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Abstract 

Background: Studies on immunogenic death (ICD) in lung adenocarcinoma are limited, and this study 
aimed to determine the function of ICD in LUAD and to construct a novel ICD-based prognostic model 
to improve immune efficacy in lung adenocarcinoma patients. 
Methods: The data for lung adenocarcinoma were obtained from the Cancer Genome Atlas (TCGA) 
database and the National Center for Biotechnology Information (GEO). The single-cell data were 
obtained from Bischoff P et al. To identify subpopulations, we performed descending clustering using 
TSNE. We collected sets of genes related to immunogenic death from the literature and identified 
ICD-related genes through gene set analysis of variance (GSVA) and weighted gene correlation network 
analysis (WGCNA). Lung adenocarcinoma patients were classified into two types using consistency 
clustering. The difference between the two types was analyzed to obtain differential genes. An 
immunogenic death model (ICDRS) was established using LASSO-Cox analysis and compared with lung 
adenocarcinoma models of other individuals. External validation was performed in the GSE31210 and 
GSE50081 cohorts. The efficacy of immunotherapy was assessed using the TIDE algorithm and the 
IMvigor210, GSE78220, and TCIA cohorts. Furthermore, differences in mutational profiles and immune 
microenvironment between different risk groups were investigated. Subsequently, ROC diagnostic 
curves and KM survival curves were used to screen ICDRS key regulatory genes. Finally, RT-qPCR was 
used to verify the differential expression of these genes. 
Results: Eight ICD genes were found to be highly predictive of LUAD prognosis and significantly 
correlated with it. Multivariate analysis showed that patients in the low-risk group had a higher overall 
survival rate than those in the high-risk group, indicating that the model was an independent predictor of 
LUAD. Additionally, ICDRS demonstrated better predictive ability compared to 11 previously published 
models. Furthermore, significant differences in biological function and immune cell infiltration were 
observed in the tumor microenvironment between the high-risk and low-risk groups. It is noteworthy 
that immunotherapy was also significant in both groups. These findings suggest that the model has good 
predictive efficacy. 
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Conclusions: The ICD model demonstrated good predictive performance, revealing the tumor 
microenvironment and providing a new method for evaluating the efficacy of pre-immunization. This 
offers a new strategy for future treatment of lung adenocarcinoma. 

Keywords: Lung adenocarcinoma, Immunogenic cell death, Single-cell RNA-seq, Prognosis, Immunotherapy efficacy 

Introduction 
Lung cancer remains one of the deadliest cancers 

in the world, 85% of which is non-small cell lung 
cancer (NSCLC) [1]. Lung adenocarcinoma (LUAD) is 
the most common subtype of lung cancer worldwide, 
accounting for approximately 40% of all lung cancer 
cases [2, 3]. Currently, lung adenocarcinoma (LUAD) 
is treated with surgery, radiotherapy, chemotherapy, 
targeted therapy and immunotherapy or a combina-
tion of these therapies [4]. Although advances on 
treatment strategies for LUAD has been made, the 
overall 5-year survival rate is still at a low level with 
unoptimistic prognosis (less than 20%) [5]. This 
requires the discovery of new therapeutic targets for 
LUAD and effective combination therapy strategies. 

Over the past decade, the Cell Death Nomen-
clature Committee has defined and interpreted cell 
death from morphological, biochemical, and 
functional perspectives [6]. Immunogenic cell death 
(ICD) plays a key role in immune surveillance [7]; ICD 
is designed to stimulate the immune system of an 
immunocompetent host. When ICD occurs, a large 
number of damage-associated molecular patterns 
(DAMP) are exposed and released, providing a 
powerful adjuvant boost to dying cancer cells by 
attracting and activating antigen-presenting cells [8, 
9]. DAMP-mediated ICD involves multiple innate 
immune receptors, and their collaboration with 
DAMP is required for ICD and antitumor immune 
responses [10]. DAMP-mediated ICD involves 
multiple innate immune receptors, and ICD and 
antitumor immune responses require their 
collaboration with DAMP. However, the therapeutic 
potential and mechanisms of utilizing ICD to treat 
LUAD have not been thoroughly investigated. There-
fore, an in-depth understanding of the correlation 
between ICD-related genes and overall survival in 
LUAD may provide new approaches for the treatment 
and prognostic evaluation of LUAD patients. 

The objective of this study was to identify 
ICD-related biomarkers of lung adenocarcinoma 
(LUAD) that could predict the effectiveness of 
conventional therapies and suggest the potential for 
immunotherapy. A single-cell RNA sequencing 
(scRNA-seq) dataset was used to identify genes 
related to immunogenic cell death (ICD) in LUAD. 
The identified genes were used for consistent 
clustering to classify LUAD into two subtypes, and 

the differential genes between the two groups were 
further analyzed. In this instance, we created an ICD 
prediction model (ICDRS) and compared it with 11 
other published models. Additionally, we discuss the 
immunological characteristics of the population 
defined by ICDRS. Finally, we found that ICDRS 
successfully predicted the outcome and success of 
immunotherapy in LUAD patients. Our analysis 
showed that ICDRS has good predictive efficacy. Our 
findings suggest that ICDRS is a prognostic model 
with good predictive efficacy. 

