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Abstract 

Background: Few studies have analyzed the effect of matrix metalloproteinase (MMP) expression 
patterns on the tumor microenvironment (TME) during development of cervical cancer (CC).  
Methods: We elucidated the landscape and score of MMP expression in CC using single-cell RNA 
sequencing (scRNA-seq) and RNA sequencing datasets. Further, we aimed the MMPscore to probe the 
infiltration of immune cells. Further, MMP expression was measured by quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR).  
Results: We found MMPs were cell-type specific expressed in diverse types of CC cells, regulating the 
relative pathways of CC progression. Two distinct MMP expression patterns that associated infiltrated 
tumor microenvironment (TME) were identified. We discovered MMP expression patterns can predict 
the stage of tumor, subtype, stromal activity in the TME, genetic variation, and patient outcome. Patients 
with high MMPscore benefited from significantly better treatment and clinical outcomes.  
Conclusion: These results indicate high MMPscore in diverse cell types may regulate immune response 
and improve the survival of patients with CC, which assist in developing more effective immunization 
strategies. 

Keywords: Matrix metalloproteinase, Cervical cancer, Tumor microenvironment, Extracellular matrix, Single-cell sequencing, 
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Introduction 
Cervical cancer (CC) is the most common 

gynecological malignancy. Risk factors for CC include 
human papillomavirus (HPV) infection, long-term 
unhealthy lifestyle maintenance, eating habits, 
vaginal microenvironment, and regional differences 
[1-4]. Although the use of HPV vaccines has been 
promoted in recent years, the global incidence of CC 
remains high. According to the American Cancer 

Society, the estimated number of new CC cases in the 
United States reached 14,100, and the estimated 
number of deaths will reach 4,280 in 2022, compared 
with 14,480 and 4,290, respectively, in 2021 [5]. In 
2020, the diagnosis rate of CC in Europe was 
58.2/100,000, with a mortality rate of 26.0/100,000 [6]. 
The citywide CC incidence in Guangzhou, China, 
displayed an annual increase of 2.1% from 2004 to 
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2018, with the most substantial increase in rural areas, 
where average annual percentage change of 6.6% [7]. 
In recent years, the proportion of young patients with 
CC has increased. The incidence of undiagnosed 
early-stage squamous cell carcinoma has consistently 
increased in young women aged < 50 years in 
Japanese metropolitan areas [8]. Invasive and distant 
metastases in CC are associated with a substantially 
low five-year survival rate. Thus, developing an index 
to assess tumor aggressiveness is crucial to evaluating 
the prognosis of patients with CC and guiding their 
clinical treatment. 

The tumor microenvironment (TME) is the 
cellular environment in which tumors or tumor stem 
cells exist, including tumor cells, adipocytes, 
fibroblasts, lymphocytes, dendritic cells, 
cancer-associated fibroblasts, and tumor vasculature, 
and is widely associated with tumorigenesis. These 
cells interact with circulatory and lymphatic systems 
to promote tumorigenesis and progression [9-11]. 
Single-cell transcriptomics has revealed heterogeneity 
in tumor- and tumor-derived endothelial cells in CC 
[12]. Other cancers exhibit heterogeneity in tumor 
cells and tumor-associated cells. Cancer-associated 
fibroblasts of different origins contribute to the 
heterogeneity of tumor cells and exert functional 
effects on tumors through various mechanisms [13, 
14]. Tumor-associated neutrophils are associated with 
the heterogeneity of lung cancer cells [15]. In breast 
cancer, tumor-associated macrophages exhibit 
significant heterogeneity and comprise anti-tumor 
M1-like tumor-associated macrophages (TAM) or 
pro-tumor M2-like TAM [16, 17].  

Two critical stages of tumor development are the 
degradation of the basement membrane and the 
invasion of tumor cells into the surrounding tissues. 
Metastasis of cancer cells is a complex multistep 
process involving changes in intercellular adhesion, 
degradation of the extracellular matrix (ECM) and 
basement membrane, detachment of tumor cells in 
situ, and extensive infiltration of proteolytic enzymes 
into lymphatics or blood vessels, which ultimately 
enhance the ability of tumor cells to invade and 
metastasize. Matrix metalloproteinases (MMPs) are a 
series of diverse protein enzymes involved in ECM 
degradation, mainly by degrading collagen IV and 
laminin. Various MMPs are produced by tumor and 
tumor-related cells. During tumor development, 
MMPs enable tumor cells to cross the matrix 
membrane barrier and increase their invasiveness, 
migration, and metastasis, thereby promoting tumor 
progression. MMP-9 secreted by neutrophils, mast 
cells, and macrophages degrade the main components 
of the basement membrane to promote tumor 
invasion [18-20]. Fibroblasts and tumor cells can 

secrete MMP-13, MMP-7, and MMP-14. MMP-13 
promotes tumor angiogenesis [21], MMP-7 degrades 
heparin binding epidermal growth factor and 
E-cadherin in the basement membrane [22, 23], and 
MMP-14 degrades CD-44 and electron-cadherin in the 
basement membrane [24, 25]. Together, these MMPs 
play a vital role in tumor invasion. MMP-10 is highly 
expressed in squamous cells and promotes the 
recruitment of infiltrating cells by remodeling the 
ECM. MMP-10 can also upregulate the expression of 
MMP-7, MMP-9, and MMP-13, which are critical for 
tumor progression [26]. MMPs are essential for 
neovascularization, the inflammatory response, and 
apoptosis, and play a major role in leukocyte 
infiltration and tissue inflammation. In the TME, 
MMP-1 and MMP-2 secreted by fibroblasts promote 
tumor growth [27, 28]. MMP-3 secreted by fibroblasts 
is an essential mediator of tumor angiogenesis and 
progression [27]. Collectively, MMPs play an 
important role in regulating the mechanisms of tumor 
metastasis. 

However, the difference in the expression of 
MMPs secreted by heterogeneous tumor cells and 
tumor-related cells, as well as the relationship 
between the expression level of MMPs and the 
occurrence and progression of CC, remains unclear. 
Furthermore, its predictive effect on the prognosis of 
CC also remains unexplored. In this study, we used 
single-cell RNA sequencing (scRNA-seq) datasets, 
including patients with CC and healthy individuals, 
to analyze the MMP landscape at the single cell level. 
We discovered that MMPs displayed cell-type-specific 
expression patterns in CC cervix tissues. We analyzed 
differentially expressed MMPs and their association 
with the infiltration of immune cells. We quantified 
the MMP expression of individual tumor cells by 
constructing the MMPscore to assess the effect of 
heterogeneity in MMP expression. We believe our 
study would assist in evaluating whether the 
MMPscore can effectively predict the prognosis of 
patients with CC and its significance in guiding the 
clinical treatment of patients with CC. 

