

VISIBILITY ANALYSIS OF POINT CLOUD IN

CLOSE RANGE PHOTOGRAMMETRY

B. Alsadika,b,*, M. Gerkea, G. Vosselmana

a)University of Twente, ITC Faculty, EOS department, Enschede, The Netherlands

 (b.s.a.alsadik, m.gerke, george vosselman)@utwente.nl
b) University of Baghdad, College of Engineering, Surveying Department, Baghdad, Iraq

Commission V, WG V/2

KEY WORDS: visibility – point cloud – voxel – HPR – line tracing – z buffering

ABSTRACT:

The ongoing development of advanced techniques in photogrammetry, computer vision (CV), robotics and laser scanning to

efficiently acquire three dimensional geometric data offer new possibilities for many applications. The output of these techniques in

the digital form is often a sparse or dense point cloud describing the 3D shape of an object. Viewing these point clouds in a

computerized digital environment holds a difficulty in displaying the visible points of the object from a given viewpoint rather than

the hidden points. This visibility problem is a major computer graphics topic and has been solved previously by using different

mathematical techniques. However, to our knowledge, there is no study of presenting the different visibility analysis methods of

point clouds from a photogrammetric viewpoint. The visibility approaches, which are surface based or voxel based, and the hidden

point removal (HPR) will be presented. Three different problems in close range photogrammetry are presented: camera network

design, guidance with synthetic images and the gap detection in a point cloud. The latter one introduces also a new concept of gap

classification. Every problem utilizes a different visibility technique to show the valuable effect of visibility analysis on the final

solution.

1. INTRODUCTION

Computing the visible part of a 3D object is a vital problem in

computer graphics, computer vision, robotics, GIS and

photogrammetry. Usually the visibility should be accomplished

in an automated way from a certain viewpoint or camera.

Currently, the point clouds can be produced either by using

laser scanning or dense image matching which is widely used

for 3D acquisition, representation and reconstruction. These

point clouds are either sparse or dense of millions points.

However, a problem arises when viewing a point cloud as

shown in Figure 1 where the objects looking direction cannot

be identified (Katz et al., 2007). This necessitate to use the

visibility testing and to discard the occluded points to properly

view the object points.

Figure 1. Point cloud in an unknown looking position either

forward or backward (Luigi, 2009)

The earlier digital methods of terrain visibility analysis is

presented in GIS an known as viewshed analysis (Yoeli, 1985).

The method is simply to analyze the Line Of Sight LOS

between the observer and the target. This is by comparing the

tangent of the LOS angle and the other angles of the terrain

points. The visibility is considered blocked when the tangent of

the angle between the observer and an middle terrain points is

greater than the tangent of the observer-to-target angle (Fisher,

1996).
During the last two decades, different methods were developed

to solve the visibility problem in the field of computer graphics

for real-time rendering and compute games (Bittner and

Wonka, 2003; Cohen-Or et al., 2003). Currently, the method of

hidden point removal HPR (Katz et al., 2007) is widely applied

for the visibility analysis. The advantage of this technique is to

avoid creating a surface from the point cloud which might be

expensive and this led to analyze visibility efficiently with both

sparse and dense clouds. However, when the point cloud is

noisy or non-uniformly sampled, a robust HPR operator

(RHPR) is preferred to be used (Mehra et al., 2010) to deal with

these cases.

Other techniques are based on creating a triangulated mesh

surface like by using poissons reconstruction (Kazhdan et al.,

2006) or ball pivoting (Bernardini et al., 1999). After we create

the surface, the notion of visibility can be uniquely defined and

then find its hidden and visible points from any viewpoint. This

is mathematically achieved by either intersecting the line of

sight rays with the surface triangles or checking the orientation

of the surface normal.

With volumetric data applications, a voxel based techniques are

suitable more than triangle based. However, we cannot simply

adopt those voxel techniques (Kuzu, 2004). Computing the

surface normal vector is more expensive to compute and less

accurate as well. Therefore line tracing and z-buffering is

usually used with these volumetric data types.

In line tracing, the concept is to define the ray between the

voxel in question and the viewpoint. Then tracing this ray

towards destination and stop when another voxel is intersected.

