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Abstract

Substantial developments have recently been made to devise provable methods that en-
sure the trustworthiness of deep neural networks. Most of these pieces of work study
properties that constitute the trustworthy aspect individually, often isolating factors
such as safety, transparency and fairness. Additionally, the majority focus on determin-
istic techniques, with only a few examining probabilistic ones. This work takes a holistic
approach to the AI trustworthiness problem, by exploring the connections and trade-offs
between robustness, privacy, uncertainty and performance through the lens of Bayesian
learning. By studying a novel adaptation of the Hamiltonian Monte Carlo inference
technique, we show empirically that it is possible to achieve adversarial robustness, dif-
ferential privacy, accurate uncertainty estimation and good performance. We examine
each of these desirable properties in isolation, quantify their contribution and clearly
show how they interact with each other, presenting the effect they have on the overall
system and their trade-offs, while underlining their crucial importance in practice.
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Chapter 1

Introduction

1.1 Motivation

One of the most crucial requirements for deep learning methods in real-life appli-
cations is trustworthiness. While these methods are ubiquitously used in practice,
their utility is secondary to their reliability; without trust, a tool that could benefit
society instead becomes harmful. Three particularly significant facets that we study
in this work are robustness, privacy and uncertainty. The first, robustness, describes
the ability of an artificial intelligence system to maintain its functionality and re-
spond appropriately in the face of ill-suited adversaries that arise accidentally or in
malicious circumstances. The second, privacy, is concerned with protecting these
systems from attackers who want to obtain information regarding confidential data.
The latter, uncertainty, ensures informative responses when encountering previously
unseen data and the ability to make a clear distinction between known and unknown
inputs when generating predictions.

Robustness has been widely studied by the machine learning community and the
process of making a system robust consists of generating adversarial examples from
already existing data [1] and using this data to train a safe model [2]. This is
especially important for users, as they receive formal (mathematical) guarantees
regarding the behaviour of a deep learning model depending on the input being fed
into it. A well-known adversarial example found in [1] is that of an image showing
a panda, which is being fed into a classifier. After adding a small amount of noise to
the image, while there is no discernible difference to the human eye, a Convolutional
Neural Network (CNN) classifies it as a gibbon with 99.3% accuracy. Such an effect
is only amplified when a model is used in a critical industry, such as healthcare.

Privacy is another essential aspect of trustworthiness and it involves safeguarding
sensitive information within the data used to train and operate machine learning
models. Privacy preservation is a necessary property for deep learning models de-
ployed in the real world as it prevents data leakage, which can be catastrophic when,
for example, it contains private medical records or information protected by legal
policies. To defend against such attacks [3], a method called differential privacy
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1.1. MOTIVATION Chapter 1. Introduction

(DP) [4] has been proposed and successfully used in deep learning [5] to offer strong
privacy guarantees.

Uncertainty in deep learning has gathered significant attention from the research
community [6, 7], focusing on the development of methods to quantify and manage
it in model predictions. This is crucial in concrete, real-life scenarios, as it enables
users to assess the reliability of the model’s decisions and understand the confidence
associated with each prediction. The importance of managing uncertainty becomes
even more pronounced in critical applications like medical diagnosis, where a mis-
classified image could lead to incorrect treatment. By incorporating uncertainty
estimation in their systems, practitioners can identify and mitigate risks, ensuring
that deep learning models make safer and more reliable decisions.

Although very desirable simultaneously, robustness and privacy guarantees have
been shown to be at odds in Deterministic (deep) Neural Networks (DNNs) [8] due
to the way they modify their responses given a certain input. Additionally, determin-
istic techniques poorly quantify uncertainty on out-of-distribution tasks, due to the
fact that they offer point estimate predictions, which are unable to reason well on
different tasks. This result calls for further investigation of different approaches to
deep learning that can offer all guarantees at the same time.

This is where a probabilistic approach to deep learning comes into play, more specif-
ically Bayesian Neural Networks (BNNs). In the Bayesian approach to neural net-
work learning, a probabilistic model is introduced to represent our beliefs regarding
the likelihood of different parameters (i.e. weights and biases) given the data, and
the goal is to find the predictive distribution which not only minimizes the learning
error, but also generalizes well on unseen data. One other essential property that
these models exhibit is the ability to quantify the uncertainty of predictions, property
which is extremely important in industries where a single decision can have a signif-
icant impact, such as transport and finance. Multiple methods have been developed
to learn from these probabilistic models [6, 9] and to establish equivalences with
deterministic neural networks [7].

2



Chapter 2

Background

2.1 Failings of Deterministic Neural Networks

Even though deterministic neural networks provide a powerful framework that is
widely used in machine learning for a variety of tasks (ranging from classification
to synthetic datasets generation), they have inherent faults and flaws that need to
be remediated. Their usual workflow of producing fixed predictions given a certain
input lacks the capacity to express the level of confidence or variability associated
with those predictions (i.e. quantify uncertainty). This limitation becomes particu-
larly pronounced in scenarios where the data is noisy, ambiguous, or when there is
inherent uncertainty in the underlying processes.

Furthermore, deterministic neural networks often do not perform well when han-
dling input variations and perturbations. This can be attributed to multiple factors,
such as: lack of explicit uncertainty modelling, the distribution of training data in the
input space, overfitting on training data or failure to capture inherent variability and
noise. Thus, the same model can provide vastly different outputs for slightly mod-
ified inputs, making them sensitive to small changes, as it has been shown in [1].
In domains where robustness is critical, such as medical diagnosis or autonomous
systems, deterministic models may fail in unforeseen circumstances and make life-
threatening decisions.

Another notable drawback is the fact that the current principled methods for han-
dling model complexity (L1 or L2 regularization, dropout etc.) have limited capacity
for modelling uncertainty, can run into the risk of underfitting and are sensitive to
the chosen dataset, thus performing poorly in environments where the data is lim-
ited, sparse or noisy. On the flip side, deterministic models which are trained on
large amounts of data are prone to overfitting, which results in poor generalization
performance on new data.

Moreover, neural networks often struggle with capturing complex distributions as
their inherent behaviour is to try and find one single minima of the loss function.
Thus, deterministic models are not well suited for scenarios where the same input
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2.2. TRUSTWORTHINESS Chapter 2. Background

can correspond to multiple plausible outputs because they fail to capture all the
function space landscape and will converge to the closest minima, subject to hyper-
parameters values. This limitation is especially significant in applications such as
natural language processing and image generation, where multiple valid interpreta-
tions may exist for a given input.

In addressing these failings, researchers have turned towards stochastic approaches,
such as Bayesian neural networks. By introducing uncertainty into the model through
probabilistic representations, these methods have the ability to model more faith-
fully uncertain and dynamic real-world phenomena. Bayesian neural networks, for
instance, can provide not only accurate predictions on unseen data but also proba-
bilistic (multimodal) distributions over possible outcomes, enabling more informed
decision-making and handling uncertainty in a principled manner.

2.2 Trustworthiness

As mentioned in section 1.1, the three aspects of trustworthiness, namely (adver-
sarial) robustness, privacy and uncertainty, are crucial properties machine learning
systems need to possess in order to be successfully deployed in real-life scenarios. As
such, significant efforts have been invested into developing the necessary theoretical
basis to achieve these properties.

Firstly, to overcome the lack of uncertainty quantification of deterministic neural
networks, Bayesian approaches such as Hamiltonian Monte Carlo (HMC) [9], Vari-
ational Inference (VI) [10] or Bayes by Backprop (BBP) [6] have been used to
compute the true posterior distribution of a neural network’s parameters. Apart
from the advantage of better generalization outside the training samples and these
new frameworks and training methods provide the necessary tools to detect out-of-
distribution data, and by doing so, they massively outperform deterministic tech-
niques on all metrics.

Then, the aforementioned probabilistic approaches to machine learning have been
equipped with certifiable guarantees for robustness against numerous types of adver-
saries [11], by leveraging existing work on robust deterministic techniques [1, 2, 12]
and adapting it to the probabilistic setting. This is an important result the trustwor-
thiness research community produced, not only because it provides resilience to ac-
cidental or malignant perturbations of input data at inference time, but also because
it manages to achieve at once two out of the three desirable properties a real-world
intelligent solution requires.

Similarly, the privacy trait has not been neglected either and building upon work
on statistical databases [4], a measure named Differential Privacy (DP) has been
introduced in the standard deep learning context [5], as well as in the probabilistic
one [13, 14] to quantify the loss of information during the learning process. This
ensures the fact that now practitioners can be confident that the datasets used in the
training process is protected and that privacy and uncertainty are simultaneously
achievable using Bayesian neural networks.

4



Chapter 2. Background 2.2. TRUSTWORTHINESS

Studying these properties in isolation naturally leads us to formulate an essential
question: Is it possible to achieve robustness, privacy and uncertainty all at once?.
This work attempts to unify these features by introducing a novel training procedure
and demonstrating its effectiveness through carefully designed experiments on a
variety of datasets.
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Chapter 3

Preliminaries

3.1 Deterministic Neural Networks

The framework used by neural networks to learn how to solve a task through pattern
recognition is widely known and used in practice. In 1989, G. Cybenko showed
that finite linear combinations of composition univariate function and a set of non-
linear activations can uniformly approximate any continuous function with support
in the unit hypercube [15]. This essentially states that neural networks are universal
function approximators, hence why they have gained in popularity with the increase
of computational power. The modern formulation of such structures assumes the
existence of an input set X , a number K of layers, a set of network weights Wk

and biases bk, a set of activation functions σk, a loss function L(·, ·) and because we
will be focusing solely on supervised learning (that is, learning from labeled data),
a label set Y. Mathematically, given layer Z1 = X , then for each layer Zk with
k ∈ {2, 3, ...K − 1} and output Ŷ, we have:

Zk = σ(Wk−1Zk−1 + bk−1) and Ŷ = σ(WKZK−1 + bK−1)

By computing the loss L(Ŷ ,Y) and performing gradient descent on the network
parameters (that is, the weights and biases) we can optimise the neural network to
learn any suitable task. The gradient descent update phase can be written as follows
for the parameters of a layer (where α is the learning rate):

Wk ←Wk − α
∂L(Ŷ ,Y)
∂Wk

and bk ← bk − α
∂L(Ŷ ,Y)

∂bk

3.2 Bayesian Learning

In the quest to develop better methods to learn from data, scientists have turned
to probability theory and integrated it with the neural network framework to pro-
vide better predictions and, in contrast to previous techniques, more flexible models
and most importantly, uncertainty quantification. As the name suggests, the battery
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Chapter 3. Preliminaries 3.2. BAYESIAN LEARNING

of existing techniques use at their core the essential Bayes Theorem to adjust prior
knowledge about a probabilistic model given new information inferred from data
and provide a new, more accurate model. The theorem states that for a probability
measure µ and two events A and B, the conditional probability of an event is based
on prior knowledge of conditions related to the event:

µ(A|B) =
µ(B|A)µ(A)

µ(B)

Therefore, in general, the objective in Bayesian learning is to find or approximate
the posterior distribution of a network’s parameters (θ), given a dataset D, a prior
p(θ) and a likelihood probability distribution p(D|θ), where the latter is strongly tied
to the loss function of a neural network:

p(θ|D) =
p(D|θ)p(θ)

p(D)

Because the model architecture is usually fixed and model selection is not included
in the optimisation process, then p(D) = 1 and can thus be omitted in the above
equation.

