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Abstract 

Glioblastoma (GBM) is a common malignant brain tumor of the central nervous system with a poor 
prognosis. In order to identify the prognostic signatures of GBM, we screened differentially expressed 
genes (DEGs) that were based on a single-cell RNA sequencing (scRNA-seq) dataset. These genes 
characteristically represent the intra-tumor heterogenicity of glioblastoma. Moreover, we performed 
univariate analysis, log-rank test and multivariate Cox regression analyses to confirm a gene set that could 
be related to the overall survival (OS) among DEGs. Prognostic associated signatures (PAS) were utilized 
to construct a model for predicting OS in GBM patients. When considering either the training or the 
validation sets, time-dependent receiver operating characteristic (ROC) curves all indicated that our 
model displayed an excellent predictive ability. Additionally, we analyzed PAS at the single-cell level and 
found that the PAS score was associated with somatic mutations and clinical factors. Three factors, which 
included the PAS score, radiotherapy status, and age, were all used to establish a nomogram to predict 
the 6-month and 1-year survival probabilities. In conclusion, we constructed an optimal model that was 
derived from scRNA-seq to better predict the survival probability of GBM patients. These genes might 
also act as potential prognostic biomarkers and enable surgeons to develop individually therapeutic 
schedules and improve the prognosis of GBM patients. 
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Introduction 
Glioblastoma (GBM) is the most common 

malignancy among primary central nervous system 
(CNS) tumors, which is classified as a grade IV glioma 
according to the World Health Organization (WHO) 
[1]. The median overall survival (OS) of GBM patients 
remains at only 15 months post-diagnosis, with a 
5-year disease-free survival probability of 10 percent 
[2-4]. The poor-prognosis is mostly due to a high 
proliferation rate, treatment-resistance to chemo-
therapy and targeted therapies, and aggressive 
infiltration of cancer cells into the surrounding normal 
brain tissues [5]. 

 Over the past few decades, microarray analysis 
and RNA sequencing (RNA-seq) from bulk tissue has 

evolved as an important tool in the analysis of 
differential gene expression across the transcriptome 
[6]. With the development of this technology, many 
public cancer databases that are associated with 
various omics approaches have been established to 
reveal the underlying mechanisms accounting for 
disease occurrence, which includes the Cancer 
Genome Atlas (TCGA) [7] and the Gene Expression 
Omnibus (GEO). Using these gene expression profiles 
to identify biomarkers associated with prognosis, 
subsequent studies are increasingly being reported. 
However, GBM is a highly heterogeneous cancer 
wherein differential genes that are screened from bulk 
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tissue data are not sufficiently representative of this 
disease [8]. 

Recently, single-cell RNA-seq (scRNA-seq) 
analysis has gradually emerged as a new area of 
intense research effort with its advances helping to 
explain intra-tumorigenic heterogeneity [9-11]. In 
addition, tumor tissue that is resected from the core 
tumor of affected patients might include different cell 
types that harbor distinct phenotypic states [12]. 
Single-cell RNA-seq technology enables scientists to 
identify individual cells in heterogeneous cell 
populations, which can overcome the aforementioned 
limitations [13, 14]. Moreover, scRNA-seq analysis 
enables the discovery of significant genes that are 
truly characteristic of tumor cells [15]. 

In this current study, we first identified 
differentially expressed genes (DEGs) from a 
scRNA-seq dataset of tumor cells as compared normal 
cells. These genes characteristically represent the 
intra-tumor heterogenicity of glioblastoma. Then we 
integrated the dataset with the bulk RNA-seq dataset 
from the TCGA and microarray datasets of GEO to 
obtain a prognosis-associated gene set. Finally, we 
explored utilizing this gene set to construct a more 
effective model to accurately predict the prognosis of 
GBM patients. This approach has the potential of 
providing guidance for additionally targeted and 
individualized treatment of patients. 