The z buffering or depth buffering is perhaps the simplest, and

is the most commonly used according to Joy (1999).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 9

In this paper, we will demonstrate the necessity of using the

techniques of visibility analysis in solving three different

photogrammetric problems. These visibility methods are:

 The surface triangle based methods (the normal

direction testing, triangle – ray intersection, Z –

buffering method)

 The voxel based techniques (voxel - ray intersection,

ray tracing and Z- buffering method).

 The hidden point removal HPR

The three different problems in close range photogrammetry

addressed are: camera network design, guidance with synthetic

images and the gap detection in a point cloud. While the two

former examples are extracted from our previous work, the

latter one introduces also a new concept of gap classification.

2. METHODOLOGY

The mathematical background of three visibility approaches

will be presented in the following sections.

2.1 Surface triangulation based methods

The triangulation based methods can be applied by either

testing the surface normal direction, intersection between a

triangle and a line in space or by using the distance buffering by

projecting the points back into a plane (image). These three

methods require the creation of triangulated surface which

might be expensive in terms of computations and time

consuming.

2.1.1. Testing the surface normal direction: This method is

considered a simple method when compared to the other two

methods since it is just based on testing the angle difference

between the vertex (or face) surface normal and the viewing

direction. The methodology is based on creating a triangulation

surface and computes the normal vector for each vertex or face.

Several efficient methods are found for the surface triangulation

like ball pivoting (Bernardini et al., 1999) and Poisson

reconstruction (Kazhdan et al., 2006).These normal vectors are

used to test the visibility of points in each camera as shown in

Figure 2 which shows a simulated building facade example.

Figure 2. Visibility by using the triangular surface normal

vectors

Accordingly, the decision of considering points as visible or

invisible is depending on the absolute difference between the

orientation of the camera optical axis and the face

normal direction . This difference is compared to a

threshold (like <90o) to decide the visibility status. The

algorithm pseudo code is:

 | |

However, it must be noted that by only using this technique, we

are not able to detect and avoid occluded points. This is obvious

when the angle difference is less than the threshold while the

protrusion of a façade occluding the point as shown in Figure 3.

Figure 3. Incorrect visibility result

2.1.2 Ray - triangle intersection: This method and the method

of ray –voxel intersection in section 2.2.1 is based on the same

geometrical strategy where each triangle vertex is tested

whether representing the first intersection point with the line

emerging from a certain viewpoint or not. Being not the first

intersection point indicates the occlusion case. Every vertex

point in every camera or viewpoint should be tested to reach the

final visibility labeling. This illustrates the large amount of

computations needed in these geometrical intersection methods.

However, it seems accurate and no incorrect visibility cases can

arise. (Figure 4)

Figure 4. Visibility by testing the ray-triangle intersection

Mathematically, the intersection method is based on solving the

intersection of a line and triangle in space. Möller and

Trumbore (1997) developed the following efficient solution as

illustrated in Figure 5.

A point on a triangle vertices () is defined by

 (1)

Where represent the barycentric coordinates which should

fulfill the condition of

The algorithm of ray-triangle intersection is therefore to solve

the following system of equations:

 [

] [

] [

] (2)

Where is the distance from the intersection point to the ray

origin (as shown in Figure 5.

Figure 5. Ray-triangle intersection

No visibility

𝛿𝑛𝑜𝑟𝑚𝑎𝑙 𝑡 𝑟𝑒𝑠 𝑜𝑙𝑑

No visibility

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 10

The method is based on the geometric intersection of

Line – Triangle. However, the disadvantage of this method is

the difficulty of the reconstruction (surface triangulation) since

it often requires additional information, such as normals and

sufficiently dense input. Moreover, it is time consuming with a

large data set because every triangle should be tested for the

intersection. The algorithm can be summarized as follows:

 | |

2.1.3 Z-buffering method: The third triangle – based

technique is the Z- buffering or depth buffering method which

is applied by projecting the surface triangles back to a grid

plane like a digital image. These back projected 2D triangles

are tested whether represent the closest or the farthest from that

plane. The occluded triangles will be neglected and only keep

the close triangles which should be visible from the defined

viewpoint as shown in Figure 6. The final visibility map is like

a digital image, but the pixel values are the (coordinates

instead of the RGB information. The pixel size should be

selected carefully to avoid extra processing time or less

efficient results.