Materials and Methods 
Data collection and processing 

 Transcriptomic data of LUAD patients and 
corresponding clinical data were obtained from the 
TCGA (https://portal.gdc.cancer.gov/) database and 
GEO (http://www.ncbi.nlm.nih.gov/geo/) database. 
500 LUAD cases (primary tumor samples with 
complete survival information) from the TCGA 
database were used to construct relevant prognostic 
signatures, and GSE31210 (n=226) and GSE50081 
(n=127) were used to validate the centrosome-related 
genes for centrosomal prognosis based on LUAD 
Related Characteristics. In order to identify 
ICD-related genes, we collected 32 genes from 
previously reported literature [11, 12] 
(Supplementary Table 1). 

Processing of single-cell data 

The scRNA-seq dataset for lung adenocarcinoma 
was obtained from the article 'Single-cell RNA 
sequencing reverses distinct tumor microenviron-
mental patterns in lung adenocarcinoma'[13]. Initially, 
the term 'Single-cell RNA sequencing' was used. The 
10×scRNA-seq data was converted into Seurat objects 
using the 'Seurat' R package. Cells with substandard 
quality were excluded, and quality control (QC) was 
performed by calculating the percentage of 
mitochondrial or ribosomal genes [14]. We identified 
highly variable genes for subsequent analysis and 
used the 'Harmony' tool to remove batch effects. Cell 
clusters were constructed using the 'FindClusters' and 
'FindNeighbors' functions and visualized with the 
't-SNE' method. Cellular annotation was performed 
based on marker genes for different cell types. The 
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Seurat package's 'AddModuleScore' function was 
used to quantify the activity of a specific set of genes 
in each cell. To analyze the differentially expressed 
genes (DEGs) between the two groups, the Seurat 
package's 'FindMarkers' function was used. The 
statistical significance of differentially expressed 
genes (DEGs) was calculated using the Wilcoxon test 
(p.adj < 0.05), while genes differentially expressed 
between cells with high and low ICD scores at the 
single-cell transcriptome level were considered to be 
involved in ICD. All other parameters were set to 
default values. These genes were subsequently 
included in the overall transcriptome level analysis of 
WGCNA. 

Identification of immunogenic death-related 
genes 

WGCNA (Weighted Correlation Network 
Analysis) is a systems biology approach for 
identifying patterns of genetic relationships between 
samples. WGCNA can be used to find highly 
synergistic genomes and to search for potential 
biomarker genes or therapeutic targets based on the 
endogenous nature of the genome and the linkage 
between the genome and the phenotype [15]. 
WGCNA can be used to search for highly synergistic 
genomes and to find potential biomarker genes or 
therapeutic targets based on their endogenous nature 
and their association with phenotype. Using "limma" 
[16] Analyze differential genes. Intersect the differen-
tial genes with the genes identified by WGCNA, i.e., 
immunogenic death-related genes (ICDRGs). 

Consensus clustering of immunogenic 
death-related genes 

In this study, we screened for prognostically 
relevant immunogenic death-associated genes and 
used prognostically relevant immunogenic 
death-associated genes. We used the 
"ConsensusClusterPlus" package for consistent 
clustering, and the optimal number of clusters was 
assessed by the cumulative distribution function 
(CDF) plot and the consensus heatmap with an 
optimal K-value of 2. We used the "survival" package 
for the assessment of LUAD samples in molecular 
subtypes based on ICDRGs. We evaluated the clinical 
survival outcomes of LUAD samples in molecular 
subtypes based on ICDRGs. Finally, we used the 
"pheatmap" R package to visualize the relationship 
between ICDRGs expression, clinical survival status 
and clinicopathological features. 

Enrichment analysis and functional annotation 
 To further investigate differentially expressed 

genes (DEGs) between subgroups defined by 

ICDRGs, we used the "limma" R package, where 
genes associated with prognosis were further 
analyzed (|logFc|> 1 & p < 0.05). To explore the 
underlying mechanisms of the two immunogenic 
death subtypes involved in LUAD, we performed 
gene set enrichment analysis (GSEA) in different 
clusters constructed based on immunogenic 
death-related genes. The "h.all.v7.4.Hs.symbols" and 
"c2.cp.kegg.v7.4.symbols.gmt" gene sets downloaded 
from MsigDB were used as reference gene sets, and 
we used the "GSVA" gene set as the reference gene set. 
"GSVA" package to calculate the enrichment scores of 
the relevant pathways. We calculated the 
differentially expressed pathways between the two 
subgroups, where P < 0.05 was considered significant. 
The gene set of GSVA was downloaded from 
Molecular Signatures Database (MSigDB) v7.4 
database [17]. 

Construction and validation of ICD-related 
prognostic risk profiles 

To explore the prognostic value of ICDRGs 
based on LUAD, we performed one-way Cox 
regression analysis (P < 0.05) and least absolute 
shrinkage and selection operator regression (LASSO) 
analysis of DEGs between subgroups [18] that 
identified independent characteristic prognostic 
factors in order to establish the prognostic profile of 
LAUD. An immunogenic mortality risk score (ICDRS) 
was then calculated for each LUAD patient based on 
the risk coefficients and LUAD expression profiles 
obtained in the LASSO regression analysis, using the 
formula: ICDRS = 0.064*TPX2+-0.034*SFTPB+ 
0.069*RHOV+-0.051*SERPIND1+-0,063* 
FDCSP+0.106*FAM83A+ 0.031*CPS1+0.063*KRT6A. 
Subsequently, we used the LUAD patients from the 
TCGA cohort as the training set and GSE31210 and 
GSE50081 from the GEO database as the validation 
set, and categorized the LUAD patients into two 
groups, the low-risk and the high-risk groups, based 
on the median of the risk score. Kaplan-Meier survival 
curves and Log-Rank tests were used to assess 
whether there was a significant difference in OS 
between the low-risk and high-risk groups. Finally, 
we validated the prognostic predictions of the risk 
model by calculating 1-, 3-, and 5-year AUC values in 
the validation cohort using time-dependent ROC 
curves. 