Materials and Methods 
Data sources  

Raw sequencing data of single-cell datasets in 
this study was fetched from the Gene Expression 
Omnibus (GEO) database under the accession number 
GSE84465, for which, 3589 cells were included in the 
following analysis for which PAS scored an initial 
quality check. Raw fastq data was mapped to the hg19 
human reference genome by HISAT2 (v2.1.0) [16] 
(with parameters: -k 10 –rdg 99999999, 99999999 –rfg 
99999999, 99999999 –mp 1, 1 –np 1 –score -min L, 0, 
-0.1 –no-mixed –no -softclip –no -discordant –
secondary –seed 12345), and aligned reads were 
quantified by feature counts software [17] to the count 
level.  

We downloaded the TCGA-GBM RNA-seq and 
clinical data as a training set from the University of 
California at Santa Cruz (UCSC) Xena Browser. The 
fragments per kilobase of exon per million fragments 
mapped (FPKM) value, was used to normalize gene 
expression from which, we transformed it into log2 
(FPKM+1) datasets. The microarray data from the 
GSE16011 was also collected from the GEO database 
as a validation set and was processed by normalizing 
gene expression signals and log2 transformation 

through mas5 algorithm in R package “affy” (v1.64.0). 
In total, there were 154 GBM patients in the TCGA- 
GBM dataset and 155 GBM patients in the GSE16011 
dataset with complete clinical data. In addition, the 
MuTect2 somatic mutation data was obtained from 
the UCSC Xena Browser. A workflow of the analysis 
conducted in this study was shown in Figure 1. 

Cell clustering in single-cell RNA-seq data 
We used the statistical R package “Seurat” 

(v3.1.1) [18, 19] to process single-cell data. First, we 
normalized the data by following the standard 
pre-processing workflow in Seurat. Then, we 
calculated a subset of features that exhibited high 
cell-to-cell variation, from which we selected the top 
500 features by setting the method as dispersion. 
Finally, the Uniform Manifold Approximation and 
Projection (UMAP) algorithm was used to perform 
dimensionality reduction. The same marker profiles 
of the cell type that were reported in the original 
paper [12] were compared with our current study to 
define the type of each cell. 

Differential expression analysis 
Differentially expressed genes (DEGs) were 

identified with the R package “DESeq2” (v1.22.2) [20] 
by defining neoplastic cells as the tumor group, and 
then astrocytes, oligodendrocytes, oligodendrocyte 
progenitor cells (OPCs) as the normal group. The 
DESeq2 pipeline was used with default settings. We 
filtered genes with the criteria by a log2 fold change 
>2 and adjusted this to an alpha value of p <0.01.  

Functional and pathway enrichment analysis 
To compare the biological processes (BP), 

cellular components (CC) and molecular functions 
(MF) of DEGs, we used the R package 
“clusterProfiler” (v3.10.1) [21] to conduct gene set 
enrichment analysis (GSEA) of the Gene Ontology 
(GO). The five most significant biological processes in 
the results were shown with an adjusted alpha value 
of p <0.05. Additionally, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis of DEGs was performed with the same 
package. An UpSet plot of the top 10 pathways were 
drawn from this research. 

Survival analysis 
The log-rank test, univariate Cox regression 

analysis and multi-Cox regression analysis were 
respectively used to screen PAS with OS values using 
the R package “survival” (v3.1-8). The threshold with 
significance in all methods was set at an alpha value 
of p <0.05. In addition, Kaplan Meier (KM) survival 
curves were generated to graphically exhibit the 
prognostic outcomes between high and low risk 
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groups that were divided through the median of gene 
expression levels or the PAS score. 

Construction of the prognostic model 
Due to the high-dimension features and 

complexity of the data, we performed a least absolute 
shrinkage and selection operator (LASSO) method 
analysis using the R package “glmnet” (v2.0-18) [22]. 
In addition, 10-fold cross-validation was used to 
establish a best Cox proportional hazards model. 
Then, to quantify the risk of OS for each patient, the 
PAS score was calculated as the sum product of the 
RNA (Expi) expression levels and LASSO coefficients 
(Li). The efficacy of the prognostic model was 

validated by depicting the areas under the curve 
(AUC) of the ROC by using the R package 
“survivalROC” (v1.0.3). To monitor the OS and to 
predict the survival probability in GBM patients, we 
merged the PAS score with interesting clinical 
variables and constructed a nomogram using the R 
package “regplot” (v0.2). 

