       
may be its largest deterrent. In a survey of serverless developers, over half stated that a lack                                 
of testing/deployment tooling was a significant challenge for FaaS services [26]. 
 

Firecracker 
In late 2018, Amazon announced their own bid to eliminate the cold start problem, named                             
Firecracker. Firecracker is a lightweight virtual machine monitor that runs VMs using the                         
kernel-based virtual machine api (KVM) [27]. Although VMs are traditionally slow to start,                         
AWS’s small (50,000 LOC) rust codebase provides very lightweight VMs that can start in                           
around 12 ms (but always under 60ms) and with only 5MB of memory overhead per thread.                               
Once the VM has started it takes 125ms further for the init process to start. Given that                                 
Amazon already use Firecracker in production, it has reduced the “container start” element                         
of a serverless cold start, however, users must still wait for the start of their chosen runtime                                 
and libraries to load before their function can run. 
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Project Approach 
Which approach, then, will dominate serverless platforms in the years to come? Language                         
isolation and unikernels are both in their early stages of development. Language isolation                         
may always remain language-biased in nature, and therefore perhaps not be a universal                         
solution. WebAssembly, for instance, has a runtime and portable interface on its roadmap,                         
but not in the foreseeable future [28]. Unikernels, while shown to work for simple use cases,                               
have not yet been battle-tested in production, and it could be years before unikernel                           
technology reaches a level of maturity where it can be trusted by industry. 
 
Is it possible for containers to live up to the performance requirements of serverless? Some                             
argue that linux containers can not achieve the desired throughput of serverless functions                         
[29], so new approaches (such as unikernels) will be necessary. At the same time, the                             
complexity of the Linux kernel has been growing exponentially over time [30], and so                           
implementing new kernel constructs for serverless is becoming all the more difficult. This                         
report aims to determine if existing container technology can be modified to create more                           
performant platforms. The approach taken will be to make use of serverless functions                         
unique requirements in terms of size, speed and access to state in order to reuse containers to                                 
run different functions. Process checkpoint/restore along with existing container isolation                   
mechanisms will be the primary technologies used to achieve this goal. 
 
In this project, we will only be targeting linux containers. Specifically, runc containers, the                           
underlying container runtime used by docker which is the most widely used kind of                           
container. In order to understand how one might go about safely reusing containers, we will                             
first explain the layout of unix processes and containers, and dive into some background                           
regarding checkpoint/restore technology. 

Container Essentials 

Processes 
The unit of organisation for running anything on a unix system is a process. A process is a                                   
collection of data that describes the state and attributes of a running program. This data                             
includes core information like its name, id, program counter and registers, but a process also                             
consists of the files, pipes and mounts it owns, and the memory it has allocated. The ps                                 
command and the /proc/{pid} directory are good starting points to understand the                       
information a process contains. All processes are related, forming a tree hierarchy of                         
processes. In other words, all processes are in some way a child of pid 1, which is the initial                                     
process. 
 
The kernel’s job is to schedule and run processes, and to stop them from excessively                             
harming the system. Unix systems are organised into two “rings” according to privilege.                         
Ring 0, is the kernel’s domain (or kernel-space), which has total privileged access to the                             
entire system. Normal processes should not have this level of control over the machine, and                             
so run in ring 3, “user-space”. Whenever a process would like access to a part of the system,                                   
say, to open a file, or allocate itself more memory, it must ask the kernel for permission.                                 
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Permission questions are expressed in the form of system calls (syscalls), and are the                           
primary interface between a process and the kernel. 
 
For the purposes of this project, we need to know how a user’s code can mutate the state of                                     
the process in which it runs. For example, we might not want functions to be able to create                                   
children, which can be observed when a function calls the fork system call. We can use ptrace                                 
to guard this boundary, which will, for example, allow us to observe the processes state and                               
prevent certain behaviour. 

Ptrace 
The Ptrace system call allows one process to almost arbitrarily control another. Ptrace is                           
mainly used to create debugging tools, as it allows us to stop at system calls (eg. strace), set                                   
breakpoints and modify the processes state. Heavy debugging with ptrace is therefore                       
associated with high overhead and performance degradation, and so would not normally be                         
considered for production use. However, ptrace can be configured in different ways that                         
cause more or less stops in the process and therefore more or less overhead. 
 
One form of inter-process communication in linux is signals, which are a limited set of                             
asynchronous messages that processes can send to one another. For some signals, the                         
process can define what will happen when such a signal is received, such as cancelling a                               
network download on the keyboard interrupt signal SIGINT. Other signals cannot be caught,                         
such as SIGKILL which forcefully terminates the process, and SIGSTOP which stops it. Since                           
they abruptly stop the process from executing, signals are not usually very heavily used in                             
applications, they are rather used for exceptional behaviours, such as dropped connections                       
or closed pipes. 
 
Stopping when a signal is received is the basic ptrace configuration. When ptrace is enabled,                             
the process will always enter “ptrace-stop” before a signal is delivered. While the process is                             
in ptrace-stop, many commands that are useful to us can be run, such as examining the                               
content of the processes registers. These will however only be needed when                       
checkpointing/restoring, and not on a regular basis. We hope that the overhead of this basic                             
ptrace configuration will be minimal, which we will explore in the evaluation.  
 
Configuring the process to stop at every system call would certainly incur a performance hit                             
from two context switches per system call and should be avoided [31]. Instead of causing                             
consistent performance hits by constantly trying to stop certain behaviour at certain syscalls,                         
we will take the approach of observing differences in state before and after the user’s code                               
runs. Ptrace can efficiently guard us against some behaviour, such as setting the                         
PTRACE_O_TRACEFORK setting to stop the process when it tries to fork, and extremely                         
damaging syscalls can be prevented by using SECCOMP (Linux secure computing) filters.                       
Ultimately, we hope to efficiently observe state changes during restore. 
 
This frees us to think about the state of a process as a collection of data, and how that data                                       
has changed over time, rather than trying to white/blacklist syscalls - an arduous and                           
error-prone process. 
 

16 



Containers 
The most important thing to know when coming to understand containers, is that a                           
container is just a process. The container process has added measures to make it appear to the                                 
container that it has all privileges, complete control over the system, and sole access to all its                                 
resources, even though in reality, it is under the control of the host. These measures are also                                 
applied to all of the container’s children, which gives the impression that a container is its                               
own machine. The key difference to a VM is that since all containers run on a machine run as                                     
processes, they share the same kernel, whereas each VM has its own kernel.   
 
Three important features are the key to creating this illusion. Namespaces control privileges,                         
cgroups control access to the cpu and other resources, and a layered file system allows for fast,                                 
shared file systems between containers. 

Namespaces 
A namespace is the linux kernel abstraction that makes a global resource appear to be under                               
the sole control of a process within it. It can provide this functionality in an isolated fashion                                 
to many processes [32]. This means, for example, that two processes can appear to have the                               
same pid, or that processes can appear to have different hostnames. There are 7 namespaces. 
 

Namespace  Isolates 

User  User ID/Group ID spaces 

PID  The process ID space 

UTS  Hostname & domainname 

Mount  File system mount points 

IPC  Interprocess communication resources 

Network  Network interfaces 

Cgroup  The Cgroup root directory 

 
These namespaces provide guiding boundaries for what state we must consider restoring                       
between uses in this project, as we assume these primitives are strong enough to prevent                             
modifications to the rest of the system. For example, we will have to ensure that no other                                 
processes are left running in the container after the function has finished, and check what                             
new mount points may have been made. 

Cgroups 
While namespaces allow processes to be isolated from one another, they do not prevent the                             
process from using, or excessively using, the systems resources. Cgroups are the Linux                         
kernel feature that allow this kind of monitoring, implemented by a virtual file system at                             
/sys/fs/cgroup. Here, each resource (memory, cpu, etc.) has its own hierarchy of directories,                         
representing the limits places on the processes within them. The cgroup interface also has a                             
freezer which allows processes to be arbitrarily started and stopped without using signals. 
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Layered File System 
For a container to appear to have complete access to its own system, it needs to have full                                   
access to its own file system. Complete file systems, though, are generally quite large, and                             
copying an entirely new file system for each container would both be slow, and take up a                                 
considerable amount of space. Most containers will also use similar “base layers” in their file                             
system, and large parts of the file system will never be written to. Containers therefore use                               
layered file systems, where each change made to a file system is applied in a read-only                               
fashion to a base-layer as a “commit”. When a new container is made, a thin read-write layer                                 
is placed on top of the read-only layers, which the container works on. Any changes made to                                 
underlying layers are edited in a copy-on-write fashion. This approach allows many                       
underlying layers of the file system to be shared between containers, regardless of their                           
purpose, greatly increasing its performance, especially when scaling. 
 
The changes to the filesystem must also be considered when reusing containers. Our                         
serverless containers should only need read-access to the filesystem, potentially with write                       
access to a “scratch space” mounted to /tmp. This way we should be able to reuse the                                 
complete file system between runs, taking care to clear or mount a new /tmp directory. 