3.2.1 Approximate inference

Approximate inference is a computational approach used in Bayesian learning to
estimate quantities of interest when exact inference is computationally intractable
or too expensive. Multiple approximate inference methods have been proposed to
tackle hard problems, and some of the best-working approaches will be presented
below.

1. Variational Bayes: These type of methods, such as [10] or [6], aim to find
an analytic variational approximation to the posterior probability distribution
we are interested in finding. This is achieved by minimizing a measure that
quantifies the loss of information when encoding when using a different data
distribution rather than the true one. This measure is called KL (Kullback-
Leibler) divergence and is defined as:

KL(P || Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

where p and q are the probability density function of the distributions P and
Q. In general, in Variational Bayes, we are interested in finding the posterior
distribution p(ω|D) of the weights and biases ω = (w,b) of a neural network
given a dataset D. To this end, we try to approximate it using a distribution be-
longing to a given parametric family q(ω|θ), by minimizing the KL divergence:

θ∗ = argmin
θ

KL(q(ω|θ) || p(ω|D))

= argmin
θ

KL(q(ω|θ) || p(ω))− Eq(ω|θ)[log(p(D|ω))]

7
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This objective function is a lower bound on the marginal likelihood p(D) and
expressing variational inference in this manner allows us to use well-known
optimisation techniques in the parameter space, such as stochastic gradient
descent (SGD) on the components of θ.

2. Markov Chain Monte Carlo (MCMC): First introduced by [16] and later gen-
eralized by [17], the Metropolis-Hastings algorithm uses Monte-Carlo sam-
pling to randomly walk in the distribution space and generate a sequence of
samples from a probability distribution. The sequence of samples represents
an ergodic Markov chain with the invariant distribution being the desired one.

Building on top of that, [9] uses Hamiltonian dynamics to define the desired
probability distribution in terms of an energy function and sample from it in a
smart way, by using the gradient of the potential energy to move towards the
high probability zones and thus avoiding the random walk behaviour in the
process. This new algorithm, named Hamiltonian Monte Carlo is now used to
find the posterior distribution of a neural network’s parameters and is one of
the de facto Bayesian inference techniques used in practice, due to its modelling
flexibility (it can approximate arbitrarily complex probability distributions).
While one can argue that not having a closed-form of the density function
for the posterior is a disadvantage, practically speaking, HMC is consistently
significantly more accurate than techniques that rely on making assumptions
regarding the shapes of distributions or the family they belong to, and thus
generalizes much better at inference time.

It is worth thoroughly defining HMC mathematically, as it will be the main
method used to find the Bayesian networks’ distributions in chapters 4 and
5. This technique is inspired from classical mechanics, where the total en-
ergy of a dynamical system, named Hamiltonian, is expressed as a function of
the coordinates in space q and momentum p of said system. Thus, given the
Hamiltonian:

H(p, q) = K(p) + U(q)

where K(·) and U(·) denote the kinetic and respectively, the potential energy,
then the equations of motion are:

dqi
dt

=
∂H
dpi

dpi
dt

= −∂H
dqi

This is extended to a probabilistic setting by considering the potential energy
to be the true posterior distribution of our parameters of interest, and the
kinetic energy to be a zero-mean Gaussian corresponding to the momenta of
the system. The latter is one of the significant improvements HMC exhibits
over random walk algorithms, as it is able to traverse the parameter space in
a smart, informed manner. In Bayesian statistics, where the posterior is the
quantity of interest, the two energy quantities are defined mathematically as:

8
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U(q) = −log[π(q|D)] = −log[π(D|q)π(q)]

K(p) = pTM−1p/2

In order to simulate the evolution of the system, the motion is discretized using
the leapfrog (integration) method:

pi(t+
ϵ

2
) = pi(t)−

ϵ

2

∂U
∂qi

q(t)

qi(t+ ϵ) = qi(t)− ϵ
pi(t+

ϵ
2
)

mi

pi(t+ ϵ) = pi(t+
ϵ

2
)− ϵ

2

∂U
∂qi

q(t)

The last step of this process is called the Metropolis-Hasting acceptance step
and involves computing the difference between energy quantities at the be-
ginning and end of the simulation and decide probabilistically whether such a
simulation is a realistic one. Given the Hamiltonian energy function and the
canonical distribution over states with probability density:

P (q, p) =
1

Z
exp(
−H(q, p)

T
)

the probability of a leapfrog simulation step knowing the initial states q and p
and the proposed states q∗ and p∗:

min[1, exp(−H(q∗, p∗) +H(q, p)]

Algorithm 1 Hamiltonian Monte Carlo algorithm

function HMC(U, grad U, epsilon, L, current q)
q = current q
# independent standard normal sample
p = rnorm(length(q), 0, 1)
# Make a half step for momentum at the beginning
current p = p - epsilon * grad U(q) / 2
# Alternate full steps for position and momentum
for i in 1:L do

# Make a full step for the position
q = q + epsilon * p
# Make a full step for the momentum, except at the end of trajectory
if i ̸= L then

9
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p = p - epsilon * grad U(q)
end if

end for
# Make a half step for momentum at the end
current p = p - epsilon * grad U(q) / 2
# Negate the momentum at end of trajectory to make the proposal symmetric
p = -p
# Evaluate potential and kinetic energy at start and end of trajectory
current U = U(current q)
current K = sum(current p ˆ 2) / 2
proposed U = U(q)
proposed K = U(p ˆ 2) / 2
# Accept or reject the state at the end of trajectory, returning either the position
# at the end of the trajectory or the initial position
if 1 < exp(current U - proposed U + current K - proposed K) then

return q # Accept proposal
else

return current q # Reject proposal
end if

end function

After a large number of iterations, using this method, we can numerically com-
pute the posterior distribution of our quantity of interest through the posterior
samples gathered in the process.

The pseudocode for HMC can be found above in algorithm 1. Our exposition
on HMC in this section has been closely derived from [9] (the algorithm being
reproduced verbatim), and we will build on this framework in section 4.3 with
novel modification.

3.3 Adversarial Robustness

Adversarial robustness is a critical aspect of neural network security, aiming to en-
hance the resilience of models against adversarial attacks. Adversarial attacks in-
volve the intentional manipulation of input data to mislead a neural network’s pre-
dictions. This is achieved by adding carefully chosen perturbations to the input data,
often imperceptible to the human eye, which causes the model to make incorrect pre-
dictions that can potentially have severe consequences when used in situations with
high societal impact.

3.3.1 Attacks

Various attack methods have been developed to exploit vulnerabilities in neural net-
works, highlighting the need for robust defenses. Common adversarial attack strate-
gies include:

10
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1. Fast Gradient Sign Method (FGSM): This attack is detailed in [1] and involves
perturbing input features by a small amount in the direction of the gradient of
the loss with respect to the input. FGSM is the quickest to generate and most ef-
fective adversarial attack, which makes it a perfect candidate for incorporation
into the training procedure in order to gain robustness guarantees. Formally,
for a neural network model with parameters ω, one input data point x, true
label y and loss function J(ω, x, y), an adversarial example can be generated
by perturbing the input x by:

η = ϵsign(∇xJ(ω,x, y))

2. Projected Gradient Descent (PGD): Described in [12], PGD is an iterative
variant of FGSM, where perturbations are applied successively over multiple
iterations. This attack aims to find the best adversarial example by refining the
perturbations over a fixed amount of iterations by moving in the direction of
the gradient of the loss function (i.e. towards where the loss is greates) and
then projecting the result onto the possible set, which is a constrained ϵ-ball
around a data point. The best possible attack at iteration t+ 1 is defined as:

xt+1 = ΠS(x
t + ϵsign(∇xJ(x, y))

where the constraint set S is :

S = [xt − ϵ, xt + ϵ]

3. Transfer Attacks: This is a type of black-box attack formalized in [18]. In this
framework, adversarial examples generated for one model can often mislead
other models, even if they have used the same machine learning technique
(intra-technique transferability) or using a different one(cross-technique trans-
ferability). It can be observed that these type of attacks generalize across a
wide-range of models and thus represent a serious threat.

In response to the development of adversarial attacks techniques, the machine learn-
ing community has focused on finding ways to train robust models, by incorporating
a mix of clean and adversarial examples in the training process to improve resilience.
Additionally, these newly developed methods also have the advantage of providing
formal mathematical guarantees regarding the robustness properties of a certain
model. This embodies the concept of certification, which will be detailed in the next
part.

3.3.2 Certification

Certification of neural networks for adversarial robustness involves establishing for-
mal guarantees regarding the model’s behaviour under various types of adversarial
attacks. Formal robustness certification often involves defining a perturbation re-
gion (or budget) around each data point within which the aim is to have the ma-
chine learning model make the same predictions, irrespective of the perturbation.
Therefore, when deploying neural networks in safety-critical applications where the
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consequences of missclassification or missprediction can be severe, robust certifi-
cation techniques offer a level of confidence that a certain model will behave in a
stable, expected manner inside the verified regions.