Characterization of the LUAD immune profile 
The ‘Estimate’ algorithm was used to calculate 

immune microenvironment (TME) scores between the 
high- and low-risk groups [19]. The relative 
proportions of the 22 immune cell types in each tumor 
tissue were estimated using the CIBERSORT 
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algorithm based on the TPM values of the 
TCGA-LUAD patients, and samples with P>0.05 in 
the results were excluded and the remaining samples 
were further analyzed [20]. In addition, we 
determined the level of immune cell infiltration in 
LUAD TME by using the single sample gene set 
enrichment analysis (ssGSEA) algorithm [21] and 
unique combinations of characterized genes for each 
immune cell subtype were obtained from the most 
recent literature [22, 23] The unique combinations of 
genes for each immune cell subtype were obtained 
from the most recent literature. 

Immunotherapy prediction 
We collected three GEO immunotherapy cohorts 

(GSE78220 [24]) and the IMvigor210 cohort to study 
the correlation between ICD characteristics and 
immunotherapy. We processed the data using the 
"IMvigor210CoreBiologies" R package from the 
IMvigor210 cohort [25]. We used the 
"IMvigor210CoreBiologies" R package from the 
IMvigor210 cohort to process data. In addition, to 
determine immunogenicity based on 
immunomodulators, immunosuppressive cells, MHC 
molecules, and effector cells, we used the 
Immunophenoscore (IPS) algorithm, which calculates 
the IPS score based on the unbiased gene expression 
of a representative cell type using a machine-learning 
methodology. Higher IPS scores are indicative of a 
better response to immunotherapy. IPS scores for 
TCGA-LUAD patient samples were obtained from 
The Cancer Immunome Atlas (TCIA) database 
(https://tcia.at/home). 

Cell line culture and RT-qPCR 
All cells were cultured at 37°C in an incubator 

with 5% CO2 atmosphere. Normal human lung cell 
line BEAS-2B, lung adenocarcinoma cells NCI-H1299 
and A549 were obtained from the Chinese Academy 
of Sciences (Shanghai, China). Cell culture media, 
plates and dishes were from Thermo Fisher Scientific 
(Invitrogen, USA) and Corning Inc. BEAS-2B cells, 
NCI-H1299 cells and A549 cells were detached and 
inoculated into 60 mm culture dishes overnight at an 
initial density of 1×106 cells/well. Subsequently, SYBR 
Green qPCR mix (Vazyme, China) was used to 
synthesize cDNA for real-time PCR. Our results were 
analyzed using the comparative Ct method and the Ct 
values of each gene were normalized by the Ct reads 
of the corresponding GAPDH. All data are expressed 
as mean ± standard deviation (SD) of three 
independent experiments. 

Statistical analysis 
All statistical analyses were performed using R 

software (version 4.2.2). Wilcoxon test was used to 

compare the differences between groups. The 
log-rank test was used to compare Kaplan-Meier 
survival curves. Univariate and multivariate Cox 
analyses were performed to establish independent 
prognostic factors. All P values were two-sided and 
less than 0.05% were considered statistically 
significant. All P values were two-sided and less than 
0.05 were considered statistically significant. 

Results 
Identification of ICD-related genes from 
single-cell transcriptomes 

The workflow of our study is shown in Figure 1. 
Initially, we collected a collection containing 32 
immunogenic death genes from the literature and 
databases. Subsequently, we used these 32 genes to 
score the single-cell transcriptome, as shown in Figure 
2C. We then performed differential analysis on the 
high and low groups, and the differential genes 
obtained were incorporated into the WGCNA, and 
the genes obtained from the WGCNA were 
intersected with the differential genes to take the 
intersection, which resulted in 167 genes, and we 
subsequently used a one-way cox screen to obtain 40 
genes related to OS, and we used these 40 genes to 
perform a consistency clustering, which resulted in 
the classification of TCGA-LUAD into two subtypes. 
These two subtypes were analyzed for differences and 
screened using a one-way cox screen and included in 
a LASSO regression analysis, which was ultimately 
performed by 8 genes to establish an immunogenic 
death-related model (ICDRS). Immunogenic 
death-related modeling (ICDRS) was performed for 
these 8 genes and compared with published article 
models, which showed good prognostic efficacy for 
ICDRS. We investigated the survival analysis, 
pathway enrichment analysis, immune infiltration 
profile and immunotherapy analysis of ICDRS and 
screened three genes by ROC diagnostic curve for 
validation by RT-qPCR. 

We used the 6 single-cell dataset with 27,066 cells 
after filtering from Philip Bischoff et al. After 
descending clustering using TSNE analysis, we 
annotated cell subpopulations and identified seven 
cell types including macrophages, epithelial cells, 
endothelial cells, CD4 T cells, CD8 T cells, mast cells, 
and B cells (Figure 2 A). The heatmap shows the top 
five marker genes for each cell population (Figure 2 
B). To quantify the activity of immunogenic death 
(ICD) in different cell types, we used the 
"AddModuleScore" function in the Seurat software 
package to calculate the expression levels of the set of 
ICD-related genes in all cells (Figure 2C). Among the 
seven cell types, we observed significantly elevated 
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ICD activity in macrophages, CD4 T cells, and 
endothelial cells (Figure 2D). Based on the ICD 
activity, we classified the cells into high ICD and low 
ICD groups and identified 1291 differentially - 
expressed genes (DEGs) between the two groups for 
further analysis (Supplementary Table 2). Figure 2E 
presents the proportion of each cell type in the 6 
samples. 