Materials and Methods 
Single-cell sequencing 

Single-cell RNA sequencing (scRNA-seq) 
datasets for CC and benign cervical lesion (BCL) cells 
were obtained from the Gene Expression Omnibus 
(GEO) (ID: GSE168652). The data came from one CC 
patient and one BCL patient, and sequencing was 
done using the 10x Genomics Chromium platform. 
The UMAP algorithm was used for data visualization, 
and an unsupervised clustering algorithm classified 
the cells. Differentially expressed genes (DEGs) were 
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identified using the FindMarkers function in Seurat to 
accurately annotate cell types, and we manually 
curated genetic markers for each cell type. Most 
markers that distinguished between different cell 
types were retrieved from the Cell Marker Database 
(https://www.labome.com/method/Cell-Markers.ht
ml), with the following cutoff thresholds: 
Benjamin-Hochberg's adjusted p value < 0.01 and Fold 
Change > 1.5. The DEGs were analyzed for Gene 
Ontology (GO) enrichment using the clusterProfiler 
package, with pathways having an adjusted p-value < 
0.05 deemed significantly enriched. A gene set 
enrichment analysis (GSEA) was also conducted to 
identify enriched gene sets within specific cell 
clusters. Additionally, scRNA-seq datasets from the 
ArrayExpress database (accession E-MTAB-11948), 
including three CC and three BCL samples, were used 
to explore correlations between MMP regulatory 
factors and key pathways in CC tissue. 

CC dataset origin and pretreatment 
In our study, we sourced gene-expression data 

and clinical annotations from the GEO and the Cancer 
Genome Atlas (TCGA) database, excluding patients 
without survival data. Cancer genome map from 
TCGA database, including 261 CC samples and three 
BCL samples, we identified co-expressed genes in the 
two expression modes of MMPcluster-A and 
MMPcluster-B, constructed Venn diagrams, and 
analyzed the copy number variation, somatic 
mutation data, and survival information. With gene 
expression summary from GEO database (ID: 
GSE192897), we retrieved RNA-seq data from 16 
patients, encompassing 11 patients with CC and 5 
with BCL. The clinical information obtained included 
sex, age, tumor stage, grading, and survival analysis. 

Unsupervised clustering of different MMP 
expression levels 

Through copy number variation (CNV) analysis, 
three differentially expressed MMPs were selected 
between cervical cancer CC and BCL samples. Seven 
additional MMPs, closely linked to CC, were chosen 
through literature review. Heatmaps, Spearman 
analyses, and correlation networks confirmed the 
association of these 10 MMPs. Spearman’s correlation 
analysis was conducted to ascertain the relationship 
between the 10 MMP phenotypes and CC, defining 
two distinct expression patterns by unsupervised 
clustering: MMPcluster-A and MMPcluster-B. Cluster 
number and stability were validated using the 
consensus clustering algorithm, and principal 
component analysis verified the presence of these two 
patterns. The ConsensusClusterPlus package was 
utilized with 1,000 iterations to ensure classification 

stability [29].  

Enrichment Analysis (GSVA) MMPs modifier 
mode and functional analysis of different 
phenotypes 

The biological process differences between the 
two MMP expression modes were analyzed using 
GSVA enrichment analysis via the "GSVA" R package. 
GSVA, a nonparametric and unsupervised method, 
estimates pathway and biological process activity 
changes in expression datasets [30]. The gene set 
"c2.cp.kegg.V6.2.Symbols" was downloaded from the 
MSigDB database for use with GSVA 
(https://www.gsea-msigdb.org/gsea/msigdb/), 
with an adjusted p-value < 0.05 indicating statistical 
significance. Functional annotation of MMP-related 
genes was performed using the clusterProfiler R 
package, applying an FDR cutoff < 0.05. 

Tables Estimation of TME cell infiltration 
The single-sample gene-set enrichment analysis 

(ssGSEA) algorithm was applied to measure the 
relative abundance of various immune cell 
infiltrations in the CC TME. A gene set, compiled by 
Charoentong, labeling distinct TME-infiltrating 
immune cell types was utilized, encompassing a 
range of human immune cell subtypes such as 
activated dendritic cells, CD8+ T cells, natural killer T 
cells, regulatory T cells, and macrophages [31,32]. The 
relative abundance of each TME-infiltrated cell in 
each sample was represented by the enrichment 
fraction calculated by ssGSEA analysis. 

Typing of MMP phenotype co-expression gene 
Initially, the "limma" R package was used to 

identify DEGs between CC and BCL tissues. From 
these DEGs, we selected those with expression 
patterns specific to MMPcluster-A and MMPcluster-B. 
Unsupervised clustering then delineated three 
distinct MMP phenotypes, designated as MMP gene 
clusters A-C, aiding in the characterization of unique 
MMP expression profiles and patient categorization 
for subsequent analyses. 

Generation of MMP gene signature 
Module scores and the enrichment fraction for 

MMP-related gene expression in single cells were 
calculated using the AddModuleScores function in 
the scRNA-Seq database. A scoring system was 
developed to assess the MMP expression pattern in 
individual cervical cancer patients, allowing 
quantification of the MMP expression profile in single 
tumors. To establish the MMPscore, the procedure 
included processing the MMPcluster-A and 
MMPcluster-B expression patterns, then extracting 
the overlapping genes. Patients were subsequently 
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grouped using unsupervised clustering for detailed 
analysis of these overlapping DEGs. The consensus 
clustering algorithm was used to determine both the 
number and stability of gene clusters. A univariate 
Cox regression model was applied to analyze the 
prognosis associated with each gene. Genes showing 
significant prognostic impact underwent further 
analysis. Principal Component Analysis (PCA) was 
used to create MMP-related gene signatures, where 
the first two principal components served as signature 
scores. This method emphasized genes with strong 
positive or negative correlations within the set, while 
down-weighting contributions from genes didn't 
track with other set members. Similarly to the Gene 
Global Index (GGI) method, we defined the 
MMPscore [33, 34].: 

MMPscore = �(𝑃𝑃𝑃𝑃1𝑖𝑖 + 𝑃𝑃𝑃𝑃2𝑖𝑖) 

where is the expression of MMP genes. 

Relevance of MMP gene traits to other 
relevant biological processes 

We identified genes linked to CC biological 
processes, such as immune checkpoints and antigen 
processing, using public databases. Further analysis 
disclosed connections between MMP-related gene 
features and TME immune cells, highlighting 
associations with relevant biological pathways. 

Genomic and clinical information on immune 
checkpoint inhibitors 

First, by systematically searching the immune 
checkpoints to block the gene expression spectrum, 
two immunotherapy cohorts were included: PD-1 and 
CTLA4, as representatives of combined 
immunotherapy. Thus, MMP expression patterns can 
predict a patient’s response to immune checkpoint 
blockade therapy.  

