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ABSTRACT: 

 

The ongoing development of advanced techniques in photogrammetry, computer vision (CV), robotics and laser scanning to 

efficiently acquire three dimensional geometric data offer new possibilities for many applications. The output of these techniques in 

the digital form is often a sparse or dense point cloud describing the 3D shape of an object. Viewing these point clouds in a 

computerized digital environment holds a difficulty in displaying the visible points of the object from a given viewpoint rather than 

the hidden points. This visibility problem is a major computer graphics topic and has been solved previously by using different 

mathematical techniques. However, to our knowledge, there is no study of presenting the different visibility analysis methods of 

point clouds from a photogrammetric viewpoint. The visibility approaches, which are surface based or voxel based, and the hidden 

point removal (HPR) will be presented. Three different problems in close range photogrammetry are presented: camera network 

design, guidance with synthetic images and the gap detection in a point cloud. The latter one introduces also a new concept of gap 

classification. Every problem utilizes a different visibility technique to show the valuable effect of visibility analysis on the final 

solution.     

 

1. INTRODUCTION 

 

Computing the visible part of a 3D object is a vital problem in 

computer graphics, computer vision, robotics, GIS and 

photogrammetry. Usually the visibility should be accomplished 

in an automated way from a certain viewpoint or camera. 

Currently, the point clouds can be produced either by using 

laser scanning or dense image matching which is widely used 

for 3D acquisition, representation and reconstruction. These 

point clouds are either sparse or dense of millions points. 

However, a problem arises when viewing a point cloud as 

shown in Figure 1 where the objects looking direction cannot 

be identified (Katz et al., 2007). This necessitate to use the 

visibility testing and to discard the occluded points to properly 

view the object points.  

  
Figure 1. Point cloud in an unknown looking position either 

forward or backward (Luigi, 2009) 

 

The earlier digital methods of terrain visibility analysis is 

presented in GIS an known as viewshed analysis (Yoeli, 1985). 

The method is simply to analyze the Line Of Sight LOS 

between the observer and the target. This is by comparing the 

tangent of the LOS angle and the other angles of the terrain 

points.  The visibility is considered blocked when the tangent of 

the angle between the observer and an middle terrain points is 

greater than the tangent of the observer-to-target angle (Fisher, 

1996).   
During the last two decades, different methods were developed 

to solve the visibility problem in the field of computer graphics 

for real-time rendering and compute games (Bittner and 

Wonka, 2003; Cohen-Or et al., 2003). Currently, the method of 

hidden point removal HPR (Katz et al., 2007) is widely applied 

for the visibility analysis. The advantage of this technique is to 

avoid creating a surface from the point cloud which might be 

expensive and this led to  analyze visibility efficiently with both 

sparse and dense clouds. However, when the point cloud is 

noisy or non-uniformly sampled, a robust HPR operator 

(RHPR) is preferred to be used (Mehra et al., 2010) to deal with 

these cases.  

Other techniques are based on creating a triangulated mesh 

surface like by using poissons reconstruction (Kazhdan et al., 

2006) or ball pivoting (Bernardini et al., 1999). After we create 

the surface, the notion of visibility can be uniquely defined and 

then find its hidden and visible points from any viewpoint. This 

is mathematically achieved by either intersecting the line of 

sight rays with the surface triangles or checking the orientation 

of the surface normal.  

With volumetric data applications, a voxel based techniques are 

suitable more than triangle based. However, we cannot simply 

adopt those voxel techniques (Kuzu, 2004). Computing the 

surface normal vector is more expensive to compute and less 

accurate as well. Therefore line tracing and z-buffering is 

usually used with these volumetric data types. 

In line tracing, the concept is to define the ray between the 

voxel in question and the viewpoint. Then tracing this ray 

towards destination and stop when another voxel is intersected.  

The z buffering or depth buffering is perhaps the simplest, and 

is the most commonly used according to Joy (1999). 
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In this paper, we will demonstrate the necessity of using the 

techniques of visibility analysis in solving three different 

photogrammetric problems. These visibility methods are: 

 The surface triangle based methods (the normal 

direction testing, triangle – ray intersection, Z –

buffering method) 

 The voxel based techniques (voxel - ray  intersection, 

ray tracing and Z- buffering method). 

 The hidden point removal HPR   

 

The three different problems in close range photogrammetry 

addressed are: camera network design, guidance with synthetic 

images and the gap detection in a point cloud. While the two 

former examples are extracted from our previous work, the 

latter one introduces also a new concept of gap classification. 