Some of the most recognized certification methods include:

1. Interval Bound Propagation (IBP): This method described in [2] involves
minimizing the upper bound of the worst-case prediction of a neural network
under l∞ norm adversarial perturbations. This means propagating a bounding
box (polygon) computed using through the network’s layers to create a verified
output range during the forward pass and thus provides a certified guarantee
that the model’s predictions remains within these bounds for any perturbation
within the initially defined ϵ-ball. In practice, this means that for every input
data point x, the upper z̄0 = x+ ϵ1 and lower

¯
z0 = x− ϵ1 bounds perturbations

are computed and then propagated through the network. Solving the opti-
misation problems that aim to find the worst case bounds after propagation
through an affine layer yield the following solution, where W and b are the
weights and biases of a layer and k represents the layer’s index in a network.

µk−1 =
z̄k−1 +

¯
zk−1

2
rk−1 =

z̄k−1 −
¯
zk−1

2

µk = Wµk−1 + b rk = |W |rk−1

¯
zk = µk − rk z̄k = µk + rk

The lower and upper bounds preservation is ensured by the monotonicity prop-
erty of the nonlinear activation functions (denoted hk(·)). Thus, it is easy to
see that:

¯
zk = hk(

¯
zk−1) z̄k = hk(z̄k−1)

Lastly, in the context of classification under adversarial perturbation, which we
will focus on, we can calculate the worst-case logits using the aforementioned
bounds in the following way:

ẑK,y =

{
¯
zK,y(ϵ) if y = ytrue

z̄k,y(ϵ) otherwise

This function definition ensures that every label every incorrect label is associ-
ated to the upper bound worst case, and the correct label to the lower bound.
Optimising against this essentially means quantifying how much we can per-
turb the input without the upper bound confidence exceeding the lower bound
confidence, which would result in an incorrect prediction.

2. Mixed-Integer Linear Programming (MILP): MILP-based approaches such as
[19] formulate robustness certification as a Mixed Integer Linear Programming
problem, where the objective is to maximize the size of a verified region around
each data point. MILP solvers are then used to find the optimal solution.

3. Randomized Smoothing: This complete certification method formalized in
[20] involves perturbing input data with random Gaussian noise, observing
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the model’s predictions and then providing a robustness guarantee based on
the variance of the noise and the probability of classification of the two most
probable classes.

Adversarial robustness certification thus plays a crucial role in enhancing the trust-
worthiness of neural networks, particularly in safety-critical domains such as au-
tonomous vehicles, healthcare, and finance. As research advances in this field, more
generic and faster methods are being developed, which generalize for multiple types
of attacks and hence make large-scale, real-world tasks easier to reason about in
terms of resilience.

3.3.3 Robust Training

Since both attacks and certification methods are successful in finding malignant (ad-
versarial) examples of perturbed data points that can trick carefully-designed intel-
ligent systems’ predictions, we are interested in designing procedures that defend
against these types of out-of-distribution inputs. It turns out that using the attacks
themselves as defense mechanisms allows us to prevent failures at inference time.

In practice, this means dynamically augmenting our datasets during training, com-
puting the loss with respect to both our initial and perturbed inputs and optimising
both at the same time. Mathematically, if ŷ and ŷadv are the logits associated to the
initial and respectively, the perturbed (adversarial) inputs, then, given the criterion
ℓ(·, ·) used in normal training (e.g. cross entropy for classification problems) and the
hyperparameter α, which controls the trade-off between learning from the standard
and adversarial examples, the final loss function is:

L(ytrue, ŷ, ŷadv) = α · ℓ(ŷ, ytrue) + (1− α) · ℓ(ŷadv, ytrue)

The aforementioned logits associated with the adversarial examples are computed
by doing a forward pass in the case of attacks such as FGSM and PGD, whereas in
the case of IBP the procedure is slightly more involved, but described in detail in
section 3.3.2. After computing the loss defined above, standard back-propagation is
performed on the network’s parameters to optimise predictions.

Lastly, it is worth mentioning the certifiable robustness of a neural network with
parameters θ defined by the function f θ : Rn → RC , where C is the number of
classes and σ(·) is the softmax function, is defined by:

R̂ϵ(θ,D) =
1

m

m∑
i=1

I[∀x̄s.t.|x∗
i − x̄| ≤ ϵ, argmax

c∈{1,...,C}
(f θ(x̄) = c∗i )]

For every fixed ϵ, the value obtained from the above equation at inference time for an
IBP-trained network provides a worst-case lower bound of the robustness, guarantee
which is extremely valuable for trustworthy systems deployed in critical scenarios,
such as medicine or finance.

13
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3.4 Privacy

3.4.1 Differential Privacy

Stemming from work on privacy-preserving statistical databases, differential privacy
is a technique that offers statistical guarantees for the anonymity of individuals,
while allowing extraction of useful insights from data. More specifically, a random-
ized mechanismM : D → R with domain D and rangeR satisfies (ϵ−δ)-differential
privacy if for any two adjacent inputs d, d′ ∈ D and for any subset of outputs S ⊆ R
it holds that:

Pr[M(d) ⊆ S] = ϵPr[M(d′) ⊆ S] + δ

The ϵ parameter controls the privacy guarantee (a smaller ϵ providing stronger pri-
vacy), while δ allows for a small probability of failure of said guarantee. This def-
inition exhibits multiple extremely convenient properties, especially regarding the
composition of mechanisms. Practically, an algorithm that satisfies (ϵ − δ)-DP is
guaranteed to be able defend against a large variety of attacks, such as membership
[3] or property [21] inference attacks.

3.4.2 Mechanisms of Differential Privacy

There are multiple mechanisms used to achieve differential privacy. To understand
how they work, we need to first define a property of the function of interest, called
sensitivity. Given a function f : D → Rk, where D is the domain of the dataset and k
is the dimension of the output, the l1-sensitivity ∆1f of a function f is the maximum
difference in the output of f when applied to any two adjacent datasets d and d′:

∆1f = max
d,d′⊂D

||f(d)− f(d′)||1

The l2-sensitivity is defined similarly, but instead uses the l2 norm:

∆2f = max
d,d′⊂D

||f(d)− f(d′)||2

Now we are prepared to introduce the most well-known DP mechanisms:

1. The Laplace Mechanism:
The Laplace mechanism adds Laplace noise to the output of f . Let b be the
scale parameter of the Laplace distribution, then we can write the probability
density function of the Laplace distribution as: Given a dataset D, the Laplace
mechanism A is defined as:

A(D) = f(D) + pLaplace(0|b)

To make the mechanism A satisfy (ϵ, 0)-differential privacy, all we need to do
is set the scale parameter b of the Laplace distribution to be large enough such
that the noise makes the data anonymous:

b = ∆1f
ϵ

14
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The meaning of δ is that there is a small probability of accidental information
leakage over multiple runs of a mechanism (i.e. the mechanism is ϵ-DP with
probability 1 − δ). This approach is powerful because it allows for setting an
arbitrarily small privacy loss that will be maintained every time the algorithm
is applied.

2. The Gaussian Mechanism:
The Gaussian mechanism works similarly to the Laplace mechanism and its
cumulative effect over many computations provides comparable privacy guar-
antees, by adding a Gaussian noise sampled from N (0, σ2), where in general
the density function of a Gaussian with mean µ and variance σ is:

N (µ, σ2) = 1√
2πσ

e
−(x−µ)2

2σ2

Thus, the Gaussian mechanismM defined as:

M(D) = f(D) +N (0, σ2)

is (ϵ, δ)-differentially private for an arbitrary ϵ ∈ (0, 1) if σ ≥ 2ln( 1.25
δ

)∆2f

ϵ
, as

proven in [22].

3.4.3 DP–SGD

Taking a small leap from the work on differential privacy, it is easy to notice its
application in the field of deep learning, because of a common key component of
any such system, the dataset, which acts as a (albeit small) database. It turns out
that from of the probability distributions of the data, as well as from the optimisation
technique of backpropagation, an attacker can gain knowledge about the data used
in training by making associations between the magnitude of the gradient and a data
point. One well-known attack of this type is called a membership inference attack [3].

Fortunately, since at the heart of the whole neural network’s paradigm resides the
sequential composition of functions, the deeep learning framework lends itself to
application of the sequential composition theorem [22], which states that the com-
position of a sequence of k (ϵ, δ)-DP algorithmsMk is (kϵ, kδ)-DP.

Thus, thinking of a neural network as a sequence of mechanisms, [5] introduces a
training technique that provides DP guarantees, as well as a moments accountant,
which is a method that computes tight bounds for the value of ϵ and δ. The training
technique consists of clipping the gradient of the loss function for each data point in
a batch to a maximum bound bg at every backpropagation step:

ĝx = clipbg(∇θL(x, θ)) ∀x ∈ Bi

to bound the l2 sensitivity of the function for every element in a batch Bi. The
average value of the gradient is then computed, and a proportional amount of noise
satisfying the σ inequality in section 2 is added to ensure the DP guarantees of the
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data, before stepping in the opposite direction of the average noisy gradient:

g̃i =
1

|Bi|
(
∑
x∈Bi

ĝx +N (0, σ2))

In practice, this means that (i) the gradients are made more uninformative, so that
an attacker is not able to infer easily that a certain data point heavily influences the
decision boundary and that (ii) the general learning process is obfuscated through
randomization of the optimisation stage (i.e. stepping toward the minima).

Lastly, it is worth mentioning that the privacy landscape has been further widened by
extending the concept of differential privacy to probabilistic methods [13, 14], one
of which will be a key part of section 4.2. Not only that, but it is possible to write the
privacy guarantees of BNNs such as Stochastic Gradient Langevin Dynamics (SGLD),
Bayes by Backprop and Monte Carlo Dropout (MC-Dropout) in terms of the DP-SGD
guarantees. Once again, while previous work has only been concerned with the
effect of introducing individual property guarantees in BNNs (i.e. private BNNs or
adversarially robust BNNs), this thesis will study the relationship and overall impact
of using mechanisms that ensure multiple aspects of trustworthiness concurrently.
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Chapter 4

Methodology

In order to perform an original analysis at the intersection of privacy, robustness,
and uncertainty, we establish a novel modification of the Hamiltonian Monte Carlo
Bayesian inference technique that allows for the optimisation of each desirable prop-
erty. Training a probabilistic machine learning model using this new method aims
to show the connection between robustness, privacy and uncertainty in Bayesian
neural networks by simultaneously achieving and and quantifying the guarantees
for each of these properties of safe and trustworthy AI. In order to understand our
methodology improvement, we will first present a number of methods which have
been proved to attain the aforementioned security guarantees in theory, as well as in
practice. Then, we will build upon these pieces of work and introduce our novel algo-
rithm, which allows us to jointly learn adversarially and privately, all while retaining
accurate uncertainty estimates. The presented methodology and experiments will
be conducted using the Hamiltonian Monte Carlo probabilistic inference technique,
described in detail in section 3.2.1, due to its well-known performance with respect
to uncertainty and accuracy metrics.