Figure 6. Depth - buffering method

The algorithm can be summarized as follows:

2.2 Voxel based approach

In some applications like gaming or other computer graphics

applications, the point cloud is represented as voxels and it

seems very useful to analyze the visibility on the basis of voxels

rather than points. The advantages of using these methods are

the avoidance of creating a surface while it is considered an

expensive approach in terms of computer memory. Three

different techniques are listed in the following sections which

are: voxel –ray intersection, voxel distance buffering and ray

tracing methods.

2.2.1.Voxel – ray intersection: In this technique, the visibility

test is applied by intersecting a ray emerging from the

viewpoint (origin-o) with a certain direction to

the voxels () and to check if it intersects (flag=1) or

not (flag=0) as shown in Figure 7. This is a typical line-box

intersection problem presented by Williams et al. (2005) and

coded by Mena-Chalco (2010). Turning the point cloud into

voxels is simply driven by gridding the space occupied by the

points according to a specific voxel size. This is followed by

discarding the empty voxels and keeping all the occupied

voxels as shown in Figure 7.

Figure 7. Voxel-ray intersection for visibility

To speed up the computations of the intersection algorithm, a

bounding volume hierarchy BV is created (Smits, 1998).

Mathematically, the intersection involves computing the

distance from the origin to the intersection point which object

was hit Mena-Chalco (2010).

The advantages of this method beside the avoidance of surface

reconstruction are that no settings are required to implement the

method except the voxel size to get better accurate results.

However, disadvantages of this method arise when processing a

large data set because it may be expensive in terms of time and

memory consumption. Furthermore, a sparse point cloud will

not be modeled efficiently since empty space between voxels

can produce wrongly visible points (Figure 8a). Although,

enlarging the voxel size (Figure 8b) might avoid this problem

but probably mislead the visibility results in some applications

as well.

a) small size voxel b) large voxel

Figure 8. Improper visibility of sparse points represented by

voxels

2.2.2 Buffering technique: The distance buffering method is

applied in a same way as in the triangle buffering method.

Projecting the voxels back to a grid plane and testing whether

the 2D polygons represent the closest or the farthest from that

plane. The occluded polygons will be neglected and only keep

the closest which should be visible from the defined viewpoint

as shown in Figure 9. The time consuming is a main

disadvantage of this method.

Origin

 𝑚 𝑛

 𝑚𝑎

Invisible

Visible

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 11

Figure 9. Depth buffering with voxels

2.2.3 Ray tracing technique: The ray tracing method or voxel

traversing is simply implemented by computing tracing points

(or voxels) along the ray toward the destination voxel. These

tracing points will be computed at every small interval which is

less than the voxel size. Then it is tested whether they intersect

or hit a voxel before reaching the destination. The voxels will

be labeled as visible or hidden based on this methodology as

shown in Figure 10.

Figure 10. Line tracing with voxels

It is worth to mention that the difference between the ray

tracing method and the methods of buffering and ray–voxel

intersection is mathematically:

- The ray tracing method is a forward computations starting

from the viewpoint position and proceed in specific intervals.

- The ray-voxel intersection is an inverse computations between

the voxels in question and the viewpoint.

2.3 Hidden point removal (HPR)

The concept of this method (Katz et al., 2007) is to extract the

points that are located on the convex hull of a transformed point

cloud obtained by projecting the original point cloud to a dual

domain to find the visible points.

The method is developed to process the data in two steps:

inversion and convex hull construction.

The “spherical flipping” is used to reflect every point pi to a

bounding open sphere along the ray connecting the viewpoint

and pi to its image outside the sphere. The convex hull

construction is followed by using the set that contains the

transformed point cloud and the viewpoint. The major

advantages of this method are to determine the visibility

without reconstructing a surface like in the previous surfacing

methods beside the simplicity and short time implementation

(Figure 11). Moreover, it can calculate visibility for dense as

well as sparse point clouds, for which reconstruction or other

methods, might be failing. However, the disadvantage is

realized when a noisy point cloud exists (Mehra et al., 2010).