 

2. METHODOLOGY 

 

The mathematical background of three visibility approaches 

will be presented in the following sections. 

 

2.1 Surface triangulation based methods 

 

The triangulation based methods can be applied by either 

testing the surface normal direction, intersection between a 

triangle and a line in space or by using the distance buffering by 

projecting the points back into a plane (image). These three 

methods require the creation of triangulated surface which 

might be expensive in terms of computations and time 

consuming. 

 

2.1.1. Testing the surface normal direction: This method is 

considered a simple method when compared to the other two 

methods since it is just based on testing the angle difference 

between the vertex (or face) surface normal and the viewing 

direction. The methodology is based on creating a triangulation 

surface and computes the normal vector for each vertex or face. 

Several efficient methods are found for the surface triangulation 

like ball pivoting (Bernardini et al., 1999) and Poisson 

reconstruction (Kazhdan et al., 2006).These normal vectors are 

used to test the visibility of points in each camera as shown in 

Figure 2 which shows a simulated building facade example.  

 
 

Figure 2. Visibility by using the triangular surface normal 

vectors 

 

Accordingly, the decision of considering points as visible or 

invisible is depending on the absolute difference between the 

orientation of the camera optical axis        and the face 

normal direction     . This difference is compared to a 

threshold (like <90o) to decide the visibility status. The 

algorithm pseudo code is: 

 
                                                           
      |      |             
                

     
                  

        
    

However, it must be noted that by only using this technique, we 

are not able to detect and avoid occluded points. This is obvious 

when the angle difference is less than the threshold while the 

protrusion of a façade occluding the point as shown in Figure 3. 

 
Figure 3. Incorrect visibility result 

 

2.1.2 Ray - triangle intersection: This method and the method 

of ray –voxel intersection in section 2.2.1 is based on the same 

geometrical strategy where each triangle vertex is tested 

whether representing the first intersection point with the line 

emerging from a certain viewpoint or not. Being not the first 

intersection point indicates the occlusion case. Every vertex 

point in every camera or viewpoint should be tested to reach the 

final visibility labeling. This illustrates the large amount of 

computations needed in these geometrical intersection methods. 

However, it seems accurate and no incorrect visibility cases can 

arise. (Figure 4)   

  
Figure 4. Visibility by testing the ray-triangle intersection 

 

Mathematically, the intersection method is based on solving the 

intersection of a line and triangle in space. Möller and 

Trumbore (1997) developed the following efficient solution as 

illustrated in Figure 5.  

A point        on a triangle vertices (        ) is defined by 

 

                                                        (1) 

 

Where     represent the barycentric coordinates which should 

fulfill the condition of                      

The algorithm of ray-triangle intersection is therefore to solve 

the following system of equations: 

 

 [

                 

                 

                 

] [
 
 
 
]  [

      

      

      

]         (2) 

 

Where   is the distance from the intersection point to the ray 

origin (          as shown in Figure 5. 

 
Figure 5. Ray-triangle intersection  

No visibility 

𝛿𝑛𝑜𝑟𝑚𝑎𝑙  𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑 

No visibility  
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The method is based on the geometric intersection of            

Line – Triangle. However, the disadvantage of this method is 

the difficulty of the reconstruction (surface triangulation) since 

it often requires additional information, such as normals and 

sufficiently dense input. Moreover, it is time consuming with a 

large data set because every triangle should be tested for the 

intersection. The algorithm can be summarized as follows:  
 

                                                    
     
                                                                   
                                   

                             
                                                          
                       
                                                                    

          

                           
            | | 
                  

     
                

        
    

  

2.1.3 Z-buffering method: The third triangle – based 

technique is the Z- buffering or depth buffering method which 

is applied by projecting the surface triangles back to a grid 

plane like a digital image. These back projected 2D triangles 

are tested whether represent the closest or the farthest from that 

plane. The occluded triangles will be neglected and only keep 

the close triangles which should be visible from the defined 

viewpoint as shown in Figure 6. The final visibility map is like 

a digital image, but the pixel values are the (        coordinates 

instead of the RGB information. The pixel size should be 

selected carefully to avoid extra processing time or less 

efficient results.  