4.1 Certifiable Bayesian Inference

Naturally, with the advantageous development of the new method of Bayesian learn-
ing, new attacks that target the predictive distribution given by a BNN at inference
time arise, making it essential to ensure the robustness of such networks. To generate
an adversarial data point that can be used to attack a BNN, one only needs to mod-
ify the attacks described in 3.3.1 by taking the expectation with respect to network’s
parameters distribution, which can be computed through Monte Carlo methods. For
example, given a posterior probability distribution p(ω|D) over the set of parame-
ters of a BNN, the adversarial perturbation in FGSM, which is now directed at the
predictive distribution, becomes:

η̃ = ϵsign(Ep(w|D)[∇xJ(ω, x, y)]) ≈ ϵsign(
n∑

i=1

∇xJ(ωi, xi, yi))
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In order to achieve certifiable adversarial robustness in BNNs, a novel method has
been introduced in [11], which involves defining a new type of likelihood called ro-
bust likelihood, and then using it in conjunction with an Interval Bound Propagation
(IBP) technique. The robust likelihood formula is achieved by first defining the min-
imizer of the softmax for class y, given a network with parameters ω and an ϵ-ball
perturbation around a data point x:

σy(f
ω,ϵ
min(x)) = min

x′:|x−x′|≤ϵ
σy(f

ω
min(x))

Then, for the likelihood p(y|x,w) to also be influenced by the robustness of a BNN in
the neighbourhood of a data point, ϵ is modelled as a random variable and the likeli-
hood is expressed as the expectation of the softmax minimizer over the distribution
given by pϵ(ϵ):

p(y|x, ω) =
∫
R+

σy(f
ω,ϵ
min(x))pϵ(ϵ)dϵ

= Eϵ∼pϵ [σy(f
ω,ϵ
min(x))]

Considering 0 ≤ λ ≤ 1 and η > 0, having the probability density function for ϵ as:

pϵ(ϵ) =

{
λ if ϵ = 0

1− λ if ϵ = η

leads to the following form of the robust likelihood:

p(y|x,ω) = λ · σy(f
ω(x)) + (1− λ) · σy(f

η,ω
min(x))

This particular shape of the likelihood is essential, because it allows us to use the
same framework defined in section 3.3.3 during the training of the Bayesian neu-
ral network to learn how to both predict the correct labels and be secure against
adversarial perturbations.

The actual worst case logits (i.e. the softmax minimizer) are obtained using exactly
the IBP method introduced in [2] and defined mathematically in section 3.3.2. This
method is very powerful, because it provides a lower bound on the certified robust-
ness of a BNN for any given perturbation radius, result that (i) is generic and can
be applied to multiple instances of probabilistic inference and (ii) combines the ad-
vantageous properties of statistical learning with security guarantees, which is very
useful in real-life applications.

4.2 DP–HMC

As it has been described in section 3.4.3, differential privacy mathematical guaran-
tees can be formulated for both deterministic and probabilistic deep learning tech-
niques. Naturally, this work has been extended to cover the HMC method, as pre-
sented in [14]. The main results of this paper reside in (i) recognising that the
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leapfrog integration techniques equipped with the DP Gaussian Mechanism are ap-
plied sequentially and thus fit the premise of the strong composition theorem and
that (ii) the data leakage does not only happen when stepping in the opposite di-
rection of the potential energy gradient but also during the Metropolis-Hasting ac-
ceptance step. An intuitive explanation for the latter relies on remembering the fact
that the probability of accepting a sample proposal is proportional (and thus depen-
dent) on the energy difference between the last step in the Markov chain and the
proposed one. This means that an attacker can infer the relative positions of two
consecutive Markov chain samples, inference which signifies information leakage of
the data used in the learning process.

To address these shortcomings, firstly, the gradient is clipped and noise is added
to the descent step, similarly to the equations of DP-SGD, described in section 3.4.3.
Considering our network parameters to be θ and the current value of the momentum
to be p, the descent step becomes:

p = q − ϵ

[
∇ ln p(θ) +

(∑
x∈X

clipbg(∇ ln p(x|θ))

)
+ ξ

]

where ξ is sampled from a normal distribution:

ξ ∼ N (0, σ2
g) with σg = 2 · τg · bg

In a similar manner, noise is added to the Metropolis-Hastings step in order to fool
possible attackers. Because this operation changes the acceptance probability and
can thus heavily influence the convergence properties, ergodicity and irreducibility
of the Markov chain simulation, a correction proportional to the norm of the differ-
ence between the current (θ, p) and proposed sample (θ∗, p∗) is performed. Applying
this DP-penalty algorithm results in the acceptance probability:

αDP (θ, p, θ
∗, p∗) = min

[
1,H(θ, p)−H(θ∗, p∗) + ξ − σ2

l (θ, θ
∗)
]

where, again, ξ is sampled from a normal distribution:

ξ ∼ N (0, σ2
l (θ, θ

∗)) with σl(θ, θ
∗) = 2 · τl · bl · ||θ − θ∗||

Lastly, it is important to quantify the privacy guarantees this method offers. Given
the number of leapfrog steps L for each proposal and the total number of steps in
the simulation (we can refer to this as number of epochs to make a link to the deep
learning framework) k, for a user defined epsilon, the DP-HMC algorithm is (ϵ, δ(ϵ))-
DP with:

δ(ϵ) =
1

2

[
erfc

(
ϵ− µ

2
√
µ

)
− eϵ erfc

(
ϵ+ µ

2
√
µ

)]
with µ =

k

2τ 2l
+

k(L+ 1)

2τ 2g

Using just these small modifications to the original HMC algorithm, we now have an
essential tool at our disposal that allows us to achieve privacy guarantees without
harming any of the properties of a Markov chain simulation, and we can thus be
confident that this method can be successfully applied in the context of Bayesian
inference for computing the posterior distribution of the network parameters.
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4.3 ADV–DP–HMC

Having now all the tools described in sections 4.1 and 4.2, we are now at a point
where we can define the ADV-DP-HMC algorithm, which allows us to learn the pos-
terior distribution of a neural network’s parameters (weights and biases) by using
HMC to sample from the distribution, all while preserving adversarial robustness
and privacy, and having the benefit of performant uncertainty quantification.

Before presenting the algorithm, we need to introduce some new notation, so that
the pseudocode is succinct and easy to understand. For any input X and network
f θ(·), we regard the adversarial worst case logits computed by IBP as described in
section 3.3.2 to be XIBP = f θ

IBP (X ) = ẑK,y. We will also regard the likelihood of
the same data, given parameters θ to be p(X|θ) = L(f θ(X ), ytrue), where ytrue is the
baseline truth and L(·) is the loss function (for example, in a multi-class classifica-
tion setting, that would be Cross Entropy Loss). The notation clipb(X ) signifies the
bounding (or clipping) of each of the elements in X at maximum bound b, or, in
mathematical terms: clipb(X ) = X ∗ min

{
1, b

||X ||2

}
, where ∗ is element-wise multi-

plication, and the norm is taken separately ∀x ∈ X . Lastly, when we refer to the
gradient of a batch with respect to the network’s parameters, we mean the average
of the gradients with respect to the parameters taken across each element in that
batch: ∇B

θ (·) = 1
|B|
∑

∀x∈B∇x
θ(·) .

Algorithm 2 ADV-DP-HMC
Input Neural network f θ(·), initial network parameters θ, leapfrog step size lf ,

leapfrog steps L, number of epochs ne, momentum covariance matrix M , data X ,
learning trade-off parameter α, perturbation radius ϵ, gradient clip bounds bg and bg,
sensitivity parameters τg and τl

Output Posterior samples ps
σg = 2τgbg and σl(θ, θ

∗) = 2τlbl||θ − θ∗||2
function ADV-DP-HMC

ps = empty list
for epoch in ne do

sample p ∼ N (0,M), batch B ∼ X and ξg ∼ N (0, σ2
g)

# Make a half step descent

p∗ = p−
lf

2
·
{
clipbg

[
∇B

θ (p(θ) · [α · p(B|θ) + (1− α) · p(BIBP |θ)])
]
+ ξg

}
θ∗ = θ
# Run Markov chain simulation
for ℓ in L do

θ∗ = θ∗ + lf · p∗
sample batch B ∼ X and ξg ∼ N (0, σ2

g)

p∗ = p∗ − lf ·
{
clipbg

[
∇B

θ (p(θ) · [α · p(B|θ) + (1− α) · p(BIBP |θ)])
]
+ ξg

}
end for
sample batch B ∼ X and ξg ∼ N (0, σ2

g)
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# Make the last half step

p∗ = p∗ −
lf

2
·
{
clipbg

[
∇B

θ (p(θ) · [α · p(B|θ) + (1− α) · p(BIBP |θ)])
]
+ ξg

}
# Ensure the Markov chain is reversible
p∗ = −p∗
# DP Metropolis-Hastings acceptance state
sample ξ ∼ N (0, σ2

l (θ, θ
∗))

∆U = clipσ2
l (θ,θ

∗) ln
[
p(X )|θ∗)
p(X )|θ

]
+ ln p(θ∗)

p(θ)

∆K = pTM−1p− p∗
T
M−1p∗

∆H = ∆U +∆K + ξl − 1
2
σ2
l (θ, θ

∗)
sample u ∼ U(0, 1)
if u ≤ exp(∆H) then

append θ∗ to ps
θ = θ∗

end if
end for
return ps

end function

It can easily be noticed that the novelty of Algorithm 2 lies in the complex gradient
descent step, which combines the differential privacy mechanism and adversarial
training loss function to simultaneously learn how to be robust and safe. Moreover,
the whole theoretical structure of HMC is preserved (i.e. momentum and position
variables, leapfrog integration and Metropolis-Hastings acceptance step), thus en-
suring convergence. Lastly, the privatization of the acceptance step is adapted to our
use case using the ideas in [14]. This algorithm, combined with the results obtained
from the experiments in comparison to previously known results represent the main
contributions of this thesis.
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Experiments

5.1 Hypotheses

In this research, we hypothesize that a Bayesian neural network (BNN) system,
trained by simultaneously incorporating adversarial robustness techniques and dif-
ferential privacy mechanisms, can perform efficiently in tasks pertaining to:

1. Uncertainty Quantification

2. Privacy Preservation

3. Robustness Against Adversarial Attacks

Specifically, we claim that integrating these methods in the process of building trust-
worthy AI systems will enable them to provide reliable uncertainty estimates for its
predictions while safeguarding sensitive data and maintaining resilience against ad-
versarial perturbations. By leveraging the probabilistic nature of BNNs, we expect
the system to effectively balance these objectives, resulting in a model that not only
converges to the true underlying data distribution but also adheres to privacy and
robustness criteria dictated by the environment.