Moreover, it is necessary to set a suitable radius parameter that

defines the reflecting sphere as will be shown in the

experiment.

Katz et al. (2007) suggested to solve the problem of finding the

proper radius R automatically by adding additional viewpoint,

opposite to the current viewpoint. Then analyzing the visible

points from both viewpoints and minimizing the common

points by optimization minimization technique like the direct

search method. This is based on the fact that no point should be

visible simultaneously to both viewpoints

Figure 11. HPR method (Katz et al., 2007)

A Matlab code is written to find out the radius value as follows

which is inspired from the general code of the authors.
optimR=@(x)estimateR(x,p,C1,C2);% C1,C2 are the

viewpoints, p:points,x:parameter.

[x,fval] = fminsearch(optimR,x0)

function [f,rr]=estimateR(x,p,C1,C2)

dim=size(p,2);

numPts=size(p,1);

p1=p-repmat(C1,[numPts 1]);%

normp1=sqrt(dot(p1,p1,2));%Calculate ||p||

R1=repmat(max(normp1)*(10^x),[numPts 1]);

rr= log10(R1);%%Sphere radius

P1=p1+2*repmat(R1-normp1,[1

dim]).*p1./repmat(normp1,[1 dim]);%Spherical

flipping
visiblePtInds1=unique(convhulln([P1;zeros(1,dim)]));%co

nvex hull

visiblePtInds1(visiblePtInds1==numPts+1)=[];

P1=p(visiblePtInds1,:);

p2=p-repmat(C2,[numPts 1]);%

normp2=sqrt(dot(p2,p2,2));%Calculate ||p||

R2=repmat(max(normp2)*(10^x),[numPts 1]);%Sphere

radius

P2=p2+2*repmat(R2-normp2,[1

dim]).*p2./repmat(normp2,[1 dim]);%Spherical

flipping
visiblePtInds2=unique(convhulln([P2;zeros(1,dim)]));%co

nvex hull

visiblePtInds2(visiblePtInds2==numPts+1)=[];

P2=p(visiblePtInds2,:);

A = setdiff(P1,P2,'rows');

f= -mean(sum(abs(A))

3. Applications in close range photogrammetry

To show the importance of the aforementioned visibility testing

methods, we will present three different problems in close

range photogrammetry. The problems are: the camera network

design, the creation of synthetic images for guiding the image

capture and the gap detection in a dense point cloud.

The first two applications of the camera network design and

guiding the image capture were introduced previously in

(Alsadik et al., 2013). The concept was to build an automated

imaging system for the 3D modeling of cultural heritage

documentation. The system was mainly designed to assist non-

professionals to capture the necessary images for having a

complete and reliable 3D model. This image capturing was

based on creating synthetic images from the same viewpoints

that is designed in the camera network. However, in this paper

we will emphasize on the role of the visibility analysis to have

sufficient results.

Moreover, a method of detecting gaps in the dense points cloud

will be presented where a voxel based visibility analysis will be

a crucial factor to reach sufficient results. The actual challenge

is to differentiate between openings in the object and gaps

caused e.g. by occlusion. These three applications will be

explained and a solution will be presented in the following

sections with the impact of the visibility analysis on the

solution for each problem.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 12

3.1 Camera network design

A basic necessary step in any photogrammetric project is to

carefully design the camera network. This design needs a high

expertise and a thorough planning. Different elements are to be

modeled like the Base/Depth ratio, the uncertainty in image

observation and the ground sample distance GSD. Furthermore,

the visibility of object points from the different camera

locations is an important factor during the design of the

imaging network. In other words, we should carefully compute

for every part of the object of interest, the imaging cameras

according to their designed orientation. Any of the

aforementioned methods of visibility can be used to test the

visible points like by testing the vertex normal directions of

Figure 12(a). A rough point cloud of the object is first acquired

from a video image sequence and then a triangulation surface is

to be created (Alsadik et al., 2013). This created rough model is

necessary to design a sufficient camera network that almost

ensure a high amount of coverage and accuracy. The design is

to be arranged in a way that ensures points to be viewed by at

least three cameras (Luhmann T. et al., 2006) for a high

positioning reliability.