Identification of ICD-related genes in the 
bulk-RNA-seq transcriptome 

In this study, we utilized the ssGSEA algorithm 
to obtain ICD activity scores for each TCGA-LUAD 
sample, which served as phenotypic data for 
subsequent WGCNA analysis. To identify modules 
significantly correlated with ICD scores, we applied 
WGCNA analysis to the TCGA-LUAD dataset. After 
removing outlier samples, a co-expression network 
was constructed using 1291 DEGs identified at the 
single-cell-seq level (Figure 3A). To ensure that the 
topological network was scale-free, the optimal soft 
threshold for power = 4 was chosen (Supplementary 
Figure 1D). By setting the minimum module gene 

count to 60 and medissres to 0.25, a total of 5 modules 
were obtained (Figure 3B). Our results showed that 
MEbrown and MEblue modules were closely 
associated with ICD scores in bulk-RNA-seq (Figure 
3C). In addition, scatter plots of gene significance (GS) 
versus module membership (MM) for the brown and 
blue modules showed a significant correlation (Figure 
3D, E), suggesting that the genes in these two modules 
may have functional significance related to 
immunogenic death. The genes in these two modules 
were analyzed by GO enrichment (Figure 3F). The 
volcano plot (Figure 3G) shows the differentially 
expressed genes (DEGs) between tumor and normal 
lung tissues in TCGA-LUAD bulk-RNA-seq 
(|logFC|> 1 and p.d adj < 0.05). We crossed 500 genes 
from these two modules with DEGs from 
bulk-RNA-seq and finalized 167 genes (Figure 3H). 
These genes were named Immunogenic cell death 
-related genes (ICDRGs) and are thought to be 
involved in ICD at the bulk-RNA-seq and single-cell 
transcriptome levels. 

 

 
Figure 1. Flowchart of this study.    
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Figure 2. identification of ICD-related genes from single-cell transcriptomes. (A) t-SNE plot showing cell types recognized by marker genes. (B) Heatmap showing 
the five most important marker genes in each cell cluster. (C) Immunogenic death score (ICD) for each cell. (D) Distribution of ICD scores in different cell types. (E) Cell scale 
diagram. 

 

Recognition of ICD-associated clusters and 
altered biological processes 

To further explore the profile and 
characterization of immunogenic death-related genes 
in LUAD, this study applied a consensus clustering 

algorithm to classify LUAD patients based on the 
expression of ICDs associated with OS. To obtain the 
optimal number of clusters (k-value), we calculated 
the consistency coefficient and found that k = 2 was 
the best choice for classifying the entire cohort into 
clusters C1 (n = 265) and C2 (n = 235) (Figure 4A, B). 
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Kaplan-Meier survival analysis showed that C2 had 
superior OS in LUAD (p < 0.0001) (Figure 4C). In 
addition, we obtained consistent results on the 
GSE31210 cohort (Supplementary Figure 1A-C), and 
we compared the clinicopathologic features and 
expression of immunogenic death-associated genes in 
the two subtypes. Some ICDs were highly expressed 
in C2, such as CAT, FBP1, FCN1, and FGR, while 
some ICDRGs, including S100P, IER5L, MMP14, and 
PLBD1, were highly expressed in C1 (Figure 4D). The 
different pathway relationships between the two 
subtypes were next compared. We performed a GSVA 
based on the tumor Hallmark gene set to investigate 
the molecular biological functions of TRP isoforms, 

and the heatmap demonstrated the pathways with 
significant differences. The results showed that C1 
was significantly enriched in pathways significantly 
associated with oncogenic activation and highly 
proliferative features, such as MYC target V1/V2, 
G2M checkpoint, E2F target PI3K/AKT/mTOR, 
unfolded protein response, glycolysis, and DNA 
repair. And C2 is highly expressed in immune 
pathways, such as IL2/STAT5 signaling pathway, 
IL6/JAK/STAT3 signaling pathway, allograft 
rejection, inflammatory response. Also, oncogenic 
pathways, such as TGFβ signaling pathway, NOTCH 
signaling pathway and Hedgehog signaling pathway 
were highly enriched in C2 (Figure 4E). 

 

 
Figure 3. identification of ICD-related genes from the bulk transcriptome. (A) Dendrogram showing hierarchical clustering of TCGA-LUAD samples, with the 
heatmap at the bottom indicating the ICD score for each sample, as calculated by the ssGSEA algorithm. (B) Clustering dendrogram analysis of WGCNA. (C) Heatmap of 
module features showing that the MEbrown and MEblue modules are closely associated with ICD features. (D, E) Scatter plots showing the relationship between gene 
significance (GS) and module membership (MM) in brown and blue modules. (F) GO enrichment analysis of genes (G) Volcano plot showing the results of differential analysis of 
TCGA-LUAD tumor samples versus normal samples. (H) Venn diagram showing crossover genes between MEbrown and MEblue modules and DEGs in bulk-RNA-seq. 
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Figure 4. Identification of ICD molecular subtypes. (A) Consensus heatmap matrix and correlation region for two clusters (k = 2) (B) indicates that clustering results are 
best at K = 2. (C) Survival analysis indicates that C2 has a better prognosis. (D) Difference in ICD expression levels between the two subtypes, p < 0.05. (E) GSVA demonstrates 
the HALLMARK pathway for the different subtypes, with yellow color representing promotion and blue color representing inhibition. 