 
Figure 6. Depth - buffering method 

 

The algorithm can be summarized as follows:  

                                                            
                             
                                                     
                           
                                          
               
                                                 
     

                                                                  

                                        
                                                             

     
                                                                   

               
                                         
                                                    
         
        

 

2.2 Voxel based approach 

 

In some applications like gaming or other computer graphics 

applications, the point cloud is represented as voxels and it 

seems very useful to analyze the visibility on the basis of voxels 

rather than points. The advantages of using these methods are 

the avoidance of creating a surface while it is considered an 

expensive approach in terms of computer memory. Three 

different techniques are listed in the following sections which 

are: voxel –ray intersection, voxel distance buffering and ray 

tracing methods. 

 

2.2.1.Voxel – ray intersection: In this technique, the visibility 

test is applied by intersecting a ray emerging from the 

viewpoint (origin-o) with a certain direction             to 

the voxels (         ) and to check if it intersects (flag=1) or 

not (flag=0) as shown in Figure 7. This is a typical line-box 

intersection problem presented by Williams et al. (2005) and 

coded by Mena-Chalco (2010). Turning the point cloud into 

voxels is simply driven by gridding the space occupied by the 

points according to a specific voxel size. This is followed by 

discarding the empty voxels and keeping all the occupied 

voxels as shown in Figure 7. 

 
Figure 7. Voxel-ray intersection for visibility  

 
To speed up the computations of the intersection algorithm, a 

bounding volume hierarchy BV is created (Smits, 1998).  

Mathematically, the intersection involves computing the 

distance from the origin to the intersection point which object 

was hit Mena-Chalco (2010). 

The advantages of this method beside the avoidance of surface 

reconstruction are that no settings are required to implement the 

method except the voxel size to get better accurate results. 

However, disadvantages of this method arise when processing a 

large data set because it may be expensive in terms of time and 

memory consumption. Furthermore, a sparse point cloud will 

not be modeled efficiently since empty space between voxels 

can produce wrongly visible points (Figure 8a). Although, 

enlarging the voxel size (Figure 8b) might avoid this problem 

but probably mislead the visibility results in some applications 

as well.  

          
a) small size voxel                 b) large voxel            

Figure 8. Improper visibility of sparse points represented by 

voxels 

 

2.2.2 Buffering technique: The distance buffering method is 

applied in a same way as in the triangle buffering method. 

Projecting the voxels back to a grid plane and testing whether 

the 2D polygons represent the closest or the farthest from that 

plane. The occluded polygons will be neglected and only keep 

the closest which should be visible from the defined viewpoint 

as shown in Figure 9. The time consuming is a main 

disadvantage of this method.   

 

   

   

      

 

Origin 

 𝑚 𝑛 

 𝑚𝑎  

 

Invisible 

Visible 
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Figure 9. Depth buffering with voxels 

 

2.2.3 Ray tracing technique: The ray tracing method or voxel 

traversing is simply implemented by computing tracing points 

(or voxels) along the ray toward the destination voxel. These 

tracing points will be computed at every small interval which is 

less than the voxel size. Then it is tested whether they intersect 

or hit a voxel before reaching the destination. The voxels will 

be labeled as visible or hidden based on this methodology as 

shown in Figure 10.  

 
Figure 10. Line tracing with voxels 

 

It is worth to mention that the difference between the ray 

tracing method and the methods of buffering and ray–voxel 

intersection is mathematically: 

- The ray tracing method is a forward computations starting 

from the viewpoint position and proceed in specific intervals. 

- The ray-voxel intersection is an inverse computations between 

the voxels in question and the viewpoint. 

  

2.3 Hidden point removal (HPR) 

 

The concept of this method (Katz et al., 2007) is to extract the 

points that are located on the convex hull of a transformed point 

cloud obtained by projecting the original point cloud to a dual 

domain to find the visible points. 

The method is developed to process the data in two steps: 

inversion and convex hull construction. 

The “spherical flipping” is used to reflect every point pi to a 

bounding open sphere along the ray connecting the viewpoint 

and pi to its image outside the sphere. The convex hull 

construction is followed by using the set that contains the 

transformed point cloud and the viewpoint. The major 

advantages of this method are to determine the visibility 

without reconstructing a surface like in the previous surfacing 

methods beside the simplicity and short time implementation 

(Figure 11). Moreover, it can calculate visibility for dense as 

well as sparse point clouds, for which reconstruction or other 

methods, might be failing. However, the disadvantage is 

realized when a noisy point cloud exists (Mehra et al., 2010). 

