
MEng Individual Project

Imperial College London

Department of Computing

Revisiting Causality of Violations to LTL For-
mulae in Counterexamples

Author:
Herong Meng

Supervisor:
Dr. Dalal Alrajeh

Second Marker:
Prof. Francesca Toni

Abstract

The application of causality on temporal logics is an active research area, with the potential
of enhancing state-of-the-art artificial intelligence paradigms which lacks the ability for
temporal reasoning. One field that could benefit from such application is the repair of
unrealizability in high-level system specifications, commonly formalized in a subset of linear
temporal logic known as generalized reactivity of rank 1. Existing approaches rely on
counterexample executions, extracted by automated procedures from these specifications,
as guidance for the generation of repairs. By revisiting the work by Beer et al. [1] based
on the pivotal Halpern and Pearl definition of actual causality, this report proposes a new
definition of causality for linear temporal property violations on counterexamples. This
new definition is based on an updated version of the Halpern and Pearl definition, and
captures causes in a more informative and intuitive manner. Follow this definition, this
report describes a new algorithm which computes all linear temporal violation causes in a
counterexample with a upper bound on the size of the causes. The algorithm is shown to be
sound, complete under bound, and having polynomial time complexity for finite temporal
traces. Evaluation on the new algorithm against the baseline causes approximated by Beer
et al. reveals that, on an assorted dataset of specifications and counterexamples, the causes
computed by the new algorithm is able to cover the baseline in most cases, is stronger than
the baseline in some cases, and in the few remaining cases unable to fully cover the baseline
for well-justified reasons.

Acknowledgements

I, Herong Meng, hereby declare that the contents of this report, as well as the project
and its software components on which this report is based, is to the best of my knowledge
entirely my own work. I also declare that the intellectual contents of this report, as well
as the project and its software components, is the product of my own work, except to the
extent that all the assistance received in undertaking this project and sources have been
acknowledged.

However, in a counterfactual world without the support of the various people around me,
this report would not have been possible either. (Thanks, Lewis!)

First and foremost, I dedicate this work to my supervisor, Dr. Dalal Alrajeh, for her
continual academic guidance throughout this project. I deeply appreciate and respect
her ability to arrange frequent meeting with me despite her busy schedule. Such strong
support is invaluable, especially for someone like me without any prior research experience.
I would also like to thank Daniel Ozcan for his assistance on the theoretical component of
this project.

In addition, I dedicate this work to the faculty at Imperial College London for the unfor-
gettable experience I’ve had during my studies. I would like to thank Prof. Francesca Toni
and all members of faculty on my marking team for their time on reviewing this project.
I express my gratitude to the many friends I’ve had the honour to acquaint, both within
and beyond this college.

I shall particularly dedicate this work to Jiaying Lin for her affectionate care and support.
Her encouragement was my greatest support during the most intimidating initial stages of
this project.

Finally, I dedicate this work to my parents, Xue Zhou and Jie Meng, for their love, discipline
and support. I simply cannot imagine being where I am now without them.

Contents

1 Introduction 4

2 Background 6

2.1 Linear-Time Temporal Logic . 6

2.1.1 LTL Syntax . 6

2.1.2 Transition Systems . 7

2.1.3 LTL Semantics over Transition Systems 7

2.1.4 Finite LTL Semantics . 8

2.1.5 Negation Normal Form for Linear Temporal Logic 9

2.2 Generalized Reactivity of Rank 1 . 9

2.2.1 GR(1) Specifications and Formulae 9

2.2.2 GR(1) Games, Realizability . 10

2.2.3 Unrealizability, Counterstrategies and Counterexamples 11

2.3 Causal Reasoning . 12

2.3.1 Actual Causality by Halpern and Pearl 12

2.3.2 The Original Halpern-Pearl Definition 14

2.3.3 The Modified Halpern-Pearl Definition 15

2.3.4 Beer et al. Causality for LTL Trace Violations 15

3 Causes of Violations to LTL Formulae 18

3.1 Motivating Example: Request-Acknowledge System 18

3.2 Prerequisites for Formalizing Causality . 19

3.2.1 Candidate Causal Sets and Singletons 20

3.2.2 Causal Model for Counterexample Violations 20

3.2.3 Alteration Traces, Counterfactual Sets, Counterfactual Traces 21

3.2.4 Temporal and Causal Model Semantics 22

2

3.2.5 No Witnesses for the Prosecution . 22

3.3 Proposed Definition of Causality . 22

3.4 Motivating Example: Minepump . 24

3.5 Proposed Algorithm for Causality Computation 26

3.6 Soundness and Bounded Completeness . 26

3.7 Time Complexity under LTLf . 28

4 Evaluation on GR(1) Specifications 31

4.1 Overview of the Implementation . 31

4.2 The Dataset by Buckworth et al. 32

4.3 Evaluation Methodology . 32

4.4 Quantitative Analysis . 34

4.5 Qualitative Analysis . 36

4.5.1 Stronger Causes Found by Algorithm 1 37

4.5.2 Improved Interpretation of Fairness Violations 37

4.5.3 Imperfect Coverage due to Conflicting Conjuncts 38

5 Related Works 40

5.1 Causality and Linear Temporal Logic . 40

5.1.1 Event-Order Logic Temporal Causality 40

5.1.2 Hyperproperty-Based Temporal Causality 41

5.2 Counterexamples and Unrealizability in GR(1) 42

5.2.1 Assumptions Refinement and Assumptions Repair 42

5.2.2 Unrealizability in Adaptive Systems 43

6 Conclusions 45

3

Chapter 1

Introduction

A major aspiration in computer science has been the automatic synthesis of error-free
systems, such as software programs and protocols, from formal specifications [2]. The
aim of reactive synthesis (or controller synthesis) is the automated generation of correct-
by-construction systems, i.e. controllers, from specifications formalized in temporal logic.
Such problem had been shown to be doubly exponential for generic linear-time temporal
logic (LTL) [3], and thus has long been deemed impractical.

Nonetheless, recent advances [2] suggests a polynomial-time algorithm for synthesizing
specifications in general reactivity of rank 1 (GR(1)), a subset of LTL with the ability
to formalize many patterns of LTL specifications used in industry [4]. Specifications in
GR(1) consists of environmental assumptions and controller guarantees. Reactive synthesis
tries to build a controller that, when facing any assumptions-compliant environment, also
complies with guarantees. However, synthesis fails for unrealizable specifications, for which
no controller exists.

Unrealizability in GR(1) specifications are often contributed to overly weak assumptions
[5] which make the environment overpowered in a game against the controller. This can
be due to the inherently challenging nature of engineering an error-free specification at
design time [6, 7], which is targeted by the research problems of assumptions refinement
or assumptions repair. Numerous counterstrategy-guided approaches has been proposed,
including initially template-based algorithms [6, 7], and later interpolation-based [8] as well
as the purely symbolic procedures [9].

Alternatively, for systems designed with adaptive capabilities [10, 11], unrealizability can
occur to their specifications when they overly weaken the assumptions to adjust for un-
foreseen scenarios during run time, which has sparked interest in recent academic research
[12].

In both cases, a natural and logical approach to fixing unrealizable specifications is to search
for sets of sufficiently strong assumptions that is satisfiable, and restricts the environment
so that a controller can be re-established. However, such a search problem is defined over
a doubly exponential space of possible assumptions [8]. In search of a tractable solution,

4

a paradigm of current academic interest attempts to employ the power of logic-based
learning. The paradigm, known as counterexample-guided inductive synthesis (CEGIS),
consists of (1) an oracle (or teacher) which generates a counterexample at each time which
violates the current specification, and (2) a learner which tries to understand the source of
error in the counterexample, and uses it to strengthen the specification assumption. The
oracle and the learner interacts with each other in an iterative fashion, until a realizable
specification is found [13, 14]. Most of the works mentioned above regarding unrealizability
repairs exhibit this pattern.

So arguably, for a CEGIS-based procedure to converge to a succinctly realizable specifica-
tion efficiently, it needs to ensure that (1) the oracle always provides concise and insightful
counterexamples, while (2) the learner is able to pinpoint the exact cause(s) of violation
in each counterexample. For the latter point, existing approaches such as [8] chose to
represent causes in an indirect manner, in the particular case i.e. interpolants.

Curiously, there exists many academic works that directly captures causality, albeit each
in their own alternative interpretations. Among them, Halpern and Pearl’s formaliza-
tion of actual causality provides a modern approach to causal reasoning, allowing for the
automated generation of diagnostic explanations [15], opening up the gateway for the in-
troduction of causal reasoning in computer science and artificial intelligence.

A subsequent work by Beer et al. [1] adapts this notion of causality for explaining trace
violation of system properties expressed in LTL. Their work’s successful implementation
strongly suggests that directly computing the causes of a violation in a counterexample
is possible for an optimized learner within the CEGIS architecture, potentially leading to
faster convergence and thus greater efficiency.

This project aims to provide a foundation on which causal computation can be integrated
with inductive synthesis approaches. It is based on the work of Beer et al. [1], with the
following main contributions:

1. A new definition of causes for LTL property violation on a counterexample, using the
modified Halpern definition of actual causality [16], and a new causal representation.

2. An algorithm based on the new definition, FindViolationCauses(σ, ϕ, bound), for
computing all causes for violation of LTL formula ϕ on counterexample σ of sizes
no greater than bound. FindViolationCauses guarantees soundness, bounded
completeness, as well as polynomial time complexity when assuming finite input
counterexample traces.

3. Implementation of the algorithm as a new causality checking tool Caupybara.

4. Evaluation of the new algorithm, by drawing comparisons between the new algorithm
and the baseline approximation algorithm in [1]. For each comparison, causality
computations are performed, using both algorithms, on the same dataset of GR(1)
specifications and their respective counterexamples taken from [12].

5

Chapter 2

Background

This chapter will clarify various concepts, introduce formal definitions, and discuss existing
work in the academic literature that are closely relevant to this project.

Section 2.1 introduces the formal definitions of LTL syntax and semantics, the LTLf se-
mantics variant which forms the basis of this project, as well as the negation normal form
for LTL. Section 2.2 first defines GR(1) specifications and formulae, then illustrates the
concepts of GR(1) games, realizability, as well as unrealizability and its related concepts.
Finally, Section 2.3 focuses on the notion of causal reasoning. It first formalizes the HP
definition for actual causality, then discusses the Beer et al. [1] definition of causality for
trace violations.

2.1 Linear-Time Temporal Logic

Linear-time temporal logic (LTL) is an significant branch of temporal logics, the family of
logics constructed on top of propositional and predicate logic to formalize the progression of
systems throughout time. LTL models system behaviour over time as a linear, potentially
infinite sequence of states.

2.1.1 LTL Syntax

As per one of the widely accepted standard definitions [3, 17, 2], a linear-time temporal
logic (LTL) formula ϕ follows the syntax below, in Backus-Naur form,

ϕ ::= p | ⊤ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Gϕ | Fϕ,

where ⊤, ¬ and ∧ are Boolean connectives as in propositional logic, p is a propositional
atom (i.e. variable), and X (next), U (until), G (globally / always) and F (finally / even-
tually) are temporal operators. For simplicity, the connectives ⊥, ∨,→,↔ in propositional
logic are also used throughout this report, which are derivable from connectives ⊤, ¬ and
∧.

6

2.1.2 Transition Systems

In preparation for presenting the formal definition of LTL semantics, the concept of tran-
sition systems is introduced below.

Definition 1 (Transition system). A labelled transition system (or simply transition sys-
tem) can be considered as the tuple T = ⟨Q,A, δ, q0,V, λ⟩ where

• Q is a set of states, where |Q| is finite, and all states in Q are implicit accepting
states,

• A is a set of actions,

• δ ⊆ Q×A×Q is a relation defining transition between states, where (q, α, q′) ∈ δ is
written as q →α q

′,

• q0 ∈ Q is the initial state,

• V is a non-empty set of propositional atoms (i.e. Boolean variables),

• λ : Q → 2V is a labelling function, which associates each state q ∈ Q with a subset
of the variables P ⊆ V.

An execution (or trace, path) σ in a transition system T has the form σ = q0α1q1α2q2...,
where for all i ≥ 0, qi →αi+1 qi+1 holds. An either finite or an infinite number of states
can be visited in any execution σ. For simplicity, a section of any execution σ can be
represented as

• σ[i..], standing for qiαi+1qi+1..., and

• σ[i..j], standing for qiαi+1...αjqj .

Observation 1. Given an execution σ in any transition system T = ⟨Q,A, δ, q0,V, λ⟩,
σ itself can be considered a subsystem of T , i.e. a transition system containing only the
execution itself.

For the sake of clarity, this report will denote the transition system representation of σ as
Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩, where Qσ, δσ and λσ are the restrictions of their counterparts
in T on the execution σ.

2.1.3 LTL Semantics over Transition Systems

Now the semantics of LTL can be formally established.

Definition 2 (LTL semantics). Given a transition system T = ⟨Q,A, δ, q0,V, λ⟩, an exe-
cution σ = q0α1q1α2q2... in T , and any LTL formulae ϕ, ϕ1, ϕ2, the satisfaction relation,

7

denoted by ⊨, is defined as:

σ ⊨ p iff p ∈ λ(q0)

σ ⊨⊤

σ ⊨¬ϕ iff σ ⊭ϕ

σ ⊨ϕ1 ∧ ϕ2 iff σ ⊨ϕ1 and σ ⊨ϕ2

σ ⊨Xϕ iff σ[1..]⊨ϕ

σ ⊨ϕ1 Uϕ2 iff ∃j ≥ 0. σ[j..]⊨ϕ2 and ∀0 ≤ i ≤ j. σ[i..]⊨ϕ1
σ ⊨Gϕ iff ∀i ≥ 0. σ[i..]⊨ϕ

σ ⊨Fϕ iff ∃i ≥ 0. σ[i..]⊨ϕ.

