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Topology, image analysis and wettability 

Background and motivation. The flow of multiple fluids – water, oil and gas – in porous materials, 
such as leaves, lungs, bones and fabrics, as well as soils and rocks, is ubiquitous in nature and 
manufacturing.  To deal with the threat of dangerous climate change, carbon dioxide from burning 
fossil fuels needs to be safely stored deep underground, in porous rock.  The fossil fuels themselves, 
or at least oil and gas, are themselves recovered from the pore spaces of rock, typically kilometres 
below the surface.  Many engineered materials are made of fibrous fabric: for instance, surgical masks 
must allow air to flow between the fibres while trapping any droplets of water containing bacteria and 
viruses. 

How the fluids move is controlled by the pore structure itself and the wettability, which measures the 
relative affinity of water to the solid.  For instance, tissues are naturally water-wet and are designed 
to soak up water: the water is retained within the pore space.  On the other hand, waterproof fabrics 
are water-repellent and do not allow water to enter the pore space.  This keeps them dry, while the 
air-filled porous fabric acts as an insulating layer.  There is, however, another feature of porous media 
which is desirable in many cases, including hydrocarbon recovery and porous layers in fuel cells: how 
to facilitate the flow of two phases over a wide saturation range where neither phases is retained or 
trapped in the pore space.  Here  we have recently shown that the ideal condition is a so-called mixed-
wet state where there is a mix of hydrophilic (water-wet) and hydrophobic (water-repellent) surfaces. 

The pore-scale imaging and modelling group at Imperial College has pioneered techniques to use X-
rays to image porous materials in three-dimensions at micron (thousandth of a millimetre) and sub-
micron resolution.  They have developed micro-fluidics techniques to study the flow of multiple fluid 
phases through the pore space, to quantify wettability, and to relate wettability and pore structure to 
flow and trapping.  They have also written bespoke numerical models to predict the flow behaviour.   

Recent theoretical developments have shown that multiphase flow in porous media, the role of 
wettability, and its implications for flow and trapping, can all be understood in terms of principles in 
topology.  This opens up a novel and particularly rich research direction – can we use the information 
from pore-space images combined with ideas in topology to quantify wettability and then understand 
and design optimal conditions for either flow or trapping? 

Research plan and idea.  We start with some basic concepts in geometry.  As shown in Figure 1, the 
sum of the exterior angles of a polygon is 2, even if – for a concave shape – some of the angles can 
be negative.  If instead we have a shape with a smooth boundary, the integral of the curvature, , is 
2.  In general, if we have a shape with both smooth regions and angles, the sum of the exterior angles 
 plus the integral of the curvature is 2: 

෍ 𝛼௜ + න 𝜅 𝑑𝑙 = 2𝜋                               (1) 

The same concept can be extended to three dimensions using the Gauss-Bonnet theorem.  A smooth 
two-dimensional surface has two principal curvatures in orthogonal directions.  The Gaussian 
curvature, G, is the product of these two curvatures.  The integral of the Gaussian curvature over a 
shape that is topologically a sphere (that is can be distorted to make a sphere) is 4.  This is a 
remarkable theorem, as it applies to any shape, however much it is transformed. 

How does this relate to flow in porous media?   Figure 2 shows a schematic of one phase (say oil or 
carbon dioxide) on a solid surface surrounded by another phase (water).  This is at the small scale 
within a porous material, so the droplet may be less than 1 mm across.   
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Figure 1.  An illustration of angles and curvatures in two dimensions. (a) For a polygon the sum of 
the external angles i is 2. Note that 4 in a concavity is negative. (b) For a smooth closed loop the 
equivalent relationship is that the integral of the curvature around the loop is 2. (c) For a two-
dimensional shape bounded by straight sides, sharp angles and smooth lines, the generalization of 
the relationship between curvature and angles is given by Eq. (1). 
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If the surface of the droplet were everywhere smooth, then the integral of the Gaussian curvature 
would be 4.  However, there is a discontinuity in the curvature at the three-phase contact line (where 
the two fluid phases meet the solid) and this discontinuity is related to the contact angle .  Analogous 
to Eq. (1) there is a relationship between the integral of the Gaussian curvature and the contact angle. 

The details of the analysis of topology in three dimensions are a little more subtle, but it is possible to 
prove the following relationship for each fluid-fluid meniscus: 

2𝜋𝑛(1 − cos(𝜃 − 𝜙))  + න 𝐺 𝑑𝑆ଵଶ =  4𝜋                     (2) 

where  is the average contact angle along the contact line and n is the number of contact line loops 
that the meniscus forms with the solid (it is 1 in Figure 2).  The integral is only over the fluid-fluid 
meniscus, S12 (see Figure 2) assuming that the contact line lies in a plane (this is not always strictly 
true, but is a reasonable assumption).  The angle  is the relative orientation of the solid to the plane 
containing the contact line. 

 

Figure 2.  A schematic of a drop of phase 2 on a solid surface surrounded by phase 1.  The contact 
angle   is shown.  We can use Eq. (2) to relate the integral of the Gaussian curvature over the surface 
S12 to contact angle. 

To date, the validity of Eq. (2) has been tested on a limited number of datasets – both simulation 
studies of multiphase flow and images of displacements taken using X-rays: see Figure 3. 

There are enormous opportunities for future work.  Specifically related to the analysis presented 
above, we need to assess methods to find the orientation angle , to quantify the errors associated 
with assuming that the contact loops lie on a plane, and automatically identifying phases within 
droplets, since in mixed-wet media we may see both phase 2 surrounded by phase 1 (as in Figure 2) 
as well as the other way round – phase 1 surrounded by 2.  Then the methods need to be tested on a 
wide range of datasets – both experimental and numerical – to test the accuracy and robustness of 
the approach. 
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Figure 3.  Pore-scale images of phases in a porous medium – the colours distinguish phases, distinct 
ganglia or the Gaussian curvature of the interfaces.  These images can be used to quantify contact 
angle, , using topological principles. 

Of particular importance is to use direct numerical simulation of multiphase flow in porous media 
under different conditions where the input contact angle is known.  This provides a good definitive 
platform to test new ideas and methods, particularly extensions to Eq. (2), or methods to estimate the 
orientation angle. 

The other strand of new research is associated with the properties needed to assess contact angle, 
namely areas and curvatures.  At present we reply on methods to take a grey-scale image (a 
quantification of X-ray adsorption) to segment an image into distinct phases, creating a Lego-block 
type description of fluid configurations.  We then identify and smooth interfaces for further analysis.  
A more elegant solution – which may remove many of the errors and uncertainties in our present 
analysis – would be to identify interfaces directly from grey-scale images. 

Overall this research offers the potential to apply rigorous ideas in mathematics and physics to 
transform our understanding of multiphase flow in porous materials, with a wide range of important 
applications. 

Who we are looking for.  We are looking for a motivated hard-working student with an excellent 
background in applied mathematics or physical science with an interest in porous media problems.  
Good mathematical ability and willingness to learn image analysis methods are needed. 
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