Moreover, it is necessary to set a suitable radius parameter that 

defines the reflecting sphere as will be shown in the 

experiment.  

Katz et al. (2007) suggested to solve the problem of finding the 

proper radius R automatically by adding additional viewpoint, 

opposite to the current viewpoint. Then analyzing the visible 

points from both viewpoints and minimizing the common 

points by optimization minimization technique like the direct 

search method. This is based on the fact that no point should be 

visible simultaneously to both viewpoints  

 
Figure 11.  HPR method (Katz et al., 2007) 

 
A Matlab code is written to find out the radius value as follows 

which is inspired from the general code of the authors. 
optimR=@(x)estimateR(x,p,C1,C2);% C1,C2 are the 

viewpoints, p:points,x:parameter. 

[x,fval] = fminsearch(optimR,x0) 

 

function [f,rr]=estimateR(x,p,C1,C2) 

dim=size(p,2); 

numPts=size(p,1); 

p1=p-repmat(C1,[numPts 1]);%  

normp1=sqrt(dot(p1,p1,2));%Calculate ||p|| 

R1=repmat(max(normp1)*(10^x),[numPts 1]); 

rr= log10(R1);%%Sphere radius 

P1=p1+2*repmat(R1-normp1,[1 

dim]).*p1./repmat(normp1,[1 dim]);%Spherical 

flipping 
visiblePtInds1=unique(convhulln([P1;zeros(1,dim)]));%co

nvex hull 

visiblePtInds1(visiblePtInds1==numPts+1)=[]; 

P1=p(visiblePtInds1,:); 

p2=p-repmat(C2,[numPts 1]);%  

normp2=sqrt(dot(p2,p2,2));%Calculate ||p|| 

R2=repmat(max(normp2)*(10^x),[numPts 1]);%Sphere 

radius 

P2=p2+2*repmat(R2-normp2,[1 

dim]).*p2./repmat(normp2,[1 dim]);%Spherical 

flipping 
visiblePtInds2=unique(convhulln([P2;zeros(1,dim)]));%co

nvex hull 

visiblePtInds2(visiblePtInds2==numPts+1)=[]; 

P2=p(visiblePtInds2,:); 

A = setdiff(P1,P2,'rows'); 

f= -mean(sum(abs(A)) 
  

3. Applications in close range photogrammetry 

 

To show the importance of the aforementioned visibility testing 

methods, we will present three different problems in close 

range photogrammetry. The problems are: the camera network 

design, the creation of synthetic images for guiding the image 

capture and the gap detection in a dense point cloud.  

The first two applications of the camera network design and 

guiding the image capture were introduced previously in 

(Alsadik et al., 2013). The concept was to build an automated 

imaging system for the 3D modeling of cultural heritage 

documentation. The system was mainly designed to assist non-

professionals to capture the necessary images for having a 

complete and reliable 3D model. This image capturing was 

based on creating synthetic images from the same viewpoints 

that is designed in the camera network. However, in this paper 

we will emphasize on the role of the visibility analysis to have 

sufficient results. 

Moreover, a method of detecting gaps in the dense points cloud 

will be presented where a voxel based visibility analysis will be 

a crucial factor to reach sufficient results. The actual challenge 

is to differentiate between openings in the object and gaps 

caused e.g. by occlusion. These three applications will be 

explained and a solution will be presented in the following 

sections with the impact of the visibility analysis on the 

solution for each problem.  
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3.1 Camera network design 

 

A basic necessary step in any photogrammetric project is to 

carefully design the camera network. This design needs a high 

expertise and a thorough planning. Different elements are to be 

modeled like the Base/Depth ratio, the uncertainty in image 

observation and the ground sample distance GSD. Furthermore, 

the visibility of object points from the different camera 

locations is an important factor during the design of the 

imaging network. In other words, we should carefully compute 

for every part of the object of interest, the imaging cameras 

according to their designed orientation. Any of the 

aforementioned methods of visibility can be used to test the 

visible points like by testing the vertex normal directions of 

Figure 12(a). A rough point cloud of the object is first acquired 

from a video image sequence and then a triangulation surface is 

to be created (Alsadik et al., 2013). This created rough model is 

necessary to design a sufficient camera network that almost 

ensure a high amount of coverage and accuracy. The design is 

to be arranged in a way that ensures points to be viewed by at 

least three cameras (Luhmann T. et al., 2006) for a high 

positioning reliability. 