And for the transition system T , the satisfaction relation is defined as:

T ⊨ϕ iff for every execution σ in T, σ ⊨ϕ.

2.1.4 Finite LTL Semantics

One limitation of Definition 2 is that many LTL executions studied in academic literature,
especially when as counterexamples, are finite in length [1, 12]. To be able to use them
for evaluation, as well as to make more comprehensible analyses, it seems appropriate to
introduce a slightly modified set of semantics for finite LTL, written as LTLf .

Definition 3 (LTLf semantics [18, 12]). Given a transition system T = ⟨Q,A, δ, q0,V, λ⟩,
a finite execution σ = q0α1q1α2q2...αnqn in T for some n ∈ N, and any LTL formulae
ϕ, ϕ1, ϕ2, the finite satisfiability relation, also denoted by ⊨, is defined as:

σ ⊨ p iff |σ| = 0 or p ∈ λ(q0)

σ ⊨⊤

σ ⊨¬ϕ iff σ ⊭ϕ

σ ⊨ϕ1 ∧ ϕ2 iff σ ⊨ϕ1 and σ ⊨ϕ2

σ ⊨Xϕ iff n > 0 implies σ[1..]⊨ϕ

σ ⊨ϕ1 Uϕ2 iff ∃0 ≤ j ≤ n. σ[j..]⊨ϕ2 and ∀0 ≤ i ≤ j. σ[i..]⊨ϕ1
σ ⊨Gϕ iff ∀0 ≤ i ≤ n. σ[i..]⊨ϕ

σ ⊨Fϕ iff ∃0 ≤ i ≤ n. σ[i..]⊨ϕ.

In particular, operator X in this version of LTLf semantics is interpreted as a “weak next”
operator as in [12].

8

2.1.5 Negation Normal Form for Linear Temporal Logic

Another concept that is particularly helpful for the purposes of this project, especially for
time-complexity related results (see Chapter 3), is the negation normal form for LTL.

Definition 4. (Negation normal form for LTL) An LTL formula ϕ is in negation normal
form, i.e. NNF, if all negation operators ¬ only appears before proposition atoms in ϕ.

Any LTL formula ϕ can be converted into NNF using logical equivalences, and such con-
version does not increase the number of temporal operators in the NNF formula [19]. In
addition, such conversion increases the number of Boolean connectives linearly, with the
notable exception of the double implication ↔ having worst-case exponential increase.

Therefore, in this report, we implicitly assume that when discussing the length of any LTL
formula ϕ, we are referring to its equivalent form without the ↔ connective. In such case,
from the above assumptions, we shall infer that converting ϕ into NNF can be performed
in linear time.

2.2 Generalized Reactivity of Rank 1

A major focus of this projects lies on specifications in generalized reactivity of rank 1
(GR(1)), a logical subset of LTL. GR(1) formulae expresses properties of a system modelled
by two agents, namely the environment agent and the controller agent. For the set of
variables (i.e. propositional atoms) V in a GR(1) specification,

• the input variables X ⊆ V are valuated by the environment;

• the output variables Y = V/X ⊆ V are valuated by the controller.

In this section, for any set of propositional atoms P, XP is used to represent the primed
version of all atoms in P, namely

XP = {X p | p ∈ P}.

In addition, B(W) is written to denote any propositional logic formula, using “variables” in
the setW. Notice that B(W) shall not use any temporal operators, except when XP ⊆ W
for some set of propositional atoms P; then the primed atoms in XP are treated as if they
are propositional atoms.

2.2.1 GR(1) Specifications and Formulae

The definition of a GR(1) specification is hereby presented as in [2].

Definition 5 (GR(1) specification [2]). A GR(1) specification can be represented as the
pair ⟨E ,S⟩, where

9

• the environment specification is a tuple of assumptions E = ⟨φEinit, φEinv, ϕEfair⟩, and

• the controller specification is a tuple of guarantees S = ⟨φSinit, φSinv, ϕSfair⟩.

Any component with the superscript E belongs to the assumptions, and any component
with the superscript S belongs to the guarantees. The assumptions and the guarantees,
respectively, contain the following:

• The initial conditions φEinit, φ
S
init. They take the forms φEinit ≡ B(X), and φSinit ≡

B(V) respectively. They define the initial states (i.e. Boolean valuations of proposi-
tional atoms) for the environment and the controller.

• The invariants φEinv, φ
S
inv. They take the forms φEinv ≡ GB(V ∪XX), and φSinv ≡

GB(V ∪XV) respectively. They restrict the one-step transitional behaviour of the
system, in terms of the possible propositional atom valuations for the environment
and the controller in the next time step.

• The fairness conditions (or justices) in ϕEfair, ϕ
S
fair. They are represented by the

conjunctions ϕEfair ≡
∧

i=1...n GFBi(V), and ϕSfair ≡
∧

j=1...m GFBj(V). They
define, for both the environment and the controller, the states (i.e. valuations) which
must occur infinitely many times within one execution.

One of the original works on reactive synthesis in GR(1) [2] provides a strict definition
for GR(1) formulae. However, there are more recent works [6, 8] that uses an alternative,
simpler (non-strict) definition for GR(1) formulae instead. As the latter definition fits
better with the interests of the project, this report will adhere to this version and provide
it here.

Definition 6 (GR(1) formula). Given any GR(1) specification ⟨E ,S⟩ as in Definition 5,
the (non-strict) GR(1) formula for ⟨E ,S⟩ is

ϕ ≡ ϕE → ϕS ,

where ϕE ≡ φEinit ∧ φEinv ∧ ϕEfair and ϕS ≡ φSinit ∧ φSinv ∧ ϕSfair. All boolean connectives are
interpreted the same way as for an LTL formula.

Each GR(1) specification ⟨E ,S⟩ uniquely determines one GR(1) formula ϕ, and vice versa.
Theses two concepts are referred to interchangeably in this report.

2.2.2 GR(1) Games, Realizability

A GR(1) specification ⟨E ,S⟩ also uniquely defines a GR(1) game between the environ-
ment and the controller. Game states are the valuations of propositional atoms V in the
specification.

Plays (or executions) of the GR(1) game are generated by the environment and the con-
troller interacting with each other. The initial state for the two agents is determined by the

10

initial conditions in ⟨E ,S⟩. Any one-step transition taken in the play must be consistent
with the invariants in ⟨E ,S⟩. And at each step of the play,

• the environment starts by selecting one valuation of all propositional atoms in X , with
the goal of satisfying the assumptions, while forcing the violation of any guarantees
(i.e. leaving the controller unable to satisfy them);

• the controller then selects one valuation of all propositional atoms in Y, with the
goal of satisfying (if still possible) the guarantees.

For an arbitrary play of the GR(1) game generated as described above, it is defined to be
winning for the controller if,

1. the play is infinite, and

2. the winning condition is satisfied by the play, which for GR(1) is the formula ϕwin ≡
ϕEfair → ϕSfair.

Intuitively, the controller wins if the play does not terminate, and if the fairness conditions
in ⟨E ,S⟩ are all satisfied.

In a GR(1) game, strategies are functions that decides the next move for the agent. In
particular, a strategy for the environment takes the history of previous states visited in a
play and its last state as inputs, then outputs a environment valuation of X . Likewise (but
not symmetric), a strategy for the controller takes the history of previous states visited
in a play, its last state, its current environment valuation of X as inputs, then outputs a
controller valuation of Y.

A winning strategy for the controller is one that is winning in all possible plays of the
game. And the specification defining the GR(1) game is realizable if such strategies for
the controller can be found. Finding winning controller strategies in GR(1) specifications
defines the problem of reactive synthesis, for which an polynomial-time algorithm is given
in [2], along with formal definitions for games and strategies.

2.2.3 Unrealizability, Counterstrategies and Counterexamples

Conversely, a GR(1) specification ⟨E ,S⟩ is unrealizable if a winning controller strategy
cannot be found for the game it defines. In such case there exists a counterstrategy [20]
that is “winning” for the environment.

A play of the GR(1) game where environment follows the counterstrategy is called a coun-
terexample (also referred to in literature as a countertrace or a counterplay). And in an
arbitrary counterexample of the unrealizable GR(1) game defined by ⟨E ,S⟩, it must be the
case that

• the play is finite, meaning that either

11

– the initial assumption φEinit is satisfied while the initial guarantee φSinit is unsat-
isfiable, or

– all states in the play satisfies both invariants φEinv and φSinv, except the last state
in which the invariant guarantee φSinv is unsatisfiable; or

• the play is infinite, and it satisfies all fairness assumptions in ϕEfair, but at least one
fairness guarantee in ϕSfair is unsatisfiable.

Thus, a counterstrategy can be visualised as a tree-like graph. Its nodes represents the game
states (i.e. V-valuations) that has the same history of visited states, where the environment
makes the same X -valuations. And its edges represent the possible Y-valuations made by
the controller. Each complete path in the graph represents one counterexample.

Notably, Könighofer et al. [20] proposed an efficient algorithm for computing counter-
strategies for unrealizable GR(1) specifications, which is nowadays foundation of many
assumptions refinement and repair approaches. A more in-depth discussion in Chapter 5
details a variety of related works in this area.

2.3 Causal Reasoning

The concept of causality has been a recurring focus in philosophy since the time of the
ancient civilisations. It has always remained as a pivotal component in the fields of scientific
research, medicine, law, history among many other studies. For the purposes of the project,
this report focuses on what Halpern refers to as actual causality, which is only concerned
with particular events [16], and not contributions to macroscopic trends.

Giving causality a formal definition has continuously been a massively challenging endeav-
our. The modern interpretation of actual causality originates from the work of Lewis [21],
which introduced the idea of counterfactual dependencies. In such interpretation, given dis-
tinct events Ec, Ee, one can say that Ec is the cause of Ee if and only if, in an “alternative
world” where Ec had not occurred, Ee would not have occurred either.

More recently, Halpern and Pearl formalized actual causality using structural equations
[15], which has gained popularity in computer science, artificial intelligence and related
fields.

2.3.1 Actual Causality by Halpern and Pearl

The Halpern-Pearl definition of actual causality (subsequently abbreviated as the HP def-
inition) pictures the world as variables and their valuations. Structural equations model
potential causal relations between these variables. The key components formalizing the
HP definition is given in this section, with reference to the work of Halpern [16], beginning
with the formalization of a causal model.

Definition 7 (Causal model [15]). A causal model M can be represented as the pair ⟨S,F⟩,
in which

12

• the signature S is represented as the tuple ⟨U ,V,R⟩. All variables in causal model
M can be classified into either

– the set of exogenous variables U , valuated solely by factors external to the model,

– the set of endogenous variables V, valuated by the exogenous variables, directly
or indirectly,

such that U and V are disjoint. In addition, R maps every variable in the model
W ∈ U ∪V to a set of valuations R(W) that W can take, where R(W) ̸= ∅. Namely,
S is a signature of the modelled variables with their possible valuations;

• F maps every endogenous variable X ∈ V to a function FX ,

FX : (
∏
U∈U
R(U))× (

∏
V ∈V/{X}

R(V))→ R(X),

and they are, collectively for all endogenous variables, called the modifiable structural
equations. Namely, FX takes in a valuation of every variable in U and V as input,
excluding that of X itself, then outputs valuation for X.

As an example taken from [15], assume causal model M contains U ∈ U (exogenous
variable) and X,Y, Z ∈ V (endogenous variables), and X is valuated by structural equation
FX(U, Y, Z) = U + Y , commonly represented by the equation X = U + Y . In this case, in
the valuation where U = 1 and Y = 4, then X = 5 irrespective of the valuation of Z.

In addition, MX←x represents the new causal model derived from M , where FX ∈ F is
now set to be X = x, and nothing else modified. MX⃗←x⃗ is similarly defined for a set (or
vector) of variables X⃗, and a a set (or vector) of valuations x⃗ in respective order. Now,
the definition of a causal formula can be formalized in reference to [16].

Definition 8 (Causal formula [16]). Consider any signature S = ⟨U ,V,R⟩. A causal
formula over signature S can be expressed as ψ ≡ [Y1 ← y1, ..., Yk ← yk]φ, commonly
abbreviated as [Y⃗ ← y⃗]φ, in which

• φ is a formula given in propositional logic, over primitive events V = v for V ∈ V
and v ∈ R(V), and

• each Yi ∈ V is a unique endogenous variable, and yi ∈ R(Yi), for all i = 1, ..., k.

Intuitively, a causal formula ψ ≡ [Y⃗ ← y⃗]φ has the meaning that, given that variables
in Y⃗ are valuated directly to y⃗ respectively, effectively overriding their original structural
equations, then φ holds.

A context [16] u⃗ for a causal model M is one unique, legal valuation of all exogenous
variables in U that satisfies all equations in F . Then, given a causal model M , a context u⃗
over M , and a causal formula ψ, ⟨M, u⃗⟩⊨ψ is written to denote that ψ evaluates to true
in M given u⃗, defined inductively below [16]:

13

• ⟨M, u⃗⟩⊨W = w if W valuates to w in the only possible solution of the structural
equations in M , under the context u⃗.