Patients and data collection 
Patients for the CC study were recruited from 

eligible women residing in Shanxi province who 
underwent CC screening. Those diagnosed with 
non-typical squamous cells of uncertain significance 
through liquid-based cytology were included, with 
BCL cells forming the control group. Individuals 
showing abnormal Pap test results underwent 
colposcopy and histopathological examination. The 
study encompassed three CC and three BCL samples. 
The following participants were excluded: (1) 
pregnant women, (2) patients with a history of 
hysterectomy, (3) patients with a history of treatment 
for cervical and vaginal lesions; (4) patients with other 
malignant tumors; and (5) patients with blood and 

digestive system disorders. Ethical approval was 
granted by the Second Hospital of Shanxi Medical 
University's Ethics Committee (Approval No.: 2023 
YX No. 158), and all participants provided written 
informed consent. All CC patients received 
colposcopy, histopathological assessment, and HPV 
nucleic acid testing and typing. BCL patients 
underwent similar histopathological and HPV tests. 
Samples for BCL patients were taken from the cervix 
during total hysterectomies for uterine fibroids. Age 
did not significantly differ between the two patient 
groups (p > 0.05). 

For CC tissue, a gynecologist with over two 
years of experience performed colposcopy. To 
minimize diagnostic deviations, two additional tissue 
samples (approximately 5 mm each) were collected 
using forceps. These samples were rinsed with 
physiological saline and placed in an RNA 
preservation and tissue fixation solution. Samples for 
quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) were stored overnight at 4°C and then 
transferred to a -20°C freezer for long-term storage. 
Hematoxylin-eosin (HE) stained samples were kept at 
room temperature. 

Hematoxylin-eosin staining (HE) 
Samples were fixed overnight at room 

temperature or 37°C using a paraformaldehyde fixing 
solution and dehydrated using a Histo-Tek VP1 
dehydrator (Sakura, Japan). Tissue samples were then 
embedded in paraffin, placed in a freezer until fully 
set, and sectioned at 3–5 µm using a LEICA RM2235 
paraffin microtome (LEICA, Germany). Slice 
preparation: The TKY-TKB slice baking machine 
(Taikang, Hubei, China) was used to spread, flatten, 
and dry the slices. Samples were incubated at 60°C for 
2-3 hours, then cooled before dewaxing. Dewaxing 
and rehydration were performed as follows: xylene 
(three 10-minute washes), 100% alcohol (two 5-minute 
washes), 95%, 80%, and 70% alcohol (each for 5 
minutes), followed by distilled water and PBS (three 
5-minute washes each). Hematoxylin staining (40 
seconds) was applied, followed by differentiation 
with ethanol hydrochloride (1 second), and rinsing 
with tap water (three to five times). Following 
staining, samples were dyed with eosin (40 seconds), 
rinsed with tap water (3-5 times), and dehydrated 
with 70% alcohol (10 seconds), 80% alcohol (30 
seconds to 1 minute), 95% alcohol (2 minutes), and 
100% alcohol (twice for 5 minutes each). The slides 
were cleared with xylene (three times, 5 minutes 
each), and neutral gum was applied to the center of 
the tissue on the slide. The cover glass was gently 
placed over the sample. The prepared slides were 
examined and photographed using the 3D Histech 
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Digital Pathology System (Budapest, Hungary). 

Quantitative real-time polymerase chain 
reaction (qRT-PCR) 

Total RNA was extracted from tissue samples 
using Trizol reagent (Ambion, USA), and mRNA was 
reverse transcribed to cDNA using the cDNA 
Synthesis SuperMix (TransGen Biotech, Beijing). 
Real-time PCR was performed using a Real-Time PCR 
system (ROCHE, Lightcycler 96, Switzerland) with 
the following thermal cycling conditions: initial 
denaturation at 95°C for 30 seconds, followed by 40 
cycles of denaturation at 95°C for 5 seconds and 
annealing/extension at 60°C for 30 seconds. mRNA 
expression levels were normalized to the 
housekeeping gene GAPDH. 

The fold-change in the expression of each target 
mRNA relative to GAPDH was calculated using the 
CT (2−ΔΔCT) method. Experiments were repeated at 
least three times, and the resulting data were 
statistically analyzed. The primer sequences are 
provided in Table 1. 

Immunohistochemistry 
The expression of MMP2, MMP3, MMP7, 

MMP12, MMP13 and MMP19 in CC samples and BCL 
samples was analyzed by immunohistochemistry. 
After routine sectioning, the slides were dewaxed, 
dehydrated by gradient alcohol, blocked and 
inactivated by endogenous peroxidase, repaired by an 
antigen, and blocked by goat serum. Sections were 
incubated with the following primary antibodies at 
4°C: MMP2 antibody (380817, Zenbio, 1:100 dilution), 
MMP3 antibody (340612, Zenbio, 1:100 dilution), 
MMP7 antibody (10374-2-AP, Proteintech, 1:200 
dilution), MMP12 antibody (22989-1-AP, Proteintech, 
1:200 dilution), MMP13 antibody (820098, Zenbio, 
1:100 dilution), MMP19 antibody (860629, Zenbio, 
1:100 dilution). Labeled secondary antibody was 
added and the mixture was incubated at 37°C. 
Horseradish peroxidase labeling solution was added, 
the mixture was stained with DAB, counterstained 
with hematoxylin, conventionally dehydrated, made 
transparent, and observed with a microscope after 

mounting. Sample visualization was performed with 
a Motic EasyScan (Motic, China) and representative 
fields were captured with Motic DSAassistantPlus 
software.  

Staining intensity was quantified using the 
ImageJ IHC Profiler plugin. Staining was scored as 0 
(no stain), +1 (weak stain), +2 (moderate stain), and +3 
(strong stain) based on intensity. The H-score was 
calculated by multiplying the percentage of cells with 
each staining intensity value. The final IHC score 
(0~3) was calculated as: (percentage of high positive × 
3) + (percentage of positive × 2) + (percentage of low 
positive × 1). To ensure accuracy, at least ten random 
visual fields on each slide were analyzed, and the final 
score for one slide was the average of all visual fields. 
This approach provided a comprehensive assessment 
of staining intensity and MMP expression levels. 
GraphPad Prism 9 software was used for statistical 
analysis, with p-values < 0.05 considered significant 
and indicated with asterisks (*, < 0.05; **, < 0.01; ***, < 
0.001; ****, < 0.0001). Comparisons between the CC 
and BCL groups were performed using a two-tailed 
Student's t-test. 