In order to find the minimal efficient camera network, a dense

imaging network is firstly to be simulated. This dense network

is then filtered on the basis of removing redundant cameras in

terms of coverage efficiency and the impact on the total

accuracy in the object space. Accordingly, the filtering is based

on evaluating the total error in the object space and computing

the effect of each camera on this error. The least effective

redundant camera in terms of accuracy will be neglected. The

whole procedure of filtering will be iterated until reaching the

desired accuracy (by error propagation) or when no more

redundant cameras are exist in the imaging network.

The simulation test of Figure 12 shows a rectangular building

surrounded by 36 cameras with the imaging rays. However, this

dense network can be reduced to a minimal network by filtering

the redundant cameras basing on the total object points

accuracy. To apply the filtering correctly, a visibility testing is

needed. The direction of the vertices normal is used to decide if

point is visible in camera and so on as discussed in section

2.1.1.

(a)

(b)

(c)

Figure 12. (a) vertex normal orientation. (b) Dense and minimal

camera network with visibility test. (c) Dense and minimal

network without visibility test.

The minimal camera network with visibility testing is shown in

Figure 12b where only five cameras are needed to have a

sufficient coverage and accuracy for the object measurements

by photogrammetric techniques. However, the same network

wrongly reduced into only three cameras as shown in Figure

12c where no visibility is considered and all the points are

assumed visible in all the viewing cameras. This results in a

wrongly designed network despite the preservation of three

viewing cameras per point where one of the corners will

actually missed as shown in the red circle of Figure 12c.

3.2 Synthesizing images

In some applications of photogrammetry and CV a guidance is

needed to have a correct captured images like for 3D modeling

and panoramic imaging. The motive to create the synthetic

images is the suitability of these images to guide the camera

operator, even non-professionals, to the desired optimal

location and camera attitude. We proposed previously a simple

way to guide the camera operator to capture high-resolution HR

images for 3D modeling. The key idea is to create, based on the

designed camera network, multiple synthetic images of the

object to be modeled. This is followed by an image matching to

decide the amount of equivalence or similarity between the real

captured images and the synthetic images (Alsadik et al.,

2013).

Therefore, even if the image matching might be insufficient in

some cases, the camera operator can visually inspect and

capture the desired image. Moreover, these synthetic images

and then guidance are suitable to be applied by smart phones

and autonomous navigation robots as well. The synthetic

images are formed by first, create a 3D triangulated surface

from initial point cloud by any efficient surfacing techniques

like ball pivoting (Bernardini et al., 1999) or Poisson

reconstruction (Kazhdan et al., 2006). Accordingly, image

resampling is implemented to get a textured 3D cloud or model.

A free web application software like 123D catch (Autodesk,

2012) or a combination of open source software like VSfM

(Wu, 2012), SURE (Wenzel, 2013) and Meshlab (Meshlab,

2010) can also be used to create such a textured low detailed

model.(Figure 13). This textured 3D model will be transformed

by collinearity equations to the designed viewpoint (see

previous subsection) to create the synthetic images.

(a) (b) (c)

(d)

Figure 13. (a) Rough point cloud. (b) Surface mesh. (c)

Textured mesh. (d) Synthesizing images

Missing
corner

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 13

The information about the textured 3D model is simply

transformed in two steps back to the intended synthetic images.

The first is to project the 3D coordinates back into the 2D pixel

coordinates and the second is to assign the texture for each

triangular face. Therefore, each textured triangular face (three

vertices and the patch RGB color) is transformed as illustrated

in Figure 13 from the texture image to the corresponding

synthetic image by linear interpolation. The transformation is

done for each face by moving across a bounding rectangle and

assigning the pixel value from the texture image to each pixel

falls inside the triangle.

Figure 14 shows a sample of the synthetic images of a fountain

in the first row and their equivalent real images in the second

row.

Figure 14. Synthetic and real captured images.

The synthesizing approach should account for the visibility

condition otherwise a wrong texture can deteriorate the created

synthetic image. Figure 15 shows the effect of self-occlusions if

the visibility is not considered. The z-buffering technique of

visibility is applied and based on testing if the same pixel in the

synthetic image is covered more than one time. Accordingly,

the pixels representing further points are excluded while

keeping the closest pixels.