• ⟨M, u⃗⟩⊨φ if the propositional logical formula φ, constructed with primitive events,
holds in M given u⃗.

• ⟨M, u⃗⟩⊨[W⃗ ← w⃗]φ if ⟨MW⃗←w⃗, u⃗⟩⊨φ.

This report is now ready to present the two versions of HP definition below, which forms
the theoretical basis of this project.

2.3.2 The Original Halpern-Pearl Definition

The first version of HP definition is referred to as the original definition.

Definition 9 (Causality, original definition [15]). For any causal model M , context u⃗,
and propositional logic formula φ over primitive events, X⃗ = x⃗ is the actual cause of φ in
⟨M, u⃗⟩ when all of below holds.

• AC1.
⟨M, u⃗⟩⊨ X⃗ = x⃗, and ⟨M, u⃗⟩⊨φ,

X⃗ = x⃗ represents some conjunction of the form X1 = x1 ∧ ... ∧ Xn = xn. Namely,
both X⃗ = x⃗ and φ must actually hold.

• AC2. There exist two disjoint sets Z⃗, W⃗ such that Z⃗ ∪ W⃗ = V (the set of endoge-
nous variables), X⃗ ⊆ Z⃗, and there exist alternative valuations x⃗′ for X⃗, w⃗′ for W⃗
respectively, where:

– AC2(a) (necessity).
⟨M, u⃗⟩⊨[X⃗ ← x⃗′, W⃗ ← w⃗′]¬φ.

In words, had X⃗ not taken the values x⃗, φ would not have held under the
contingency W⃗ = w⃗′.

– AC2(b) (sufficiency). Given ⟨M, u⃗⟩⊨ Z⃗ = z⃗, then for any arbitrary subset
Z⃗ ′ ⊆ Z⃗,

⟨M, u⃗⟩⊨[X⃗ ← x⃗′, W⃗ ← w⃗′, Z⃗ ′ ← z⃗]φ.

In words, if X⃗ takes the alternative valuation x⃗′, while the variables in the
subset Z⃗ ′ takes their respective valuations in z⃗ as in reality, then φ holds even
under the contingency W⃗ = w⃗′.

• AC3. X⃗ is minimal, meaning that no strict subset X⃗ ′ ⊂ X⃗ exist such that AC1 and
AC2 still holds by replacing X⃗ with X⃗ ′.

14

2.3.3 The Modified Halpern-Pearl Definition

The second version is a modification by Halpern on the original definition, i.e. Definition 9,
which we will refer to as the modified definition.

Definition 10 (Causality, modified definition [16]). For any causal model M , context u⃗,
and propositional logic formula φ over primitive events, X⃗ = x⃗ is the actual cause of φ in
⟨M, u⃗⟩ when all of below holds.

• AC1 as in Definition 9.

• AC2, modified. There exists a subset W⃗ of the endogenous variables V, and an
alternative valuation x⃗′ for X⃗, where given ⟨M, u⃗⟩⊨ W⃗ = w⃗, then

⟨M, u⃗⟩⊨[X⃗ ← x⃗′, W⃗ ← w⃗]¬φ,

in which case ⟨W⃗ , w⃗, x⃗′⟩ forms a witness.

• AC3 also as in Definition 9.

In both versions, every primitive event of the form Xi = xi in the conjunction X⃗ = x⃗

is considered a part of the cause of formula φ holding in ⟨M, u⃗⟩. Arguably, there does
not exist a most “correct” definition of causality, but both versions of the HP definition
mentioned above have been shown to be useful under case analyses [16] as well as in wider
academic literature.

2.3.4 Beer et al. Causality for LTL Trace Violations

The work by Beer et al. [1] aims to provide an intuitive visual explanation for counterex-
amples. To approach this, they first formalizes the set of singleton causes for a specification
failing on one specific counterexample provided, referring to the original HP definition, i.e.
Definition 9, then gives an algorithm for calculating an approximate for the set of causes.
Their subsequent implementations for visualization is beyond the scope of interest for this
project.

To apply actual causality to counterexamples of pontentially infinite lengths, they truncates
the path to become finite, by replacing looping transitions with a loop indicator. These
truncated paths were then interpreted based on the LTLf semantics1 given by Defintion 3.

In their work, a cause is defined as the Boolean valuation of a propositional atom p in a
state q, which will be referred to in this report as a singleton cause. Potential causes are
written as pairs ⟨q, p⟩. It is also possible to derive

• the counterfactual pair ⟨q, p⟩ from ⟨q, p⟩, by switching the Boolean valuation of atom
p in state q,

1The weak LTL semantics as defined in [22], which is almost identical to Definition 9, is used in their
original work.

15

• the set of counterfactual pairs Ĉ = {⟨q, p⟩|⟨q, p⟩ ∈ C} from the original set of pairs
C, by switching the Boolean valuation of atoms for all pairs in C,

• the execution σ⟨q,p⟩ from σ by switching the Boolean valuation of p in q on σ,

• the execution σĈ from σ by switching the Boolean valuation of atoms for all pairs in
the set C.

And now, the Beer et al. definition of the cause for LTL trace violations can be introduced.

Definition 11 (Beer et al. Causality for LTL trace violations [1]). Given an LTL formula
φ, and an execution trace σ such that σ ⊭φ. Then the pair ⟨q, p⟩ is a (singleton) cause
for φ being violated on σ, if there exist a set of pairs C where ⟨q, p⟩ /∈ C, such that under
LTLf semantics,

• ⟨q, p⟩ is critical [23, 1] for σĈ ⊭φ, namely that σĈ ⊭φ but σ{⟨q,p⟩}∪Ĉ ⊨φ, and

• σŜ ⊭φ for any subset S ⊆ C.

In words, a pair ⟨q, p⟩ is considered a singleton cause if a set of pairs C (known as a witness
set) can be found, where under the contingency of Ĉ, formula φ can be made to hold in
the trace by switching the Boolean valuation of ⟨q, p⟩ in the execution (i.e. if ⟨q, p⟩ does
not occur as in the original execution), but switching the values of C or its subsets alone
does not suffice to make φ hold in the trace.

It is possible to see that this definition, a derivation from Definition 9 with the model M
and the context u⃗ replaced with the execution σ, captures the notion of counterfactual de-
pendence. Notice that no structural equations are explicitly mentioned in this adaptation.

However, this report would like to argue that the Beer et al. definition contains inadequa-
cies for the automated symbolic diagnosis of counterexamples. In particular:

• Finding all causes following the Beer et al. definition is thought to be a ΣP
2 -hard

problem [1] in the polynomial hierarchy [24]. As a countermeasure to this, an approx-
imation algorithm has also been given in their work, which can provably calculate an
over-approximation in polynomial time “in terms of the length of the LTL formula φ
and finite execution σ” [1]. But alternatively, if we consider that ...

• ... the Beer et al. definition uses the original HP definition, which in itself is a
ΣP
2 -complete problem. Therefore, there exists the possibility of switching over to the

modified HP definition which is DP-complete to compute, where DP = NP ∩ coNP
and is a simpler complexity class compared to ΣP

2 [16].

• Furthermore, the semantics of singleton causes in the Beer et al. definition contains
ambiguity, especially under the interpretation of modified HP definition. This is
demonstrated in details in Section 3.1

16

For the reasons mentioned above, this project aims at constructing an entirely new def-
inition of causality for counterexample violations, which (1) is based on the modified HP
definition given in Definition 10, and (2) follows a representation of causes that is more
informative, intuitive and unambiguous.

17

Chapter 3

Causes of Violations to LTL
Formulae

As promised in Chapter 2, this chapter now formally proposes a new and original definition
of causality for LTL property violations on counterexamples. Then, a new algorithm is
presented for computing all causes of LTL property violations in a given counterexample.

We begin by providing a motivated example in Section 3.1, to point out inadequacies in
the existing causal definition in [1]. Section 3.2 provides the necessary prerequisites for
the new definition. Section 3.3 details the new definition, and employ it firsthand on the
motivating example. Section 3.4 further showcases the new definition with an additional
motivating example. Section 3.5 describes the algorithm in details. And finally, Sections
3.6 and 3.7 show proofs for soundness, bounded completeness and time complexity of the
algorithm.

3.1 Motivating Example: Request-Acknowledge System

In addition to the arguments listed in Chapter 2, in order to better justify for the need of
a new causal definition, a motivating example is provided below, taken from the very work
of Beer et al. [1].

Example 3.1 (Request-acknowledge system [1]). Consider a system with a controller
that receives requests from two sources in the environment, which we model with the
propositional atoms req1 and req2. The controller itself can also issue an acknowledgement
to any request, modelled as the atom ack.

Now, consider a part of the controller specification, as the LTL formula

ϕ = G((req1 ∨ req2) → X(ack)),

in words, at any timestep during an execution, if one request from either sources is received,
the controller must issue an acknowledgement in the next timestep.

18

Finally, consider a finite counterexample σ, visualised below showing 4 states, and the
propositional atoms that are true in each state:

Figure 3.1: Counterexample σ to the request-acknowledge system.

And as we can see, σ ⊭ϕ under LTLf semantics.

According to the Beer et al. definition, the singleton causes for the violation of ϕ in σ are
⟨q2, req1⟩, ⟨q2, req2⟩ and ⟨q3, ack⟩. It may not seem intuitive why ⟨q3, ack⟩ is a cause of
violation; it is indeed the falsity of ack, i.e. ack /∈ λσ(q3), that caused the violation of ϕ.

Furthermore, in the absence of additional structural equations, we do not have extra in-
formation on events ⟨q2, req1⟩ and ⟨q2, req2⟩ for causal explanations, e.g. if one of them is
necessary for the violation, or whether there is a precedence for blame. Therefore, it seems
unlikely that either ⟨q2, req1⟩ or ⟨q2, req2⟩ alone can be considered a complete cause; had
req1 in state q2 alone been switched to falsity in a counterfactual execution, req2 being
true would still violate σ, and vice versa.

Theoretically, if adhering to the original HP definition, these singletons would be considered
valid causes since we can always find a suitable set W⃗ of events for each singleton that
satisfies the spirit of Definition 9.

However, if we consider the modified HP definition, then the singletons ⟨q2, req1⟩ and
⟨q2, req2⟩ will no longer be causes. Since we can only take set W⃗ of events that actually
occurred in σ, and that no structural equations are available, switching value of req1 in
q2 alone does not make ϕ hold in σ⟨q2,req1⟩∪Ŵ for any W⃗ (and similarly for req2).

3.2 Prerequisites for Formalizing Causality

First and foremost, we shall set a clear definition for the problem that this project aims to
tackle, before we can proceed to construct the new definition:

What is considered a cause for the violation of a system property, expressed as a single
LTL formula, on a provided counterexample execution, according to the modified HP

definition of actual causality?

In addition, for all discussions in this chapter, we shall implicitly assume that when an
execution σ is discussed with an LTL formula ϕ for the purposes of causality, they share
the same set of propositional atoms V.

19

3.2.1 Candidate Causal Sets and Singletons

We begin by giving the definition for candidate causal sets, as well as singletons.

Definition 12 (Candidate causal sets, singletons). Given an execution σ, represented as
transition system Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩, a nonempty set C ⊆ Qσ × V × {tt,ff} is
considered a candidate causal set (or simply candidate set), which we also write as σ ⊨C,
if for each ⟨q, p, v⟩ ∈ C, v is the Boolean value representing whether v is in the valuation
of state q in Tσ, i.e. v ≡ p ∈ λ(q).

In the case where C is a candidate causal set, each ⟨q, p, v⟩ ∈ C is known as a singleton.

We can see that every singleton represents an actual atomic valuation in some state in σ.

3.2.2 Causal Model for Counterexample Violations

We can observe that the Beer et al. definition (i.e. Definition 11) does not explicitly refer
to structural equations, which are core to the HP definitions, which may seem counter-
intuitive. However, this report would like to defend this choice by Beer et al. and formalize
it as the observation given below.

Observation 2. The causal model for violation of some LTL formula ϕ on some execution
σ should only contain structural equations that can be directly inferred by σ, and should
contain only endogenous variables. Any contexts for the causal model should also be empty.

To justify for the observation, the only information regarding the erroneous behaviour in
the system that we are concerned with comes from the execution trace σ.

So crucially, this report considers all atomic valuations in all states in σ to be independent
events, and therefore inadequate to suggest that any dependency relationship exists between
them. This argument has been illustrated by Example 3.1.

It also follows that we would not need to consider external factors that could alter the
valuation (i.e. labelling function λσ of σ) from outside the model. Additionally, since
there are no exogenous variables, any context of the causal model can only be empty.

Thus, from Observation 2, we can adapt Halpern’s notion of causal models [16] to our
problem definition.

Definition 13 (Causal model for counterexample violations). Given an execution σ, rep-
resented as transition system Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩, and an LTL formula ϕ, the causal
model for the violation of ϕ on σ would be

Mσ = ⟨⟨∅, Qσ × V,R⟩,F⟩,

where for any ⟨q, p⟩ ∈ Qσ × V, R(q, p) = {tt,ff}, and F(q, p) = p ∈ λσ(q).

Notice that, with this definition, each execution σ is one-to-one mapped to its model Mσ.
Likewise, since only the empty context is allowed, each σ is one-to-one mapped to ⟨Mσ, ∅⟩.

20

3.2.3 Alteration Traces, Counterfactual Sets, Counterfactual Traces

Every definition of actual causality is arguably founded on some notion of counterfactuals.
Here, we proceed by providing the definition of alteration traces.