 

Construction and validation of ICD-related 
prognostic features 

Next, we also performed inter-subgroup DEGs, 
and to further assess the impact of DEGs on survival 
prognosis, we first used univariate Cox regression 
analysis (p < 0.05) and found that 100 genes were 
significantly associated with OS (Supplementary 
Table 3). Next, a 10-fold cross-validated LASSO 
regression analysis was performed on these 100 genes, 
and 8 genes (FAM83A,RHOV,CPS1,TPX2,SFTPB, 
SERPIND1, FDCSP, KRT6A) were screened for 
further analysis, and the Immunogenic Death Related 
Risk Score (ICDRS) for each LUAD patient was based 
on the following equation Calculated as ICDRS= 
0.064*TPX2+-0.034*SFTPB+0.069*RHOV+-0.051*SERP
IND1+-0,063*FDCSP+0.106*FAM83A+ 0.031*CPS1+ 
0.063*KRT6A (Figure 5A, 5B), and the forest plot in 
Figure 5C illustrates the eight gene cox results. We 

assigned LUAD patients to either the high-risk or 
low-risk group based on the median risk score. 
Kaplan-Meier analysis showed that patients in the 
high-risk group had worse OS (p<0.0001; Figure 
5D-F), and the analysis of subject work characteristics 
(ROC) curves showed that the area under the curve 
(AUC) of the ICDRS in the TCGA training set at 1 
year, 3 years, and 5 years respectively reached 0.75, 
0.7, and 0.64, indicating good prognostic diagnostic 
efficacy, and the validation set GSE31210 was 
0.85,0.74, and 0.77. To further validate the accuracy 
and reliability of the eight-gene model, we performed 
additional validation in the GSE50081 cohort, and the 
validation cohort GSE50081 was 0.82, 0.74, and 0.72, 
the ICD-related prognostic features showed superior 
performance (Figure 5G-I). In addition, we obtained 
clinical information for the high ICDRS and low 
ICDRS groups (Table 1). 
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Table 1. TCGA-LUAD Clinical characteristics. 

Characteristics High Risk 
(N=250) 

Low Risk 
(N=250) 

Overall 
(N=500) 

P-value 

Age     
<=65 124 (49.6%) 123 (49.2%) 247 (49.4%) 0.321 
>65 126 (50.4%) 127 (50.8%) 253 (50.6%)  
Gender     
male 133 (53.2%) 97 (38.8%) 230 (46.0%) 0.002 
female 117 (46.8%) 153 (61.2%) 270 (54.0%)  
Stage     
I 105 (42.0%) 163 (65.2%) 268 (53.6%) <0.001 
II 73 (29.2%)  46 (18.4%) 119 (23.8%)  
III 55 (22.0%) 25 (10.0%) 80 (16.0%)  
IV 16 (6.4%) 9 (3.6%)   25 (5.0%)  
unknown 1 (0.4%) 7 (2.8%) 8 (1.6%)  
T stage     
T1 60 (24.0%)  107 (42.8%)  167 (33.4%) 0.00608 
T2 147 (58.8%)  120 (48.0%)  267 (53.4%)   
T3 31 (12.4%)  14 (5.6%)  45 (9.0%)  
T4 11 (4.4%)  7 (2.8%)  18 (3.6%)  
TX 1 (0.4%)  2 (0.8%)  3 (0.6%)  
N stage     
N0 143 (57.2%)  181 (72.4%)  324 (64.8%) 0.00175 
N1 55 (22.0%)  39 (15.6%)  94 (18.8%)  
N2 47 (18.8%)  22 (8.8%)  69 (13.8%)   
N3 2 (0.8%)  0 (0.0%)  2 (0.4%)   
unknown 3 (1.2%)  8 (3.2%)  11 (2.2%)   
M stage     
M0 168 (67.2%)  164 (65.6%)  332 (66.4%) 0.301 
M1 16 (6.4%)  8 (3.2%)  24 (4.8%)  
unknown 66 (26.4%)  78 (31.2%)  144 (28.8%)   

 

Comparison of ICDRS with other published 
articles 

To compare the prognostic efficacy of ICDRS 
with existing LUAD models, we integrated 11 
previous studies that used different biologically 
meaningful features such as arginine-substituted 
succinate [26], copper death [27], necrotic apoptosis 
[28], immune activation [29] ubiquitin proteasome 
[30] and autophagy [31]. Notably, ICDRS exhibited 
better C-index performance than almost all models in 
the TCGA-LUAD, GSE31210, and GSE50081 datasets 
(Figure 5A-C). Altogether, these findings confirm the 
idea that ICDRS is a more effective prognostic model 
for LUAD. 

Clinical Relevance and Survival Analysis of 
ICDRS in Patients with LUAD 

 Given the significant differences in individual 
clinical characteristics of OS between the high and low 
ICDRS groups, in order to explore and compare such 
differences more specifically, we categorized LUAD 
patients into six different subgroups based on clinical 
characteristics. These were age, pathologic Stage (I-II 
and III-IV), gender (female and male), pathologic 
M-stage (M0-1), N-stage (N0-N1) and T-stage (T1-2 
and T3-4). Notably, in all subgroups, patients in the 
low ICDRS group had a significant survival 
advantage in terms of longer survival time compared 
with patients in the high ICDRS group (Figure 6A-G, 
Supplementary Figure 1E). Based on the analysis of 

the results, we are more convinced that the ICD model 
is a reliable clinical prediction tool. 