Furthermore, we hypothesize that the proposed HMC-trained systems will experi-
mentally demonstrate convergence to true results despite the complexity of the data
manifold introduced by the addition of the two new learning objectives. While tra-
ditional deterministic methods often face trade-offs when attempting to optimise for
multiple objectives, we believe that our approach can overcome these challenges.
In particular, the inherent uncertainty estimation capability of BNNs is expected to
provide better generalization and avoid overfitting, while the advanced robustness
and privacy mechanisms introduced in the training process adversarial attacks will
ensure that the confidentiality of the training data is not compromised and that our
model is resistant to perturbations. Through rigorous experimentation and evalua-
tion, we aim to validate that our BNN system can achieve these goals concurrently,
thereby advancing the state-of-the-art in trustworthy probabilistic machine learning.
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5.2 Settings

In this section, we will provide a detailed introduction to the datasets selected for
the conducted experiments. Furthermore, we will elaborate on the experimental
setup, which includes the metrics utilized and the training methodologies that will
be subjected to comparative analysis.

5.2.1 MNIST

The MNIST dataset [23] (shown in 5.1) is a well-established benchmark in the field
of machine learning and computer vision, widely used for the evaluation and com-
parison of various algorithms. It consists of 70,000 grayscale images of handwritten
digits, partitioned into a training set of 60,000 examples and a test set of 10,000
examples. Each image is of size 28x28 pixels, representing digits from 0 to 9, mak-
ing our prediction problem a multi-class classification task. The examples are evenly
distributed among both the train and test sets, thus removing the need for any aug-
mentation techniques due to class imbalance. In order to align ourselves with pre-
vious literature, the images values are normalized in the [0, 1] interval, as well as all
attacks and subsequent images’ modifications.

Figure 5.1: Example images taken from the MNIST database

5.2.2 PneumoniaMNIST

The PneumoniaMNIST dataset [24] is a specialized medical imaging dataset derived
from the National Institutes of Health (NIH) Chest X-ray dataset, focusing on pedi-
atric chest X-ray images to identify the presence of pneumonia.

The PneumoniaMNIST dataset (shown in Figure 5.2) consists of 5,856 chest X-ray
images, divided into three categories: normal, bacterial pneumonia, and viral pneu-
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monia. The machine learning task is a binary classification one, namely to distin-
guish between the samples that exhibit pneumonia and those who appear normal.
These images are preprocessed and standardized to a resolution of 28x28 pixels,
enabling efficient training and evaluation of machine learning models. The dataset
is split into 4,708 training images, 524 validation images, and 624 test images. It is
worth mentioning the slight class imbalance, the dataset containing almost twice as
more images that show pneumonia than those that do not. Again, we normalize the
grayscale images in the [0, 1] interval, to align ourselves with previous work.

Figure 5.2: Example images taken from the PneumoniaMNIST dataset [25]

This dataset is not only important in a quantitative sense, but also in a qualitative
one, because of the implications of potential data leakage and malignant adversarial
attacks. In particular, a compelling example consists on the existence of a diagno-
sis and medication administration system trained on a similar dataset that does not
exhibit robustness or privacy properties. A potential attacker can take advantage
of such a system and feed it adversarial inputs in a manner that leads to the incor-
rect prediction of necessary medication, which can have catastrophic effects for a
patient’s health, and even cause death.

5.2.3 FashionMNIST

The Fashion MNIST dataset (shown in Figure 5.3) is a widely utilized benchmark
dataset designed as a direct drop-in replacement for the original MNIST dataset, of-
fering a more challenging alternative. It consists of 70,000 grayscale images, each
28x28 pixels, depicting various fashion items across 10 categories, including T-shirts,
trousers, bags, and shoes. The dataset is divided into a training set of 60,000 images
and a test set of 10,000 images, with each category represented equally. Fashion
MNIST provides a more complex and realistic testing ground for machine learning
algorithms due to its increased variability and subtle distinctions between classes.
Because the data provided by the FashionMNIST dataset differs significantly in dis-
tribution in comparison to the aforementioned two datasets, this thesis will employ
it to evaluate the uncertainty on an Out-Of-Distribution (OOD) detection task.
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Figure 5.3: Example images taken from the FashionMNIST dataset [25]

5.2.4 Experimental setup

For each dataset, two groups, each consisting of 5 types of models trained using
different training methods will be a presented and analysed.

The first group consists of a (i) deterministic neural network trained using stochastic
gradient descent with learning rate decay and four Bayesian neural networks trained
with Hamiltonian Monte Carlo (ii) without adversarial attacks, (iii) with adversarial
attacks generated by the FGSM method, (iv) with adversarial attacks generated by
the PGD method and (v) with IBP. This first group is included to show the repro-
ducibility of our method established by previous literature such as [1, 2, 11, 12].
From now on, we will name these models during our analysis, in order: SGD, HMC,
FGSM-HMC, PGD-HMC and IBP-HMC.

The second group consists of a (i) deterministic neural network trained using stochas-
tic gradient descent with learning rate decay and four Bayesian neural networks
trained with Hamiltonian Monte Carlo (ii) without DP, (iii) with DP, (iv) with IBP
and (v) with IBP and DP. Out of these models, it is worth noting that (iii) and (v)
are both novel methodologies, the first never having its privacy guarantees anal-
ysed in the context of Bayesian neural networks (i.e. when used for inferring the
network parameters), and the latter filling a significant gap in the literature. This
group of models represents the main quantitative result of this work and shows the
performance of the newly introduced methodology in section 4.3 in comparison to
previously studied training techniques in all four areas of our interest: robustness,
privacy, uncertainty and precision. Similarly to the previous group, the models be-
longing to this group will be from now on referred to as: SGD, HMC, DP-HMC,
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IBP-HMC and IBP-DP-HMC.

For each model in both groups, we will perform our comparative analysis by exam-
ining:

1. Model performance on the test set. This will be measured by standard accu-
racy.

2. Robustness. This will be quantified at a fixed perturbation budget ϵ, by evalu-
ating the accuracy under FGSM, PGD and IBP-based attacks. The value of the
latter will also indicate the certified robustness of a given model at the maxi-
mum deviation level, ϵ.

3. Uncertainty. This will be computed by using the AUROC (Area Under the Re-
ceiver Operating Characteristic) and ECE (Expected Calibration Error) metrics.
The resultant values of these performance metrics will be shown for both the
associated In-Distribution (ID) test set of the task, as well as for an Out-Of-
Distribution (OOD) detection task.

The model architectures of the neural networks used across all models for each
dataset are:

1. MNIST: A network with a single hidden layer consisting of 512 neurons.

2. PneumoniaMNIST: A Convolutional neural network (CNN) consisting of 2
convolutional layers, one with 1 input channel, 16 output channels, kernel
size 4x4 and stride 2 and one with 16 input channels, 32 output channels,
kernel size 4x4 and stride 1, as well as 2 linear layers, one with 4800 and one
with 100 neurons.

The loss functions used are cross entropy for the first dataset and binary cross entropy
for the second one.

5.3 Robustness

5.3.1 MNIST

Figure 5.4 shows the resistance of our first group of models (trained with ϵ = 0.1 and
tested with ϵ = 0.075 perturbation radii) under FGSM and PGD attacks, as well as
their certified IBP robustness. Our implementation replicates previous work [2, 11],
which demonstrates that (i) BNNs are naturally more robust, (ii) the strength of the
attack decreases robustness and (iii) the strength of the attack used in the training
process increases robustness. In particular, it is important to notice that out of all
the training methods, only IBP-training achieves a non-zero robustness guarantee.

Our novel training methods include (i) the first mention in the literature of a BNN
trained using HMC equipped with DP mechanisms and (ii) the new ADV-HMC-DP
training methods, described in section 4.3, which incorporates both DP mechanisms
and adversarial training using IBP. Figure 5.5 similarly shows their resistance against
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Figure 5.4: SGD and ADV-HMC robustness profiles on the MNIST test set

FGSM and PGD attack vectors, as well the the certified guarantee given at inference
time by IBP. Our new techniques perform similarly to standard and IBP-trained HMC,
HMC-DP achieving 45.08% and 42.11% accuracy when attacked with FGSM and,
respectively PGD. Again, only the IBP-trained methods have non-zero robustness
guarantees, IBP-DP-HMC exhibiting a slight decrease and thereby attaining 57.47%
robustness in comparison to the 68.68% of the standard IBP-HMC. These results vali-
date the part of our hypothesis which states that (differential) privacy and resilience
can be attained simultaneously, in our case with only a small loss of our certified
robustness guarantees. It is also worth mentioning that all models in Figure 5.5
have been trained with ϵ = 0.1, with the exception of IBP-DP-HMC, which has been
trained with ϵ = 0.075. This is once more an artifact of the fact that adding DP mech-
anisms in the training process makes the data manifold significantly more complex
and thus, the task becomes more difficult to optimise.