Statistical analysis 
The correlation between TME-infiltrated 

immune cells and MMP phenotypic expression was 
assessed using Spearman and distance correlation 
analysis. Differences among three or more groups 
were compared using one-way analysis of variance 
and the Kruskal-Wallis test[35]. The SurvMiner R 
package determined the cutoff point for dataset 
subgroups based on the correlation between the 
MMPscore and patient survival. The MMPscore was 
split using the "SURV-Cutpoint" function, dividing 
patients into high and low MMPscore groups based 
on the log-rank statistic. Prognostic analysis was 
conducted using Kaplan-Meier survival curves, and 
the significance of differences was determined using 
the log-rank test. The predictive value of the 
MMPscore for different tumor immunotherapies was 
evaluated using the Tumor Immune Dysfunction and 
Exclusion (TIDE) database.  

 

Table 1: Primer sequences used in the study. 

Genes Primer nucleotide sequence (5′ to 3′) 
MMP-2 F: CCTACACCAAGAACTTCCGTCTG R: GTGCCAAGGTCAATGTCAGGAG 
MMP-3 F: CCTTTCCTGGCATCCCGAAGTG R: GCCTGGAGAATGTGAGTGGAGTC 
MMP-7 F: GAGGATGAACGCTGGACGGATG R: AGGATCAGAGGAATGTCCCATACCC 
MMP-8 F: GGAACGCACTAACTTGACCTACAGG R: AACACTCCAGAGTTCAAAGGCATCC 
MMP-9 F: CTGGTCCTGGTGCTCCTGGTG R: CTGCCTGTCGGTGAGATTGGTTC 
MMP-12 F: TGGACCTGGATCTGGCATTGGAG R: TCGTGAACAGCAGTGAGGAACAAG 
MMP-13 F: GGAGATGAAGACCCCAACCCTAAAC R: CGGAGACTGGTAATGGCATCAAGG 
MMP-19 F: CGGAGACTGGTAATGGCATCAAGG R: CAAAGGGCAGACACTCGGAACAAG 
GAPDH F: GCTCTCTGCTCCTCCTGTTC R: ACGACCAAATCCGTTGACTC 

 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5263 

The specificity and sensitivity of the MMPscore 
were assessed using the receiver operating 
characteristic (ROC) curve, and the area under the 
curve (AUC) was quantified using the PROC R 
software package (https://tide.dfci.harvard 
.edu/). Chromosomal copy number variation atlases 
for the three MMP phenotypes across 23 pairs of 
chromosomes were created using the RCIRCOS R 
package. p-values were analyzed from scRNA-Seq 
datasets of 20,938 cells, with a p-value < 0.05 
considered statistically significant. All data processing 
was conducted using R3.6.1 software. 

Results 
Single-cell transcription mapping and cell 
typing of the CC matrix 

To understand the cellular diversity and 
molecular features of cervical tissues in patients with 
CC, we have analyzed scRNA-seq datasets of 20,938 
cells from patients with CC and BCL. Of these cells, 
10,395 were obtained from the tumor samples that 
comprised seven cell types, including Myeloid cells, 
lymphocytes, endothelial cells, endometrial stromal 
cells, fibroblasts, smooth muscle cells, and CC cells, 
which were compared with those of the BCL group 
and annotated using classical marker genes (Figure 
1A and S1A). The heatmap showed marker genes 
(Figure S1B and S1C). To understand the proportion 
of MMP molecules in each cell type, we used the bar 
graph to reveal the percentage of MMPs gene 
expression in each cell type. We found that MMP-1, 
MMP-7, MMP-13 and MMP-14 had a high proportion 
of diverse cell types (Figure 1B). We also concluded 
conclusion that MMP-3, MMP-7, MMP-13 and 
MMP-14 were up-regulated in CC cells in individuals 
and MMP-9, MMP-14 and MMP-19 were 
up-regulated in Myeloid cells by employing the 
heatmap (Figure 1C). To elucidate the mechanism of 
MMP regulation in diverse cell types in CC, we 
identified DEGs in individuals between MMPs 
high-expression and low-expression groups, finally it 
was found MMP-1, MMP-12, MMP-13 and MMP-7 
were upregulated, but MMP-14, MMP-19, MMP-2, 
and MMP-21 were downregulated in diverse cell 
types (Figure 1D), suggesting biochemically 
redundant members of the MMP family may have 
intricate interplay in tumor progression. To further 
explain the relationship between the expression of 
five MMPs in diverse cell types, we performed the 
re-clustering and Uniform Manifold Approximation 
and Projection (UMAP) dimensionality reduction 
profiles of MMPs in the CC and BCL groups. We 
found that the expressions of MMP-14, MMP-19 and 
MMP-2 were upregulated in BCL individuals 

compared to CC (Figure 1F-H), during which 
fibroblasts and myeloid cells displayed abundant 
MMP expression, indicating that the MMPs gene set 
could participate in inhibits tumor progression of CC. 
To identify whether MMP molecules can be linked to 
a favorable prognosis in CC, we then put MMPs as a 
gene module to calculate the score using 
AddModuleScore methods. The violin plot illustrated 
the fibroblasts, CC, and Mye cell had a higher score 
than the other cell types, consistently showing that the 
MMPscore was associated with immune responses in 
CC (Figure 1E).  

To investigate the association between the 
classical CC pathways and MMPscore more 
accurately, we analyzed another scRNA-seq datasets 
from three CC and three BCL (Figure 1I), which 
encompassed 50,014 cells from patients with CC and 
BCL that consisted of seven cell types, including 
macrophage, lymphocytes, Neutrophils, endothelial 
cells, fibroblasts, smooth muscle cells, and epithelial 
cells (CC cells) (Figure 1J). The CC patient group had 
more abundant epithelial cells, macrophages and 
lymphocytes (Figure S1D). To understand the 
proportion of MMP molecules in each cell type, the 
bar graph showed the percentage of MMP-1, MMP-2, 
MMP-7, MMP-13 and MMP-14 had a high proportion 
of diverse cell types (Figure 1K). By identifying DEGs 
between MMP high-expression and low-expression 
groups, MMP-1, MMP-3, MMP-12, MMP-13 and 
MMP-7 were upregulated, but MMP-2, MMP-14 and 
MMP-19 were downregulated in diverse cell types 
(Figure S1E-G). We also put MMPs as a gene module 
to calculate the score using AddModuleScore 
methods and to define scores separately. Then we 
found that fibroblasts, CC, and Mye cell also had a 
higher score, suggesting that MMP-related genes 
played function more in these cell types (Figure S2A). 
A higher score for CC patients than for BCL may 
indicate a potential association of MMP-related genes 
and CC. To probe the association between the 
MMP-regulation and progression of CC, we used the 
functional enrichment analyses based on the GSEA 
database, and we performed the correlation between 
MMPscore by AUCell and classical pathways in CC to 
explore the influence of MMP regulators on CC 
pathways. Notably, we found MMPscore was 
upregulating TGF-β pathway (R > 0.6) and epithelial 
cell proliferation (R > 0.8), but downregulating PD-1 
(R < -0.8), HPV copy number (R < -0.4), Wnt pathway 
(R < -0.8) and CC cell proliferation (R < -0.2) in CC 
patients (Figure 1J). To explore whether MMPs were 
associated with Wnt pathway in regulation of cell 
proliferation, with defense to virus by host and 
epithelial-mesenchymal transition (EMT). A 
correlation analysis combined with the MetaCell 
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algorithm (K = 30) revealed that MMP-1 (R = -0.79, p < 
0.001), MMP-7 (R = -0.69, p < 0.001) and MMP-13 (R = 
-0.73, p < 0.001) were negatively associated with EMT 
in CC. MMP-1 (R = -0.8, p < 0.001), and MMP-7 (R = 
-0.81, p < 0.001) and MMP-13 (R = -0.76, p < 0.001) 
were negatively associated with Wnt pathway in 
regulation of cell proliferation. Scatter plot showed 
that MMP-7 (R= -0.57, p < 0.001) and MMP-13 (R = 