In order to find the minimal efficient camera network, a dense 

imaging network is firstly to be simulated. This dense network 

is then filtered on the basis of removing redundant cameras in 

terms of coverage efficiency and the impact on the total 

accuracy in the object space. Accordingly, the filtering is based 

on evaluating the total error in the object space and computing 

the effect of each camera on this error. The least effective 

redundant camera in terms of accuracy will be neglected. The 

whole procedure of filtering will be iterated until reaching the 

desired accuracy (by error propagation) or when no more 

redundant cameras are exist in the imaging network.  

The simulation test of Figure 12 shows a rectangular building 

surrounded by 36 cameras with the imaging rays. However, this 

dense network can be reduced to a minimal network by filtering 

the redundant cameras basing on the total object points 

accuracy. To apply the filtering correctly, a visibility testing is 

needed. The direction of the vertices normal is used to decide if 

point   is visible in camera   and so on as discussed in section 

2.1.1. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. (a) vertex normal orientation. (b) Dense and minimal 

camera network with visibility test. (c) Dense and minimal 

network without visibility test.  

The minimal camera network with visibility testing is shown in 

Figure 12b where only five cameras are needed to have a 

sufficient coverage and accuracy for the object measurements 

by photogrammetric techniques. However, the same network 

wrongly reduced into only three cameras as shown in Figure 

12c where no visibility is considered and all the points are 

assumed visible in all the viewing cameras. This results in a 

wrongly designed network despite the preservation of three 

viewing cameras per point where one of the corners will 

actually missed as shown in the red circle of Figure 12c. 

 

3.2 Synthesizing images 

  

In some applications of photogrammetry and CV a guidance is 

needed to have a correct captured images like for 3D modeling 

and panoramic imaging. The motive to create the synthetic 

images is the suitability of these images to guide the camera 

operator, even non-professionals, to the desired optimal 

location and camera attitude. We proposed previously a simple 

way to guide the camera operator to capture high-resolution HR 

images for 3D modeling. The key idea is to create, based on the 

designed camera network, multiple synthetic images of the 

object to be modeled. This is followed by an image matching to 

decide the amount of equivalence or similarity between the real 

captured images and the synthetic images  (Alsadik et al., 

2013).  

Therefore, even if the image matching might be insufficient in 

some cases, the camera operator can visually inspect and 

capture the desired image. Moreover, these synthetic images 

and then guidance are suitable to be applied by smart phones 

and autonomous navigation robots as well. The synthetic 

images are formed by first, create a 3D triangulated surface 

from initial point cloud by any efficient surfacing techniques 

like ball pivoting (Bernardini et al., 1999)  or Poisson 

reconstruction (Kazhdan et al., 2006). Accordingly, image 

resampling is implemented to get a textured 3D cloud or model. 

A free web application software like 123D catch (Autodesk, 

2012) or a combination of open source software like VSfM 

(Wu, 2012), SURE (Wenzel, 2013) and Meshlab (Meshlab, 

2010) can also be used to create such a textured low detailed 

model.(Figure 13). This textured 3D model will be transformed 

by collinearity equations to the designed viewpoint (see 

previous subsection) to create the synthetic images. 

 
(a)                  (b)                        (c) 

 
(d) 

Figure 13. (a) Rough point cloud. (b) Surface mesh. (c) 

Textured mesh. (d) Synthesizing images  

Missing 
corner 
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The information about the textured 3D model is simply 

transformed in two steps back to the intended synthetic images. 

The first is to project the 3D coordinates back into the 2D pixel 

coordinates and the second is to assign the texture for each 

triangular face. Therefore, each textured triangular face (three 

vertices and the patch RGB color) is transformed as illustrated 

in Figure 13 from the texture image to the corresponding 

synthetic image by linear interpolation. The transformation is 

done for each face by moving across a bounding rectangle and 

assigning the pixel value from the texture image to each pixel 

falls inside the triangle. 

Figure 14 shows a sample of the synthetic images of a fountain 

in the first row and their equivalent real images in the second 

row.   

 

 
Figure 14. Synthetic and real captured images. 

 

The synthesizing approach should account for the visibility 

condition otherwise a wrong texture can deteriorate the created 

synthetic image. Figure 15 shows the effect of self-occlusions if 

the visibility is not considered. The z-buffering technique of 

visibility is applied and based on testing if the same pixel in the 

synthetic image is covered more than one time. Accordingly, 

the pixels representing further points are excluded while 

keeping the closest pixels.  