Figure 5.5: SGD and ADV-DP-HMC robustness profiles on the MNIST test set

The exact results obtained for each model and attack are shown in Table 5.1.

Attack
Type

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

FGSM 15.67% 56.01% 78.26% 78.51% 83.7% 45.08% 84.13%
PGD 10.03% 51.86% 77.36% 77.75% 83.42% 42.11% 82.17%
IBP 0.0% 0.0% 0.0% 0.0% 68.68% 0.0% 57.47%

Table 5.1: Robustness of MNIST trained models under different types of attacks

5.3.2 PneumoniaMNIST

Once again, as in the case of the MNIST dataset, we validate our methodology ap-
proach by recreating experiments which are consistent with the well-known, already
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existing literature results, as shown in Figure 5.6.

It is worth mentioning that predicting pneumonia occurrence in patients by analysing
X-rays is a much harder task than the one introduced by the MNIST dataset. Because
of that and the increased complexity of the networks’ architecture, it is difficult to
non-trivially certify robustness. For this reason, all the models used for this task have
been trained and tested at ϵ = 0.01. In particular, while the small perturbation radius
makes defence against FGSM and PGD attacks easier, the IBP robustness is always
zero, with the exception of IBP-HMC and IBP-DP-HMC, as expected. Moreover, even
if the FGSM and PGD adversaries for this particular robustness budget makes are
less potent, fact which determines the higher vanilla HMC FGSM and PGD accura-
cies, models trained with these attacks can scale to higher perturbations, while SGD
and HMC are not able to do that.

Figure 5.6: SGD and ADV-DP-HMC robustness profiles on the PneumoniaMNIST test set

Similarly to the MNIST case, the best model obtained by training using both IBP and
DP mechanisms (found in Figure 5.7) confirms our hypothesis, guaranteeing 73.88%
robustness, only 4.16% less than its IBP-HMC counterpart, which does not use any
privacy enhancing techniques during training.

Figure 5.7: SGD and ADV-DP-HMC robustness profiles on the PneumoniaMNIST test set

Attack
Type

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

FGSM 74.84% 81.09% 77.56% 79.17% 82.21% 80.61% 80.45%
PGD 74.52% 80.77% 74.84% 75.48% 76.28% 80.29% 77.88%
IBP 80.13% 0.0% 0.0% 0.0% 78.04% 0.0% 73.88%

Table 5.2: Robustness of PneumoniaMNIST trained models under
different types of attacks
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Interestingly, both DP-HMC and IBP-DP-HMC perform comparably, or even better
than HMC and IBP-HMC, respectively, when attacked using the FGSM and PGD tech-
niques. There are be two possible reasons for this behaviour: (i) the aggressive
optimisation parameters needed to overcome local minima during training or (ii)
the random noise added as part of the DP mechanism, which acts as regularization,
leading to accurate results.

The exact results obtained for each model and attack are shown in Table 5.2.

5.4 Uncertainty

Firstly, in order to understand the results obtained, it is important to define the
AUROC and ECE uncertainty metrics, as well as the tasks’ performance they quantify.

AUROC (Area Under the Receiver Operating Characteristic Curve) measures the abil-
ity of a model to discriminate between classes, with a value of 1 indicating perfect
discrimination and 0.5 indicating no better than random guessing.

ECE (Expected Calibration Error) quantifies the difference between predicted prob-
abilities and the actual outcomes, providing an overall measure of how well the pre-
dicted probabilities are calibrated. A lower ECE value indicates a small calibration
error, while a high value suggests our model is not performant enough.

The In-Distribution (ID) task involves taking the posterior samples of the trained
network and computing the mean of the posterior predictive distribution on the
test set of the dataset used in training and feeding the predictions into the AUROC
computation.

The Out-Of-Distribution (OOD) task involves taking the test set of a dataset used
in training and another test set of a significantly different (OOD) task (in our case,
classifying a fashion item in the FashionMNIST dataset). The maximum softmax
probability given by our predictive distribution is regarded as the result of a binary
classification problem (where 0 represents and OOD sample and 1 an ID sample),
and thresholded, with the values above the threshold being considered ID (1) and
the values below OOD (0). The AUROC and ECE metrics are then computed for these
predictions. The thresholds chosen are 0.5 for multi-class classification (MNIST)
and 0.65 for binary classification (PneumoniaMNIST). These both allow for a large
margin of confidence between the highest two softmax probabilities, meaning that
the system confidently made a prediction, regardless of whether the prediction is
correct or not.

5.4.1 MNIST

The evaluation of the predictions obtained in both our In-Distribution and Out-Of-
Distribution tasks for the first group of models are included in Figure 5.8, which
shows the value of the metrics defined above. Our baseline results are consistent
with previous work, such as [11], and show that probabilistic methods (in our case
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HMC) exhibit similar performance for the ID case (that is, testing on a distribu-
tion similar to the one the system was trained), and perform significantly better in
quantifying uncertainty in the OOD case. In particular, it is easily noticeable that
across all our probabilistic methods, they perform at least 20% better when comput-
ing AUROC, meaning that they consistently are less certain of unseen results than
the deterministic network. Similarly, the ECE is almost double for SGD compared to
other methods, showing poor generalization on OOD data, which is expected. Inter-
estingly, the probabilistic methods performs slightly worse when measuring ECE for
ID data, which can be attributed to their inherent nature, i.e. their ability to charac-
terize a whole distribution instead of just providing an accurate point estimate.

Figure 5.8: AUROC and ECE values on ID and OOD tasks using SGD and ADV-HMC

Figure 5.9 holds essential significance in this thesis, because it shows the ability
of our newly designed methodology and algorithm to quantify uncertainty with
minimal loss in value compared to purely robust techniques. DP-HMC and IBP-DP-
HMC achieve 76.42% and 72.07% on the OOD task, values which highly exceed the
54.98% obtained by SGD, validating the component of our hypothesis which states
that privacy and effective uncertainty quantification are simultaneously achievable.

Notably, this does not hurt the AUROC value in the ID case, and when looking at
ECE values, we observe that it even performs better for the same case. A potential
explanation for this is that introducing DP mechanisms acts as regularization, due to
the random noise being added at each training step.

The exact uncertainty metric scores obtained by each model are shown in Table 5.3.
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Figure 5.9: AUROC and ECE values on ID and OOD tasks trained on MNIST using
SGD and ADV-DP-HMC

Metric
Name

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

ID AUROC 99.97% 98.72% 98.62% 98.64% 98.78% 96.86% 98.67%
ID ECE 0.33% 17.75% 24.48% 24.12% 24.37% 12.57% 6.71%

OOD AUROC 54.89% 80.36 % 77.38% 77.76% 73.69% 76.42% 72.07%
OOD ECE 94.59% 50.0% 50.0% 55.02% 50.0% 50.0% 50.0%

Table 5.3: Uncertainty metrics of MNIST trained models

5.4.2 PneumoniaMNIST

The behaviour for the ID task is similar to the one observed when training on the
MNIST dataset. Hence, we can easily observe in the top row of Figure 5.10 that
the AUROC values remain consistently high across all models, suggesting good dis-
crimination between classes, while the ECE values for the probabilistic models are
slightly higher, likely because of their ability to better generalize and defend against
adversarial attacks, which in turn means that mathematically, around an input data
point, its perturbed variants will behave the same at inference time, which is con-
sistent with the results obtained. The only exception to that is the vanilla HMC,
which achieves very low ECE, as it is highly correlated with its better performance
in comparison to the other models.

While still behaving better in uncertain scenarios, as shown in the bottom row of
Figure 5.10, it is interesting to see that the AUROC values of the probabilistic robust
models are only marginally higher than the deterministic model, going only up to
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4.71%. There are three explanations for this behaviour. Firstly, the task induced
by this dataset is significantly harder than the task induced by the MNIST dataset,
thus making optimisation more difficult. Secondly, the dataset used in the OOD task
(FashionMNIST) differs in distribution more with respect to PneumoniaMNIST than
it does to MNIST. That is why, even with the advantage of having multiple samples
from the posterior rather than just a point estimate, it is difficult to quantify uncer-
tainty significantly better when hardly any distribution overlap is present. Lastly, it
is important to remember the fact that there is a small trade-off between uncertainty
and performance, and also that this work has been focused on optimising against
robustness, privacy and uncertainty simultaneously. Thus, it is possible to achieve
even better uncertainty for the BNNs, but at the price of a small decrease in accuracy.
In the end, it is the practitioners’ choice what properties are most important in their
systems.

Figure 5.10: AUROC and ECE values on ID and OOD tasks trained on
PneumoniaMNIST using SGD and ADV-HMC

Once again, the section of our hypothesis that claims simultaneously attaining pri-
vacy and accurately estimating uncertainty is proven by the metric values obtained,
as shown in Figure 5.11. While the AUROC measured in the context of the ID task
on the IBP-DP-HMC model performs almost equivalently to the non-DP probabilistic
models, the smaller ID ECE is indicative of a better performing system at inference
time. As it was the case previously, we hypothesize that these results are the effect
of random noise introduced at training time, which behaves akin to regularization.

For the same reason, DP-HMC and IBP-DP-HMC are able to discriminate significantly
better between classes in an OOD setting than SGD and IBP-HMC, achieving AUROC
values of 49.51% and 53.83%, 1.97% and respectively, 6.29% more than the deter-
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ministic network. Seeing this from a different perspective is a better indicator of
performance, since relative to the baseline SGD value, this is an increase of more
than 12%. The OOD ECE values corroborate our claim, by outputting values which
suggest lower errors than a deterministic approach would provide. Once again, al-
beit the complexity of the task and the disparity between distributions in the OOD
settings makes the uncertainty only slightly better, it is possible to achieve higher
values at the cost of performance, subject to the use case in which such a model is
utilised in.

Figure 5.11: AUROC and ECE values on ID and OOD tasks trained on
PneumoniaMNIST using SGD and ADV-DP-HMC

The exact uncertainty metric scores obtained by each model are shown in Table 5.4.