-0.55, p < 0.001) were negatively associated with 
positive regulation of defense response to virus by 
host in CC (Figure 1L and Figure S1H-K). These 
results indicated that cell-type-specific up-regulation 
of MMP molecules was in normal cervical epithelial 
cell proliferation and inhibition to HPV infection, Wnt 
signaling, CC cell proliferation, EMT and PD1 in 
tumor proteins which controlled CC progression. 

 

 
Figure 1. (A) Distribution and expression profiles of MMPs across individual cell types in the normal and CC. UMAP of seven cell types. (B) Percentage of MMPs gene in each 
cell type. (C) Heatmap of MMPs gene for seven cell types. (D) Differential expression of MMPs in different cell types of CC patients compared with control samples; the size of 
the dots indicated the average multiple of difference, and the color of the dots indicated up-regulated (red) or down-regulated (purple). (E)MMPscore in all cell clusters of 
individuals. Distribution and expression profiles of MMP across individual cell types in all the individuals. (F-H) The re-clustering showed distinct MMPs meant expression levels 
in all cell clusters in tumor tissue versus normal tissue. (I) tSNE of six cell types. (J) Correlation plot between MMPs score and pathway activities in CC tissue; the gradient of 
the dot represented the magnitude of the correlation. (K) Percentage of MMPs gene in each cell type. (L) Spearman correlation between MMP-1 (MMP-13) and EMT. Spearman 
correlation between MMP-7 and defense response to virus by host. Spearman correlation between MMP-1 and Wnt pathway in regulation of cell proliferation.  
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MMP genetic variation and expression 
landscape in CC 

In this study, we first summarize the prevalence 
of MMP CNV and somatic mutations in CC. 
Investigating CNV alteration frequency showed 
prevalent CNV alteration in 21 regulators of three 
MMPs, mostly focusing on copy number 
amplification (Figure 2A2). The chromosomal 
locations of MMP CNV alterations are shown in 
Figure 2A1. By investigating MMP mRNA expression 
levels in CC and BCL samples to determine whether 
the above genetic variations influenced MMP 
expression in patients with CC, we have found that 
CNV change may be the main factor leading to 
abnormal MMP expression. Compared with BCL 
tissues, MMP-9 with amplified CNV demonstrated 
markedly higher expression in CC tissues (Figure 
S2B). There were significant differences in the 
expression of ten MMPs between patients with CC 
and BCL controls (Figure S2C). The correlation 
network diagram in Figure 2B depicts MMP 
interactions and further confirmed the ubiquitous 
correlation of the ten MMPs. We then examined the 
Pearson correlation between ten MMPs associated 
with CC by Spearman’s correlation analyses, which 
observes a positive correlation among MMPs (Figure 
2C). In TCGA cohort, we use the R package 
“ConsensusClusterPlus” to categorize a series of 
patients with different MMP expression patterns 
according to the expression of the ten MMPs. With 
final identification of two distinct modification 
patterns by unsupervised clustering (Figure S2D), we 
name these patterns MMPclusterA and -B that were 
supported by the principal component analysis 
results (Figure 2D, Figure S2E-I). Prognostic analysis 
of the two MMP expression subtypes reveals a 
prominent survival advantage within the 
MMPcluster-B expression pattern (p = 0.047) (Figure 
2E). We further explored the different 
clinicopathological features and prognoses between 
the two groups (Figure S2K). The assessment of these 
data showed ten highly expressed MMPs in 
MMPcluster-A (Figure S2J). In addition, we also 
examined the different expression of four MMP types, 
and a significant correlation with overall survival 
prediction was seen in patients with CC (Figure 
S3A-D). 

Immune cell infiltration characteristics in the 
TME under different MMP expression patterns 

The biological behaviors of various MMP 
expression patterns were analyzed by Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment. MMPcluster-A was significantly enriched 
in the matrix and carcinogenic activation pathways, 

like ECM receptor interactions, small cell lung cancer 
signaling pathways, cell adhesion, and MAPK 
signaling pathways, exhibiting significant 
aggregation during cell matrix catabolism. 
MMPcluster-B was mainly enriched in gene 
mutations, encompassing activation of homologous 
recombinant signaling pathways and RNA 
degradation signaling pathways (Figure 2G). 
Furthermore, MMP expression patterns greatly 
differed in terms of cell composition, molecular 
function, and biological processes. MMPcluster-A 
presented a generally enriched result, especially in 
collagen catabolism, metabolism, ECM catabolism, 
and constituent components, unlike MMPcluster-B 
(Figure 2H). Subsequent analyses indicated a higher 
degree of immune cell infiltration in the TME of 
MMPcluster-A, including activated T cells, CD56+ NK 
cells, MDSC, and plasmacytoid dendritic cells, while 
infiltration of CD56- NK cells, dendritic cells, and 
monocytes exhibited no clear difference between 
MMPcluster-A and -B (Figure 2F). Combination of 
KEGG, GO, and TME immune cell infiltration analysis 
showed that MMP expression patterns had obvious 
immune cell infiltration characteristics. Despite the 
significant immune cell infiltration, MMPcluster-A 
did not show a matching survival advantage (Figure 
2E). 