 
Figure 15. Self-occlusion in synthetic image with and without 

visibility test 

 

3.3 Gap detection in a point cloud 

 

The gap identification in the image based point cloud of 

architectural structures is a challenging task. The challenge is in 

the sense of automation and the difficulty to discriminate 

between true gaps (openings) and gaps in a point cloud caused 

by occlusion. Figure 16 summarizes some possible causes of 

gaps that might be found in the image based point cloud. These 

gaps can be:  

 Obscured parts because of perspective, e.g. roof parts 

are not visible because of self-occlusion when viewed 

from a street level (a). 

 Occluded parts of the object like the protrusion in 

facades or vehicles near facades (b, c). 

 Texture-less parts of the object like white painted 

walls and window glass (d). 

 Openings like corridors  and open gates of a building 

(e). 

 

However, it seems that different techniques can be followed to 

identify these gaps. The detection of gaps in 3D is to be 

accomplished either by using a volumetric representation with 

voxels or with triangulated surface meshing. With voxels, the 

well-known robotics technique of “occupancy grid” can be used 

to decide which voxel is occupied and which one is empty 

(Thrun et al., 2005). However, this is usually implemented with 

a moving robot and where there is uncertainty in the voxel 

labeling. In surface triangulation methods, the gap may be 

detected by looking for the skewed elongated triangles which is 

an indication for the gap existence (Impoco et al., 2004). 

 

 
(c) (d) (e) 

Figure 16. Gaps cause. (a) Obscured parts from street view. (b) 

Protrusions in facades. (c) Occlusion effect. (d) Texture-less 

parts. (e) Real openings. 

 

In this paper, the gap detection is solved by the following 

technique which is based on volumetric space representation, 

followed by a classification into gap or opening:  

The space occupied by the point cloud is to be filled with 

voxels and each voxel is labeled as empty or occupied based on 

the points existence within that voxel. The empty voxels are to 

be investigated for the gap detection. However, these detected 

gaps might be openings or gaps because of occlusions as 

mentioned before. In this sense the methodology of detection is 

summarized as: 

- Construct the voxels in 3D space and preferably with 

octree to save memory and processing time. Label 

each voxel as empty or occupied. 

- Preliminary filtering to account for noise in the point 

cloud. 

- Test the visibility with the line tracing or voxel-ray 

intersection method. 

- Filter empty voxels after classifying the remaining 

voxels based on visibility into fully occluded, 

partially occluded, and fully visible. 

- Compute the neighborhood index (NI) to assist the 

decision of labeling occluded voxels. 

- Classify the occluded voxels into either openings or 

gaps. 

 

The first step of filtering the blundered empty voxels is based 

on what we call “voxel glue”. This is computed by using the  

occupied voxels to glue the neighboring empty voxels and 

discard the others. This is to be done by searching for the 

nearest empty voxels by using the ‘nearest neighbor’ technique.  

This is followed by removing the non-glue empty voxels which 

represent the marginal or bordering voxels away from the 

occupied voxels of the point cloud. Then a second step of 

filtering is based on the visibility analysis from the designed 

viewpoints as discussed in section 2.2. Three cases might be 

found as illustrated in Figure 17: fully occluded, partially 

occluded, and fully visible voxels.  

Fully visible and fully occluded empty voxels will be neglected 

while partly occluded voxels will be more investigated as 

potential gaps or openings. Neglecting fully visible voxels is 

(a) (b) 
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based on the fact that empty voxel cannot occlude occupied 

voxels (Figure 17b). On the other hand fully hidden voxels like 

empty space behind a wall are also neglected as illustrated in 

Figure 17a. 

  
(a) (b) (c) 

Figure 17. Empty voxels and visibility analysis. (a) Fully 

occluded. (b) Fully visible. (c) Partly occluded. 

 

However, such a visibility index is not sufficient to reliably find 

out the potential gaps. This is because of the possible 

inadequate camera placement and the blunders or noise in the 

point cloud.  

Therefore, other measures are to be added. A neighborhood 

index (NI) might be efficient to strengthen the detection of 

empty voxels, this is actually similar to a majority filter (3x3x3 

neighborhood), but also uses the actual direction of neighbors. 