Definition 14 (Alteration traces). Given an execution σ, (Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩),
and some set S ⊆ Qσ × V × {tt,ff} (not necessarily a candidate set), the alteration trace
σS , represented as the new transition system TS

σ = ⟨Qσ, A, δσ, q0,V, λSσ⟩, where for every
⟨q, p, v⟩ ∈ Qσ × V × {tt,ff},

• if ⟨q, p, v⟩ ∈ S and

– if v = tt then λSσ(q) = λσ(q) ∪ {p}, or

– if v = ff then λSσ(q) = λσ(q) \ {p},

• otherwise, if ⟨q, p, v⟩ /∈ S then λSσ(q) = λσ(q).

Conceptually, the alteration trace σS of an execution σ on a set S ⊆ Qσ × V × {tt,ff}
is created by altering the atomic valuations of σ as specified by S. And implicitly, σ∅ is
identical to σ. As an example, Figure 3.2 shows an execution trace σ and its alteration
traces on sets S1 = {⟨q1, ack,ff⟩} and S2 = {⟨q0, req2, tt⟩, ⟨q1, ack, tt⟩}.

Figure 3.2: σ and its alteration traces on S1, S2.

Next, we give the definitions for counterfactual sets and counterfactual traces.

Definition 15 (Counterfactual sets). Given an execution σ, (Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩),
and a candidate causal set C taken from σ, the counterfactual set Ĉ derived from C is one
where, for every ⟨q, p, v⟩ ∈ Qσ × V × {tt,ff},

⟨q, p, v⟩ ∈ C iff ⟨q, p,¬v⟩ ∈ Ĉ.

21

In plain words, the counterfactual set Ĉ taken from a candidate set C is one where all true
atomic valuations in C are switched to false, and vice versa. It always follows that σ ⊭ Ĉ.

And finally, we formalize the concept of counterfactual traces.

Definition 16 (Counterfactual traces). Given any execution σ, and a candidate causal
set C taken from σ, the counterfactual trace σĈ is simply the alteration trace of σ on the
counterfactual set Ĉ.

3.2.4 Temporal and Causal Model Semantics

Since for any execution σ and its corresponding causal model Mσ by Definition 13, σ is
one-to-one mapped to ⟨Mσ, ∅⟩, we are now able to bridge the gap between causal model
semantics of Halpern and Pearl and linear temporal semantics, by stating that for any
C, S ⊆ Qσ × V × {tt,ff}, we have

⟨Mσ, ∅⟩⊨ W⃗ = C iff σ ⊨C,

⟨Mσ, ∅⟩⊨φ iff σ ⊨ϕ,

⟨Mσ, ∅⟩⊨[W⃗ ← S]φ iff σS ⊨ϕ,

where φ is some propositional logic representation of ϕ.

3.2.5 No Witnesses for the Prosecution

As an interesting consequence of Observation 2, when adhering the modified HP definition,
the choice of the witness set SW (originally W⃗) is no longer relevant for fulfilling AC2(m).
Since there are no structural equations involved, and SW can only be selected from events
that actually occurred in execution σ, i.e. singletons, then we have

for any set SW such that σ ⊨SW , then σ ⊨ϕ iff σSW ⊨ϕ for any LTL formula ϕ,

meaning that under the problem definition given, we no longer need to select a witness set
for causality of counterexample violations.

3.3 Proposed Definition of Causality

With now all the necessary prerequisites, this report now present the new definition on the
causality for LTL property violations on counterexamples, based on modified HP definition,
i.e. Definiton 10.

22

Definition 17 (Causality for violations on counterexamples). Given an execution σ (Tσ =

⟨Qσ, A, δσ, q0,V, λσ⟩), and an LTL formula ϕ using the propositional atoms in V, a nonempty
set C ⊆ Qσ × V × {tt,ff} is a cause for violation of ϕ on counterexample σ if

• AC1. σ ⊨¬ϕ, and σ ⊨C i.e. C is a candidate causal set.

• AC2(m). σĈ ⊨ϕ, namely ϕ holds in the counterfactual trace σĈ .

• AC3. C is minimal, namely for any C ′ ⊂ C, σĈ′
⊨¬ϕ.

With Definition 17, if σ satisfies ϕ, then no causes exist according to definition, since AC1
can not be fulfilled with any candidate causal set C.

A cause can contain either one or more singletons. Where a cause contains multiple
singletons, it should be interpreted as a conjunction, i.e. the combination of the singletons
forms the cause. The number of singletons in a cause is referred to as the size of the cause.

Now, we can employ the new Definition 17 firsthand to Example 3.1.

Figure 3.3: σ from Example 3.1 and its counterfactual traces on C1, C2.

Given ϕ = G((req1 ∨ req2) → X(ack)), we already know that σ ⊨¬ϕ. We can also see
that, considering the atoms V = {req1, req2, ack}, then our candidate causal sets can be
selected from the set of all singletons

Sq,p,v = {⟨q0, req1, tt⟩, ⟨q0, req2,ff⟩, ⟨q0, ack,ff⟩,

⟨q1, req1,ff⟩, ⟨q1, req2,ff⟩, ⟨q1, ack, tt⟩,

⟨q2, req1, tt⟩, ⟨q2, req2, tt⟩, ⟨q2, ack,ff⟩,

⟨q3, req1,ff⟩, ⟨q3, req2,ff⟩, ⟨q3, ack,ff⟩},

and any C ⊆ Sq,p,v would satisfy AC1.

23

Now, consider the two candidate sets C1 = {⟨q2, req1, tt⟩, ⟨q2, req2, tt⟩}, C2 = {⟨q3, ack,ff⟩}.
Figure 3.3 shows the counterexample σ and its counterfactual traces on C1 and C2.

Since they are both subsets of Sq,p,v, then they both satisfy AC1. In addition, we see that
the counterfactual traces σĈ1 and σĈ2 both satisfy ϕ; therefore C1 and C2 satisfy AC2(m).

Finally, we see that C2 with size 1 is trivially minimal. And to see why C1 is minimal,
consider its subsets of size 1, namely C ′1 = {⟨q2, req1, tt⟩} and C ′′1 = {⟨q2, req2, tt⟩}. Then,
for their counterfactual traces, σĈ′

1 ⊨¬ϕ and σĈ
′′
1 ⊨¬ϕ. Hence, both C1 and C2 satisfy

AC3.

In fact, C1 and C2 are the only two causes by Definition 17, since now that we know they
are causes, we can only check for new candidate sets C ⊆ Sq,p,v \ (C1 ∪ C2), and

Sq,p,v \ (C1 ∪ C2) = {⟨q0, req1, tt⟩, ⟨q0, req2,ff⟩, ⟨q0, ack,ff⟩,

⟨q1, req1,ff⟩, ⟨q1, req2,ff⟩, ⟨q1, ack, tt⟩,

⟨q2, ack,ff⟩,

⟨q3, req1,ff⟩, ⟨q3, req2,ff⟩},

so no new causes can be identified from the remainder of available singletons.

3.4 Motivating Example: Minepump

To better demonstrate Definition 17, in this section, this report introduces an additional
motivating example.

Example 3.2 (Minepump). Consider a system that monitors the conditions in a coal
mine, where the controller aims to prevent flooding. The system can monitor whether the
water level in the mine is higher than safety threshold (HighWater), and whether methane
is present (Methane). The controller can operate a pump that removes water from the
mine (Pump).

Now, as part of the formal specification, the LTL formula

ϕ = G(HighWater→ X Pump) ∧G(Methane→ X(¬Pump)),

is the conjunction of two safety properties: the pump should be (1) turned on following
the detection of high water level, and (2) turned off following the detection of methane.

Finally, consider a finite counterexample σ, visualised below showing 4 states, and the
propositional atoms that are true in each state:

24

Figure 3.4: Counterexample σ to minepump.

And as we can see, σ ⊨¬ϕ under LTLf semantics. Now, considering the atoms V =

{HighWater, Methane, Pump}, the set of all singletons are

Sq,p,v = {⟨q0, HighWater,ff⟩, ⟨q0, Methane,ff⟩, ⟨q0, Pump,ff⟩,

⟨q1, HighWater, tt⟩, ⟨q1, Methane,ff⟩, ⟨q1, Pump,ff⟩,

⟨q2, HighWater, tt⟩, ⟨q2, Methane, tt⟩, ⟨q2, Pump,ff⟩,

⟨q3, HighWater, tt⟩, ⟨q3, Methane, tt⟩, ⟨q3, Pump,ff⟩},

and any C ⊆ Sq,p,v would satisfy AC1.

At first inspection, upon seeing the left-hand side of the conjunction, it would be rea-
sonable to consider ⟨q2, Pump,ff⟩ to be causal. But a causal set with ⟨q2, Pump,ff⟩ alone
does not satisfy AC2(m), so with similar reasoning, it would be tempting to also consider
⟨q3, Pump,ff⟩.

However, the candidate set Cbad = {⟨q2, Pump,ff⟩, ⟨q3, Pump,ff⟩} is not a cause by Defini-
tion 17, since the counterfactual trace σĈbad , visualised in Figure 3.5 violates the right-hand
side of the conjunction in ϕ, hence AC2(m) is not fulfilled.

Figure 3.5: Atlteration trace of σ from Example 3.2 on Ĉbad.

Instead, consider C1 = {⟨q2, Pump,ff⟩, ⟨q2, HighWater, tt⟩} which is a cause by Definition 17:
C1 ⊆ Sq,p,v (AC1), the counterfactual trace σĈ1 ⊨ϕ under LTLf semantics (AC2(m)), and
neither singleton is a cause on its own (AC3).

Alternatively, C2 = {⟨q1, HighWater, tt⟩, ⟨q2, HighWater, tt⟩} is another cause (see Fig-
ure 3.6).

25

Figure 3.6: Counterfactual traces of σ from Example 3.2 on C1, C2.

3.5 Proposed Algorithm for Causality Computation

Definition 17 gives the formal notion of when one set of singletons is considered a cause for
counterexample violation. It is not unusual, however, for there to be multiple alternative
causes on the violation of some property on a single execution. Therefore, it is more
practical to build a procedure capable of finding all the causes in one counterexample,
which is what this report believes to be the proper way of causal computation.

Hence, this report now presents the new Algorithm 1 below, which returns the complete set
of causes SC , for each input execution σ and LTL property ϕ. The details of Algorithm 1
is shown as below.

Notice that a bound is also taken as input to the algorithm, which limits the maximum size
of candidate causal set generated (see Lines 7 and 8). Following Definition 12, the total
number of candidate causal sets in an execution σ would be exponential to the length of
σ. Therefore, upper-bounding the size of candidate sets in Algorithm 1 is a crucial design
choice, in order to achieve tractability at the cost of ignoring larger possible causes.

Algorithm 1 also uses two helper subroutines:

• GetSingletons(σ), which returns all singletons present in the execution σ, based
on all available propositional atoms in V, and

• GetCounterfactualTrace(σ,C), which returns the counterfactual trace σĈ by
Definition 16, assuming the input C is a valid candidate causal set.

3.6 Soundness and Bounded Completeness

Next, we demonstrate that Algorithm 1 is sound, and complete under bound.

Theorem 1. Algorithm 1 is sound, and complete under bound, in accordance with Defini-
tion 17.

26

Algorithm 1 Finding all causes for counterexample violations.
Require: For σ, the transition system Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩.
Require: bound ≥ 1.
Ensure: SC is the set of all causes of maximum size bound.
1: procedure FindViolationCauses(σ, ϕ, bound)
2: SC ← ∅
3: if σ ⊨ϕ then
4: return ∅ ▷ if σ does not violate ϕ, return ∅ (AC1)
5: end if
6: Sq,p,v ← GetSingletons(σ)
7: for size← 1,min(|Sq,p,v| , bound) do
8: candidateCauses← {C | C ⊆ Sq,p,v, |C| = size}
9: for all C ∈ candidateCauses do

10: σĈ ← GetCounterfactualTrace(σ,C)
11: if σĈ ⊨ϕ then
12: SC ← SC ∪ {C} ▷ (AC2(m))
13: Sq,p,v ← Sq,p,v \ C ▷ ensure minimality (AC3)
14: end if
15: end for
16: end for
17: return SC
18: end procedure

Proof. Consider any LTL formula ϕ and execution σ (Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩). Take
any bound ∈ N where bound. Then, Assume that an execution of procedure FindViola-

tionCauses(σ, ϕ, bound) returns the set SC .

(Soundness). Take arbitrary set C ∈ SC . We will show that C is a cause according to
Definition 1.

AC1. We know that C ∈ SC , so from Lines 3 and 4 we can infer that σ ⊨¬ϕ. In addition,
from Lines 8 and 9, we see that C is always a subset of Sq,p,v, which itself only contains
singletons. Hence, we can infer that C contains singletons only, and by Definition 12, C is
a candidate causal set, i.e. σ ⊨C.

AC2(m). We see C must have been added into SC at Line 12, which is conditional upon
Line 11. Therefore, σĈ ⊨ϕ must hold.

AC3. To show that C is minimal, assume for the sake of contradiction there exists C ′ ⊂ C,
such that σĈ′

⊨ϕ.

We see that |C ′| < |C|, and since C contains singletons only, we can infer that |C ′| also only
contains singletons. So the procedure must checked C ′ before checking C in the for-loop
between Lines 7 and 16. Then from assumption and Lines 11, we know Lines 12 and 13
must have been executed by the procedure for C ′.