Metric
Name

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

ID AUROC 93.48% 95.85% 92.28% 92.51% 92.86% 92.27% 91.33%
ID ECE 10.95% 4.93% 11.95% 12.09% 10.67% 7.53% 12.07%

OOD AUROC 35.71% 52.25% 48.82% 50.64% 46.32% 49.51% 53.83%
OOD ECE 88.12% 86.33% 89.59% 89.59% 96.67% 95.32% 90.64%

Table 5.4: Uncertainty metrics of PneumoniaMNIST trained models
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5.5 Performance

Performance, measured by standard accuracy, is the last metric we are interested in,
in order to prove our hypothesis. Since the aim of any intelligent system deployed in
a real life scenario is to correctly predict or classify a given phenomena, it is critical
to ensure such a system is efficient when receiving previously unseen data as input.

5.5.1 MNIST

Figure 5.12 shows the accuracy of the MNIST test set of our two groups of models. It
is easily noticeable that our new algorithm (IBP-DP-HMC) achieves 87.12% accuracy
using both adversarial training and DP mechanisms, scoring similarly to IBP-HMC
and vanilla HMC, corroborating the element of our hypothesis which claims that
using robustness and privacy techniques in the learning process does not hinder
attaining high accuracy and effectively learning from the actual input data.

It is important nonetheless to underline the fact that the newly introduced method-
ologies suffer from a slight decrease in performance compared to their non-DP coun-
terparts. This is an expected behaviour and can be motivated by our multiple previ-
ous mentions of the regularization argument, as well as by the fact that introducing
multiple objectives in the training process makes it more difficult to learn a multi-
component ground truth, where each of the components behave as if they would act
individually. Lastly, there is also a correlation between lower accuracy and better
uncertainty estimation, as less probable posterior samples capture more uncertainty
but decrease precision.

Figure 5.12: SGD, ADV-HMC and ADV-DP-HMC accuracy on the MNIST test set

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

Accuracy 98.03% 87.9% 86.85% 86.99% 89.47% 77.4% 87.12%

Table 5.5: Standard accuracy of MNIST trained models

The standard accuracy scores obtained by the two groups of models can be found in
Table 5.5.
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5.5.2 PneumoniaMNIST

The performance on the PneumoniaMNIST dataset (which can be found in Figure
5.13) once again validates our hypothesis, exhibiting accuracy values of 86.86% and
83.81% when trained with DP-HMC and IBP-DP-HMC. The increased complexity of
the task, as well as the hypothesis that DP acts akin to regularization makes the DP-
models score lower than their non-DP counterparts. However, the score difference
(2.4% and 1.93%) is almost insignificant, and taking into consideration the consid-
erable uncertainty and robustness advantages described in Section 5.4.2 and 5.3.2,
it is a small price to pay for achieving multiple desirable properties at once.

Figure 5.13: SGD, ADV-HMC and ADV-DP-HMC accuracy
on the PneumoniaMNIST test set

Model Name

SGD HMC FGSM-HMC PGD-HMC IBP-HMC DP-HMC IBP-DP-HMC

Accuracy 87.02% 89.26% 83.49% 85.1% 85.74% 86.86% 83.81%

Table 5.6: Standard accuracy of MNIST trained models

The standard accuracy scores obtained by the two groups of models can be found in
Table 5.6.

5.6 Privacy

Before we investigate the DP properties of our new training method, it is important
to mention the parameters with which the best performing model (whose perfor-
mance, as well as uncertainty and robustness properties have been presented above)
has been trained with and which influence the DP guarantee. These can be found in
table 5.7.

It should be mentioned that the epochs (ne) parameter does not have the same mean-
ing as the traditional epoch used in deterministic learning scenarios, but is rather
equivalent to the number of simulation steps. Even more than that, in comparison
to the deterministic case, here the dependence of each parameter in an epoch on
previous epochs is subject to the Metropolis-Hastings acceptance step, and thus the
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IBP-DP-HMC
Dataset

Parameter

Epochs(ne) Leapfrog steps (lf ) τg τl bg bl Chains(nc)

MNIST 60 120 0.05 0.05 0.5 0.5 3
PneumoniaMNIST 80 24 0.1 0.1 0.5 0.5 3

Table 5.7: Best performing DP models’ parameters

final number of posterior samples gathered is less than or equal to the number of
epochs. Lastly, each chain is an independent HMC simulation.

Reiterating the guarantees given by [14] and described in 4.2, using our parameters,
we have, using any ϵ of our choosing:

δ(ϵ) =
1

2

[
erfc

(
ϵ− µ

2
√
µ

)
− eϵ erfc

(
ϵ+ µ

2
√
µ

)]
with µ = nc

[
ne

2τ 2l
+

2ne(lf + 1)

2τ 2g

]
(5.1)

Notably, this privacy bound is the baseline one (i.e. which one would obtain when
performing full-batch learning), but the bound obtained in practice is tighter, due
to subsampling and gradient averaging. The use case we apply these guarantees on
requires multiplying by a factor of 2 the second addend of µ, because two gradients
are computed and clipped at each backpropagation step, the one with respect to
the standard input and the one with respect to the adversarial input. Using this
equation, we achieve vacuous bounds for both models trained using IBP-DP-HMC.
That is to say, we can obtain (ϵ, δ(ϵ))-DP with ϵ = 0 and δ(ϵ) = 1, or ϵ ≫ 100 and
δ(ϵ) < 1. As mentioned in [14], this is expected for DP-MCMC methods trained on
datasets with less than 105 data points.

The reason we obtain these guarantees is the tension introduced by the two opposing
forces at play in DP-BNNs: privacy and parameter space exploration. Because a high µ
requires a high ϵ in order to achieve non-vacuous bounds, equation 5.1 clearly shows
that when nc, ne and lf are large and τl and τg are small, the DP guarantee is very
loose. That being said, the advantage of BNNs over DNNs in terms of uncertainty
comes exactly from the fact that they are able to fully characterize complex distri-
bution either through inferring their parameters or, in our case, by sampling. This
inherently implies the fact uncertainty and the number of samples are correlated
(especially when the number of samples cover a large portion of the distribution
of interest), the accuracy of OOD uncertainty estimation increasing proportionally
with the of the value exploration parameters, which are precisely nc, ne and lf . To
complement this, the sensitivity parameters τg and τl are required to stay small, oth-
erwise the backpropagation step is uninformative because too much random noise is
added. For this reason, we shall study the effect of modifications of these parameters
with respect to uncertainty and privacy, and also show what happens to our robust-
ness guarantees and performance, although they are not the main forces at stake in
this trade-off. In particular, while we have shown in the previous section (and it is
also well known) that the two latter properties are not at odds with uncertainty, it
will be interesting to observe what a lack of efficient exploration in the statistical
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parameters space limits the utility of learning with respect to these two quantities of
interest.

To observe this trade-off, we modify our aforementioned parameters to obtain tight
robustness guarantees, and observe the effect these have on the other properties of
our IBP-DP-HMC model at inference time. Thus, the new relevant parameters for our
models can be found in Table 5.8.

IBP-DP-HMC
Dataset

Parameter

Epochs(ne) Leapfrog steps (lf ) τg τl bg bl Chains(nc)

MNIST [1..21]; step 2 10 2 2 0.1 0.1 1
PneumoniaMNIST [1..21]; step 2 6 2 2 0.1 0.1 1

Table 5.8: Privacy study models’ parameters

It can easily be observed that the parameters are chosen specifically in order to
maximize the (ϵ, δ(ϵ)) DP guarantee. Thus, doing an ablation study on one of them
(i.e. either increasing ne, lf or nc, or decreasing τg or τl), shows us what our model
is able to learn.

Figure 5.14: Effects of tight privacy guarantees on the robustness, accuracy and
uncertainty of IBP-DP-HMC

Figure 5.14 clearly shows us the trade-off between DP and the other desirable prop-
erties of our HMC-trained models. In order to achieve non-vacuous bounds (that is,
δ(ϵ) < 1) for a good enough ϵ (in the range of tens), the added noise at each step
utilised to privatize the data (N (0, σ2

g)) makes the algorithm only sample from a
very narrow region of the posterior distribution, oscillating around the initialization
point. Since this equates to poor exploration of the parameter space, the perfor-
mance, robustness and uncertainty properties remain almost exactly the same and
the model behaves as if having a deterministic neural network with a point estimate
of the weights and biases located at the region in space given by the initialization.
Adding to that, because the DP δ(ϵ) saturates quickly, by the time the relevant hy-
perparameters have values that allow for exploring the space, and thus learning,
efficiently, the privacy guarantees are already vacuous.
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5.7 Ablation Study

We will now study the effect of decreasing the clip bound bg and increasing the per-
turbation radius ϵ of IBP-DP-HMC at train time, parameters which control our privacy
budget and our final robustness with respect to adversarial attack shifted at most ϵ
from our initial data point. While decreasing bg gives us stronger DP guarantees
for our best-performing models, it makes our gradients more uninformative. Simi-
larly, while increasing ϵ makes our models robust to stronger attacks, it increases the
complexity of the loss landscape and makes it challenging to optimise. The baseline
crucial hyperparameters of IBP-DP-HMC we start from are shown in table 5.9, where
α represents the trade-off between the standard and robust learning objectives.

IBP-DP-HMC
Dataset

Hyperparameters

Epochs Leapfrog steps bg ϵ α Vθ[p(θ)] Chains

MNIST 60 120 0.05 0.1 0.993 15 3
PneumoniaMNIST 80 24 0.1 0.01 0.975 5 3

Table 5.9: Best performing DP models’ initial hyperparameters

5.7.1 MNIST

When training IBP-DP-HMC on the MNIST dataset, decreasing the gradient clip
bound limits the learning utility, as demonstrated by Figure 5.15. The standard
accuracy gradually declines from 87.12% to 79.06%, while the IBP accuracy steeply
diminishes from 57.97% and settles at ≈ 40%. The latter is caused by the fact that
the first chain is initialized from a pre-trained network, which causes it to remain in
the neighbourhood of the accurate point estimate when running the HMC simula-
tion.

Figure 5.15: MNIST standard accuracy and certified robustness against bg decrease

Figure 5.16 depicts the uncertainty estimation evolution of IBP-DP-HMC when bg is
varied. Naturally, as the ID AUROC is closely linked to the performance of the model,
it slowly decreases ≈ 1% starting from 98.67%, in a manner similar to the standard
reduction in standard accuracy. The uncertainty on the OOD task is better as bg gets
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smaller because the learning process is more stable and general, and thus performs
better on OOD data, even if it slightly underfits the training data.