Figure 15. Self-occlusion in synthetic image with and without

visibility test

3.3 Gap detection in a point cloud

The gap identification in the image based point cloud of

architectural structures is a challenging task. The challenge is in

the sense of automation and the difficulty to discriminate

between true gaps (openings) and gaps in a point cloud caused

by occlusion. Figure 16 summarizes some possible causes of

gaps that might be found in the image based point cloud. These

gaps can be:

 Obscured parts because of perspective, e.g. roof parts

are not visible because of self-occlusion when viewed

from a street level (a).

 Occluded parts of the object like the protrusion in

facades or vehicles near facades (b, c).

 Texture-less parts of the object like white painted

walls and window glass (d).

 Openings like corridors and open gates of a building

(e).

However, it seems that different techniques can be followed to

identify these gaps. The detection of gaps in 3D is to be

accomplished either by using a volumetric representation with

voxels or with triangulated surface meshing. With voxels, the

well-known robotics technique of “occupancy grid” can be used

to decide which voxel is occupied and which one is empty

(Thrun et al., 2005). However, this is usually implemented with

a moving robot and where there is uncertainty in the voxel

labeling. In surface triangulation methods, the gap may be

detected by looking for the skewed elongated triangles which is

an indication for the gap existence (Impoco et al., 2004).

(c) (d) (e)

Figure 16. Gaps cause. (a) Obscured parts from street view. (b)

Protrusions in facades. (c) Occlusion effect. (d) Texture-less

parts. (e) Real openings.

In this paper, the gap detection is solved by the following

technique which is based on volumetric space representation,

followed by a classification into gap or opening:

The space occupied by the point cloud is to be filled with

voxels and each voxel is labeled as empty or occupied based on

the points existence within that voxel. The empty voxels are to

be investigated for the gap detection. However, these detected

gaps might be openings or gaps because of occlusions as

mentioned before. In this sense the methodology of detection is

summarized as:

- Construct the voxels in 3D space and preferably with

octree to save memory and processing time. Label

each voxel as empty or occupied.

- Preliminary filtering to account for noise in the point

cloud.

- Test the visibility with the line tracing or voxel-ray

intersection method.

- Filter empty voxels after classifying the remaining

voxels based on visibility into fully occluded,

partially occluded, and fully visible.

- Compute the neighborhood index (NI) to assist the

decision of labeling occluded voxels.

- Classify the occluded voxels into either openings or

gaps.

The first step of filtering the blundered empty voxels is based

on what we call “voxel glue”. This is computed by using the

occupied voxels to glue the neighboring empty voxels and

discard the others. This is to be done by searching for the

nearest empty voxels by using the ‘nearest neighbor’ technique.

This is followed by removing the non-glue empty voxels which

represent the marginal or bordering voxels away from the

occupied voxels of the point cloud. Then a second step of

filtering is based on the visibility analysis from the designed

viewpoints as discussed in section 2.2. Three cases might be

found as illustrated in Figure 17: fully occluded, partially

occluded, and fully visible voxels.

Fully visible and fully occluded empty voxels will be neglected

while partly occluded voxels will be more investigated as

potential gaps or openings. Neglecting fully visible voxels is

(a) (b)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 14

based on the fact that empty voxel cannot occlude occupied

voxels (Figure 17b). On the other hand fully hidden voxels like

empty space behind a wall are also neglected as illustrated in

Figure 17a.

(a) (b) (c)

Figure 17. Empty voxels and visibility analysis. (a) Fully

occluded. (b) Fully visible. (c) Partly occluded.

However, such a visibility index is not sufficient to reliably find

out the potential gaps. This is because of the possible

inadequate camera placement and the blunders or noise in the

point cloud.

Therefore, other measures are to be added. A neighborhood

index (NI) might be efficient to strengthen the detection of

empty voxels, this is actually similar to a majority filter (3x3x3

neighborhood), but also uses the actual direction of neighbors.