Generation of MMP gene signatures and 
functional annotations 

To further investigate the potential biological 
behavior of each MMP expression pattern, we 
identified two expression patterns (MMPcluster-A 
and MMPcluster-B) by unsupervised clustering. To 
prepare for the establishment of the MMPscore and 
visualize the heatmap of DEGs between 
MMPclusterA and -B, we obtained a total of 350 genes 
using DEG analyses (Figure 3A). Furthermore, 
through unsupervised clustering, DEGs were once 
again divided into three gene clusters: MMP gene 
cluster A-C (Figure S3E), representing the genetic 
differences in MMPs. To quantify the MMP landscape 
and facilitate the identification of key genes, PCA was 
used to compute the aggregate score of feature genes 
from three different MMP genome phenotypes, 
respectively. We obtained the sum of scores and 
defined them as the MMPscore. All TCGA patients 
were stratified into two groups with high or low 
MMPscore. As indicated from the prognostic 
analyses, the prognosis of the high score was better 
than that of the low score, 27 of 253 patients with CC 
clustered in gene cluster B, which was shown to be 
associated with a better prognosis. In contrast, 94 
patients in gene cluster A exhibited poorer prognosis. 
An intermediate prognosis was observed in gene 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5266 

cluster C with 132 clustered patients. Prognostic 
analysis of the three MMP gene Cluster expression 
reveals a prominent survival advantage within the 
MMP gene cluster-B expression pattern (p = 0.013) 
(Figure 3B). In addition, we found that patients with 
advanced diseases were significantly associated with 
lower MMPscore, implying that these patients were 
characterized by a poorer clinical outcome in the 
MMPcluster-A modification pattern (p < 0.05) (Figure 
3D), which suggested the two distinct MMP 

expression patterns in CC. We observed that MMP 
gene clusters A and B were consistent with the above 
expression patterns, whereas tumors in MMP gene 
cluster C exhibited poorer differentiation. Patients 
with clinically advanced diseases were characteristic 
of MMP gene cluster A, consistent with the above 
results (Figure 3D). By performing ontology 
enrichment analyses of different MMP gene clusters, 
we found that they were significantly enriched in 
ECM, collagen, and extracellular structural tissues.  

 

 
Figure 2. (A) 1. The location of CNV alteration of MMPs on 23 chromosomes. 2. The CNV variation frequency of MMPs in TCGA. The height of the column represented the 
alteration frequency. The deletion frequency, green dot; the amplification frequency, red dot. (B) The interaction of expression on 9 MMPs in CC. (C) Correlation plot of 10 
MMPs. The positive correlation was marked with red, and negative correlation was marked with blue. The size of circle meant the absolute value of correlation coefficients. (D) 
Principal component analysis for the transcriptome profiles of MMP expression patterns, showing a remarkable difference on transcriptome between different modification 
patterns. (E) Survival analyses for the two MMP expression patterns based on 1649 patients with CC from TCGA cohorts including 98 cases in MMPcluster-A and 1551 cases 
in MMPcluster-B. Kaplan-Meier curves with Log-rank p value 0.047 showed a significant survival difference among two MMP expression patterns. The MMPcluster B displayed 
significantly better overall survival than MMPcluster-A. (F) The fraction of tumor-infiltrating lymphocyte cells in two MMP clusters by using the CIBERSORT algorithm. Within 
each group, the scattered dots indicated TME cell expression values. With the thick line of the median value, the bottom and top of the boxes were the 25th and 75th percentiles 
(interquartile range). * p < 0.05; ** p < 0.01; *** p < 0.001. (G) GSVA analyses showing the cellular component, molecular function and distinct biological processes in distinct 
MMPcluster expression patterns. The heatmap was used to visualize these biological processes with red activated pathways and blue inhibited pathways. (H) GSVA enrichment 
analysis showing the activation states of biological pathways in distinct MMP expression patterns. The heatmap was used to visualize these biological processes with red activated 
pathways and blue inhibited pathways. 
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Figure 3. (A) 350 MMP-related DEGs between two MMPclusters were displayed in the Venn diagram. (B) Survival analyses for the three MMP expression patterns founded on 
253 patients with CC from TCGA cohorts including 94 cases in MMPcluster-A, 27 cases in MMPcluster-B, and 132 cases in MMPcluster-C. Kaplan-Meier curves with Log-rank 
p value 0.013 showed an important survival difference among three MMP expression patterns. (C) Differences in MMPscore among three gene clusters. The Kruskal-Wallis test 
was utilized to compare the statistical differences between three gene clusters (p < 0.001). (D) Unsupervised clustering of overlapping MMP phenotype-related genes to classify 
patients into different genomic subtypes, termed as MMP gene cluster A-C, respectively. The gene clusters, MMPclusters, fustat, node, tumor, grade, gender and age were used 
as patient annotations. (E)The GO enrichment analysis was based on the overlapping MMP phenotype-related genes. The color bar represented the p values. BP, Biological 
Process; CC, Cellular Component; MF, Molecular Function. (F) Kaplan-Meier curves for high and low MMPscore patient groups in TCGA cohort. Log-rank test, p < 0.001. (G) 
The abundance of each TME infiltrating cell in three MMP gene clusters. The upper and lower ends of the boxes meant interquartile range of values. The lines in the boxes 
represented median value, and dots showed outliers. The asterisks indicted the statistical p value (* p < 0.05; ** p < 0.01; *** p < 0.001). (H) Correlation between different 
immune cells and fustat and MMPscore of CC patients. Red represented activated pathways and blue inhibited pathway. * p < 0.05; ** p < 0.01; *** p < 0.001. This was a Fig. 
Schemes following the same formatting. (I) Correlation between MMPscore and T cells regulatory (Tregs) in CC. R=0.31, p < 0.001. (J) Correlation between MMPscore and 
Mast cells resting in CC. R = 0.3, p < 0.001. (K) Correlation between MMPscore and B cells naive in CC. R = 0.2, p = 0.0036.  
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Considering the individual heterogeneity of 
MMP expression (Figure 3E), we quantified MMP 
expression in individual tumor cells by calculating the 
MMPscore. Compared with the other clusters, 
MMPcluster-A showed a significantly lower 
MMPscore, while MMPcluster-B displayed a high 
median score (p < 0.05) (Figure S3F). The 
Kruskal-Wallis test implied crucial differences in 
MMPscore between MMP gene clusters (A vs B, p < 
0.001; A vs C, p < 0.001; B vs C, p < 0.001). Gene cluster 
A had the lowest median score, while gene cluster B 
had the highest median score (Figure 3C). Consistent 
with the above analysis, this suggested that a high 
MMPscore may be strongly associated with immune 
activation, whereas a low MMPscore may be linked to 
stromal activation. Next, we sought to further 
determine the importance of the MMPscore in 
predicting patient prognosis. Patients were divided 
into low and high MMPscore groups. Patients with 
high MMPscore showed a significant survival benefit 
(p < 0.001), approximately twice that of patients with 
low MMPscore (Figure 3F). Besides, we found 
extremely different immune cell infiltration in the 
three gene clusters (Figure 3G). Further single-sample 
GSEA revealed that different MMPscore were 
significantly associated with high and low levels of 
immune infiltration in tumor tissues (Figure 3H and 
Figure S3G). The high MMPscore group was 
dominated by immune cell activation that was closely 
correlated with prognosis (Figure 3H). The above 
results strongly displayed that a high MMPscore was 
associated with increased immune activation. The 
MMPscore allowed for a better assessment of the 
MMP expression patterns of individual tumors and 
further assessed the TME infiltration characteristics of 
tumors to distinguish between true and false TME 
immune infiltration. 