Checkpoint & Restore 
The idea of stopping, checkpointing (creating a backup of) and restarting arbitrary processes                         
has been around since Berkeley Lab’s Checkpoint/Restore project started in 2002 [33]. Many                         
of these projects required modifications to the kernel, or only supported processes with                         
certain properties, until the introduction of Checkpoint & Restore in Userspace (CRIU) in                         
2012. CRIU has the ability to dump the complete state of a process to a file, and to start an                                       
identical process from just the information in that file, with memory, file descriptors and                           
even its pid all in order. 
 
Research has been done into live migrating containers using CRIU, which showed that a                           
fairly heavyweight MySQL process could be checkpointed in 1 second and restored in 0.8                           
seconds [34]. Clearly if preparing a container for reuse would take 2 seconds, there would be                               
little benefit in doing so over starting a new container. However, these C/R operations are                             
slow because they output/input complete dump files containing all of a processes state,                         
which may be hundreds of MB in size. In this project, it will not be necessary to read or save                                       
the complete state a process. Instead only the difference in state between the start and end of a                                   
running function will be considered. This is where the special properties of serverless                         
functions are crucial, as the differences in process state when running small, fast serverless                           
functions should be minimal. This should make it possible to live-restore a container                         
efficiently.  
 
We can see that the techniques used by CRIU in C/R are essential to this project, as they                                   
have dealt with examining and reproducing process state in minute detail. To provide an                           
understanding of the key techniques used by CRIU, we will describe a typical process                           
checkpoint and restore. 
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Checkpoint 
When checkpointing a process, its entire process hierarchy of children must also be                         
checkpointed. CRIU begins by recursively freezing (i.e. stopping via cgroups) all of these                         
children and their threads. While doing so it also “attaches” to these processes via the ptrace                               
interface. Ptrace allows a processes to arbitrarily observe and control another, and will be                           
extensively used in this project. 
 
Once CRIU has frozen and is in control of all child processes, it begins to read information                                 
about the processes. Much of this information can be read straight off the file system,                             
especially from the /proc/{pid} directory. In this project, we will be able to track differences in                               
memory, file descriptors and more using information in this directory. 
 
The rest of the information needed must be read by the process itself. CRIU injects parasite                               
code [35] using ptrace into each process in order to do this, which saves information such as                                 
memory contents and credentials. All information is saved to dump files, the parasite code is                             
removed and the processes can then resume. In our case, we will already be attached to the                                 
target container via ptrace, and so the worker should be able to read the rest of the process                                   
state through this interface. 

Restore 
When restoring, CRIU fork()s many times until it has a process with the desired pid. It then                                 
opens files, creates maps and sockets and restores other basic process information. The CRIU                           
process will eventually morph into the target process, so some “outside” code must exist                           
that will eventually unmap CRIU’s memory, replacing it with the target processes’ memory.                         
For this purpose, a “restorer blob” is created. All memory mappings, timers, credentials and                           
threads are finally restored by the blob, before restarting the process. 
 
A lot of time during restore is spent creating a new process similar to the target process                                 
using expensive operations such as potentially thousands of forks to achieve the right pid. In                             
our world, we already have a process that is very similar to what it was before the function                                   
ran and so also expect our restoring phase to be much more lightweight. 

Language runtimes 
Most Serverless platforms gain popularity partially due to their ease of use, partially due to                             
what languages/technologies can be used with that system. In fact, some newer platforms                         
such as OpenFaas pride themselves on allowing any kind of code that can be packaged as a                                 
docker container [36]. For the purpose of this project, we aim to show that the most popular                                 
languages used by serverless platforms today would benefit from and be compatible with a                           
checkpoint/restore methodology. 
 
For refunction to be able to use a given runtime, dynamic code loading is required. One of the                                   
main benefits of this system will be the ability to run functions without having to wait for                                 
the runtime to start - instead having a loaded runtime waiting to dynamically load and run                               
functions. In dynamic languages such as python and js, such loading is easily done through                             
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the exec() and Function()/eval() functions respectively. Java can dynamically load                   
functions using the ClassLoader [37], Golang through plugins [38] and C has dynamic                         
linking.    
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Refunction 
The outcome of this project is Refunction. Refunction is an open-source go program that                           
creates, monitors and restores live container processes for serverless functions [39]. The                       
name stands for reusable function containers. 
 
Refunction acts as a layer on top of containerd [40], the industry-standard container runtime                           
manager used by Docker and kubernetes among others. Containerd, in turn, runs what it                           
calls “tasks” which are running containers. Containerd can theoretically use any kind of                         
container, but we choose the standard, well used and battle tested runc container [41]. 
 
Containerd is configured to create refunction’s desired containers, like a python runtime on                         
top of an alpine-linux distribution. Refunction then takes control of the container using                         
ptrace, and manages the continued function lifecycle from there; inserting new functions,                       
handling incoming requests and restoring the containers to their original state after a                         
timeout. Once restored, the container is ready to safely run a completely different function. 
 

 
Figure 2: Refunction Overview 

 
Refunction is intended to fit in to larger serverless systems as the “function running”                           
component. For evaluation purposes, an “invoker” component has been built in order for it                           
to run as part of Apache’s OpenWhisk platform. 
 
This project it built on the assumption that restoring a running process to the state it was in                                   
before it loaded the serverless function will be faster than starting up a new container,                             
runtime and function. In other words that a container restore is faster than a cold start. The                                 
body of this report will explain how this restoring is done in a fast and secure fashion, and                                   
the evaluation will test whether the assumption holds under these conditions. 
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The Worker: Restoring Live Processes 
The worker controls the complete lifecycle of a single container. It prepares, starts and                           
controls the container. 

Preparation 

File System 
Each worker will need a barebones file system containing essential system information and                         
whatever is needed for the runtime to start. We try to keep this file system small and simple.                                   
A read-only file system can even be shared between containers, so all workers using the                             
same runtime can use a single read-only filesystem. This makes it possible to run thousands                             
of containers on a single machine very space-efficiently, which would be difficult with                         
virtual machines. We create these file systems in layers. 
 
Container filesystems are layered file systems, with each layer representing the difference                       
(diff) to a filesystem on applying an operation (like apt-get install nodejs) . Containerd                         
creates and uses layers via snapshots. A snapshot represents the state of the filesystem at a                               
point in time. It can either be active where changes can be made or committed, representing its                                 
final state. All snapshots have a parent, and so form chains to represent complete                           
filesystems. 
 
In this project, a container file system is made by creating snapshots from a runtime’s saved                               
docker image and then adding the custom function container code to a final layer on top.                               
The docker save command creates a semi-oci [42] compliant tar archive containing a                       
manifest.json file and a directory for each of the docker image layers. When the worker is                               
used inside of the invoker component, these runtime archives are downloaded from an                         
amazon s3 bucket and saved to the /var/cache/refunction directory when the invoker                       
starts. The worker then turns these layers into containerd snapshots and creates a final layer                             
containing the runtime-depent code that loads and runs user’s functions. Snapshots are                       
uniquely identified by an id, and shared between workers, so after the first worker has                             
created its file system, other workers using the same file system do not have to repeat the                                 
same work. 
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Figure 3: Layered Snapshots 

Spec 
Once the file system is prepared and the worker has a snapshot to create its container from,                                 
it needs a container specification describing the parameters for the container. Containers are                         
highly configurable. Even choosing which namespaces to create for the container can be                         
changed in the spec, so these parameters are vital to the security of the container. 
 
Although there is a wide range of configuration parameters, we largely use the default linux                             
container parameters defined by containerd [43]. These defaults provide us with our                       
container basics - a root user in the normal namespaces with a few capability limits                             
(importantly NoNewPrivileges to avoid escalation) and mounts for /proc, /dev, /sys and                       
/run. Besides these defaults, we add a custom hook for bridge networking [52] and custom                             
process arguments dictating what should be run by the container (for example the command                           
“python serverless-function.py” should run when our python container starts). We also                    
provide pipes to be used as the containers stdin, stdout and stderr - which we will use as our                                     
primary method of communication with the container.  

Communication 
Containers are designed to be completely isolated from the host - ideally, it should not even                               
know that a host exists. How, then, should the container and the host talk to each other                                 
about which function should be run, and then about the requests to be sent to the function?                                 
We tried two approaches to communication, using network sockets and using stdin/out                       
pipes. 
 
Initially, communicating over the network seemed to be the logical approach. The container                         
would open a socket listening to any incoming requests, and the host knowing the                           
containers IP, could then send the container functions or requests - this is a fairly normal                               
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thing for a container to do. However, we had some problems using this approach in a                               
restoring context. When restoring the container, you would have to choose between using                         
the same socket to connect with the host over many function runs or to open a new socket                                   
after each restore. Using the same socket over many runs is difficult because sockets are                             
inherently stateful regarding data such as sequence numbers while restoring should make                       
the process exactly the same as it was - including the variables in memory which store state                                 
about the socket. Starting a new socket on each function can also be problematic. When                             
closing a unix socket, the operating system will leave it in TIME_WAIT state by default to                              
prevent delayed messages from the sender being received by the next process to use that                             
address. You could use a different port - which would require further communication about                           
which port to use and it still leaves sockets lying around. Alternatively, it would be possible                               
to do some dirty socket manipulation using linuxes’ TCP_REPAIR option. This made using                         
network sockets in this restoring context difficult. 
 