Figure 18 illustrates the computation of the neighborhood index

of a voxel. Three types of proximity distances () are

computed to define the search space. More neighboring

occupied voxels indicate a high chance of being an occluded

empty voxel and vice versa. NI is computed as (number of

empty voxels/ total neighboring voxels) and a threshold of

(>50%) is considered to indicate a blundered empty voxel.

(a)

(b)

Figure 18. (a) Proximity measure. (b) 3*3 neighboring voxels

The measure of the altitude can be used. Altitude index is

useful when the imaging is done with a street level view since

the upper parts of the object are self-occluded. Hence, the

empty voxels near the upper parts of objects are labeled as

occluded gaps. Finally, a discrimination between the openings

and occluded gaps is needed. Therefore, openings can mislead

the gap detection results as illustrated in Figure 19 where the

gate entrance will be modeled by empty voxels. The depth

information from the viewing direction is to be used for

detecting openings. This is based on the formed empty voxels

clusters in the depth direction like in open gates or corridors.

Therefore, the visibility analysis will be used to get this depth

information and then to define openings.

After the gap detection, auxiliary images are to be captured to

recover the gaps in the point cloud and to finally have a

complete 3D model.

(a) (a) (b)

(c) (d) (e)

Figure 19. The opening in a point cloud can mislead the

detection of gaps. (a) Viewing camera. (b) The image of the

point cloud. (c) Occupied voxels. (d) Visibility analysis. (e)

Gap detection (red voxels).

Figure 20 illustrates the workflow of the proposed gap detection

method in image based point clouds and the impact of visibility

analysis.

Dense Point
cloud

Start

Image orientation
+dense matching

Create Voxels

Occupancy
labeling

occupied

Empty

Plan to re-
capture

Capture and stich
with original

network
process

Final P.C

If fully visible
Or

Fully invisible

Image 1

Image 2

 ⁞

Image n

V
is

ib
ili

ty
 t

e
st

Set the voxel
grid size

Nearest neighbor
analysis

Voxel Glue

Filtering

Filtered empty
voxels

 visibility
analysis

Ray-box
intersection

Remove
empty voxel

YES

Possible
occluded voxel

No

End

Compute the
neighborhood

index

Gap
index>0.5

Decision=gap
Decision=un-
avoided gap

Yes No

Figure 20. The methodology of gap detection

An experimental test of a gap detection is illustrated in Figure

21 where a building facade with extruded columns is to be

modeled with images. Thirteen images are taken to the facade

and a dense point cloud is acquired after image dense matching

(Figure 21a). Obviously, the façade point cloud includes only

gaps caused by occlusions and the insufficient camera network

coverage. The point cloud is voxelized and then the voxels are

labeled either empty voxels or occupied voxels as shown in

Figure 21b. The visibility analysis by using the ray-voxel

intersection is applied as shown in Figure 21c. The presented

filtering strategy based on the visibility, neighborhood index

and altitude resulted in the final empty voxels which represent

the occluded gaps in the point cloud. Figure 21d shows the

empty voxels according to their visibility status from the

cameras. Figure 21e shows the final result of gap detection.

Empty

 voxel

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 15

(a)

(b) (c)

(d) (e)

Figure 21. Gap detection with voxels. (a) The dense point
cloud. (b) The occupied voxels. (c) The empty voxels and
visibility analysis. (d) The detected empty voxels after visibility
analysis. (e) Final occluded gaps after neighborhood analysis.

4. CONCLUSION AND DISCUSSION

In this study, three strategies are described to analyze the
visibility of 3D point clouds and these are (surface based, voxel
based, and HPR). Every method has its advantages and
disadvantages in the sense of accuracy, time consuming, a
priori settings and efficiency of the results. Accordingly, the use
of visibility analysis is quite important in many
photogrammetric applications and especially when the data set
type is a point cloud.
Three problems were selected in close range photogrammetry
where the visibility plays a vital role to have a successful result.
Every visibility solution to the three problems was applied by
using one of the techniques presented in section 2.
Visibility analysis in the first application of camera network
design was crucial to have a sufficient overage as shown in
Figure 12. The vertex normal orientation testing is used in this
case for simplicity since the object is represented by only eight
corner points.
The second experiment showed the effect of visibility analysis
on creating synthetic images of a 3D model. Figure 15 showed
the effect of self-occluded parts of the final synthetic images if
the visibility analysis is neglected. The technique of z-buffering
with triangular surfaces proved its efficiency and suitability to
deal with such kind of surface mesh data.
The third test presented the problem of gap detection in a point
cloud produced from images. The space is modeled as
volumetric voxels. Hence, the proposed solution is based
mainly on testing the visibility of voxel-line intersection
method of section 2.2.1. This visibility is also supported by
other measures like neighborhood index and altitude
information.
Future work can investigate for other visibility techniques
which can handle for both sparse and dense point cloud data
and investigate which of the current methods is the most
efficient for handling the photogrammetric application.