Now, take any ⟨q, p, v⟩ ∈ C ′. By the arguments above, ⟨q, p, v⟩ must have been removed
from Sq,p,v before the procedure checks for C. Hence, when it eventually gets to generate
C on Line 8, we see ⟨q, p, v⟩ /∈ C. But by definition of strict subset, ⟨q, p, v⟩ ∈ C must hold
from assumption.

27

We have reached a contradiction, and our assumption must have been false. Therefore, C
must be minimal.

We have shown that AC1, AC2(m), AC3 holds for set C. Therefore, by Definition 17, C
is a cause for the violation of ϕ on σ.

(Bounded completeness). Take any arbitrary cause C by Definition 17, such that the size
of C is no greater than bound. We will show that C ∈ SC must hold.

Firstly, since AC1 holds for cause C to exist, we know that σ ⊨¬ϕ. Therefore, the pro-
cedure will not reach Line 4. In addition, σ ⊨C, hence C must be a candidate set; so for
any ⟨q, p, v⟩ ∈ C, then ⟨q, p, v⟩ must be in the set of all singletons of σ (at Line 6).

Then, by AC3, we know for any C ′ ⊂ C, then σĈ′ ⊭ϕ, and therefore C ′ is not a cause by
Definition 17. Therefore, we can observe that ⟨q, p, v⟩ ∈ Sq,p,v must hold up to the point
where the for-loop between Lines 7 and 16 reaches when size equals to |C|.

So we can infer that when size = |C|, C must be in the set candidateCauses on Line 8,
thus would be checked by the procedure in the for-loop between Lines 9 and 15.

Finally, given that AC2(m) holds, we know that σĈ ⊨ϕ, so C must be added to SC on
Line 12, hence C ∈ SC .

3.7 Time Complexity under LTLf

It is often desirable to justify for the termination or time complexity of an algorithm.
Fortunately, we are able to prove for a polynomial time complexity for Algorithm 1, under
the premises that input execution trace σ is finite, and under LTLf semantics.

Before we can show our proof, we present a pivotal result by Fionda and Greco [25] re-
garding the time complexity of LTLf semantics.

Lemma 1. For any finite execution σ and LTL formula ϕ in NNF by Definition 4, checking
whether σ ⊨ϕ under LTLf semantics is feasible in O(|σ|2 · |ϕ|) time.

Proof. A proof is given in [25], with the exception of the temporal U operator. Never-
theless, we will show that the time complexity shown in [25] still holds with the addition
of operator U.

Specifically, for any LTL formula ϕ = ψ1 Uψ2, we would like to make an extension of the
algorithm for computing sat(v, σ) in [25] shown in pseudocode below, where v is the leaf
node in parse tree for ϕ, λ(v) = U, and v1, v2 are the left and right children of v in pt(ϕ).

sat(v, σ)← ∅
for i← 0, |σ| do

for j ← i, |σ| do
if j ∈ sat(v2, σ) then

sat(v, σ)← sat(v, σ) ∪ {i}
end if

28

if j /∈ sat(v1, σ) then
break

end if
end for

end for

And σ ⊨ϕ if 0 ∈ sat(v, σ). Assume that time complexities for computing the sets sat(v, σ),
sat(v1, σ) and sat(v2, σ) are represented as functions T (v, σ), T (v1, σ) and T (v2, σ) respec-
tively. The sets sat(v1, σ) and sat(v2, σ) are computed recursively in advance.

The double for-loops are traversed O(|σ|2) times in total, and in each iteration only ele-
mentary set operations are performed. Assuming set implementation based on red-black
trees [26], each such operations takes O(log(T (v, σ))) time. So we have

T (v, σ) = T (v1, σ) + T (v2, σ) +O(|σ|2 · log(T (v, σ))). (3.1)

Now, observe that by substituting the function T with time complexity given in [25], from
equality (3.1) we obtain

O(|σ|2 · |ϕ|) = O(|σ|2 · |ψ1|) +O(|σ|2 · |ψ2|) +O(|σ|2 · log(|σ|2 · |ϕ|)). (3.2)

And since |ϕ| = |ψ1| + |ψ2|, equality (3.2) still holds. Therefore, the time complexity of
checking LTLf satisfiability is O(|σ|2 · |ϕ|) even when considering the U operator.

And with Lemma 1, we are able to proceed to our proof.

Theorem 2. Assume that counterexample σ is a finite execution, a finite set of proposi-
tional atoms V is considered, and that LTLf semantics is used for satisfiability checking of
LTL formula ϕ. Then Algorithm 1 runs in polynomial time with respect to the length of
σ and sizes of ϕ, V.

Proof. Take any finite counterexample execution σ (Tσ = ⟨Qσ, A, δσ, q0,V, λσ⟩), LTL for-
mula ϕ in an equivalent form without the ↔ connective, and constant bound ∈ N where
bound ≥ 1. We will denote the lengths |σ| = m, |ϕ| = n, and |V| = k. Assume that LTLf

semantics is used. We will show that the asymptotic time complexity of FindViolation-

Causes(σ, ϕ, bound) in Algorithm 1 is a polynomial of m, n and k.

Firstly, for any checks on σ ⊨ϕ to have runtime O(m2 ·n), we need to implicitly convert it
into NNF, which has time complexity of O(n).

Then, the conditional on Line 3 checks whether σ ⊨ϕ under LTLf semantics, which ac-
cording to Lemma 1 is in O(m2 · n) time. Now, there are two cases:

Case 1. σ ⊨ϕ, then the procedure terminates with runtime in O(m2 · n).

Case 2. σ ⊭ϕ, then our proof continues.

The GetSingletons(σ) subroutine on Line 6 effectively iterates through every state
q ∈ Qσ, and evaluates every propositional atom p ∈ V to obtain the set Sq,p,v. Since
there are O(m) states and k atoms, then the runtime of GetSingletons(σ) would be in

29

O(m · k). In addition, the initial size of Sq,p,v would also be in O(m · k).

Now, in the outer for-loop between Lines 7 and 16, size is upper bounded by bound. So,
the loop will execute for a constant number of iterations.

On Line 8, generating candidateCauses, i.e. all candidate sets of a certain size from Sq,p,v,
involves creating a maximum of

(|Sq,p,v |
bound

)
subsets, each of size bound, totalling to a upper-

bound runtime in O(
(|Sq,p,v |
bound

)
· bound) = O((m · k)bound). Thus the inner for-loop between

Lines 9 and 15 will run for O((m ·k)bound) iterations, each time checking a single candidate
set C. In each iteration:

• The GetCounterfactualTrace(σ,C) subroutine on Line 10 simply switches the
Boolean value of p on q to ¬v for each ⟨q, p, v⟩ ∈ C. And since the upper bound of
|C| is simply bound, this subroutine is considered to run in constant time.

• Next, the conditional on Line 11 checks whether σ ⊨ϕ under LTLf semantics with
O(m2 · n) time (Lemma 1). There are also two cases:

Case 2(a). σ ⊭ϕ. Then no other computation is made.

Case 2(b). σ ⊨ϕ. Lines 12 and 13 can be decomposed into basic set operations, each
of which shall take a O(log |S|) runtime for any set S, assuming set implementation
based on red-black trees [26].

On Line 12, the size of set of all found causes SC is bounded by the size of the
candidateCauses, i.e. |SC | has size O((m ·k)bound), so adding a single C to SC takes
O(log((m · k)bound)) = O(log(m · k)) in the worst case.

For Line 13, we know the size of Sq,p,v is in O(m · k), so removing no more than a
constant bound number of elements (in C) from Sq,p,v also runs in O(log(m ·k)) time.

However, when combining the time complexities inside the inner loop (Lines 10 to 14), we
can identify O(m2 ·n) as the dominant term, which stands for the time complexity of each
run of the inner loop.

And therefore, all runs on the inner loop takes an upper-bound time of O(mbound+2 · n ·
kbound), as well as including the outer loop; and so is for the outer loop as O(mbound+2 ·n ·
kbound) is the dominant term, for a constant number of iterations.

All unspecified operations in the algorithm can be performed in constant time.

So in conclusion, since bound ≥ 1, the dominant term in all operations of the procedure
is therefore O(mbound+2 · n · kbound), which is the overall asymptotic time complexity of
FindViolationCauses(σ, ϕ, bound).

30

Chapter 4

Evaluation on GR(1) Specifications

With Algorithm 1 presented in Chapter 3, this chapter focuses on its direct evaluation over
datasets from the academic literature, in addition to our earlier theoretical analysis. We
are using our own implementation of the approximation algorithm proposed by Beer et al.
[1] for Definition 11 as the baseline for the evaluation.

In particular, Section 4.1 begins by providing an overview of Caupybara, the implementa-
tion featuring Algorithm 1. Then, Section 4.2 describes the dataset used for evaluation.
Section 4.3 details our methodology for evaluation. Finally, Sections 4.4 and 4.5 presents
our analysis of the data collected, in quantitative and qualitative aspects.

4.1 Overview of the Implementation

Another major contribution of this project is the code implementation of Algorithm 1
as the Caupybara tool. Caupybara (a protmanteau of “causality” and “capybara”) is a
command-line program written in the functional programming language Scala, with its
main feature being the causal computation procedure that follows Algorithm 1.

Additionally, since by the time of writing this report, there does not seems to be an openly
available implementation of the Beer et al. approximation algorithm [1], it has also been
realized by Caupybara as an alternative causality mode, used for computing baseline causes
in our evaluation.

Apart from the causality algorithms, Caupybara also includes custom implementations of
an LTL parser, a execution trace parser, as well as a custom LTLf satisfiability checker
for finite traces based the work of Fionda et al. [25]. Theoretically, it would be possible to
substitute the LTLf checker with other state-of-the-art tools, such as Aalta [27] or BLACK
[28] which promises fast computation for finite and infinite LTL semantics.

There are a few differences between Algorihm 1 and its implementation in Caupybara.
Below are some crucial difference(s) that this report deemed necessary to highlight.

• Instead of using set implementations based on red-black trees, which is available as

31

TreeSet in Scala, the implementation in Caupybara uses the conventional HashSet
implementation, taking advantage of its O(1) average-case time complexity for ele-
mentary set operations [29]. However, due to its theoretical O(n) worst-case com-
plexity, we have refrained from using it during our proofs.

• Some minor changes has been made to the LTLf satisfiability checker by Fionda et
al. in order to fit our definition of LTLf semantics (see Definition 3).

4.2 The Dataset by Buckworth et al.

For our evaluation, we are using the dataset presented by Buckworth et al. [12], hereafter
refer to as “the dataset”. It is derived from 6 realizable GR(1) specifications frequently
discussed in relevant academic literature on case studies (Arbiter, Genbuf, Lift, Minepump,
Traffic Single and Traffic Updated) in the following way:

1. For each original specification, Buckworth et al. performs various mutations by
strengthening its assumptions, creating up to 5 unique and unrealizable new specifi-
cations, which are then added to the dataset.

2. And for each unrealizable specification in the dataset, Buckworth et al. computes up
to 10 unique counterexample executions from a generated counterstrategy.

Selected statistics on the specifications and counterexample traces in each case study is
shown in Table 4.1.

The evaluations of this project will focus on (1) the unrealizable mutated specifications
and (2) their respective counterexamples.

Case study # spec. # traces
Trace length
mean

asm.
mean

gar.
mean

violated
asm. mean

Arbiter 1 10 1.6 1.0 4.0 1.0
Genbuf 5 5 1.4 27.2 79.4 1.4
Lift 5 10 2.1 7.0 10.0 1.0
Minepump 5 25 2.1 1.0 2.0 1.0
Traffic Single 5 50 2.3 2.8 1.4 1.0
Traffic Updated 5 50 1.8 4.4 3.4 2.4
All 26 150 2.0 4.0 5.5 1.5

Table 4.1: Selected statistics on case studies [12].

4.3 Evaluation Methodology

Since Algorithm 1 is based on a newly proposed definition of causality, and due to the
nature of actual causality, it is rather difficult give a direct measure of quality of the causes
computed by the new tool. Nevertheless, it is possible to draw some comparisons between
the causes computed by Algorithm 1 and the baseline approximation algorithm by Beer et

32

al. [1] due to the proximity of the formats of their causes. And more importantly, these
would be worthwhile comparisons since Algorithm 1 aims to provide an improvement over
the baseline.

In particular, for each unrealizable specification in the dataset, the causes for its violation
on each of its counterexample trace is computed on fragments of the specification, classified
into three categories:

1. its individual assumptions,

2. its individual guarantees,

3. the conjunction of its assumptions.

For each category, causes are computed and collected by both Algorithm 1 and the base-
line, made possible by the Caupybara tool. Example 4.1 shows how violations causes are
categorized, and then computed for a specification.

Example 4.1. (Causal computation for a Traffic Single specification) An unrealizable
specification for the Traffic Single case study has the following assumptions and guarantees.

Assumptions:

φE1 = G(green ∨ ¬car),

φE2 = G(police ∨X(¬car) ∨ ¬green),

φE3 = GF(¬police).

Guarantee:

φS1 = G(car→ F(green)).

And there are 6 counterexamples, σ1, σ2...σ6. Then the category of causes are classified as:

• Category 1: union of unique causes on σi for i ∈ [1, 6], for violations of assumptions
φE1 , φE2 and φE3 individually.

• Category 2: union of causes on σi for i ∈ [1, 6], for violations of guarantee(s) φS1
(individually).

• Category 3: union of causes on σi for i ∈ [1, 6], for violation of the conjunction of
assumptions, i.e. φE1 ∧ φE2 ∧ φE3 .