Instead, a much simpler approach of communicating solely via json messages to the                         
containers stdin/out pipes was used. Pipes are unidirectional fifo communication channels,                     
and a standard way of communicating between processes. The pipes connected to a                         
containers stdin/stdout are pipes just like any other, and the only way to directly connect                             
pipes between the host and container. We therefore decided that these pipes could be used                             
for message passing. All messages have the format {“type”: string, “data”:                   

JsonObject} and messages are separated by newlines. We also allow the process to print                           
normal data to standard out, such as error messages. These lines which can not be parsed as                                 
json objects can simply be logged for debugging purposes. 

Function Loading & Request Handling 
This project intends to eliminate as much of serverless cold starts as possible. There are three                               
parts of a cold start. First, the container has to be created. It then takes some time for the                                     
runtime to start, and finally we must load all dependent libraries before the function is run.                               
We must attempt to address all of these aspects. If we could restore the container to the state                                   
it was in before the runtime started, then would only avoid waiting for the container to be                                 
created. Although python can load in just a few milliseconds, other runtimes such as Java                             
can take hundreds of milliseconds to start. That being the case, we also want to avoid                               
waiting for the runtime to start. We will attempt to load function code and handle its                               
requests from within the runtime, after it has started. 
 
This means that the runtime must support dynamic code loading. This does not strictly limit                             
us to using dynamic languages, however. Although JavaScript’s built in eval function is well                           
known, Java can dynamically load code with its ClassLoader [37], Golang has support                         
through what it calls plugins [38], and there is even the hint[44] package which allows                             
evaluation of strings in Haskell. While this requirement may exclude some languages, it still                           
supports a wide array of the most popular languages for serverless. 
 
For each new runtime to be supported, one must write the code that will dynamically load a                                 
function into the runtime and then call the function given a set of parameters. Given that our                                 
primary method of communication is via messages on stdin/out, we will send json objects                           
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containing first the function code then the request parameters. The code in a runtime simply                             
needs to act on these requests. An example of such code for the python runtime is shown                                 
below. 
 

def start_function_server(): 
    send_message("started") 
 

    function_loaded = False 
    while not function_loaded: 
        try: 
            # Parses a json message from stdin that contains 
            # our python function 
            function_string = receive_function_message() 

 

            # Loads python function as string into runtime 
            # Can also execute `import x` statements 

            global main 
            exec(function_string, globals()) 

            function_loaded = True 
        except: 
            send_message("function_load_failed") 
            continue 
 

    send_message("function_loaded") 
 

    while True: 
        request = receive_request_message() 

        result = main(request) 

        send_data("response", result) 
 

    # Never finishes. Either killed or restored 

 
Given a few helper functions to parse json and read from stdin, we can see that the barrier                                   
for adding a new runtime is fairly low. Python 3.6, Node 8 and Java 13 have so far been                                     
added and shown to work in this system. 

Runtimes 
We will now briefly describe how user code and libraries are loaded into each runtime, as it                                 
differs slightly depending on the runtime. 
 
Python3 uses the exec() function as in the example above. This is a general purpose function                               
that can interpret any python code. This makes it suitable for loading the user’s main()                             
function but it can also handle any import x statements or other initialisation code the user                              
may want to run. 
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Node 8 currently uses the Module._compile() function, which is what is used under the                           
hood when a module is required by node. The user’s function code must export whichever                             
function they would like as their entry point under the name handler. 
 
Java 13 uses a custom ClassLoader to load the user’s class. In general, Java will lazily load                                 
all classes from ClassLoaders the first time they are called. We therefore need to define and                               
register a new ClassLoader that will return the user’s Function class when we call it. Our                               
ClassLoader receives a base64 encoded string that represents the user’s packaged jar file.  
 
When the JVM asks our ClassLoader for a new Function class, we search the jar (which is                                 
essentially just a zip) for the compiled Function.class file, and return its contents. Any                           
initialization can be done in the Function classes constructor. As for required packages, the                           
ClassLoader can be configured to load any classes in the user’s jar, so any libraries that the                                 
user may need can be packaged in the jar and dynamically loaded. 
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Isolation & Control 

The Importance of Isolation 
A container is an isolation construct that prevents a process from affecting other processes                           
on a host. One could call this spatial isolation, as it describes that a container should not be                                   
affected by the things around it while it is running. In a world where we want to reuse the                                     
same container for different tenants, one must consider its temporal isolation. By this, we                           
mean that a previously run function should not be able to affect future function runs, and a                                 
currently running function should not be able to deduce anything about previously run                         
functions. 
 
This is essential to the security of the container - a worst case scenario might be that a                                   
function manages to spawn a separate process inside the container that gathers data about                           
later functions, or data may be corrupted in a way that makes future functions crash. 
 
If we are going to reuse a container for multiple function executions, then it is important that                                 
we find a mechanism that allows us to modify the container’s state to be exactly as it was                                   
before any external code was run. A daunting task, perhaps. “Missing something” may not                           
be easily visible and could be fatal. In some ways, containers face a similar task where there                                 
is no “physical” barrier - only one in software. As with any software barrier, bugs in                               
containers can crop up [45], but a large collective effort has brought the technology to a level                                 
where it is trusted by a large part of industry in production. This project can not exhaustively                                 
deduce whether it is possible to provide complete temporal isolation for containers. However, we                           
can outline and tackle the main challenges in doing so, and show what benefits we might                               
have from it. A much larger effort besides this project would be required in order to create                                 
trustworthy temporal isolation.   

Refunction Isolation Approach 
In the end, we believe that the success of this project comes down to ensuring cheap                               
temporal isolation. In our case, that translates to being able to safely restore function                           
containers quickly. For this, we will use a two-level approach. First, we aim to use low level                                 
process information to restore the primitives of the container. We look at pages of memory,                             
the file system as a whole and all process registers to get a complete picture of which parts of                                     
the processes state has changed. Knowing that the actual bytes of the processes memory are                             
the same is much more comforting than concerning ourselves with how the function might                           
have been loaded in a particular runtime and the effects that it might have had. 
 
Secondly, we accept that we do not have to be able to restore all of the processes state (at                                     
least initially). Being able to detect misuse of the container is a good enough backstop to                               
ensure the integrity of the system. For example, many users may open sockets to fetch data                               
from the network, and typically such sockets would be closed when the user’s function is                             
finished. If a malicious or faulty user attempts to leave a socket open, being able to see the                                   
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open socket and kill the container instead of loading a new function would keep the system                               
secure. 
 
Our approach is to restore the containers state if “nothing went wrong” in the execution of                               
the user’s code and the user was not trying to be malicious. In the small portion of function                                   
runs where this is not the case, detecting (which is normally much easier than restoring) is                               
key. We have decided that in this situation, killing the container is acceptable. 

Container Control 
In order to be able to restore a process, we need to know what the state of the process                                     
originally was, and what has changed since. As described in the background, ptrace offers a                             
window into the state of a process. It has functions for stopping and starting the process,                               
getting/setting registers, changing areas of the process memory, preventing certain system                     
calls and much more. We will use these functions to help us record the state of the process                                   
before and after the user’s function runs. The same functions can then help us modify the                               
process to again be in its original state.  
 
In order to run these special ptrace functions, the parent (tracer) must attach itself to the child                                 
(tracee). In linux, a task or a “thread” of execution is a process. Each task/thread has its own                                   
stack, registers and /proc file system entries. It shares most of its memory with its parent,                               
but is still considered as an independent process. Due to this, each task must be attached to                                 
individually, and all subsequent ptrace calls must then be made from the same task that the                               
attach call was made from. 
 
We would like for the “checkpoint” of the process (the point at which the original state is                                 
saved) to happen after the runtime has started, but before the function is loaded. This is                               
because we are not troubled by any actions that the runtime may have to perform in order to                                   
start, such as spawning threads or sending internal signals - every user’s function expects                           
these actions to occur before their function is run. To take this initial checkpoint at the right                                 
point in time implies that there should be some level of synchronization between the tracer                             
and tracee as to when the tracer should assume control and the checkpoint should start. We                               
attempted two methods to synchronize the parent and child. The initial attach                       
implementation was a signal based ptrace dance. 
 
When a process is brought under a tracers control using PTRACE_ATTACH, ptrace will pause                           
the process and notify the tracer when certain actions happen. Depending on the options you                             
have set, this might be when a certain syscall was called, but the tracer will always be                                 
notified when the tracee receives a signal. Synchronizing on signals was the first approach                           
used. The tracee could notify the tracer that it is ready by sending a certain signal to itself,                                   
which the tracer would catch, and the tracee could be notified that the tracer has completed                               
the checkpoint by injecting a certain kind of signal which the tracee would interpret as a                               
signal to move on. 
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While this approach worked well for python because the python runtime does not make use                             
of the unreserved SIGUSR1 and SIGUSR2 signals, it did not hold for other runtimes. Node                             
uses  SIGUSR1 to start the debugger, and the JVM uses both signals internally. 
 
Instead, we opted to use the simpler stdin/out pipes, as we did for loading the functions. On                                 
startup, the tracee simply writes a “started” message to its stdout, after which it blocks,                             
waiting for messages on stdin regarding which function to load. When the tracer/parent                         
receives the “started” message, it knows that the tracee is ready and already in a blocking                               
state (waiting for a message on stdin). This is a suitable time for checkpointing. It can then                                 
safely attach to the container and checkpoint before sending a message with the function it                             
should load. 
 