Role of MMP expression patterns in 
immunotherapy 

To better characterize the MMP immune profile 
and test the correlation between immune cells and 
MMPscore, we examined the specific correlation 
between each TME-infiltrating cell type and high and 
low MMP expression, which showed a tight 
correlation (Figure 4A). Our study implied that TME 
immune cell infiltration was significantly increased in 
tumors with high MMPscore, which meant a more 
significant positive correlation with T cell subsets, 
mast cells and B cells (T cells regulatatory, R = 0.31, p 
< 0.001; Mast cells resting, R = 0.3, p < 0.001; B cells 
naive, R = 0.3, p < 0.001; Mast cells activated, R = -0.43, 
p < 0.001; Dendritic cells activated, R = -0.21, p = 
0.0022; Monocytes, R = 0.17, p = 0.016; Neutrophils, R 
= -0.24, p = 0.00057; NK cells resting, R = -0.19, p = 

0.0059; Plasma cells, R = 0.14, p = 0.043; T cells CD8, R 
= 0.2, p = 0.004; Macrophages M0, R = -0.27, p < 0.001; 
T cells follicular helper, R = 0.18, p = 0.0098) (Figure 
3I-K and Figure S3H-P). The investigation about the 
correlation between MMPscore and adhesion 
molecules, as well as between HLA molecules and 
interleukins, showed that MMPscore correlated 
significantly with immune checkpoints (Figure S3G 
and Figure 4B-C) with the most significant correlation 
of CD44 and TNFSF9 (CD44, R = 0.46, p<0.001; 
HLA-E, R = -0.18, p = 0.0044; TSLP, R = -0.27, p < 0.001; 
TNFSF9, R = -0.36, p < 0.001; IL33, R = -0.17, p = 0.0057; 
HLA-C, R = -0.15, p = 0.014) (Figure S4A-F). 
MMPscore can predict the strength and weakness of 
immune function with immunotherapy performed 
and evaluated for immune checkpoints. In addition, 
we found that different types of HLA also correlated 
with MMPscore (Figure 4B), with HLA-E and HLA-C 
the most prominent (Figure S4B and Figure S4D). For 
immune regulation, we found a correlation between 
MMPscore and interleukins (Figure 4C), with TLSP 
and IL-33 of more value (Figure S4C and Figure S4E). 
MMPscore also had predictive value in evaluating 
immune escape. The mRNA transcriptome showed 
differences with various MMPscore and correlated 
importantly with immune-related biological path-
ways (R = 0.26, p<0.001) (Figure 4D). The expression 
of MMP may be involved in immune pathways and 
activation or inhibition. CD47 increased immune 
escape, and a high MMPscore was associated with 
low immune escape in a study examining the effect of 
MMPscore on immune checkpoint blockade therapy 
(Figure S4G). These results showed that tumors with 
high MMP expression showed significantly correlated 
immune activation pathways. 

Characterization of MMP expression in TCGA 
molecular subtypes and tumor somatic cell 
mutations 

TCGA constructed a comprehensive molecular 
landscape for CC and investigated the predictive 
ability of MMPscore in CC prognosis in patients with 
different tumor mutational burden, found that 
survival prognosis was not significantly related to 
high or low tumor loads (p = 0.298) (Figure 4F), 
however, high or low tumor mutational burden 
combined with the high MMPscore group had a better 
survival prognosis than those combined with the low 
MMPscore group (p = 0.002) (Figure 4E). We counted 
179 MMP mutations in 208 CC samples with a 
mutation frequency of 86.06%, of which TTN showed 
the highest mutation frequency followed by PIK3CA, 
and other genes also displayed varying degrees of 
mutation (Figure 4G). The somatic mutation 
distribution differed between high and low 
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MMPscore in the cohort (Figure 4G and 4H): the low 
MMPscore group exhibited a wider range of tumor 
mutations, compared with the high MMPscore group. 
The rates of the 2nd and 14th most significant 
mutated genes were 27% and 7%, and 9% and 28%, 
respectively. The above analyses indicated that a high 
MMPscore was associated with long-term survival 

and durable clinical benefit. The combination of 
MMPscore and tumor mutational burden could more 
accurately determine prognosis in different patient 
cohorts, and the predictive advantage of ROC curve 
assessment was reflected in the survival prognosis of 
patients with CC (Figure S4H). 

 

 
Figure 4. (A) Correlation between MMPscore and TME infiltrating cells. The color and the values indicate the Spearman correlation coefficient. (* p < 0.05; ** p < 0.01; *** p 
< 0.001). (B) Correlation between MMPscore and human leukocyte antigens in CC. The color and the values represented the Spearman correlation coefficient. The asterisks 
indicated a statistically vital p-value calculated using Mann-Whitney U test (* p < 0.05; ** p < 0.01; *** p < 0.001). (C) Correlation between MMPscore and Interleukins in CC. 
The color and the values represented the Spearman correlation coefficient. The asterisks indicated a statistically significant p-value calculated using Mann-Whitney U test (* p < 
0.05; ** p < 0.01; *** p < 0.001). (D) Correlation between RNAss and MMPscore (R = 0.26, p < 0.05). (E) Survival analyses for patients with H-TMB+H-MMPscore, 
H-TMB+L-MMPscore, L-TMB+H-MMPscore and L-TMB+L-MMPscore using Kaplan-Meier curves. H, high; L, Low; TMB, Tumor Mutational Burden (p = 0.002, Log-rank test). 
The H−TMB+H−MMPscore showed much better overall survival than the other three MMP patterns. (F) Survival analyses for patients with high-Tumor Mutational Burden and 
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low-Tumor Mutational Burden by Kaplan-Meier curves. H, high; L, Low; TMB, Tumor Mutational Burden. (p = 0.298, Log-rank test). (G-H) Mutational landscape of genes in 
TCGA stratified by high MMPscore (G) versus low MMPscore (H) subgroups. With each column representing individual patients, the upper bar plot showed TMB, and the right 
bar plot displayed the mutation frequency of each gene in separate MMPscore groups. 

 
Figure 5. (A) Sankey diagram demonstrating the relationship between MMPclusters, geneclusters, MMPscore and fustat. (B) Differences in MMPscore among distinct fustat 
clinical response groups. (C) The proportion of patients with fustat in the low or high MMPscore group. (D) Kaplan-Meier curves for high and low MMPscore patient groups in 
the dead patients. Log-rank test, p = 0.003. (E-G) The correlation between the high and low expressions of MMP and the semi-inhibited concentration sensitivity of various drugs. 
Drugs: Doxorubicin, AZD6244, and AUY922. (H) HE staining was performed to observe pathological changes of cervix tissue in normal and CC group. (A, normal, B, CC; 
magnification: 5x, scale bar = 200µm; 10x, scale bar = 100µm; 20x, scale bar = 50µm; 40x, scale bar = 20µm). (I) Expression levels of mRNA of MMPs in CC and control. The 
mRNA expression levels of MMP-2, MMP-3, MMP-7, MMP-9, MMP-12 and MMP-13 in patients with CC or controls were measured by RT-qPCR. GAPDH were used as a loading 
control. Data were founded on the mean ± SD of triplicate independent experiments. p values were obtained by Student’s t test. (CC, n = 3; Controls, n=3; *, p < 0.05; **, p < 
0.01; ***, p < 0.001; ns, nonsignificant.). 