Figure 5.16: MNIST ID and OOD AUROC against bg decrease

Figure 5.17: MNIST standard accuracy and certified robustness against ϵ increase

Figure 5.18: MNIST ID and OOD AUROC against ϵ increase

Figures 5.17 and 5.18 picture the effects of increasing the perturbation radius pa-
rameter ϵ on the accuracy, robustness and uncertainty properties of IBP-DP-HMC.
Because the loss landscape is highly complex, both the performance and the cer-
tified robustness sharply drop, and then settle at the value given by a model with
parameter configuration equal to their initialization. The ID AUROC only slightly
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decreases, confirming its strong link with accuracy, while the model performs better
in the OOD task, reaffirming the fact that there is a small trade-off between accu-
rate predictions and uncertainty guarantees when the samples from the posterior
distribution of HMC are finite.

5.7.2 PneumoniaMNIST

For PneumoniaMNIST, decreasing the clip bound bg from 0.5 to 0.01, we can observe
in Figure 5.19 that both the performance and certified robustness of the model take
a significant hit starting with bg = 0.4 and flat-lining at 62.5% when bg = 0.2. This
confirms the fact that gradient clipping is strongly tied with learning utility and
that better privacy guarantees imply either more time to converge at train time or
equivalently poorer performance when hyperparameters remain fixed. The reason
for flat-lining at 62.5% is twofold: the class imbalance and the fact that when there
is almost no utility from the gradients’ value, the network defaults to predicting one
class. Therefore, this is equivalent to the performance of random guessing.

Figure 5.19: PneumoniaMNIST standard accuracy and certified robustness against bg
decrease

Figure 5.20: PneumoniaMNIST ID and OOD AUROC against bg decrease

In terms of uncertainty, Figure 5.20 shows that the ID AUROC decreases significantly,
from 91.33% to 63.89%. This value is strongly correlated with standard accuracy,
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and we can notice that at bg = 0.01 the ID AUROC is very close to the metric value
when using random guessing for predictions, which is 0.5. The OOD AUROC is
highly volatile and spikes at 78.82% when bg = 0.35. While higher OOD AUROC
might suggest more accurate uncertainty estimation, it is not the case here, because
the seemingly better generalization happens only because the limited size and imbal-
ance of the dataset makes the learned predictions match the distribution of the test
set for certain specific parameters. Even more than that, the accuracy at bg = 0.01 is
very poor, achieving only 50%, which is exactly the random baseline. What is very
interesting is that the fluctuation of this values suggests that a lower clip bounds
is not necessary correlated with worse uncertainty, supporting the hypothesis (al-
though with weak evidence) that good privacy guarantees and DP can be achieved
at the same time.

Increasing the ϵ parameter has a similar effect on our IBP-DP-HMC model as decreas-
ing bg does. Figure 5.21 pictures the fast, sharp decrease in both standard accuracy
and certifiable robustness, which drop from ≈ 83% and ≈ 73% at ϵ = 0.01 and flat-
line at 62.5%, where ϵ = 0.09. The reason for the flat-line value of 62.5% is the same
as the one mentioned in the DP case.

Figure 5.21: PneumoniaMNIST standard accuracy and certified
robustness against ϵ increase

Figure 5.22: PneumoniaMNIST ID and OOD AUROC against ϵ increase
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We also plot the variation in the uncertainty metrics’ values in Figure 5.22. Once
again, the ID AUROC is strongly correlated with the decrease in standard accuracy,
dropping more than 40% and reaching the random guessing AUROC value, namely
0.5. Albeit still highly volatile, the OOD AUROC gains ≈ 20% in value, suggesting
that the random baseline is well suited for the OOD task.

5.8 Conclusion

The aim of this thesis has been to extend work on trustworthy properties of neural
networks by shifting from the deterministic perspective and considering a Bayesian
inference framework for all the experiments. Moreover, in comparison to previous
literature, here we took a holistic approach to trustworthy probabilistic machine
learning and investigated the intricate connections between adversarial robustness,
privacy, uncertainty and performance.

Firstly, we introduced a novel training algorithm that can be used to train HMC-
BNNs (and can easily be extended to other inference techniques) with simultaneous
robustness and privacy guarantees, while achieving convergence to the true func-
tions of interest. Furthermore, we successfully trained a wide variety of networks
using our method and have experimentally shown their efficiency.

Secondly, we empirically demonstrated that adversarial robustness against a wide
variety of attacks, as well as performance are not significantly affected by the ad-
dition of privacy-ensuring mechanisms at train time. We have quantified the dif-
ferences in performance using carefully designed experiments, which measure nu-
merous metrics, the most relevant ones being certified robustness under worst-case
attack vectors and standard accuracy.

Thirdly, we found that there is an inversely-proportional correlation between tight
privacy guarantees and accurate uncertainty estimation. This connection comes from
the inefficient exploration of the statistical parameter space when the number of
samples is small and the noise added at train time is high. Moreover, we measured
this trade-off with an in-depth privacy study that shows the simultaneous evolution
of privacy guarantees versus the aforementioned trustworthiness properties.

Lastly, we performed an ablation study that proves how our safety properties of
interest vary with the tightness of privacy and robustness bounds. This study adds
crucial insight to our previous experiments and furthers the description of the links
between all the characteristics of trustworthy probabilistic machine learning systems.
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Discussion

6.1 Future Work

6.1.1 Other Bayesian Inference Methods

A wide range of state of the art Bayesian inference techniques are used in prac-
tice, such as Bayes by Backprop (BBB) [6], Stochastic Weight Averaging - Gaussian
(SWAG) [26], NoisyAdam (NA) [27] or Variational Online Gauss-Newton (VOGN)
[28]. Because of the generalizability of our novel training technique, as well as
the fact that differential privacy has been studied and extended to multiple Bayesian
learning frameworks [13], it would be interesting to extend the work done in this pa-
per by training probabilistic models using the aforementioned techniques, and inves-
tigating how the robustness, privacy and uncertainty guarantees vary and whether
better performing results can be achieved in that regard.

6.1.2 Membership Inference Attacks

One avenue of research that follows naturally from the work done in this thesis is
how effective are black-box, privacy-breaching attacks against the models trained
with our method. While multiple attacks of this kind exist, such as property infer-
ence [29] or model inversion [30] attacks, one particularly important one is the
membership inference attack [3], because it has been used to show that in determin-
istic neural networks, adversarial training is detrimental to privacy [8]. Therefore,
it would be useful to see whether actual adversaries are able to infer whether a data
point is part of the training set as part of a concrete real-life simulation, rather than
having only the mathematical DP guarantees as proof to the privacy of the system.
Even more than that, extending the membership inference attacks to the probabilis-
tic case is trivial, as the only thing one needs to do is to change the forward pass
function to compute the predictive mean. However, one important consideration is
that for a large number of posterior samples (which is the case for HMC), this type
of attack would be extremely slow to train. Lastly, it is worth noting that initial work
has already been done to implement the attack for the probabilistic case and the last
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steps needed to complete the pursuit of this research idea are to find the optimal
hyperparameters and run experiments on the datasets presented in this thesis.

6.1.3 Other Privacy Mechanisms and Tighter Bounds

Firstly, while there exist other sophisticated state-of-the-art propagation techniques
that can achieve tighter robustness bounds, such as Linear Bound Propagation (LBP),
CROWN or MILP, they come with a significant computational overhead. Concerning
privacy, as it was also mentioned in section 5.6, tighter differential privacy bounds
can be computed by applying the improvements described in [5], which take into
consideration the budget saving achieved by batching and subsampling . Other im-
provements that can be done regarding privacy is to consider other private training
techniques, such as Homomorphic Encryption and Secure-Multi-Pary Computation.
Although these are somewhat outside the scope of this thesis, because they are used
in other contexts, it would be interesting to see whether other methods exhibit the
same connections with robustness, uncertainty and performance as DP does, or if
the link is different in nature.

6.2 Ethical Considerations

6.2.1 Protection of Personal Data

This study is exempt from ethical approval as it relies on secondary data sources,
specifically the MNIST and PneumoniaMNIST datasets, which do not contain any
personal data and are publicly accessible without the need for permission. These
datasets are open source and licensed under the Creative Commons (CC) License,
permitting distribution, remixing, adaptation, and building upon the material as
long as proper attribution is provided. As this research involves only modifying
the inputs by perturbing them and developing new training techniques noise for
purposes of adversarial robustness, differential privacy and uncertainty estimation,
no further consideration for the protection of personal data is needed.

6.2.2 Potential Misuse

Because this piece of work concerns itself with the study of properties of Safe and
Trusted AI, all new developments that have been presented can be used to gain
insight on probabilistic machine learning systems inner workings and exploit them
in a malignant manner. Technically speaking, our concerns lie in the utility of black-
box and white-box attacks, respectively. While the contributions of this thesis are
helpful in limiting the amount of damage that can be done having access only to
the inputs and outputs of a certain model, white-box attacks can be very efficient
in finding vulnerabilities, precisely because a potential attacker knows everything
about our model in such a scenario.
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What is, however, perhaps even more important to consider in this section is the ef-
fect of such attacks in real-life scenarios. As with every advancement of any system’s
security aspect, gaining new insight is a double-edged sword, and can be used both
for advancing the knowledge of humankind, as well as for destructive action. In par-
ticular, potential misuse can incur significant damage in critical industries such as
healthcare or autonomous driving. For the first, if we consider a medical diagnosis
system that recommends treatment (which can be very well be the case with using
the PneumoniaMNIST dataset we examined), an attacker knowing what techniques
were used for robustness, privacy and uncertainty, as well as the trade-off between
them can craft specific attacks that fool the system and can potentially recommend
treatment detrimental to a patient, causing complications or even death. Similarly,
in the case of autonomous driving, if we consider a model that interprets road signs
and steers a vehicle accordingly, an attacker can once again craft malignant attack
vectors, such that the road sign is misinterpreted and accidents with potential hu-
man life loss are caused. Lastly, it is important to note the fact that successful attacks
that target privacy break data protection regulations active in numerous states, iden-
tifying previously anonymous data, problem which is important and highly sensitive
nowadays.
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