Before analyzing the differences between Algorithm 1 and the baseline, the definitions of
two key evaluation metrics, strength and coverage, is given below.

Definition 18 (Strength and coverage). Let SBeer be the set of causes computed by the
baseline, and SMeng be the set of causes computed by Algorithm 1 on the same set of
specifications and evaluations. Take any baseline cause ⟨q, p⟩ ∈ SBeer.

33

We say that ⟨q, p⟩ is covered by SMeng if {⟨q, p, v⟩} ∈ SMeng for some v ∈ {tt,ff}, i.e. ⟨q, p, v⟩
alone is a computed cause by Algorithm 1.

Then, the coverage of SBeer by Algorithm 1 is defined as the fraction

coverage = # of causes in SBeer covered by SMeng
Total # of causes in SBeer

.

Finally, we define some C ∈ SMeng to be stronger than ⟨q, p⟩ if ⟨q, p, v⟩ ∈ C for some
v ∈ {tt,ff}, and size of C is greater than 1, i.e. ⟨q, p, v⟩ is a part of some computed cause
by Algorithm 1.

For our quantitative analysis, we make a numeric comparison of the numbers of causes
identified belonging in each category, between Algorithm 1 and the baseline. Then, we will
provide additional statistics for sizes of causes computed by Algorithm 1, including their
minimum, maximum and mean sizes. Finally, we will compute the coverage of the sets of
baseline causes by Algorithm 1.

And for our qualitative analysis, we will take representative and interesting cases from the
dataset, and try to elaborate the differences in the causes computed by Algorithm 1 and
the baseline. In particular, we will focus on cases where the coverage of baseline causes
by Algorithm 1 is less than 100%, hereafter referred to as cases of imperfect coverage. In
such cases, we will try to see if stronger causes were found by Algorithm 1, and provide
justification if not.

4.4 Quantitative Analysis

The quantitative results are shown in Tables 4.2, 4.3 and 4.4, for each categories of causes
we identified.

In the Arbiter, Lift and Minepump case studies, Algorithm 1 is able to provide 100%

coverage of baseline causes, but without discovering new causes, across all categories. This
was possibly due to the simplistic nature of the specifications in these case studies, or the
limited lengths of their counterexamples, or a combination of both.

In Traffic Single, baseline causes in Category 1 are 100% covered by Algorithm 1 for all
specifications, some with additional causes found; but for some of its specifications, there
are Category 2 and 3 baseline causes that are not covered by Algorithm 1. And for some
of the specifications within the Traffic Updated case study, there are Category 1 and 3
baseline causes that are not covered by Algorithm 1. Finally, among all categories in
Genbuf, we found cases of imperfect coverage among all three categories.

34

Case study Specification
Baseline Algorithm 1 Coverage

(%)# causes # causes Size min Size max Size mean
Arbiter dropped0 2 2 1 1 1.0 100

Genbuf

dropped10 1 1 1 1 1.0 100
dropped107 4 3 1 2 1.333 50
dropped115 1 1 1 1 1.0 100
dropped118 1 1 1 1 1.0 100
dropped122 5 5 1 1 1.0 100

Lift

dropped0 2 2 1 1 1.0 100
dropped1 3 3 1 1 1.0 100
dropped10 3 3 1 1 1.0 100
dropped11 4 4 1 1 1.0 100
dropped13 1 1 1 1 1.0 100

Minepump

dropped0 2 2 1 1 1.0 100
dropped1 4 4 1 1 1.0 100
dropped2 3 3 1 1 1.0 100
dropped4 2 2 1 1 1.0 100
dropped10 3 3 1 1 1.0 100

Traffic
Single

dropped0 5 5 1 1 1.0 100
dropped1 5 7 1 1 1.0 100
dropped2 6 7 1 1 1.0 100
dropped10 6 7 1 1 1.0 100
dropped11 6 6 1 1 1.0 100

Traffic
Updated

dropped3 2 2 1 1 1.0 100
dropped7 3 9 2 2 2.0 0
dropped9 1 1 1 1 1.0 100
dropped11 3 9 2 2 2.0 0
dropped12 2 2 1 1 1.0 100

Table 4.2: Category 1 causes (individual assumptions).

Case study Specification
Baseline Algorithm 1 Coverage

(%)# causes # causes Size min Size max Size mean
Arbiter dropped0 6 6 1 1 1.0 100

Genbuf

dropped10 0 0 0 0 0.0 -
dropped107 0 0 0 0 0.0 -
dropped115 16 8 1 1 1.0 50
dropped118 2 2 1 1 1.0 100
dropped122 2 1 2 2 2.0 0

Lift
dropped10 3 3 1 1 1.0 100
(all else) 0 0 0 0 0.0 -

Minepump (all) 0 0 0 0 0.0 -

Traffic
Single

dropped0 5 4 1 1 1.0 80
dropped1 4 4 1 1 1.0 100
dropped2 2 2 1 1 1.0 100
dropped10 4 4 1 2 1.5 50
dropped11 0 0 0 0 0.0 -

Traffic
Updated

(all) 0 0 0 0 0.0 -

Table 4.3: Category 2 causes (individual guarantees).

35

Case study Specification Baseline Algorithm 1 Coverage
(%)# causes # causes Size min Size max Size mean

Arbiter dropped0 2 2 1 1 1.0 100

Genbuf

dropped10 1 0 0 0 0.0 0
dropped107 4 0 0 0 0.0 0
dropped115 1 1 1 1 1.0 100
dropped118 1 1 1 1 1.0 100
dropped122 5 0 0 0 0.0 0

Lift

dropped0 2 2 1 1 1.0 100
dropped1 3 3 1 1 1.0 100
dropped10 3 3 1 1 1.0 100
dropped11 4 4 1 1 1.0 100
dropped13 1 1 1 1 1.0 100

Minepump

dropped0 2 2 1 1 1.0 100
dropped1 4 4 1 1 1.0 100
dropped2 3 3 1 1 1.0 100
dropped4 2 2 1 1 1.0 100
dropped10 3 3 1 1 1.0 100

Traffic
Single

dropped0 5 8 1 2 1.375 100
dropped1 5 8 1 2 1.5 80
dropped2 6 8 1 2 1.375 83
dropped10 6 9 1 2 1.333 83
dropped11 6 7 1 2 1.429 67

Traffic
Updated

dropped3 2 2 1 1 1.0 100
dropped7 3 9 2 2 2.0 0
dropped9 1 1 1 1 1.0 100
dropped11 3 9 2 2 2.0 0
dropped12 2 1 1 1 1.0 50

Table 4.4: Category 3 causes (conjunction of assumptions).

To summarise, a total of 78 comparisons are drawn between causes found by Algorithm 1
and the baseline among all categories. All baseline causes are covered in 61 of these
comparisons, 4 of which with additional causes found by Algorithm 1. A case of imperfect
converge was found in 17 of the 78 comparisons, where

• 6 cases were found in Genbuf,

• 6 cases were found in Traffic Single, and

• 5 cases were found in Traffic Updated.

Alternatively, we can classify cases of imperfect coverage by category, where

• 3 cases occurred for Category 1 causes,

• 4 cases occurred for Category 2 causes, and

• 10 cases occurred for Category 3 causes.

4.5 Qualitative Analysis

In this section, we would like to focus on the 17 cases of imperfect coverage revealed
in Section 4.4. Fortunately, for each of these cases, it is possible to find one of the three

36

reasons for imperfect coverage, namely (1) Algorithm 1 found stronger causes than baseline
(in 10 cases), (2) due to a better interpretation of violations in fairness properties (in 2

cases) and (3) due to conflicts in conjuncts eliminating candidate causes (in the remaining
5 cases).

4.5.1 Stronger Causes Found by Algorithm 1

Upon closer inspection, we can identify 10 cases of imperfect coverage where stronger causes
were computed by Algorithm 1. They include all 3 cases for Category 1 baseline causes,
2 cases for Category 2 causes in Genbuf (dropped122) and Traffic Single (dropped10), as
well as 5 cases for Category 3 causes in Traffic Single (dropped1, dropped2, dropped10)
and Traffic Updated (dropped7, dropped11).

Figure 4.1: σ for Example 4.2.

These cases represent the desirable improvements on
causal semantics in Definition 17 over the baseline,
demonstrated by Example 3.1 and its follow-up in
Chapter 3. They are also exemplified by Exam-
ple 4.2 taken from the Traffic Single (dropped10)
specification.

Example 4.2. Consider the GR(1) guarantee φS =

G(car → F(green)), and its counterexample trace
σ shown in Figure 4.1.

The set of causes found by the baseline is

SBeer = {⟨q0, car⟩, ⟨q0, green⟩, ⟨q1, green⟩},

and the set of causes found by Algorithm 1 is

SMeng = {{⟨q0, car, tt⟩, ⟨q1, car, tt⟩}, {⟨q0, green,ff⟩, ⟨q1, car, tt⟩}, {⟨q1, green,ff⟩}}.

So for each cause in SBeer, there is a corresponding stronger cause in SMeng.

4.5.2 Improved Interpretation of Fairness Violations

In at least 2 of the cases of imperfect coverage, namely for Category 2 baseline causes
in Genbuf (dropped115) and Traffic Single (dropped0), causes computed by Algorithm 1
instead reflects a more accurate interpretation of fairness property violations on finite
traces. Consider Example 4.3 taken from Traffic Single (dropped0).

Example 4.3. Take the GR(1) fairness guarantee φS = GF(¬car), and its counterex-
ample trace σ shown in Figure 4.2.

37

Figure 4.2: Counterexample σ for Example 4.3.

The set of causes found by the baseline is SBeer = {⟨q0, car⟩, ⟨q1, car⟩, ⟨q2, car⟩}; the set
of causes found by Algorithm 1 is simply SMeng = {{⟨q2, car, tt⟩}}.

To see why Cbad = {⟨q0, car, tt⟩} is not a cause by Definition 17 under LTLf semantics, take
the counterfactual trace σĈbad (as shown in Figure 4.3). But then σĈbad [1..]⊨¬F(¬car),
therefore σĈbad ⊨¬GF(¬car) and Cbad does not fulfil AC2(m). Similar arguments can be
used against suggesting candidates {⟨q1, car, tt⟩} and {⟨q0, car, tt⟩, ⟨q1, car, tt⟩} as causes.

Figure 4.3: The counterfactual trace σĈbad .

Even though a finite counterexample may not capture fairness violations very precisely, it
is arguably more justified for its cause to point to events occurring at the far end of the
execution.

4.5.3 Imperfect Coverage due to Conflicting Conjuncts

Taking conjunction of temporal formulae that restricts or conflicts each other could elim-
inate causal candidates for Definition 17, as demonstrated earlier by Example 3.2. This
is the reason of imperfect coverage, specifically for Category 3 baseline causes, on the
remaining 5 cases involving Genbuf (dropped10, dropped107, dropped122), Traffic Sin-
gle (dropped11) and Traffic Updated (dropped12) specifications. Such cases can be best
demonstrated by an example taken from Genbuf (dropped10), as shown in Example 4.4.

Example 4.4. The Genbuf (dropped10) specification ⟨E ,S⟩ in GR(1) contains 28 assump-

38

tions φE0 , φE1 , ..., φE27. Among these assumptions are

φE5 = ¬rtob_ack0,

φE19 = G(btor_req0),

φE26 = GF((btor_req0 ∧ rtob_ack0) ∨ (¬btor_req0 ∧ ¬rtob_ack0)).

And consider the counterexample σ for ⟨E ,S⟩ as shown in Figure 4.4.

The set of baseline causes for the violation of φE0 ∧φE1 ∧ ...∧φE27 is SBeer = {⟨0, btor_req0⟩}.
However, no causes were found by Algorithm 1.

Figure 4.4: σ for
Example 4.4.

We see that for any cause C for the violation of φE0∧φE1∧...∧φE27 by Defi-
nition 17 to exist, it will need to include the singleton ⟨0, btor_req0,ff⟩
in order to satisfy φE19. Now, in order to satisfy φE26, then we also need
to include ⟨0, rtob_ack0,ff⟩ in C.

But then, the counterfactual trace σĈ will violate the initial assump-
tion φE5 . Therefore, no causes exist for the violation of conjunction on
σ.

39

Chapter 5

Related Works

This project aims to lay a solid foundation for the interrelation between temporal causality
and GR(1) unrealizability repairs. Therefore, this chapter provides a summary of relevant
literature in theses two areas, and also discuss who they relate to the contents of this
report.

Section 5.1 briefly discusses existing academic works focusing on causality for LTL, as
well as how their approaches differ from this project. Section 5.2 is a broad discussion
about counterexamples and unrealizability, including existing approaches to assumptions
refinement / repair, and how unrealizability affects adaptive systems.

5.1 Causality and Linear Temporal Logic

In Chapter 2, we have discussed in great details about the actual causality by Halpern and
Pearl, as well as the work of Beer et al. on explaining temporal violations. Subsequent
research has further explored the application of actual causality to linear temporal logic,
categorizing approaches into two primary streams based on their causal representations,
each referred as the event-order logic and hyperproperty streams in this report.

5.1.1 Event-Order Logic Temporal Causality

The event-order logic (EOL) stream of temporal causality originates from the work of
Leitner-Fischer and Leue [30] which focuses on the development of an algorithm for causal
computation in complex system models.

In their work, in order to create an abstract and more compact representation of coun-
terexample executions, the concept of events are used to represent state transitions in
these executions. Then, the events on executions are represented by EOL formula, which
provides an order-preserving logical representation of the sequence of events. Finally, a
definition of causality for property violations is provided, giving causes as EOL formula,
based on the original HP definition [15] with the addition of non-occurrence and order

40

rules.