5. REFERENCES

Alsadik, B., Gerke, M., Vosselman, G., 2013. Automated
camera network design for 3D modeling of cultural heritage
objects. Journal of Cultural Heritage 14, 515-526.

Autodesk, 2012. 123D Catch http://www.123dapp.com/catch.
Autodesk.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, u., Taubin,
G., 1999. The Ball-Pivoting Algorithm for Surface
Reconstruction. IEEE Transactions on Visualization and
Computer Graphics 5, 349-359.

Bittner, J., Wonka, P., 2003. Visibility in computer graphics.
Environment and Planning B: Planning and Design 30, 729-
755.

Cohen-Or, D., Chrysanthou, Y.L., Silva, C.T., Durand, F.,
2003. A survey of visibility for walkthrough applications. IEEE
Transactions on Visualization and Computer Graphics 9, 412-
431.

Fisher, P.F., 1996. Extending the Applicability of Viewsheds in
Landscape Planning Photogrammetric Engineering and
Remote Sensing (PE&RS) 62, 1297-1302.

Impoco, G., Cignoni, P., Scopigno, R., 2004. Closing gaps by
clustering unseen directions, Shape Modeling Applications,
2004. Proceedings, pp. 307-316.

Joy, K.I., 1999. The Depth-Buffer Visible Surface Algorithm,
Computer Science Department, University of California. , pp.
1-5.

Katz, S., Tal, A., Basri, R., 2007. Direct Visibility of Point Sets.
ACM Transactions on Graphics 26.

Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson surface
reconstruction, Proceedings of the fourth Eurographics
symposium on Geometry processing. Eurographics Association,
Cagliari, Sardinia, Italy, pp. 61-70.

Kuzu, Y., 2004. Volumetric Object Reconstruction by Means of
Photogrammetry, Civil Engineering and Applied Geosciences.
Technical University of Berlin p. 151.

Luhmann T., Robson S., Kyle S., Hartley I., 2006. Close Range
Photogrammetry Principles, Methods and Applications.
Whittles Publishing Country, United Kingdom.

Luigi, A.G., 2009. MyCrustOpen. , File Exchange - Matlab.

Mehra, R., Tripathi, P., Sheffer, A., Mitra, N.J., 2010.

Technical Section: Visibility of noisy point cloud data. Comput.

Graph. 34, 219-230.

Mena-Chalco, J.P., 2010. Ray/box Intersection. MathWorks
Inc. Massachusetts, U.S.A., Matlab file exchange.

Meshlab, 2010. Visual Computing Lab - ISTI - CNR.
http://meshlab.sourceforge.net/.

Möller, T., Trumbore, B., 1997. Fast, Minimum Storage
Ray/Triangle Intersection. Journal of Graphics, gpu & game
tools 2, 21-28.

Smits, B., 1998. Efficiency Issues for Ray Tracing. Journal of
graphics tools 3, 1-14.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press.

Wenzel, M.R.K., 2013. SURE - Photogrammetric Surface
Reconstruction from Imagery, in: http://www.ifp.uni-
stuttgart.de/publications/software/sure/index.en.html (Ed.).

Williams, A., Barrus, S., Morley, R.K., Shirley, P., 2005. An
efficient and robust ray-box intersection algorithm. Journal of
Graphics, GPU, & Game Tools 10, 45-60.

Wu, C., 2012. Visual SFM: A Visual Structure from Motion
System, University of Washington in Seattle.

Yoeli, P., 1985. The making of intervisibility maps with
computer and plotter. Cartographica 22, 88-103.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-9-2014 16