In order to trace multithreaded processes, we have to do a bit more work to control each                                 
thread individually. For each task in the processes /proc/pid/tasks directory, we will start                         
a goroutine that is locked to a thread using runtime.LockOSThread() (by the same                         
tracer/same tracee rule). This goroutine can call PTRACE_SEIZE to attach to the process, and                           
will then spend the rest of its life in an event loop waiting for commands from the worker to                                     
send to the tracee. The tracee can only be sent commands in ptrace-stop state, so the                               
goroutine will forever wait4() the tracee to change its state. When stopped, the goroutine                           
can be sent ptrace functions to run, like getting the values of the tasks registers or telling the                                   
tracee to continue after being stopped. All such actions are synchronized with the main                           
worker using go channels. 
 
Due to the same tracer/same tracee rule, we can not debug with strace at the same time as                                   
refunction is tracing the process. Particularly for this project, understanding what syscalls                       
functions are running is interesting, so we have instead implemented an strace option that                           
will stop at and print every syscall for debugging purposes. 
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Checkpoint & Restore 
If a container is just a linux process tree with added isolation constructs, and a linux process                                 
is just a collection of information about the state of a running program, then checkpointing a                               
container would mean taking a copy of this process state, and restoring would be editing the                               
current state to match that of the checkpointed state. With a comprehensive understanding                         
of process state, this should be possible. 
 
A simplified model of a process has registers, memory (its virtual address space, managed by                             
the kernel), and a file system. We will now discuss how each of these process elements can be                                   
restored. 

Registers 
Registers resident in the CPU are distinct from other process memory. Depending on the                           
architecture, their count and types vary. In general, a process has a collection of general                             
purpose registers (rax, rbx etc.) and a program counter. On many architectures special                         
floating point registers and vector registers also exist. When in ptrace-stop (which can be                           
triggered for example by signals), a tracer can run one of a few PTRACE_GETREG commands to                               
retrieve the current values of these registers. In a future stop, equivalent PTRACE_SETREG                         
commands exist to replace the current register values. 
 
Since linux task “threads” share a lot of state with the main process, they can mostly be                                 
ignored during checkpoint/restore. However, registers are an exception. Each task has its                       
own independent set of registers. This means that all tasks must be stopped at the same time                                 
during checkpoint or restore, and that PTRACE_GET/SETREG should be run on each task                         
separately. 

Memory 
Think of a heavy runtime that needs to allocate itself a lot of memory to run, like a JVM with                                       
a large heap. If we were to naively restore this memory, we would take a complete copy of it                                     
before the function run, and “paste” it back into place once it was done. This poses two                                 
problems. If the process had allocated hundreds of megabytes of memory it would be slow                             
and, in the case of our simple serverless functions, we expect that most of this memory will                                 
not change. We would like to find a more efficient way of deducing which memory needs to                                 
be restored. 
 
Each linux process is given its own complete virtual address space for it to use. The process                                 
is not actually allocated the entire physical address space when it starts. Instead, the kernel                             
keeps a mapping between physical and virtual memory locations on behalf of the process.                           
When the process asks for access to a pointer not previously used, a “page fault” will occur,                                 
and the kernel will transparently allocate a new physical page to that virtual memory                           
address before continuing. This is called paging, and the process has no knowledge that it                             
happens. 
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The process utilises its entire virtual address space. At the lowest addresses is the text (code)                               
of the program itself, followed by initialized and uninitialized static data segments. From                         
here on the heap grows “up”. At the top of the address range are any command line                                 
arguments and environment variables, and from here the stack grows “down”. The address                         
space is also used when files are mapped into memory. 
 

/proc/pid/maps shows us an overview of the memory usage of the process. Shown below is                             
an example of a running python process. It is important to notice the access level of the                                 
process to some areas of memory. The second entry (read-only python3.6 at 557602ea5000),                         
for example, is for initialized data (initialized static variables) - these are not ever expected to                               
change, so even the process itself cannot write to them. We can also see various libraries                               
needed by python here. Depending on how they are mapped into memory, the process may                             
or may not need to write to them, but these areas of memory are all backed by a file on the                                         
file system. 
 
You will also notice that there are “anonymous” mappings that have no path. These are                             
areas of memory allocated to the process on calls to mmap. 

 

 
Figure 4: Labelled /proc/pid/maps File of a Python Process 

 
Knowing more about the processes memory, we realise that we will only have to take a copy                                 
of all writable areas of memory at checkpoint time. It is important to note that we need to                                   
store copies of these writable areas of memory elsewhere in memory. This incurs an extra                             
running cost in the system which will be evaluated later. An interesting further research                           
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question could be to consider whether this memory state could be shared between several                           
containers on the same machine. 
 
In restore, we would like to avoid completely rewriting all writable areas of memory if                             
possible. Ideally, we would like to know which pages were actually written to during the                             
running of the function, and only restore them. Luckily this functionality was built into the                             
linux kernel by the CRIU project [46]. By writing a particular number to the                           
/proc/pid/clear_refs file, the “soft-dirty” bit is cleared for all pages associated with the                         
process. On every page access from then on, the kernel will set the soft-dirty bit in its page                                   
table entry. Therefore once the function has finished running, only the pages with their                           
soft-dirty bits set will need restoring. The soft-dirty bits can be read from each pages entry in                                 
/proc/pid/pagemap, and the /proc/pid/mem file gives us raw access to the processes                       
memory to read to/write from. 
 
Unfortunately, memory restoring is still not as simple as copy/pasting pages of memory                         
that were used by the process. This will work in basic cases - for simple network functions or                                   
functions that mostly use cpu, but if a user’s code is very memory intensive, the story gets a                                   
little more complex. 
 
We have, up until this point, looked at restoring a group of memory areas in a processes                                 
/proc/pid/maps file. We made the assumption that the size of these maps remained the                           
same, and that the number of entries in the maps file remain the same. Let us explore what                                   
happens when these assumptions do not hold. 

Area Size Changes 
Most interesting code needs to use memory. From a programming perspective, when we                         
need more memory we will normally ask malloc() for some, and say that we are done with                                 
it by calling free(). malloc is just another library which will try to allocate you some                               
memory on the heap it already has and then uses brk and mmap to allocate more space. 
 
We mentioned earlier that the heap grows “down”, but how long for? We already know that                               
a process is not allocated the entire physical memory space when it starts, so there must be a                                   
defined end. The end of the heap is called the program break. The program break is actually                                 
initially set to the first address after the uninitialized data segment, so initially the program                             
has no heap. By calling the brk system call, we can change the position of the program break,                                   
which effectively allocates more or less memory to the process. As system calls are relatively                             
expensive, malloc() will allocate itself large chunks of memory with brk and then allocate                           
its memory to you internally. This means that there will normally be some space left on the                                 
heap. For us, this means that simpler functions will not need to grow the heap/call brk, so                                 
the area size will not change. 
 
When a user’s code uses more than the heap available, calls to brk are inevitable, and the                                 
size of this area of memory will change. What should we do with this memory when                               
restoring the process? Leave it? Let us assume that the memory may be used to store                               
sensitive credit rating information on customers. It should not be possible for the next user’s                             
function that runs to simply read that information straight from memory. This leaves us                           
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with two options. Zero the memory and leave the program break where it is, or change the                                 
break back to where it was. 
 
Zeroing the memory is a brutish solution, but will do the job. However, it leaves some                               
lingering questions. Will the restored program know that its heap size has magically                         
changed and be able to use it? Over time, will this not lead to containers being allocated                                 
more memory than they need, simply because an earlier user needed it? 
 
Restoring the program break back to where it was is certainly the cleaner solution, but is                               
more difficult to do. The brk system call would have to be run from within the execution                                 
context of the traced process - there is no pbrk call that changes the program break of                                 
another process. Suddenly the container in which the user runs its function needs to run                             
some special restoring code. Let us explore how this might work. 
 
Imagine we simply placed any special restore code we need after the user’s function runs.                             
For example a snippet of python code that calls the brk system call to deallocate memory.                               
Unfortunately, we would never be able to ensure that this code actually ran the way we                               
intended it to. After all, the user controls the memory and execution of the process while the                                 
function runs, it could remove or modify our code. Instead, we will have to insert our                               
restoring code into the process after the function has run. 
 
CRIU’s approach to running code in the tracees execution context is to inject a parasite [35]. A                                 
parasite is a blob of position independent code that can execute outside of the processes                             
normal stack, and remove itself when it has completed running, leaving the container in the                             
same state as it was before injection (minus changes caused by the parasite code itself).                             
Parasites are powerful, but complex, they have to be compiled into assembly instructions for                           
a particular machine, and must communicate with our tracer over a socket to receive                           
command parameters. 
 