Oncoprint of somatic mutation 
Somatic mutation information was stored in 

Mutation Annotation Format (MAF) form and was 
visualized using the R package “maftools” (v1.8.10) 
tool [23]. All parameters were set to the default 
settings. 

 

 
Figure 1. Workflow of the analytical procedure for constructing and validating prognostic signatures in GBM patients. 
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Statistical Methods 
All data analyses were completed using the ‘R” 

statistical software package (v3.5.3) and the 
corresponding fundamental analyses packages. An 
alpha value of p <0.05 was considered statistically 
significant. 

Results 
Differentially expressed gene identification 
from a single-cell RNA-seq dataset 

We selected 1670 single cells that included 1091 
neoplastic cells, 88 astrocytes, 85 oligodendrocytes, 
and 406 oligodendrocyte progenitor cells (OPCs). 
These cells were analyzed by the standard workflow 
of the R package “Seurat.” A linear dimensionality 
reduction method helped identify significant 
components (Figure 2A). Additionally, we used the 
Uniform Manifold Approximation and Projection 
(UMAP) algorithm, which is a novel manifold 
learning technique for dimension reduction to 
visualize the single-cell RNA-seq data based on the 
significant components. We discovered that cells 
could be clustered into four groups (Figure 2B). The 
differential marker genes between clusters are 
illustrated in Table S1, and the top 10 most enriched 
genes in each cluster were exhibited in the heat map 
(Figure 2C). Next, we compared the marker genes in 
our study with those identified in the original article 
[12] and used the same marker genes to name the 
clusters, where results were similar. 

Concrete classification information of cells used 
in this study are illustrated in Table S2. In order to 
find the DEGs between tumorigenic and normal cells, 
we defined astrocytes, oligodendrocytes and OPCs as 
normal cells. By principal component analysis (PCA), 
tumorigenic and normal cells were separated based 
on principle component 1 (PC1) and PC2 (Figure 2D). 
Then the “DEseq2” package identified the DEGs. We 
excluded genes with the cut-off criteria of log2 fold 
change >2 and adjusted the alpha value to p<0.01. In 
the results, we included the 1367 identified up- 
regulated genes and the 959 down-regulated genes in 
tumor cells that were displayed in the volcano plot 
(Figure 2E). The two groups were clearly discrimi-
nated by these 100 DEGs in the heat map (Figure 2F).  

GSEA of GO and KEGG pathway enrichment 
analysis in DEGs 

The 1367 DEGs of the transcriptomic data from 
single cells were selected for gene set enrichment 
analysis (GSEA) to explore the biological effects. We 
chose the log2 fold change as the reference phenotype 
and the five most significant Gene Ontology (GO) 
biological processes were listed. We observed that 

up-regulated genes in tumor cells were enriched in 
the cell cycle, cell division process and 
tumor-associated pathways (Figure 3A), as for cellular 
components and molecular functions, these genes 
were enriched in the nuclear and DNA binding 
associated molecular process (Figure S1A and Figure 
S1B). By contrast, up-regulated genes in normal cells 
were enriched in glial cell development and synaptic 
transmission (Figure 3B), as for cellular components 
and molecular functions, these genes were enriched in 
cytoplasm and transmembrane transportation (Figure 
S1A and Figure S1B). These results were consistent 
with the characteristics of both cell types. In addition, 
it is intriguing to note that the KEGG pathway 
enrichment analysis revealed an association of DEGs 
with lipid and fatty acid metabolism (Figure 3C), and 
similar results were shown on enrichment analysis of 
just up-regulated or down-regulated DEGs (Figure 
S1C and Figure S1D). Precisely how an altered 
associated metabolism contributed to progression of 
GBM remains unknown. However, quite valuable 
research study outcomes have been published that 
illustrated how fatty acid synthesis was related to 
EGFR signaling in glioma stem cells [24].  