An important property of EOL is the possibility to establish subset and superset relation-
ship between EOL formulae. With this property, an graph-based algorithm is introduced
for computing property violation causes, operating on subset graphs, in which counterex-
amples are placed in a lattice of subset relationships of their EOL representation. Subse-
quently, this algorithm is implemented as the SpinCause tool, and has been demonstrated
to be reasonably efficient for causal computation on industrial specifications. However, in
their original work, they are not able to provide proofs for the soundness and completeness
of the algorithm.

Subsequently, extensions to the work by Leitner-Fischer and Leue can be found in the
academic literature. A. Beer et al. [31] proposes a new symbolic algorithm for computing
causes by the Leitner-Fischer and Leue definition based on bounded model checking. Im-
proved computational efficiency has been observed in this new algorithm, and additionally,
proofs of its soundness and bounded completeness had been provided.

Both [30] and [31] are limited to finite counterexample traces. Caltais et al. [32] then
suggests in their work for an update to EOL, i.e. extended EOL, with the ability to
represent lasso-shaped infinite counterexamples, as well as an updated causal definition in
extended EOL. However, by the time of writing this report, it is believed that no algorithm
has been formally designed and implemented for causal computation in extended EOL.

In comparison with Definition 17, the causal definition by Leitner-Fischer and Leue, as
well as its updated version, is still based on the more complex original HP definition. In
addition, it appears that the EOL representation lacks flexibility when being extended to
support infinite counterexamples; by contrast, an adaptation of Algorithm 1 to support
infinite LTL semantics appears to be trivial, at least in theory, by simply using an infinite
LTL satisfiability checker.

5.1.2 Hyperproperty-Based Temporal Causality

The theoretical foundation of the hyperproperty stream of temporal causality is the work
of Coenen et al. [33] focusing on reactive systems. In their work, causality for observed
effects occurring on lasso-shaped executions is represented in HyperQPTL, and extension
of LTL with quantification over propositional atoms as well as execution paths. Then,
the definition of causes for an effect observed on an execution is provided based on the
modified HP definition [16].

Following this foundational literature, a more recent work by Beutner et al. [34] presents
the design of an algorithm, implemented as the CATS tool, which checks if a given candidate
is the cause for some temporal effect according to the definition by Coenen et al. . In
addition, CATS can also search for additional causes when the user provides with a causal
sketch.

In contrast to Caupybara and the tool built in [31], CATS is not able to perform exhaustive

41

computations that attempts to find all causes in a given trace. Additionally, there is a
separation of propositional atoms into input and output variables in the Coenen et al.
definition, used exclusively by causes and effects respectively, whereas no such restriction
exists for Definition 17.

5.2 Counterexamples and Unrealizability in GR(1)

Unrealizability in GR(1) specifications is often due to weaknesses in their environmental
assumptions [5] which give the environmental agents too much power, such that they can
form counterstrategies to force unsatisfiability of controller guarantees. In such cases, the
desired outcome of fixing unrealizability is a new specification with sufficiently yet mini-
mally strong assumptions, limiting the freedom of environmental agents to the degree that
they can not reproduce any counterstrategies, while not introducing unnecessary assump-
tions that overly restrict environmental behaviors.

Such a search problem in nature has been defined over spaces of possible assumptions dou-
bly exponential in the number of propositional atoms [8], which became a major obstacle
for efficient repairs of unrealizability. To avoid traversing through such space directly, many
recent approaches to fixing unrealizable assumptions are counterstrategy guided, i.e. rely-
ing on counterstrategies to highlight the root causes of unrealizability. These approaches
are pioneered by the work on specification debugging by Könighofer et al. [20], where a
new algorithm had been design has been introduced to extract counterexamples from coun-
terstrategies, initially intended to illustrate the sources of unrealizability as visual traces
for human engineers.

5.2.1 Assumptions Refinement and Assumptions Repair

To design an error-free controller specification, especially for a complex system, is often
considered a difficult task [6, 7]. The assumptions refinement and assumptions repair
problems, often used interchangeably, are concerned with helping engineers correct GR(1)
specifications at the initial design stage. In particular, an assumptions refinement or repair
procedure taking an unrealizable but satisfiable specification, usually formalized by the
GR(1) formula ϕE → ϕS , then computes a set of supplementary assumptions {φE1 , φE2 , ...},
such that the strengthened formula ϕE ∧ (φE1 ∧φE2 ∧ ...)→ ϕS becomes both realizable and
satisfiable.

Such an approach has been made possible by the initial work of Könighofer et al. , which
allows for efficient generation of counterexamples. Following the initial advancement, Li
et al. [6] proposes using templates, and taking user scenarios as input, to first build an
initial set of candidate assumptions, then iteratively compute additional assumptions from
counterstrategies in a process referred to as mining. The use of templates decreases the
chance of traversing into uninteresting parts of the assumptions search space, compared to
a hypothetical, purely brute-force method. Similarly, Alur et al. in their work [7] suggests

42

generating candidate LTL formula templates known as patterns, which can be satisfied by
all executions in a counterstrategy. However, this approach requires a human engineer to
pick the subset of variables considered for pattern generation, thus the approach has been
referred to as semi-automated.

Cavezza and Alrajeh then proposes an automated refinement approach [8] based on Craig
interpolation [35]. This approach does not require any human input, hence deemed fully-
automated. In this approach, the unrealizable cores are first calculated, then refinements
are found automatically via interpolation over unrealizable-cores form of assumptions and
guarantees, translated into propositional logical formulae. Such calculations are performed
symbolically in a proof-by-refutation fashion. The significance of computing the unrealiz-
able cores is that it yields the cause of unrealizability for a certain counterstrategy, which
is targeted by the following iterative refinement process directly. Therefore, it constitutes
the automated fault localization step in the entire process, which was shown to steepen
the rate of convergence within the iterative refinement step, both demonstrated in theory
and in application [8]. Note that, subsequent to this work, more efficient ways to compute
GR(1) unrealizable cores for has been found, such as in [36].

Alternatively, Maoz et al. [9] creates the design of a fully-automated assumptions repair
procedure, JVTS-Repair, which uses the symbolic JVTS [37] representation of counter-
strategies to find repairs for specifications, without the need to extract counterexamples.
In their experimentation setup, JVTS-Repair is shown to be much more efficient that the
template-based implementation in [7], given that the human input did not provide any
insight to unrealizability. However, this approach is also demonstrated in their work to
be sound but incomplete. Notably, Maoz et al. in the same literature gives an alternative
assumptions repair algorithm, GLASS, by direct analysis on the unsatisfiable specification,
without the using any counterstrategies.

All of the existing approaches introduced in this section, however, are arguably limited
in their own fashions. Earlier template-based methods are, first and foremost, not fully
automated; besides, these approaches are not designed to uncover or target the cause of un-
realizability in a specification, which potentially contributed to lower operational efficiency.
The more recent JVTS-based approach, though being fully automated, and more efficient
thanks to their use of symbolic representation for counterstrategies, does not seem to be
directed towards cause of unrealizability in a way akin to [8]. Finally, the interpolation-
based approach, which computes unrealizable cores for fault localization, is able to achieve
faster convergence; however, it generates weaker assumptions than those of template-based
approaches, since in each iteration, the approach only requires the assumptions to be true
in one extracted counterexample, rather than the entire counterstrategy computed [8].

5.2.2 Unrealizability in Adaptive Systems

There are more recent academic research on reactive systems that focuses on systems with
adaptive capabilities, such as the work by Buckworth et al. [12], the intermediate results of

43

which is used for the evaluation of this project in Chapter 4. Therefore, it seems essential
to briefly discuss this work in this section.

A fixed reactive system, albeit one that is realizable at design time, may fail in unforeseen
scenarios [12]. Therefore, the goal of Buckworth et al. in their work [12] is to enable
adaptive capabilities on reactive systems based on the MORPH reference architecture in
[10]. In particular, this is achieved by an automated procedure that weakens usually the
assumptions, and sometimes the guarantees, in the original GR(1) specification for the
reactive system.

However, reducing the strength of assumptions can lead to unrealizability in the new specifi-
cation. Therefore, Buckworth et al. in [12] focuses on designing a procedure that preserving
realizability of the specification during weakening, referred to as a graceful degradation,
achieved by first (1) weakening the assumptions until they are no longer violated on the
initial counterexample, then (2) weaken the guarantees until the new specification becomes
realizable again, all in a loop-based manner with candidate weakening.

It is for this reason that the evaluation of this project in Chapter 4 chooses to use the
specification after being weakened in step (1), along with the new counterexamples for
unrealizability after the weakening. The causality computed by Algorithm 1 could poten-
tially point to the core reasons of unrealizability, helping their procedure achieve faster
convergence.

44

Chapter 6

Conclusions

Applying causality to temporal logics is an active area of research. Solutions to this problem
could bring significant improvements to current artificial intelligence paradigms, such as
state-of-the-art large language models, which inherently lack the capabilities of temporal
reasoning [38].

In this report, we focus on applying actual causality, formalized by Halpern and Pearl [16],
to linear temporal logic for explaining violations in counterexamples. By revisiting the
definition by Beer et al. [1], Chapter 3 proposes the new Definition 17, which is updated
to the new, modified HP definition of causality, and utilizes a causal representation which
is more informative, and arguably more intuitive.

Consequently, this report also presents Algorithm 1, a new bounded algorithm for auto-
mated causal computation based on Definition 17 in Chapter 3, which is sound, complete
under bounds, and runs in polynomial time complexity with respect to its inputs under
the finite assumption of input LTL formula. Evaluation are performed in Chapter 4 on
our implementation of this algorithm, Caupybara, against our own implementation of the
approximation algorithm by Beer et al. [1] as baseline. The dataset of GR(1) specifications
and finite counterexamples originates from the work of Buckworth et al. [12] focusing on
the construction of adaptive reactive systems.

Out of the 78 comparisons conducted for our evaluation, causes found by Algorithm 1 in
61 of them completely cover those found by the baseline; in 10 of the comparisons are
stronger than the baseline; in 2 of the comparisons has imperfect coverage due to more
precise interpretations of fairness guarantees; and in 5 of the comparisons has imperfect
coverage due to conflicting conjuncts.

Given the time constraints, there are potential extensions on this project which are left
unexplored. For the enhancement of this project, the following directions are suggested
below for possible future works.

Infinite LTL semantics. Recent academic literature have demonstrated various tools
that performs LTL satisfiability checks on infinite traces, such as Aalta [27] and BLACK

[28]. A possible direction would be to explore the integration of these tools into Caupybara,

45

replacing its existing LTL checker, and examine on the causes computed by Caupybara on
infinite counterexamples.

More extensive evaluations. Additional evaluations can be performed, such as produc-
ing quantitative evidence for the time complexity of Algorithm 1. For instance, it would
be helpful if we can verify that increasing bound has an exponential impact its runtime,
whereas increasing the length of σ or the size of ϕ inputs only increases runtime by some
polynomial factor.

Additionally, the current evaluation dataset includes only counterexamples with a mean
length of 2.0 states. Causal computation on larger counterexamples could yield additional
and interesting insights.

Application on reactive systems. Our initial results suggest the potential for the
application of this project on unrealizability repairs in reactive systems. Several questions
remain open for exploration. These include the possibility of adapting Definition 17 to cover
entire GR(1) counterstrategies, and whether integrating Algorithm 1 could expedite the
rate of convergence for assumptions refinement and repair procedures, as well as adaptive
system designs.

46

Bibliography

[1] Beer I, Ben-David S, Chockler H, Orni A, Trefler RJ. Explaining counterexamples
using causality. Formal Methods Syst Des. 2012;40(1):20-40. Available from: https:

//doi.org/10.1007/s10703-011-0132-2.

[2] Bloem R, Jobstmann B, Piterman N, Pnueli A, Sa’ar Y. Synthesis of Reactive(1)
designs. J Comput Syst Sci. 2012;78(3):911-38. Available from: https://doi.org/

10.1016/j.jcss.2011.08.007.

[3] Pnueli A, Rosner R. On the synthesis of a reactive module. In: Conference Record
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 11-13, 1989. ACM Press; 1989. p. 179-90. Available
from: https://doi.org/10.1145/75277.75293.

[4] Maoz S, Ringert JO. GR(1) synthesis for LTL specification patterns. In: Nitto
ED, Harman M, Heymans P, editors. Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30
- September 4, 2015. ACM; 2015. p. 96-106. Available from: https://doi.org/10.

1145/2786805.2786824.

[5] Cavezza DG, Alrajeh D, György A. Minimal assumptions refinement for realizable
specifications. In: Bae K, Bianculli D, Gnesi S, Plat N, editors. FormaliSE@ICSE
2020: 8th International Conference on Formal Methods in Software Engineering,
Seoul, Republic of Korea, July 13, 2020. ACM; 2020. p. 66-76. Available from:
https://doi.org/10.1145/3372020.3391557.

[6] Li W, Dworkin L, Seshia SA. Mining assumptions for synthesis. In: Singh S, Jobst-
mann B, Kishinevsky M, Brandt J, editors. 9th IEEE/ACM International Conference
on Formal Methods and Models for Codesign, MEMOCODE 2011, Cambridge, UK,
11-13 July, 2011. IEEE; 2011. p. 43-50. Available from: https://doi.org/10.1109/

MEMCOD.2011.5970509.