Figure 18 illustrates the computation of the neighborhood index 

of a voxel. Three types of proximity distances (        ) are 

computed to define the search space. More neighboring 

occupied voxels indicate a high chance of being an occluded 

empty voxel and vice versa. NI is computed as (number of 

empty voxels/ total neighboring voxels) and a threshold of 

(>50%) is considered to indicate a blundered empty voxel. 

 
(a) 

 
(b) 

Figure 18. (a) Proximity measure. (b) 3*3 neighboring voxels  

 

The measure of the altitude can be used. Altitude index is 

useful when the imaging is done with a street level view since 

the upper parts of the object are self-occluded. Hence, the 

empty voxels near the upper parts of objects are labeled as 

occluded gaps. Finally, a discrimination between the openings 

and occluded gaps is needed. Therefore, openings can mislead 

the gap detection results as illustrated in Figure 19 where the 

gate entrance will be modeled by empty voxels. The depth  

information from the viewing direction is to be used for 

detecting openings. This is based on the formed empty voxels 

clusters in the depth direction like in open gates or corridors. 

Therefore, the visibility analysis will be used to get this depth 

information and then to define openings. 

After the gap detection, auxiliary images are to be captured to 

recover the gaps in the point cloud and to finally have a 

complete 3D model. 

 
(a) (a)                                     (b) 

   
(c)                          (d)                             (e) 

Figure 19. The opening in a point cloud can mislead the 

detection of gaps. (a) Viewing camera. (b) The image of the 

point cloud. (c) Occupied voxels. (d) Visibility analysis. (e) 

Gap detection (red voxels).  
  
Figure 20 illustrates the workflow of the proposed gap detection 

method in image based point clouds and the impact of visibility 

analysis. 
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Figure 20. The methodology of gap detection 

 

An experimental test of a gap detection is illustrated in Figure 

21 where a building facade with extruded columns is to be 

modeled with images. Thirteen images are taken to the facade 

and a dense point cloud is acquired after image dense matching 

(Figure 21a). Obviously, the façade point cloud includes only 

gaps caused by occlusions and the insufficient camera network 

coverage. The point cloud is voxelized and then the voxels are 

labeled either empty voxels or occupied voxels as shown in 

Figure 21b. The visibility analysis by using the ray-voxel 

intersection is applied as shown in Figure 21c. The presented 

filtering strategy based on the visibility, neighborhood index 

and altitude resulted in the final empty voxels which represent 

the occluded gaps in the point cloud. Figure 21d shows the 

empty voxels according to their visibility status from the 

cameras. Figure 21e shows the final result of gap detection.  

Empty 

 voxel 
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(a) 

    
(b)                                (c) 

 
(d)                           (e) 

Figure 21. Gap detection with voxels. (a) The dense point 
cloud. (b) The occupied voxels. (c) The  empty voxels and 
visibility analysis. (d) The detected empty voxels after visibility 
analysis. (e) Final occluded gaps after neighborhood analysis. 
 
4. CONCLUSION AND DISCUSSION 
 
In this study, three strategies are described to analyze the 
visibility of 3D point clouds and these are (surface based, voxel 
based, and HPR). Every method has its advantages and 
disadvantages in the sense of accuracy, time consuming, a 
priori settings and efficiency of the results. Accordingly, the use 
of visibility analysis is quite important in many 
photogrammetric applications and especially when the data set 
type is a point cloud.  
Three problems were selected in close range photogrammetry 
where the visibility plays a vital role to have a successful result. 
Every visibility solution to the three problems was applied by 
using one of the techniques presented in section 2.  
Visibility analysis in the first application of camera network 
design was crucial to have a sufficient overage as shown in 
Figure 12. The vertex normal orientation testing is used in this 
case for simplicity since the object is represented by only eight 
corner points.  
The second experiment showed the effect of visibility analysis 
on creating synthetic images of a 3D model. Figure 15 showed 
the effect of self-occluded parts of the final synthetic images if 
the visibility analysis is neglected. The technique of z-buffering 
with triangular surfaces proved its efficiency and suitability to 
deal with such kind of surface mesh data.  
The third test presented the problem of gap detection in a point 
cloud produced from images. The space is modeled as  
volumetric voxels. Hence, the proposed solution is based 
mainly on testing the visibility of voxel-line intersection 
method of section 2.2.1. This visibility is also supported by 
other measures like neighborhood index and altitude 
information.  
Future work can investigate for other visibility techniques 
which can handle for both sparse and dense point cloud data 
and investigate which of the current methods is the most 
efficient for handling the photogrammetric application.      
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