Construction of prognostic-associated 
signatures in the TCGA-GBM cohort 

To discover prognostic-associated signatures, we 
combined the 2326 DEGs that were defined above 
with the TCGA-GBM bulk RNA-seq and clinical data. 
There were 154 GBM patients with intact clinical data 
and 110 genes of DEGs were not expressed in TCGA 
bulk RNA-seq data. Before constructing a Cox 
proportional hazards model to better predict OS in 
GBM patients, we used the log-rank test and 
univariate cox regression analysis respectively to 
preliminarily screen genes with prognostic potential.  

In the obtained results, we found that 181 genes 
had prognostic potential in the log-rank test and 279 
genes had prognostic potential as determined by 
univariate Cox regression analysis (p < 0.05). We 
generally thought that the more up-regulated genes 
that were expressed in tumor cells of studied patients, 
then the worse their prognosis would be. Similarly, 
the greater the number of down-regulated genes that 
were expressed in tumor cells of studied patients, the 
better their prognosis would be. Thus, a total of 98 
genes that included 89 up-regulated genes with a 
hazard ratio (HR) >1, and 9 down-regulated genes 
with a HR < 1 (p < 0.05; both in the log-rank test, and 
univariate cox regression analysis), were selected to 
construct a Cox proportional hazards model (Figure 
4A). 

By utilizing the least absolute shrinkage and 
selection operator (LASSO) method, we established a 
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best Cox proportional hazards model (10-fold cross- 
validation) with 18 genes (Figure 4B). The complete 
information related to the OS of these 18 genes are 
shown in Table 1. In addition, Kaplan-Meier (KM) 
curves of each gene can be seen in Figure S2. The 
prognostic associated signature score (PAS score) for 
each patient was calculated as the sum of the product 

of the RNA expression levels (Expi) and LASSO 
coefficients (Li). In the TCGA-GBM cohort, the areas 
under the curve (AUC) of the receiver operating 
characteristic (ROC) curves of this model for 
predicting 1-, 3-, and 5-year OS were 0.803, 0.876, and 
0.985 respectively (Figure 4C). 

 

 
Figure 2. Characteristics of single-cell RNA-seq data and DEGs. (A) Jack Straw Plot showing the p-value distributions for each PC. (B) Dimension reduction analysis of 
single-cell RNA-seq data by the UMAP algorithm that clusters cells into four groups. (C) Heat map expression profiles of the top 10 genetic markers in each cluster. (D) PCA 
of tumorigenic and normal cells that can be clearly separated. (E) Volcano plot of DEGs with a log2 fold-change >2, and an adjusted alpha value of p <0.01. (F) Heat map 
expression profiles of the 100 most significant genes for tumorigenic and normal cells. 
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Figure 3. GSEA results and KEGG analysis of differentially expressed genes. (A) The five most significant biological processes for tumor cells in the GSEA of GO. (B) 
The five most significant biological processes for normal cells in the GSEA of GO. (C) Diagram illustrating the top 10 pathways in the KEGG enrichment analysis of DEGs. 

 
 Furthermore, we divided patients into high-risk 

and low-risk groups according to the median of PAS 
score. KM analysis indicated that patients with a high 
PAS score suffered significantly poorer OS outcomes 
(p < 0.0001; Figure 4D). These results lend support to 
our model possessing good sensitivity and specificity. 

Validation of PAS in an external GBM cohort 
To validate our PAS, we selected external data 

from GEO under accession number GSE16011 to 
determine whether it made sense in other cohorts. 
There were 155 GBM patients with complete survival 

data and microarrays. We conducted the same 
workflows to measure the AUC of the ROC curves 
and divided patients into two groups by the median 
of the PAS score. In the results analyses, the AUC of 
the ROC curves of this model in predicting 1-, 3-, and 
5-year OS rates were 0.602, 0.796, and 0.842 
respectively (Figure 4E). Further, KM analysis also 
indicated that patients with a high PAS score suffered 
significantly poorer OS outcomes (p < 0.001; Figure 
4F). All results revealed that these PAS were 
important in GBM patients without an increased level 
of bias. 
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Figure 4. Establishing a survival model in the GBM cohort. (A) Summary of the selected DEGs with a prognostic capacity, in which we only selected genes during the 
area covered by indicated colors. (B) The optimal account of genes that corresponded to minimum lambda was 18 in the TCGA-GBM cohort. (C) The ROC analysis curves in 
predicting OS by the PAS score in the TCGA-GBM cohort. (D) The KM curves for low- and high-risk groups in the TCGA-GBM cohort. (E) The ROC curves for predicting OS 
by the PAS score in the GSE16011 cohort. (F) The KM curves for low- and high-risk groups in the GSE16011 cohort.  