The way parasite blobs are inserted into the user’s address space may offer us a way to                                 
avoid complete parasite injection. The parasite must be placed somewhere, like an area of                           
memory created by an mmap syscall. This syscall must also be run from the processes                             
execution context. In order to do this compel, CRIU’s parasite injection library, finds the first                             
executable area of memory, and changes the instruction to be a syscall instruction using                           
PTRACE_PEEK/POKEDATA. After properly setting the registers for the relevant syscall (in this                       
case mmap), the process is allowed to run the syscall, then stopped on its return. The                               
instruction and registers can now be replaced to what it was, returning the process back to                               
its original state. This method of syscall injection is enough to let us run arbitrary syscalls                               
inside the processes execution context. 
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Figure 5: Running a System Call Inside the Execution Context of the Tracee 

 
In our case, our tracee will be a stopped process currently pointing to an instruction in                               
memory. We simply replace the current instruction with SYSCALL, and the                     
PTRACE_SINGLESTEP to run only that instruction. After changing the registers and                     
instruction back, the process is as it was. 
 
We use this method of syscall injection in order to reset the programs breakpoint to where it                                 
was. Since setting the program break to a value lower than what it was means that you let                                   
the kernel reclaim that memory, this has the added benefit of removing all newly allocated                             
memory to the process. When the next function needs to allocate memory to itself using brk,                               
the kernel will provide the process with fresh underlying pages. 
 
We can also extend the use of this method to mremap any other areas of memory where the                                   
size has changed. 

New Memory Areas 
Not only the size of memory areas can change, but also how many memory areas are                               
available to the process. This can happen if the user’s function needs to allocate a large area                                 
of memory (malloc would mmap instead of brk), or if the user maps a file into memory.                                 
These are legitimate use cases, so we should be able to handle this too.  
 
Luckily, noticing new memory areas are as simple as re-parsing the /proc/pid/maps file.                         
Unmapping memory can be done with the munmap syscall. Since we now have a method of                               
calling arbitrary syscalls, unmapping the newly allocated areas is trivial. 

Removed Memory Areas 
This will be a much less common case for normal use cases. The areas of memory created                                 
when a runtime is started are usually required during the entire operation of the runtime,                             
such as standard libraries etc. We will assume that the removal of areas is caused by                               
unintended or malicious use. Although we could create new mappings for these areas and                           
fill them with our saved copies, detection and termination will suffice for now. 
 
Finally, we also perform many other small checks on each memory area, such as checking                             
that their inode and device numbers remain the same. We will again assume that any                             
differences in this data is uncommon and cause for termination. This leaves us in a position                               
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where we have a good overview of the processes address space and any changes that could                               
have been made by the user. 

The File System 
File systems can be extremely large and intricate graphs of data. If the user was given                               
complete control of the file system, exhaustively calculating what changes might have been                         
made could be far too expensive. Many current serverless platforms have read only file                           
systems with a “scratch space” located at /tmp. We should be able to enforce isolation                             
between functions under this premise with minimal added restore time. 
 
First, we know that any of the file system that is read-only could not have been changed by                                   
the process on disk. This is enforceable even in containers that appear to have root access                               
using mount namespaces. When using a mount namespace, the container file system will be                           
mounted as read-only in the host mount table. The user inside the container will be in its                                 
own namespace and see its file system mounted at /. If the user, for example, tries to                                 
remount / as read-write, it would not be allowed by the true owner - the mount table in the                                     
host space. 
 
Users can still load read-only files into memory, which are modifiable. Here there are two                             
scenarios. One case is where the file was loaded into memory before the function ran, in                               
which case refunction would know of its existence and have memory change tracking on,                           
making it possible to restore. The other case is when the function loaded the file into                               
memory after starting, in which case the new memory mapped file would be noticeable in                             
/proc/maps. In this case, the tracer would either have to unmap/obliterate the file before the                             
next function would run, or abandon the restore. Most importantly these changes are easily                           
noticeable. 
 
Finally, we must reason about the state in the writable /tmp directory. Each new function                             
must be given a clean /tmp directory, so the previous directory either needs to be wiped or a                                   
new one must appear in its place. AWS Lambda tmp directories are given up to 512MB of                                 
space in /tmp [47]. Actually removing 512MB of data from disk would slow up the restore                              
time. One alternative solution would be to mount a new /tmp directory on top of the current                                 
one. This would be much faster, ensure a clean directory, and the host could empty the old                                 
/tmp directory at a later point in time. 
 
Therefore if container file systems can remain read-only and if we can safely and quickly                             
provide a new /tmp directory to a container during restore, we can ensure temporal isolation                             
in refunction container file systems. 

Other Restorable State 
Many or perhaps most users serverless functions will want to use the network. One example                             
may be a function that takes a postcode as input and queries several weather apis for the                                 
weather at that location. Such network connections will usually be made with a socket,                           
which should be properly closed during restore as not to affect the next function. If the                               
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socket is closed by the user (rather than the remote), the socket will enter a TIME_WAIT state                                 
in order to ensure that the remote receives an acknowledgement of the connection                         
termination request. This ensures that the next user to use the socket can not receive any                               
messages from previous connections. This state can be problematic because TIME_WAIT can                       
be many seconds long. CRIU deals with this problem by placing the socket into TCP_REPAIR                             
mode where the socket can be terminated regardless of its state [48]. 
 
There are other small pieces of state that should be restored in a fully safe restoring system.                                 
These include: signals that the process may have in its queue, timers that may have been set,                                 
new mounts that may have been made and lingering or modified file descriptors. All of                             
these pieces of state are observable in when the process is in a stopped state, and given that                                   
the CRIU project can restore them, we expect them to be equally restorable in this case.  
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Library Loading 
We have previously postulated that in order to completely eliminate cold starts, the                         
container start, the runtime start and then all library loading must be considered. Having                           
tackled the first two, we should address the third. Serverless functions stand on the                           
shoulders of giants. While the functions themselves may be under 100 lines long, they may                             
need networking or data processing libraries that are thousands of lines long and need to                             
keep their own internal state. These libraries can often play a large part in the time it will                                   
take a function to start. 
 
Since each function has different dependencies, there will never be a one-size-fits-all solution                         
here. Instead, we will aim to improve the library loading performance for many common                           
functions, while making sure it is possible for functions with special dependencies to be able                             
to use them. 
 
For clarity's sake, let us generically classify a dependency. All libraries are somehow loaded                           
into the runtime before the function that depends on it runs. Usually, this means that a                               
collection of files is existent in the file system are loaded into the memory of the runtime,                                 
and some initialization code might be run. 
 
Our suggested baseline approach would be to have the most popular libraries in each                           
language already available in the containers image. As a provider, one would have to choose                             
a whitelist of libraries in each supported runtime in a few selected versions. These libraries                             
could either be already loaded into the runtime before the user function loads or simply on                               
disk to avoid the transfer cost. Pre-loading libraries on behalf of the user should be done                               
cautiously as it is possible for packages to interfere with each other. At the very least it                                 
should be clear to the developer which packages will be already loaded to avoid unwanted                             
surprises. This option might still be considered acceptable, for example, it may be                         
worthwhile to import some common python system libraries like math and json. Storing                         
popular libraries on disk is a cheap way to speed up the loading times for many cases,                                 
especially given that function containers on the same machine can share filesystems. 
 
At the final level, there should be a mechanism to load the required libraries into the                               
runtime after it has started but before the user’s function is loaded. As with the function                               
code itself, this data can be transferred over our stdin pipe. Once the container has received                               
the raw bytes of the libraries to be loaded, they somehow need to be interpreted by the                                 
runtime.  
 
Normally this data would exist as files on disk that the runtimes import machinery loads the                               
library from. Given that our file system is read-only, saving these files on disk would both be                                 
costly and very difficult. Once you realise that the first step any runtimes import machinery                             
takes when presented with a new dependency is to open and read the data of all relevant                                 
files, we can see a potential solution to this problem. With some more in-depth knowledge of                               
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the runtime, we should be able to skip the “read file from disk” step, and directly pass the                                   
runtime the bytes that those files would contain. 
 
We have already used this trick once. The way we loaded our java class into the JVM was by                                     
using a ClassLoader. This allowed us to pass the raw bytes of our compiled class file                               
directly to the runtime. Java is a particularly nice example to use here, as it lazily loads all                                   
classes. Before the user’s function is loaded, we can send the same ClassLoader all of the                              
class files that the function relies on. Then when the function is eventually run and the new                                 
dependency is stumbled upon, Java will ask all available ClassLoaders if they have a copy                             
of that class available. Luckily it will! 
 
Any runtime that can dynamically load code the same way our user’s function code has to                               
be loaded is also capable of dynamically loading libraries, which at their core are also just                               
code. We think that this approach will be sufficient in the case of less common dependencies                               
that must be loaded on demand. 

Towards Zero-time Library Loading 
How might we completely eliminate library loading times if we could? The user’s                         
dependencies would all have to be loaded into the runtime before starting. This means that                             
all the dependencies a user could ever need would have to be loaded into every container.                               
At the end of the day this is impossible because there is no way we can trust all packages in                                       
any runtime and we have no idea how these packages might interact with each other, let                               
alone the amount of memory needed for this. 
 
As we stated earlier, there is no one size fits all approach, but there are certainly common                                 
types of serverless function. Consider the problem statement for this project, “is it possible to                             
reuse the process state of a container for several function runs?”. After a dependency has                             
been loaded, but before the user’s function is loaded, the process is in a state where any                                 
user’s function that requires this dependency could be run. Can we reuse the processes state                             
caught at this point in time? This project has taught us that reusing process state certainly is                                 
possible. 
 