Gene set enrichment analysis 
GSEA was used to identify KEGG gene sets 

enriched in both ICDRS groups. The gene set of the 
low ICDRS group was enriched for immune-related 
pathways such as B Cell Receptor Signaling Pathway, 
Intestinual Immune Network for IGA Production, etc. 
whereas the gene set of the high ICDRS group was 
enriched for cell cycle- and cancer-related pathways 
(Figure 7B, C). GSVA analyzed the differentially 
enriched HALLMARK pathways between the two 
groups (Figure 7A). The results showed that the 
high-risk group was predominantly enriched to 
oncogenic pathways, while the low-risk group was 
predominantly enriched to immune-related 
pathways. The ridge plot demonstrated the 
GO-enriched analyzed pathways between the two 
groups (Figure 7D). correlation analysis between 
ICDRS and hallmarks pathway score further 
supported these findings (Figure 7E), suggesting that 
ICDRS is closely associated with cancer-related 
biological processes and metabolic pathways. 

ICD risk score predicts tumor microenviron-
ment and immune cell infiltration 

It has been established that interactions between 
cancer cells and TME are critical for tumor 
progression and dissemination [32]. Therefore, in this 
study to assess the immune infiltration status of 
LUAD samples, we used the ESTIMATE algorithm to 
calculate the stromal score, immune score, ESTIMATE 
score, and tumor purity for the ICDRS risk subgroup. 
The immunity score and ESTIMATE score were 
significantly higher in the low-risk group, while the 
tumor purity was higher in the high-risk group 
(Figure 9A). To further analyze the differences in 
specific immune cell infiltration between the high- 
and low-risk groups, we quantified the abundance of 
immune cell infiltration in each sample using the 
CIBERSORT algorithm (Figure 9B). The results 
revealed that Mast cells resting, Dendritic cells 
resting, and T cells CD4 memory resting were highly 
expressed in the low ICDRS group, whereas M0 
Macrophage and M1 Macrophage were highly 
expressed in high ICDRS. Next, we used the 
CIBERSORT results to screen the immune cell types 
significantly associated with ICDRS by Spearman's 
correlation analysis (Figure 9D). Similar results were 
obtained by applying the ssGSEA algorithm for 
validation (Figure 9C). In addition, the TIDE 
algorithm was also used, and the results showed that 
the high ICDRS group had stronger immune escape 
(Figure 9E). 
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Predicting and validating the efficacy of 
immunotherapy 

To further validate our results, we analyzed the 
IPS scores obtained from the TCIA database. Higher 
IPS scores predicted a better response to ICI therapy, 
including PD-1 inhibitor and CTLA4 inhibitor 
therapy, and were categorized into four categories: 
ips_ctla4_pos_pd1_pos, ips_ctla4_pos_pd1_neg, ips 

_ctla4_neg_pd1_pos, and ips_ctla4_neg_pd1_neg. 
Our results showed that all four categories were 
significantly elevated in the low-risk group, 
suggesting that patients in the low-risk group 
responded better than patients in the high-risk group 
to anti-CTLA4 therapy as well as to the combination 
of anti-pd -1 and anti-CTLA4 therapy (Figure 10B). 

 
 

 
Figure 5. Construction and validation of ICD-related prognostic features. (A) Ten-fold cross-validation of parameter selection adjusted by LASSO regression. (B) 
Screening of coefficients under LASSO analysis. A vertical line is plotted at the value selected by 10-fold cross-validation of overall survival. (C) Forest plot showing univariate 
Cox results. (D-F) KM curves comparing time-dependent ROC curve analyses in the TCGA-LUAD (D), GSE31210 (E), and GSE50081 (F) high and low risk groups of patients 
with LUAD (G-I) in the TCGA-LUAD (G), GSE31210 (H), and GSE50081 (I) cohorts. 
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Figure 6. Comparison of the predictive effect of ICDRS with existing features. (A-C) Comparison between ICDRS and the other 11 published models in the 
TCGA-LUAD, GSE31210 and GSE50081 cohorts. 

 
Figure 7. Clinical relevance and survival analysis of ICDRS in LUAD patients. (A) Gender. (B) Age. (C) Pathologic M stage. (D) N staging. (E) Total staging (I-II). (F) 
Total staging (III-IV). (G) T-staging (T1-2). (H) T staging (T3-4). 
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Figure 8. gene set enrichment analysis. (A) Differences in HALLMARK pathway activity between high and low risk groups with GSVA scores. (B) KEGG gene set enriched 
in the high ICDRS group. (C) KEGG gene set is enriched in the low ICDRS group. (D) Ridge diagram demonstrating the GO pathway between the two groups. (E) Correlation 
between risk scores and marker pathway activity for GSVA scores. 