 
PAS levels in a single-cell dataset that is 
correlated with somatic mutations 

After we identified 18 prognostic-associated 
signatures, we mapped the expression of the 
signatures to the UMAP-reduction plot, which was 
done in the single-cell dataset that was described 
above. It showed that two genes had lower expression 
levels in neoplastic cell clusters as compared to 
normal cells, while 16 genes displayed higher 
expression levels in the neoplastic cell cluster (Figure 
5A and Figure S3). Specifically, five genes were 

involved in cell adhesion and migration, which 
included FERMT1, COL22A1, LOXL1, PCDHB3, and 
TCAF2. Four genes were transcription factor or 
involved in the regulation of transcription, like 
HOXB2, HOXD11, PTPRN, and TSHZ2. Moreover, we 
explored somatic mutation that was found when 
comparing the high with the low PAS score groups in 
the TCGA-GBM cohort.  

The mutational landscape indicated that both 
groups had different mutation events, and the low 
PAS score group was found to have an increased 
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frequency of mutation events (Figures 5B and 5C). In 
addition, patients with higher mutations might have 
an increased number of neoantigens that will increase 
the sensitivity of patients to chemotherapy, immuno-
therapy and targeted molecular therapy [25-27]. Thus, 
these observations might provide a key reason to 
account for why low PAS score patients had 
improved prognostic outcomes. 

Development of a nomogram for predicting 
OS in GBM patients 

For the purpose of establishing a comprehensive 
model to predict the OS probability in GBM patients, 
we first analyzed an association between the PAS 
score and several clinical factors in the TCGA-GBM 
dataset. The hazard ratios for OS according to the PAS 
score, age, gender, and radiotherapy status were 
measured by multivariate Cox regression analysis 
(Figure 6A). It revealed that the PAS score and 
radiotherapy status were independent prognostic 
factors (p <0.001). Considering that the resistance of 
the human body to disease weakens with age, we also 

included age into the nomogram that was integrated 
with two independent factors. 

 

Table 1. Statistical analysis of 18 genes associated with survival in 
the TCGA-GBM cohort. 

Variables Log-rank test Univariate cox regression analysis LASSO 
P value HR (95% CI) P value Coefficient 

AGAP2-AS1 0.018 1.24(1.10-1.40) <0.001 0.057478 
CLEC18C 0.012 3.73(1.58-8.80) 0.003 0.2067 
CNPY4 0.046 1.87(1.32-2.65) <0.001 0.054552 
COL22A1 0.015 1.38(1.15-1.65) <0.001 0.090813 
CRNDE 0.010 1.31(1.04-1.66) 0.025 0.002454 
HOXB2 0.001 1.19(1.05-1.34) 0.007 0.014237 
HOXD11 0.049 1.32(1.06-1.64) 0.012 0.019821 
LOXL1 0.011 1.43(1.21-1.69) <0.001 0.034217 
MBLAC1 0.006 1.79(1.18-2.73) 0.007 0.10079 
OSMR-AS1 0.013 2.92(1.69-5.05) <0.001 0.44677 
PCDHB3 0.029 1.24(1.01-1.52) 0.039 0.01033 
PTPRN <0.001 1.42(1.21-1.67) <0.001 0.19405 
RGS14 0.006 1.57(1.18-2.07) 0.002 0.121256 
TCAF2 <0.001 1.85(1.31-2.62) <0.001 0.09673 
TSHZ2 <0.001 1.93(1.34-2.78) <0.001 0.023308 
TSPAN4 0.015 2.11(1.40-3.18) <0.001 0.0621 
BEST3 0.037 0.73(0.59-0.91) 0.006 -0.0173 
FERMT1 0.004 0.81(0.70-0.94) 0.006 -0.02211 