By importing a library, a developer places their trust into it. They commit to the state of the                                   
system when that library is loaded. Every user that imports the same version of that library                               
signs the same contract. If we can supply the exact same state of the system as the user                                   
committed to, “sharing” this library between different users functions could be deemed safe.                         
Usually, a developer places their trust in several libraries. To share several libraries between                           
users they would either have to want the same ones, or we should devise a minimal subset                                 
and return to a point in time where only those libraries were loaded. 
 
At this point we are faced with an issue that we have considered before. Previously we                               
considered whether or not we had to store all of the processes memory on a checkpoint and                                 
deduced that we only wanted to store what the user could change. Using clear_refs, we                             
could then deduce what pages actually changed after then function ran. We can apply the                             
same technique here. Rather than storing a completely new checkpoint, we can store the                           
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difference in state between before and after the library was loaded. We can call this                             
incremental checkpointing. 
 
Incremental checkpointing could provide a way for “kinds” of functions to exist in a                           
serverless platform. Function containers deployed on containers with many of its                     
dependencies already loaded would start much faster. On the other hand sending a function                           
to a container with no dependencies in common would cause the container to have to “roll                               
back”. The key question here would be what the cost of rolling back is compared to the cost                                   
of loading the library in the first place. 
 
The key to organically minimise rollbacks is for the controller to alter its scheduling. The aim                               
would be to schedule a function to an invoker that already has containers with many of the                                 
libraries it needs loaded. In other words, you would want to schedule functions with the                             
similar dependencies to the same invokers. Luckily OpenWhisk’s scheduling is currently                     
focused on reducing cold starts - with that much less of a problem with refunction,                             
scheduling attention can be focused elsewhere. 
 
For some workloads this could be a deal-breaking improvement. Think of serverless                       
functions that serve predictions based on pre-trained machine learning models. Avoiding to                       
have to load large machine learning libraries such as TensorFlow might make this use case                             
much more appealing. 
 
This approaches strength comes in numbers, if enough people were to be using the same                             
libraries as you, the probability of you not having to take the time hit of loading them on                                   
startup becomes small. If you are the only person using an obscure library, you should still                               
expect to have to load it. 
 
Due to the resource constraints of a single person project, incremental checkpointing has not                           
yet been implemented. However, all of the mechanisms by which it could work have been                             
implemented, which leads us to believe that it is possible.  
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The Invoker: Scheduling the Worker 
To understand the impact that restored containers can have on serverless platforms, we                         
should fit the refunction workers into a larger serverless system. If our worker is a single                               
managed container, we need a component to manage several workers on a machine. In                           
OpenWhisk, the component that schedules containers is called the invoker. In general, there                         
is one invoker per machine where functions will run, whose job is to receive requests from                               
the controller, potentially pull function code from a database and decide how best to run the                               
function. 
 
The OpenWhisk invoker is a well contained component that only interacts with the                         
controller (the entry point) via kafka, and needs access to the database where functions are                             
stored. We built a new refunciton invoker component for this project, that manages restorable                           
containers and replaces OpenWhisk’s current invoker component. The refunction invoker is                     
written in golang and is part of the same open source repository used for the worker. It uses                                   
go-kivik to communicate with the couch database and kafka-go [49] to attach to the relevant                             
kafka queues. Kafka-go had to be modified to speed up the read polling loop which has                               
subsequently been contributed back to kafka-go. 
 
The invoker makes the best use of its available resources. For both OpenWhisk’s invoker and                             
our modified one, requests received from the controller will be scheduled in available slots                           
until there are none left. A “slot” will approximately describe a fraction of resources                           
available on the machine (like a 256MB container with a share of CPU) and should not be                                 
overprovisioned. Slots can then become free in two ways. Either enough time elapses                         
without receiving another request (the so called “keep-warm” period) or the invoker begins                         
to evict functions, which must happen when the invoker is overloaded. Normally a slot                           
becoming free means shutting down a container. Using the refunction worker, we instead                         
restore the worker. This means that we can achieve a much higher throughput using our                             
new invoker as the restore time should be much shorter than the time it takes to shut down                                   
one container in order to start a new one for a different function. 
 
The way functions are scheduled when our refunction invoker is used is both one of the                               
main strengths and weaknesses of this project. While a normal OpenWhisk invoker may                         
have some “pre-warm” containers with a ready runtime, all refunction invoker containers                       
must be pre-allocated and “warmed”. For example, in the normal OpenWhisk flow, if an                           
invoker receives a java request, but only has python containers pre-warmed, the invoker                         
would start a new java container to run the function code in. Our aim is to never let such a                                       
cold start happen. Refunction invokers instead always have a fixed pool of started containers                           
for a particular runtime. This means that requests must be scheduled to invokers that have                             
containers running in the appropriate runtime. A python request must only be sent to an                             
invoker that has python containers in its pool. 
 
This trait makes serverless platforms better by eliminating the need to wait for runtimes to                             
start but introduces a new scheduling problem for operators. There now has to be enough                             
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capacity for the functions of each individual runtime in the system rather than the simpler                             
problem of ensuring the cluster has enough capacity for the sum of all functions. Although                             
we will later see how refunctions greatly increased throughput will partially mitigate this                         
problem, one would still have to introduce a more sophisticated algorithm to change the                           
allocation of runtimes according to demand in a successfully run a diverse serverless                         
platform. We do not address this problem as a part of this project, instead assuming a fixed                                 
set of available containers on each runtime.  
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Methodology & Environment 
When dealing with low-level systems code, knowing that your code works as intended can                           
be difficult and frustrating. Many actions may be very hard to view by human inspection                             
like bits set on a particular line in a /proc/ file. Some actions like a change in state of a                                       
process may happen too quickly to notice. Systems code can also have a tendency to be                               
flakey - it might work on one run but not on the next. On top of this, when the code is                                         
experimental, it may be necessary to rethink and overhaul sections in the space of a few                               
weeks. Ensuring that all of your previous built functionality still runs as intended can                           
quickly become a very difficult or impossible task. 
 
All of this makes the methodology and environment for developing systems code                       
particularly important. 

Language 
Golang was chosen as the language of choice for this project. One important reason for this                               
is that the underlying container systems, containerd and runc, are both built in golang and                             
as such have all necessary bindings for running containers. A more important reason for                           
choosing golang is that it is a very powerful statically-typed language that makes it easy to                               
interact with low-level parts of the system in a standard way. For example, much of the                               
ptrace interface that this project heavily relies on comes as part of the standard library. 

Libraries 
It is worth noting why containerd/runc was the chosen container runtime. Containerd is                         
really just a daemon that runs any kind of container under the hood, and so could run kata                                   
containers, or Amazon’s firecracker vms. It was chosen because it (although a very young                           
project) is already the de facto standard in industry for running Open Container Initiative                           
(OCI) [42] compliant containers. It is trusted by docker, kubernetes, cloud foundry etc. Runc                           
is the now open-source component of docker that actually spawns containers. It has been                           
around since 2015 and is well trusted and extensively used and scrutinised by industry [50]. 

Testing 
This project was built in a behaviour driven fashion primarily using integration tests. In a                             
behaviour driven world, you write tests describing how you think your application should                         
behave, and then write code that makes those tests pass. Integration tests are well suited to                               
systems code since the code primarily speaks to the kernel to change the state of various                               
parts of the system, rather than speaking to other components. Creating tests that check how                             
the system was affected by particular function calls then makes sense. Most of these                           
operations are very fast, so run quickly despite not being unit tests. BDD tests should also                               
help readers understand the effects your code has without having to deep dive into the                             
codebase. For example, the code below demonstrates how a function container might be                         
restored.  

42 



 

        It("can restore and change a python function", func() { 
                Expect(worker.Activate()).To(Succeed()) 

 

                function := "def main(req):\n  print(req)\n  return req" 
                Expect(worker.SendFunction(function)).To(Succeed()) 

 

                request := "jsonstring" 
                response, err := worker.SendRequest(request) 

                Expect(err).NotTo(HaveOccurred()) 

                Expect(response).To(Equal(request)) 

 

                Expect(worker.Restore()).To(Succeed()) 

 

                function = "def main(req):\n  print(req)\n  return 'unrelated'" 
                Expect(worker.SendFunction(function)).To(Succeed()) 

 

                request = "anotherstring" 
                response, err = worker.SendRequest(request) 

                Expect(err).NotTo(HaveOccurred()) 

                Expect(response).To(Equal("unrelated")) 
        }) 

 
This testing suite made it possible to discover and fix tricky flakes such as errors caused by                                 
commands being called from the wrong thread, and it gave the confidence to rewrite the                             
entire container activation sequence at a late stage of the project without introducing new                           
bugs. This goes to show how valuable good software engineering practice can be even in                             
experimental research projects. 
 
The entire testing suite is also run in parallel and in random order by a continuous                               
integration tool on every commit pushed to GitHub, as an extra net to catch bugs or flakes. 
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Evaluation 
We have slowly been outlining an alternate approach to running serverless functions.                       
Ultimately, our aim has been to eliminate cold starts almost entirely from serverless systems.                           
The approach we have taken has certainly increased the complexity involved in running                         
serverless containers, so we now aim to evaluate what the cost of this added complexity is. 
 