 
Previous studies have reported that high 

expression of immune checkpoints is associated with 
better response to immune checkpoint inhibitor (ICI) 
therapy [33-35]. Therefore, we analyzed the 
differences in immune checkpoints on the basis of risk 
scores and found that the expression was higher in the 
low-risk group (Figure 10C). HLA was also strongly 
associated with immunotherapy [36]. We also 
compared the molecular differences in HLA between 

the different groups (Figure 10D). In addition, to test 
the potential of risk scores in predicting 
immunotherapy in a real immunotherapy cohort, we 
selected two groups of patients receiving 
immunotherapy (IMvigor210 and GSE78220) and 
showed that the proportion of complete 
response/partial response (CR/PR) was significantly 
higher and the proportion of response to 
immunotherapy was significantly higher in the 
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low-risk group (Figure 10E-G). Similarly, in the 
IMvigor210 cohort, patients at lower risk may have a 
better prognosis (Figure 10D, Supplementary Figure 
2A-D). All these results imply that the low-risk group 
has a favorable immunotherapy effect. 

Identification of key regulatory genes in ICD 
models 

In order to identify the key regulators in the ICD 
risk subgroups, first we verified the mRNA 
expression levels of these eight genes, and we found 
that only SFTPB and SERPIND1 were highly 

expressed in normal tissues, whereas FAM83A, 
FDCSP, KRT6A, RHOV and TPX2 were highly 
expressed in tumor tissues (Figure 10A). In addition, 
we used ROC diagnostic curves to screen for key 
regulators, and we found that the only ones with 
ROC>0.85 were TPX2, RHOV, and FAM83A, and thus 
we concluded that these three genes were the key 
regulatory genes in ICDRS (Figure 10B-D, 
Supplementary Figure 3A-E). We also plotted KM 
curves to verify the survival of these genes (Figure 
10E-G, Supplementary Figure 4A-E).  

 

 
Figure 9. ICD risk score predicts tumor microenvironment and immune cell infiltration. (A) Stroma score, immunity score, ESTIMATE score, and tumor purity 
were used to quantify different immune statuses between high and low ICDRS groups. (B) The abundance of each TME-infiltrating cell type was quantified by the CIBESORT 
algorithm and the ssGSEA algorithm. (C) between high and low risk groups. (D) Correlation analysis of TME-infiltrating cells with ICDRS. (E) Box line plot of TIDE between the 
two groups. 
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Figure 10. Predicting and validating the efficacy of immunotherapy. (A) IPS scores in the high- and low-risk groups. (B) Differential expression of various immune 
checkpoints in the high- and low-risk groups. (C) Differential expression of HLA molecules in the high- and low-risk groups. (D) Survival curves of the high ICDRS and low 
ICDRS groups in the IMvigor210 cohort. (E-F) Box line plots depicting the difference in risk scores between CR/PR patients and SD/PD patients and the proportion of patients 
with CR/PR or SD/PD receiving immunotherapy in the IMvigor210 cohort. (G) Proportion of patients with CR/PR or SD/PD receiving immunotherapy in the high and low risk 
groups of the GSE78220 cohort. 

 
These results showed that TPX2, RHOV, and 

FAM83A were the key regulatory genes in ICDRS. 
Finally, we evaluated the expression of three core 
genes in ICDRS in three cell lines, including one 
normal lung cell line (BEAS-2B) and three lung 
adenocarcinoma cell lines (A549 and H1299) (Figure 
10H-J). The results showed that TPX2, RHOV and 
FAM83A expression was significantly upregulated in 
the tumor cell lines. 

Discussion 
Despite significant efforts to develop 

comprehensive treatment strategies, the prognosis for 
patients with LUAD remains poor, with a 5-year 
survival rate of 15 percent [37]. NSCLC is the most 
common form of lung cancer pathologic classification. 

Specifically, LUAD is the main subtype of NSCLC and 
the most common primary lung cancer [38]. LUAD is 
the main subtype of NSCLC and the most common 
primary lung cancer. Although lung cancer treatment 
is being explored and researched, the lack of reliable 
early prognostic indicators hampers treatment 
outcomes [39]. The lack of reliable early prognostic 
indicators hinders the therapeutic efficacy. Therefore, 
we need to explore new biomarkers to better treat 
patients with lung adenocarcinoma. 

The concept of immunogenic cell death has been 
described as a unique type of regulatory cell death 
capable of triggering an intact antigen-specific 
adaptive immune response by emitting a danger 
signal or DAMP [40-42]. The combination of immu-
nogenic therapies and novel immunotherapeutic 
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regimens holds great promise for the treatment of 
malignant tumors [43-46]. The combination of 
immunogenic therapy and novel immunotherapeutic 
options holds great promise for the treatment of 
malignant tumors. Therefore, it may be advantageous 
to identify ICD-related biomarkers that can help 
differentiate patients with LUAD, provided they 
benefit from immunotherapy. However, little is 
known about the role of immunogenic death in 
LUAD. 

We obtained immunogenic death-related genes 
from single-cell transcriptomes using scRNA-seq data 
from the article by Philip Bischoff et al. The 
TCGA-LUAD data and the GSVA algorithm were 
then used to identify the key modules most associated 
with immunogenic death, and differential genes were 
obtained by differential analysis of the TCGA-LUAD 
data. When we selected the intersection of 
immunogenic death marker genes and differential 
genes, we eventually found 167 genes involved in 
immunogenic death both in the single-cell 
transcriptome and in the bulk transcriptome. 
Afterwards, we performed regression analysis of 
these 167 genes using one-way COX to obtain genes 
related to OS, used these genes for consistent 
clustering to classify LUAD patients into two 
subtypes, and performed differential analysis of these 
two types to obtain differential genes. Finally, eight 
significant genes were screened using LASSO 
regression analysis and one-way COX risk regression 
analysis to create a new prognostic model. Significant 
prognostic differences were found between the two 
groups, demonstrating the independent predictive 
value of the ICD traits we created for LUAD.ROC 
curves proved the superior predictive efficacy of the 
ICD traits for patient prognosis. In addition, we 
compared our ICDRS with 11 other published articles, 
which showed good predictive efficacy of our ICDRS. 