[7] Alur R, Moarref S, Topcu U. Counter-strategy guided refinement of GR(1) temporal
logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013. IEEE; 2013. p. 26-33. Available from:
https://ieeexplore.ieee.org/document/6679387/.

47

https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/2786805.2786824
https://doi.org/10.1145/2786805.2786824
https://doi.org/10.1145/3372020.3391557
https://doi.org/10.1109/MEMCOD.2011.5970509
https://doi.org/10.1109/MEMCOD.2011.5970509
https://ieeexplore.ieee.org/document/6679387/

[8] Cavezza DG, Alrajeh D. Interpolation-based GR(1) assumptions refinement. In:
Legay A, Margaria T, editors. Tools and Algorithms for the Construction and Anal-
ysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Up-
psala, Sweden, April 22-29, 2017, Proceedings, Part I. vol. 10205 of Lecture Notes
in Computer Science; 2017. p. 281-97. Available from: https://doi.org/10.1007/

978-3-662-54577-5_16.

[9] Maoz S, Ringert JO, Shalom R. Symbolic repairs for GR(1) specifications. In: Atlee
JM, Bultan T, Whittle J, editors. Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE
/ ACM; 2019. p. 1016-26. Available from: https://doi.org/10.1109/ICSE.2019.

00106.

[10] Braberman VA, D’Ippolito N, Kramer J, Sykes D, Uchitel S. MORPH: A reference
architecture for configuration and behaviour self-adaptation. In: Filieri A, Maggio M,
editors. Proceedings of the 1st International Workshop on Control Theory for Software
Engineering, CTSE@SIGSOFT FSE 2015, Bergamo, Italy, August 31 - September 04,
2015. ACM; 2015. p. 9-16. Available from: https://doi.org/10.1145/2804337.

2804339.

[11] Alrajeh D, Benjamin P, Uchitel S. Adaptation2: adapting specification learners in
assured adaptive systems. In: 36th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021.
IEEE; 2021. p. 1347-52. Available from: https://doi.org/10.1109/ASE51524.2021.
9678919.

[12] Buckworth T, Alrajeh D, Kramer J, Uchitel S. Adapting specifications for reactive
controllers. In: 18th IEEE/ACM Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2023, Melbourne, Australia, May 15-16, 2023.
IEEE; 2023. p. 1-12. Available from: https://doi.org/10.1109/SEAMS59076.2023.
00012.

[13] Löding C, Madhusudan P, Neider D. Abstract learning frameworks for synthesis.
In: Chechik M, Raskin J, editors. Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. vol. 9636 of Lecture Notes
in Computer Science. Springer; 2016. p. 167-85. Available from: https://doi.org/

10.1007/978-3-662-49674-9_10.

[14] Jha S, Seshia SA. A theory of formal synthesis via inductive learning. Acta
Informatica. 2017;54(7):693-726. Available from: https://doi.org/10.1007/

s00236-017-0294-5.

48

https://doi.org/10.1007/978-3-662-54577-5_16
https://doi.org/10.1007/978-3-662-54577-5_16
https://doi.org/10.1109/ICSE.2019.00106
https://doi.org/10.1109/ICSE.2019.00106
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1109/ASE51524.2021.9678919
https://doi.org/10.1109/ASE51524.2021.9678919
https://doi.org/10.1109/SEAMS59076.2023.00012
https://doi.org/10.1109/SEAMS59076.2023.00012
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/s00236-017-0294-5

[15] Halpern JY, Pearl J. Causes and explanations: A structural-model approach, Part
I: causes. CoRR. 2000;cs.AI/0011012. Available from: https://arxiv.org/abs/cs/

0011012.

[16] Halpern JY. A modification of the Halpern-Pearl definition of causality. In: Yang
Q, Wooldridge MJ, editors. Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015. AAAI Press; 2015. p. 3022-33. Available from: http://ijcai.org/Abstract/

15/427.

[17] Huth M, Ryan MD. Logic in computer science - Modelling and reasoning about
systems (2. ed.). Cambridge University Press; 2004.

[18] Giacomo GD, Vardi MY. Linear temporal logic and linear dynamic logic on fi-
nite traces. In: Rossi F, editor. IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. IJ-
CAI/AAAI; 2013. p. 854-60. Available from: https://dl.acm.org/doi/10.5555/

2540128.2540252.

[19] Gastin P, Oddoux D. Fast LTL to Büchi Automata Translation. In: Berry G, Comon
H, Finkel A, editors. Computer Aided Verification, 13th International Conference,
CAV 2001, Paris, France, July 18-22, 2001, Proceedings. vol. 2102 of Lecture Notes in
Computer Science. Springer; 2001. p. 53-65. Available from: https://doi.org/10.

1007/3-540-44585-4_6.

[20] Könighofer R, Hofferek G, Bloem R. Debugging formal specifications using simple
counterstrategies. In: Proceedings of 9th International Conference on Formal Meth-
ods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas,
USA. IEEE; 2009. p. 152-9. Available from: https://doi.org/10.1109/FMCAD.2009.
5351127.

[21] Lewis D. Causation. Journal of Philosophy. 1973;70(17):556-67. Available from:
http://www.jstor.org/stable/2025310.

[22] Eisner C, Fisman D, Havlicek J, Lustig Y, McIsaac A, Campenhout DV. Reasoning
with temporal logic on truncated paths. In: Jr WAH, Somenzi F, editors. Computer
Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July
8-12, 2003, Proceedings. vol. 2725 of Lecture Notes in Computer Science. Springer;
2003. p. 27-39. Available from: https://doi.org/10.1007/978-3-540-45069-6_3.

[23] Chockler H, Halpern JY, Kupferman O. What causes a system to satisfy a speci-
fication? CoRR. 2003;cs.LO/0312036. Available from: http://arxiv.org/abs/cs/

0312036.

[24] Stockmeyer LJ. The polynomial-time hierarchy. Theor Comput Sci. 1976;3(1):1-22.
Available from: https://doi.org/10.1016/0304-3975(76)90061-X.

49

https://arxiv.org/abs/cs/0011012
https://arxiv.org/abs/cs/0011012
http://ijcai.org/Abstract/15/427
http://ijcai.org/Abstract/15/427
https://dl.acm.org/doi/10.5555/2540128.2540252
https://dl.acm.org/doi/10.5555/2540128.2540252
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1109/FMCAD.2009.5351127
https://doi.org/10.1109/FMCAD.2009.5351127
http://www.jstor.org/stable/2025310
https://doi.org/10.1007/978-3-540-45069-6_3
http://arxiv.org/abs/cs/0312036
http://arxiv.org/abs/cs/0312036
https://doi.org/10.1016/0304-3975(76)90061-X

[25] Fionda V, Greco G. The complexity of LTL on finite traces: hard and easy frag-
ments. In: Schuurmans D, Wellman MP, editors. Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA. AAAI Press; 2016. p. 971-7. Available from: https://doi.org/10.1609/aaai.
v30i1.10104.

[26] Cormen TH, Leiserson CE, Rivest RL, Stein C. In: Introduction to algorithms. fourth
edition. ed. Cambridge, Massachusett: The MIT Press; 2022. p. 275 296. isbn: 978-
02-623-6750-9.

[27] Li J, Yao Y, Pu G, Zhang L, He J. Aalta: an LTL satisfiability checker over infi-
nite/finite traces. In: Cheung S, Orso A, Storey MD, editors. Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014. ACM; 2014. p. 731-4. Available
from: https://doi.org/10.1145/2635868.2661669.

[28] Geatti L, Gigante N, Montanari A, Venturato G. SAT meets tableaux for linear
temporal logic satisfiability. J Autom Reason. 2024;68(2):6. Available from: https:

//doi.org/10.1007/s10817-023-09691-1.

[29] Performance characteristics — docs.scala-lang.org. Lausanne, Switzerland: EPFL;.
[Accessed 11-06-2024]. https://docs.scala-lang.org/overviews/collections-2.
13/performance-characteristics.html.

[30] Leitner-Fischer F, Leue S. Causality checking for complex system models. In: Gia-
cobazzi R, Berdine J, Mastroeni I, editors. Verification, Model Checking, and Abstract
Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-
22, 2013. Proceedings. vol. 7737 of Lecture Notes in Computer Science. Springer; 2013.
p. 248-67. Available from: https://doi.org/10.1007/978-3-642-35873-9_16.

[31] Beer A, Heidinger S, Kühne U, Leitner-Fischer F, Leue S. Symbolic Causality Check-
ing Using Bounded Model Checking. In: Fischer B, Geldenhuys J, editors. Model
Checking Software - 22nd International Symposium, SPIN 2015, Stellenbosch, South
Africa, August 24-26, 2015, Proceedings. vol. 9232 of Lecture Notes in Computer
Science. Springer; 2015. p. 203-21. Available from: https://doi.org/10.1007/

978-3-319-23404-5_14.

[32] Caltais G, Guetlein SL, Leue S. Causality for general LTL-definable properties. In:
Finkbeiner B, Kleinberg S, editors. Proceedings 3rd Workshop on formal reason-
ing about Causation, Responsibility, and Explanations in Science and Technology,
CREST@ETAPS 2018, Thessaloniki, Greece, 21st April 2018. vol. 286 of EPTCS;
2018. p. 1-15. Available from: https://doi.org/10.4204/EPTCS.286.1.

[33] Coenen N, Finkbeiner B, Frenkel H, Hahn C, Metzger N, Siber J. Temporal causality
in reactive systems. In: Bouajjani A, Holík L, Wu Z, editors. Automated Tech-
nology for Verification and Analysis - 20th International Symposium, ATVA 2022,

50

https://doi.org/10.1609/aaai.v30i1.10104
https://doi.org/10.1609/aaai.v30i1.10104
https://doi.org/10.1145/2635868.2661669
https://doi.org/10.1007/s10817-023-09691-1
https://doi.org/10.1007/s10817-023-09691-1
https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.4204/EPTCS.286.1

Virtual Event, October 25-28, 2022, Proceedings. vol. 13505 of Lecture Notes in Com-
puter Science. Springer; 2022. p. 208-24. Available from: https://doi.org/10.1007/
978-3-031-19992-9_13.

[34] Beutner R, Finkbeiner B, Frenkel H, Siber J. Checking and sketching causes on tem-
poral sequences. In: André É, Sun J, editors. Automated Technology for Verification
and Analysis - 21st International Symposium, ATVA 2023, Singapore, October 24-27,
2023, Proceedings, Part II. vol. 14216 of Lecture Notes in Computer Science. Springer;
2023. p. 314-27. Available from: https://doi.org/10.1007/978-3-031-45332-8_18.

[35] Craig W. Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory. J Symb Log. 1957;22(3):269-85. Available from: https://doi.org/10.
2307/2963594.

[36] Maoz S, Shalom R. Unrealizable cores for reactive systems specifications. CoRR.
2021;abs/2103.00297. Available from: https://arxiv.org/abs/2103.00297.

[37] Kuvent A, Maoz S, Ringert JO. A symbolic justice violations transition system for
unrealizable GR(1) specifications. In: Bodden E, Schäfer W, van Deursen A, Zisman
A, editors. Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM;
2017. p. 362-72. Available from: https://doi.org/10.1145/3106237.3106240.

[38] Shah C, Bender EM. Situating search. In: Elsweiler D, editor. CHIIR ’22: ACM SIGIR
Conference on Human Information Interaction and Retrieval, Regensburg, Germany,
March 14 - 18, 2022. ACM; 2022. p. 221-32. Available from: https://doi.org/10.

1145/3498366.3505816.

51

https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-031-45332-8_18
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://arxiv.org/abs/2103.00297
https://doi.org/10.1145/3106237.3106240
https://doi.org/10.1145/3498366.3505816
https://doi.org/10.1145/3498366.3505816

	Introduction
	Background
	Linear-Time Temporal Logic
	LTL Syntax
	Transition Systems
	LTL Semantics over Transition Systems
	Finite LTL Semantics
	Negation Normal Form for Linear Temporal Logic

	Generalized Reactivity of Rank 1
	GR(1) Specifications and Formulae
	GR(1) Games, Realizability
	Unrealizability, Counterstrategies and Counterexamples

	Causal Reasoning
	Actual Causality by Halpern and Pearl
	The Original Halpern-Pearl Definition
	The Modified Halpern-Pearl Definition
	Beer et al. Causality for LTL Trace Violations

	Causes of Violations to LTL Formulae
	Motivating Example: Request-Acknowledge System
	Prerequisites for Formalizing Causality
	Candidate Causal Sets and Singletons
	Causal Model for Counterexample Violations
	Alteration Traces, Counterfactual Sets, Counterfactual Traces
	Temporal and Causal Model Semantics
	No Witnesses for the Prosecution

	Proposed Definition of Causality
	Motivating Example: Minepump
	Proposed Algorithm for Causality Computation
	Soundness and Bounded Completeness
	Time Complexity under LTLf

	Evaluation on GR(1) Specifications
	Overview of the Implementation
	The Dataset by Buckworth et al.
	Evaluation Methodology
	Quantitative Analysis
	Qualitative Analysis
	Stronger Causes Found by Algorithm 1
	Improved Interpretation of Fairness Violations
	Imperfect Coverage due to Conflicting Conjuncts

	Related Works
	Causality and Linear Temporal Logic
	Event-Order Logic Temporal Causality
	Hyperproperty-Based Temporal Causality

	Counterexamples and Unrealizability in GR(1)
	Assumptions Refinement and Assumptions Repair
	Unrealizability in Adaptive Systems

	Conclusions