We have two burdens of proof due to our checkpoint/restore approach. Firstly, we have had                             
to show that function containers can be safely restored, which we have thus far named                             
temporal isolation. Although we have not produced an exhaustive proof of this, we have                           
attempted to convince you that we can provide temporal isolation through our                       
implementation. We believe in the strength of our low-level approach. Our implementation                       
is not complete due to the limitations of a one-person project, but even so, we hope that our                                   
reasoning about the primitives of linux processes has been enough to persuade you of the                             
feasibility of this approach. 
 
Our second burden of proof is to show that there is little or no change in the performance of                                     
serverless functions by using this approach. We have lightly touched on the potential                         
performance impact ptrace can have on processes and so have avoided excessive use of it                             
during the running of the function. We should explore if these earlier assumptions hold. The                             
other performance impact our approach can have is the overhead of storing the checkpoint                           
states of all running containers in memory, which we should also explore. 
 
Besides these burdens of proof, we would also like to display the strengths of restoring                             
functions. We predict three improvements. First, we expect cold start times to be greatly                           
reduced. Secondly, we predict that there will be less latency spikes as the function                           
concurrency increases. Finally, we anticipate that our system will be able to achieve a                           
markedly better throughput, particularly when dealing with diverse sets of functions. 
 
We will now explore these burdens of proof and system benefits by using our refunction                             
invoker within an OpenWhisk deployment.  

Experimental Setup 
Our OpenWhisk is deployed to a cluster of 6 machines running Ubuntu 18.04. Each machine                             
has 16GB of memory, an Intel Xeon processor with 4 3.1GHz cores, and a 7200rpm 500GB                               
hard drive. We use another separate such machine to run our tests on. All of these machines                                 
are located in the same datacenter (or even rack), connected by the same switch. 
 
We use Kubernetes [51] to deploy the “normal” OpenWhisk components. That is, all                         
components except for our special refunction invokers. Our refunction invokers require root                       
ptrace capabilities and extensive access to the /proc filesystem. Although it may be possible                           
to enable these capabilities in order to run refunction invokers inside containers, it simply                           
was not a priority in this project. 
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Our OpenWhisk kubernetes deployment only varies from the default setup in a few ways.                           
We use our custom docker images for the invoker and controller. For the controller we want                               
to change the language of OpenWhisk’s “health action” which the controller schedules to                         
check that invokers are healthy. For the invoker we want to change the default keep-warm                             
time, which we will discuss later. 
 
We also change the affinity of the cluster to force certain components onto certain machines.                             
We do this to spread our resources as much as possible, and to minimise interference.                             
Therefore the main OpenWhisk components: the kafa queue, the couch database and the                         
controller are on three separate machines. The 3 invokers we use also have a machine to                               
themselves. 
 
On the same machines that the OpenWhisk invokers are deployed to, we deploy our                           
refunction invokers. This allows us to switch between OpenWhisk invokers and refunction                       
invokers by removing the “invoker” label from the machines in kubernetes (which                       
deschedules the OpenWhisk invokers) and instead starting the refunction invokers. 
 
The Invokers are configured to have space for 8 containers each. With our default memory                             
limit of 256MB this only costs us 2GB, but we also do not want an overloaded cpu to impact                                     
our performance, so we stick with the lower container number. This leaves us with 24                             
container slots in our system. 

Cold Starts 
Cold starts occur when there is no deployed container available to respond to a request. This                               
will happen either if the function has not been run in a while (and been decommissioned) or                                 
if the number of concurrent requests increases. Let us explore the effect function restoring                           
has in these two cases. 

Low Throughput Cold Starts 
In order to save resources, serverless platforms will have a grace time during which they                             
will leave your container running even if no requests are received. We call this the                             
keep-warm time, which is normally configured to be half an hour or more. If the throughput                               
of the function is low enough, the functions container will constantly be decommissioned                         
and every invocation will result in a cold start. As the throughput increases beyond a certain                               
threshold, the container will not be decommissioned so every invocation will be warm. 
 
We therefore tested the effect of cold starts at low throughputs. In order to speed up the time                                   
taken for each test, we changed the keep-warm time in OpenWhisk and refunction invokers                           
to be 20 seconds. With this keep-warm time, we expect throughputs below 3 invocations per                             
minute (one every 20 seconds) to always incur cold starts. We collect 50 measurements at                             
each step by invoking the wsk cli with no-op functions in java and python. We use a no-op                                   
function because we only want to measure the function round-trip time and so the time it                               
takes to run the function is inconsequential. 
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Figure 6: Java Low Throughput Cold Starts 

 
Figure 7: Python Low Throughput Cold Starts 

 
The results are clear, we have decreased the cost of a cold start by an order of magnitude.                                   
The median and 90th percentile results for refunction are so close that they appear                           
overlapping on the graphs, the actual difference between the two is around 5ms. 
 
Some notes on these results. Firstly we notice that just at the boundary of the 20 second                                 
keep-warm time, OpenWhisk can handle cold starts even worse than normal. This is because                           

46 



it is possible for OpenWhisk’s invoker to schedule an incoming request to a container slot                             
that is still being decommissioned, which can incur extra wait time. 
 
We note that our refunction invoker also performs better than OpenWhisk’s when the                         
containers are warm. This is because OpenWhisk pauses containers between each invocation                       
in order to save resources. Unpausing containers when receiving a request takes around                         
80ms, which explains our latency difference.  
 
Serverless platforms pride themselves on making efficient usage of available compute                     
resources. Keep-warm times are costly for serverless platforms. Currently, keep-warm times                     
have to be fairly high in serverless platforms because their customers would not stand for                             
frequent performance spikes. The higher the keep-warm time, the happier the customer, but                         
the more resources that are left idle. Reflecting on these results, we consider the possibility                             
of reducing the keep-warm time in serverless platforms using function restoring. A                       
performance hit of 30ms between warm and cold functions could make keep-warm times in                           
the order of seconds acceptable. 
 
We have to be careful when considering the above argument, however. Here we have                           
demonstrated the cold start time of a no-op function. Most serverless functions will have                           
some dependencies that have to be loaded before the function can run. All such                           
dependencies would add a constant value to both OpenWhisk and refunction start times. 
 
We should also remind ourselves that this speed of cold start is only possible when the                               
system has available capacity for it. In a serverless system using refunction this is more                             
difficult than it was before because containers for a particular runtime must be available,                           
rather than just capacity on machines to start new containers. We will shortly describe how                             
running out of capacity is a much less dire situation to be in than it was before, but this                                     
added scheduling complexity should be noted. 

Concurrent Request Cold Starts 
cold starts are not just a problem if your serverless function is used very infrequently. At any                                 
point in time when the number of started function containers is not enough to deal with the                                 
amount of incoming requests, the system will have to boot a new container to serve your                               
request, causing a cold start. This will most commonly happen when your function needs to                             
scale according to demand. 
 
Imagine a service that suddenly has to deal with a spike in traffic. As the spike begins, the                                   
required concurrency will steadily increase. This scenario is approximately equivalent to                     
comparing the response times of a function as it scales from zero to peak concurrency. In our                                 
setup this means scaling from 0 to 24 concurrent requests (we have 24 “slots”). In order to                                 
simulate the system being “overloaded” we will slowly ramp up from 0 to 24 concurrent                             
threads. A ramp up time of 24 seconds will cause a new thread to start every second, which                                   
will call a python function that sleeps for one second. The second long sleep forces the                               
deployed containers to be almost always occupied. This forces the serverless system to                         
steadily deal with one more concurrent requests. 
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Figure 8: sleep(1) Response Times at Increasing Concurrency 

 
The results show us that scaling functions also cause cold starts. We can see that OpenWhisk                               
can really struggle in this scenario as the scheduler piles more requests onto the same                             
invoker until it reaches its capacity. Since starting a container takes more than a second,                             
container cold starts begin to pile up. Starting several containers in parallel clearly slows                           
everything down. Some resources like network namespaces even have to start sequentially,                       
so the starting containers may wait for global locks. Refunction manages this scaling                         
smoothly, where the cost of loading another copy of the function into memory is small. 
 
We see that as the number of concurrent requests evens out, the average response time for                               
OpenWhisk decreases dramatically as it now has enough containers deployed to respond to                         
every request.  
 
These results should, similarly to our low-throughput tests, be understood in our no-op                         
function context. Given that we load almost no libraries (in this case only pythons time), the                               
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function load time is minimal. If the function had heavy dependencies, their loading times                           
would be added to both refunction and OpenWhisk cold start times. 

Throughput Improvements 
Our wins in terms of reduced cold start times offer serious improvements for serverless                           
platforms, but we think that function restoring can provide more than these edge-case gains.                           
Given that our restore time is much faster than the time it takes to shutdown/startup a                               
container, the overall throughput of serverless systems using refunction should improve. 
 
In a simple scenario of a single function deployed to a serverless platform we would                             
generally expect OpenWhisk and refunction to have the same response times (after a while)                           
if the request rate stays the same. Both would have the same number of deployed containers,                               
which would be enough to handle all incoming requests. Only the underlying hardware and                           
the resources allocated to each container would affect its speed. However, no installations of                           
serverless platforms will handle single functions. Providers and larger organisations will                     
install a serverless platform in order to be used by a wide range of functions. Serverless                               
functions are in general of a much smaller and simpler nature and users are expected to                               
want to deploy many more of them than they would of say, full applications. 
 