Then, to better understand TME may help to 
develop new therapies for LUAD or to repair TME to 
improve the effectiveness of immunotherapy. The 
composition of some immune cells differed between 
the two ICDRS groups. m0 and M1 macrophages were 
more common in the high ICDRS group, whereas 
Mast cells resting, Dendritic cells resting and T cells 
CD4 memory resting were more abundant in the low 
ICDRS group. Furthermore, based on the pathway 
enrichment results, we found that the low ICDRS 
group had stronger immune pathways, whereas the 
high ICDRS group contained more 
immunosuppressive cells and oncogenic signals, as 
well as tumor and metastasis-related signals, 
suggesting that the high ICDRS group exhibited 
immunosuppression and active tumor progression. 

IPS data downloaded from TCIA can provide a 

predictive score for assessing a patient's response to 
immunotherapy [47-49]. Higher IPS in the low ICDRS 
group suggests that patients with low ICDRS may 
have a more favorable response to ICI therapy. This 
study suggests that ICDRS, which have not been 
previously detected in LUAD, may correlate strongly 
with immune infiltration in LUAD, suggesting the 
potential relevance of ICDRS in assessing 
immunotherapy response. For patients with 
early-stage LUAD, surgical treatment, ablation, or 
liver transplantation are effective therapeutic 
modalities that can significantly improve patient 
survival time. For patients with advanced LUAD, 
systemic therapy is the only option to improve 
survival. In addition to the use of 
immunotherapy-related drugs, we also tend to use 
some chemotherapeutic drugs, of which in the vast 
majority of cases, the low ICDRS group will have a 
better therapeutic effect than the high ICDRS group, 
which will improve the survival time of patients with 
LUAD. The TIDE results also proved this point. 

Based on these findings, we conclude that ICDRS 
is a good model for predicting survival time in LUAD 
patients and is closely related to the immune 
microenvironment. An in-depth study of ICDRS will 
be beneficial in treating patients with lung 
adenocarcinoma, thus improving the efficacy of 
immunotherapy. Next, eight genes comprise ICDRS: 
TPX2, RHOV, FAM83A, SFTPB, SERPIND1, FDCSP, 
CPS1, and KRT6A. we screened the key regulatory 
genes of ICDRS by ROC curve, TPX2 (Differentially 
Expressed In Cancerous And Non-Cancerous Lung 
Cells 2) TPX2 has been reported to mediate spindle 
filament assembly during mitosis and is associated 
with cell proliferation [50]. TPX2 also promotes the 
EMT process and extracellular matrix degradation 
[51]. FAM83A (family with sequence similarity 83, 
member A) is overexpressed in a variety of human 
tumors, including lung, breast, testicular, and bladder 
cancers, suggesting that FAM83A may play an 
oncogenic role in cancer development [52-54]. 
FAM83A is involved in the regulation of a number of 
different tumor-associated signaling pathways, 
including EGFR, RAS/RAF/MEK/ERK and 
PI3K/AKT/mTOR pathways [55, 56]. Ras homolog 
family member V (RHOV) plays an essential role in 
neurodevelopment and embryogenesis. [57, 58]. 
RHOV has been reported to promote lung 
adenocarcinoma cell growth and metastasis through 
the JNK/c-Jun pathway [59]. Although the regulatory 
roles of these genes have been studied in various 
cancers, few researchers have systematically 
evaluated their prognostic value in LUAD. 
Immunogenic death has been less studied in lung 
adenocarcinoma, and therefore we hope that the 
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establishment of ICDRS will be used to improve the 
clinical management of lung adenocarcinoma 

patients. 

 

 
Figure 11. Identification of key regulatory genes in the ICD model. (A) Box-and-line plot demonstrating the expression of ICDRS genes in cancer and paracancer. (B) 
ROC diagnostic curve of TPX2. (C) ROC diagnostic curve of RHOV. (D) ROC diagnostic curve of FAM83A. (E-G) Demonstration of km curves of ICDRS genes. (E) TPX2. 
(F) RHOV. (G) FAM83A. (H-J) RT-qPCR demonstrating mRNA expression levels. (H) TPX2. (I) RHOV. (J) FAM83A. 
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This is despite the excellent ability of our 
constructed ICD signatures to identify patients' 
immune status and predict their prognosis. However, 
some limitations still need to be acknowledged in our 
follow-up study and find appropriate ways to address 
them. First, the TCGA-LUAD dataset we included 
was based on public database data, which may lead to 
bias in prediction results from the actual situation. 
Although we have taken several approaches to try to 
avoid this, more data from LUAD patients need to be 
collected to validate the utility of the model and the 
accuracy of the immunotherapy predictions, and we 
also need validation from external experiments. 

Conclusion 
As we demonstrated for the first time, ICD 

modeling is a novel predictive biomarker and a 
possible therapeutic target for LUAD patients. ICDRS 
has better predictive efficacy compared to other 
published articles. In addition, the ICD model can 
characterize the immune environment of LUAD 
patients and appropriately estimate the prognosis of 
LUAD patients, which provides a new way of 
thinking for physicians to treat lung adenocarcinoma 
patients. 

Supplementary Material 
Supplementary figures and tables.  
https://www.jcancer.org/v15p5165s1.zip 
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