 

 
Figure 5. Analysis of 18 prognostic genes in the single-cell and bulk analysis dataset. (A) Differential expression levels of each gene in four clusters in the single-cell 
dataset. (B) The somatic mutation landscape of TCGA-GBM patients with a high PAS score. (C) The somatic mutational landscape of TCGA-GBM patients with a low PAS score. 
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Figure 6. Development of a nomogram in predicting the 6-month and 1-year survival probabilities in GBM patients. (A) Multivariate Cox regression analysis of 
the PAS score with several clinical factors. (B) Integration of three factors to construct a nomogram for the prediction of 6-month and 1-year OS rates. (C) Calibration curve 
to validate the predictive efficacy of the model for 6 month and 1-year OS rates. 

 
The final three prognostic factors were utilized 

to develop a nomogram for predicting 6-month and 
1-year OS probability (Figure 6B). A calibration curve 
was drawn to validate model efficacy (Figure 6C). 
Thus, the actual observed OS outcomes were 
approximately consistent with the predicted OS 
outcomes regardless of the 6-month or 1-year time 
frame, which showed an excellent working ability.  

Discussion 
Bulk RNA-seq data from the TCGA-GBM 

dataset fails to accurately reflect the status of tumor 
and intra-tumorigenic heterogeneity [9, 10]. This is in 

part due to the dominant cell cluster masking the 
transcriptomic characteristics of other cellular 
clusters. With the aid of single-cell RNA-seq datasets 
that were analyzed in this study, we compared and 
precisely discovered the DEGs between glioma cells 
and their original cells. These DEGs better describe 
the intra-tumorigenic heterogeneity of glioma, and 
provide us with a gene set for further analysis.  

Furthermore, these DEGs indicated distinct 
molecular networks in glioma cells as compared to 
glia cells. GSEA analysis on DEGs revealed that 
up-regulated genes in glioma cells were enriched in 
the cell cycle, the cell division process and other 
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tumor-associated pathways. By contrast, for normal 
cells, up-regulated genes were enriched in glial cell 
development-associated and synaptic function- 
associated pathways. KEGG enrichment analysis 
showed intriguing results as well, which were mostly 
enriched in pathways associated with lipid 
metabolism. Recent reports have shown that lipid 
metabolism is critical to glioma cells in terms of 
energy synthesis [28, 29], and fatty acids were shown 
to regulate the EGFR signaling pathway and to 
promote survival and proliferation of glioblastoma 
stem cells [24].  

To connect the DEGs with prognosis, we first 
employed Cox regression and log-rank test analytics 
to preliminarily select genes with prognostic 
predicting potential, following which, we then 
employed variable selection analysis on the 
TCGA-GBM dataset. The final model included 18 
genes that performed well on the dataset with a 
five-year OS AUC of 0.985.  

Moreover, we used data from the GSE16011 
cohort to test the generalization ability of the model, 
in which we found that accuracy was slightly 
decreased, and yet still achieved a five-year OS AUC 
of 0.842. In addition, patients that were divided by the 
PAS value displayed a distinct mutational landscape, 
which partially explained differences on OS. 
Demographic information that included age, and 
clinical information like chemotherapy were also 
good prognostic prediction factors, and thus we 
established a model using a nomogram to predict the 
overall survival of patients.  

Conclusion 
We discovered a signature with only 18 genes by 

using a single cell RNA-seq dataset, from which we 
developed a PAS to evaluate patient prognoses. These 
genes characteristically represent the intra-tumor 
heterogenicity of glioblastoma. This signature has 
acceptable performance in terms of both the training 
and external datasets and showed acceptable 
generalization capabilities. This is a simple model 
with good performance characteristics that can be 
applied in the clinic. PAS is also associated with the 
somatic mutation profile of patients. These genes 
might act as potential prognostic biomarkers and 
provide useful clinical guidance to clinicians with the 
intent of developing personalized therapeutic 
schedules. 
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