We want to measure how platforms perform when dealing with many different kinds of                           
requests. We will make the same number of calls to OpenWhisk while randomly choosing                           
which function to run from an increasingly large set size. The first test will call the same                                 
function 1000 times, the second will randomly choose one of two functions 1000 times, then                             
one from three 1000 times and so on. We will call the size of the set the saturation of the                                       
system, where 100% saturation would be 24 different functions due to our 24 available slots                             
for containers. 
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Figure 9: Response Times With Varied Saturation - One Thread 

 
As expected, both systems perform as well when dealing with a single function. With lower                             
saturations, both can provide a stable, constant throughput. As OpenWhisk reaches a critical                         
point, however, it no longer has enough capacity for all of the available functions. When all                               
of OpenWhisk’s container slots are filled with deployed functions and it receives a request                           
for a function not yet deployed, it is forced to evict a container and start a new one to handle                                       
the request. This is why we see the response times for OpenWhisk skyrocketing to more                             
than that of a cold start as it reaches 100% saturation. Refunction, on the other hand, can                                 
happily perform a forceful eviction by means of a restore when it needs to, which in this case                                   
takes only a few milliseconds. 
 
This is a simple experiment with only a single thread performing all requests sequentially.                           
When faced with many concurrent requests, OpenWhisk would perform even worse since                       
starting containers in parallel increases their boot time. We must also realise that refunctions                           
restore times will not always be this fast - python is the fastest runtime to restore, and we                                   
made the assumption that the functions did not use many large libraries which would have                             
increased the restore time further. Regardless of this, we can conclude that refunction                         
performs better with diverse workloads and in “overload” scenarios. 
 
Why is it useful to increase the system’s throughput? For two reasons. Serverless platforms                           
are already popular in part because of their cheap and granular billing model. Costs are                             
calculated to the nearest fraction of a second, and several million requests can cost tens of                               
dollars. What we can see is that a system that can reach a higher throughput can utilise its                                   
available resources better. This means that the service can be offered even cheaper for users                             
and that providers might not have to over-provision resources to the same extent in case of a                                 
spike in traffic. 
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Measuring Restore Times 
When discussing the maximum throughput achievable by refunction, we mentioned that it                       
will depend on the types of functions being run, and therefore the time it will take to restore                                   
them. This could depend on three factors. The kind of runtime used, the size and number of                                 
libraries loaded, and the amount of memory the function uses while running. Let us explore                             
in what way these factors will affect the restore time.  
 

Type of Runtime 
The restore times of our three types of runtime were measured with a noop function over                               
100 runs. 

 
Figure 10: Mean Restore Times for Different Runtimes 

 
The kind of runtime has a large impact on the time it takes to restore the container. This 
depends on how “heavy” the runtime is in terms of how many threads are needed, how 
much state the runtime has and how much the runtime needs to use that state. For example, 
Java seems to need to touch many pages of its memory while running functions, so much of 
the time it takes to restore java is changing the memory pages back to how they were. 

Libraries Used 
Every imported library will undoubtedly change the state of the system. To test the impact                             
this would have on restore times, we tested the time it took to restore a few common python                                   
libraries over 100 restores. The associated function loaded with the library was just a no-op                             
in order to only measure the restore time of the library. We also measured the size of these                                   
libraries when loaded into memory by recording the amount of memory used by the process                             
before and after the library was loaded. 
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Figure 11: Mean Restore Times and Loaded Sizes of Common Python Libraries 

 
Here we can see that the added time it takes to restore a function with imports is roughly                                   
correlated to the loaded size of the library in memory. We deliberately say roughly because                             
this added restore time will again be correlated to the number of pages that have been                               
touched by the library which therefore have to be restored along with the time it will take to                                   
unmap new memory regions. While the size of a library in memory will indicate the effect of                                 
these impacts, the actual impact will vary. 
 

Memory Usage 
To measure the impact the memory usage of a function has on restoring, we recorded the                               
restore time when running a python function that allocates x MB of data, where x is the                                 
argument passed to the function. The function is restored and reloaded between each                         
invocation. 
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Figure 12: Mean Restore Times for Memory Intensive Functions 

 
We include standard deviation bars to display the spread of restore times. As the memory                             
usage increases, the restore time remains constant. This is because restoring a function with                           
an increased heap size is the cost of calling sbrk to restore the program break. Any new                                 
pages that the process needed on the heap for its use are reclaimed by the kernel, which has                                   
a constant-time cost. 

Memory Overhead of Storing Checkpoint State 
The speed of our restore comes at a cost, and that cost is storing a copy of the processes                                     
writable state in memory. We store these memory areas as raw bytes that are later used to                                 
restore those pages that were modified. 
 
On the same system with the same underlying container image, this size will remain                           
constant. We expect the type and version of runtime to be the only factor influencing the                               
checkpoint size. We display the checkpoint sizes of our three runtimes below.  
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Figure 13: Size of Runtime Checkpoints in Memory 

 
The size of a checkpoint varies considerably between runtimes. At the lower end of the                             
spectrum the cost of the 6 MB checkpoint for python will certainly not have an impact on the                                   
system, while a 210 MB java checkpoint for a container whose memory limit is 256 or even                                 
128 MB can be costly. 
 
Currently, the same memory checkpoint will be used over many function restores, so the                           
checkpoint cost is therefore not per user, but divided by all the users that use that container.                                 
This is one reason why storing large checkpoints can be motivated. We also note that                             
memory is cheap, while sharing processor cores may be more expensive. In our earlier                           
concurrency experiment, we saw how the startup time for containers could increase fourfold                         
because of the strain put on the system by container starts. We should play off the cost                                 
paying for a few extra GBs of memory to store checkpoint state vs the strain placed on the                                   
system by starting containers afresh. 
 
This problem could be alleviated in the future. Through byte-wise comparisons of                       
checkpoint states, we found that 98.8% of java checkpoint states are the same. This leads us                               
to believe that either much of a checkpoint could be shared between several containers, or                             
the process could be forced to use the same memory layout by using other restore                             
techniques used by CRIU. This could be an interesting area of future research. 

Ptrace Resource Overhead 
Ptrace is known to incur overhead when used. In particular, it would require extra                           
computation time at its boundaries. When protecting the syscall boundary using                     
PTRACE_SYSCALL, ptrace can slow down syscalls by an order of magnitude. We have to                           
ensure that ptrace does not incur overhead when we do not have syscall tracing enabled. 
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To test this we call the syscall getpid() 10 million times, both with the process being                               
attached, and when it is not. We use getpid() as a our syscall because we want to measure                                   
the time that it takes to switch between user and kernel execution contexts, rather than the                               
time it takes for the syscall itself to run. getpid() which reads a single variable is then a                                   
suitable choice. 
 

 
Figure 14: Nanoseconds to Perform getpid() With and Without Ptrace 

 
Luckily this shows us that ptrace is not slowing down our program when we do not have 
the extra syscall option enabled. The only other time ptrace will have to work while the 
process is running is when signals are being sent to the process, which in most cases is rare. 
Therefore, since we only have the tracee attached while the user’s code runs without any 
options enabled, we can conclude that we have no ptrace overhead. 
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Conclusion 
We have presented refunction, an alternative approach to deploying serverless functions that                       
reuses containers. Our approach addresses all constituent parts of a cold start: container                         
start, runtime start and library load. Our restore method can alter the state of a processes’                               
registers, memory and file system to the way they were in before any user’s code was run.                                 
We are able to restore Python, NodeJS and Java functions in 5-100ms, 20x faster than                             
OpenWhisk’s 2 second cold start time. We outline a simple, generic way to support more                             
languages. Using dynamically loaded functions paired with restores also increases the                     
overall throughput of serverless systems that have diverse workloads, up to 20x. We have                           
laid the foundations for how this method can be regarded as secure, by observing and                             
manipulating the primitives of the container process. 
 
Although checkpoint/restore projects such as CRIU have been in the works for a long time,                             
applying these concepts to live processes has been completely virgin territory. Dealing with                         
raw process memory can certainly result in obscure and frustrating behaviour. The key                         
ingredients to success were a meticulous behaviour driven integration test approach paired                       
with in-depth knowledge of the structure of linux processes. In general, I have found that all                               
cryptic behaviour becomes entirely logical with enough inspection, although sometimes this                     
clarity can only be achieved through sheer determination. 
 
This project demonstrates that a container reuse solution to the cold start problem is feasible                             
and beneficial, but there is much more work to be done before it can be considered for                                 
production use. Some potential areas of future work outlined in this report include: 
 

● Restoring lingering areas of process state: signals, timers, mounts, file descriptors. 
● The development of incremental checkpoints to be taken between each library load.                       

This would allow functions with the same imports to avoid loading those libraries on                           
cold start. A new scheduling method that optimises function placement by their                       
imports would be required.  

● Sharing checkpoint state between containers, or forcing processes to have the same                       
memory layout, given that 98% of Java checkpoints are the same. 

● Expanded reliability testing for the current runtimes Python, NodeJS & Java as well                         
as introducing further languages. 
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