 

Clinical features of MMP expression patterns 
Consistent with the above findings (Figure 5A), 

gene clusters B and C both showed high MMP 
expression and better survival outcomes, while gene 
cluster A, containing both high and low MMP 
expression cases, exhibited poorer survival outcomes, 
approximately 50% of patients with a prognosis of 
death. The above results again suggested that MMP 
expression profiles played a non-negligible role in 
shaping different TMEs. Next, we used MMPscore to 
systematically evaluate CC in terms of its clinical 
characteristics, including age, weight, smoking, 
clinical stage, and prognosis (Figure 5B-D, S4I-Q and 

Figure S5A-I). Once again, the high MMPscore (p = 
0.003) was dominated by survival outcomes in the 
Fustat survival prognosis (Figure 5B-D). In addition, 
high MMPscore also correlated significantly with 
TNM stage, especially in patients with Nx (p = 0.006), 
T2 (p<0.001), and G3 (p = 0.006) stages of better 
survival prognosis (Figure S4J-L and Figure S5B, 5D, 
5F), which showed better assessment in tumor 
infiltration and metastasis. We also found that the 
MMPscore could indicate sensitivity to more than ten 
drugs, including nilotinib and Adriamycin. It can be 
inferred that high MMPscore can make drug response 
more sensitive (Doxorubicin, p < 0.001; AZD6244, p < 
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0.001; AUY922, p < 0.001; AS601245, p < 0.001; ATRA, 
p < 0.001; AMG.706, p < 0.001; Nilotinib, p < 0.001; 
WO2009093972, p < 0.001; AZD.0530, p < 0.001; 
A.770041, p < 0.001) (Figure 5E-G and Figure S5J-P). 

MMP expression is generally increased in CC 
tissue 

To confirm whether the expression of the MMP 
gene set was generalized at the molecular level in 
tissues of patients with CC, we conducted HE and 
qRT-PCR experiments on cervical tissues from three 
cases of CC and three healthy individuals. As listed in 
Table S1, the six subjects enrolled in this study were 
divided into the CC group (three patients with CC 
receiving surgery or other treatments) and the 
non-CC group (three subjects receiving abdominal 
hysterectomy for uterine leiomyoma or prolapse of 
uterus). The age distribution, the parity, and times of 
pregnancy showed no significant group differences. 
HE staining revealed cell polarity disorder, increased 
mitotic Figs, and abnormal cells breaking through the 
basal layer in CC tissues, which was consistent with 
the diagnosis of CC. HE staining of cervical tissue in 
the BCL group conformed to normal cervical 
pathological characteristics (Figure 5H). We observed 
that the expression of MMP-2, MMP-3, MMP-7, 
MMP-9, MMP-12, and MMP-13 genes in CC tissue 
was generally higher than that in BCL tissue (Figure 
5I). qRT-PCR analysis displayed that the mRNA 
expression of MMP-2, MMP-3, MMP-7, and MMP-9 in 
the cervical tissue of patients with cancer was 
significantly greater than that in the control (p = 0.005, 
p < 0.001, p < 0.001, and p = 0.038, respectively). 
mRNA expression levels of MMP-12, MMP-13, 
MMP-14, and MMP-19 in the cervical tissue of 
patients with cancer were greater than that observed 
in the control (p = 0.045, p = 0.025, p = 0.003, and p = 
0.025, respectively) (Figure 5I). We screened patients 
for immunohistochemical experiments using the same 
criteria as HE, and the patient information is shown in 
Table S2, Similarly, our immunohistochemical results 
also indicated that the tissue expression levels of 
MMP-2, MMP-3, MMP-7, MMP-12, MMP-13, and 
MMP-19 were higher than those of the control (p < 
0.0001, respectively) (Figure 6A-D).  

Discussion 
MMPs regulate cancer progression by regulating 

angiogenesis, invasion, and immune escape, but their 
potential for CC diagnosis and prognosis has not been 
studied considering the overall MMPs expression 
pattern [36]. MMPs can bind to the cancer cell surface, 
act on all stages of cancer, and are expressed in early 
tumor cells to facilitate ECM remodeling and release 
membrane-bound growth factors that prepare the 

microenvironment for tumorigenesis [37, 38]. MMP-9 
plays a role in a wide variety of cancers due to its 
effects on immune cell infiltration, and it has shown 
potential to determine prognosis. In addition, MMP-1 
and MMP-2 have also been associated with CC 
prognosis [39-42]. MMP-7 can predict a more 
aggressive colon cancer phenotype and is inversely 
correlated with patient survival [43]. MMP-11 can be 
considered a potential tumor marker and therapeutic 
target for advanced prostate cancer [44]. The 
mechanism underlying MMP effects in CC still 
requires further study. Recently, MMP has shown a 
strong evaluation ability in terms of clinical 
pathological characteristics, prognosis, and immune 
phenotype, which revealed MMP expression 
characteristics in the CC TME in this study. 

Accumulating evidence indicates that the MMP 
expression profile plays an indispensable role in 
inflammation [45], immunity, and inhibiting tumor 
progression, especially in the development and 
progression of digestive tract tumors, but there is no 
related study concerning CC. Furthermore, most 
current studies focus on a single TME cell type or a 
single protease, and the overall TME infiltration 
characteristics mediated by the combined effects of 
multiple MMPs have not been comprehensively 
recognized. We used the scRNA-seq dataset 
composed of CC patients and healthy individuals to 
find that MMP exhibited a cell type specific 
expression pattern in cervical tissue of cancer at the 
single cell level. This study revealed two MMP 
expression patterns based on 10 MMPs, which have 
shown distinctly different TME cell infiltration 
characteristics. MMPcluster-A is a type of immune 
rejection characterized by innate immune cell 
infiltration and stromal activation, as well as an 
immunoinflammatory phenotype characterized by 
adaptive immune cell infiltration and immune 
activation. In contrast, MMPcluster-B was activated 
by mutations. The immune rejection phenotype 
comprises non-inflamed tumors, while immune 
inflammatory phenotypes, referred to as hot tumors, 
manifest as massive immune cell infiltration in the 
TME [46-48]. Although the immune rejection 
phenotype included a large number of immune cells, 
they remained in the stroma surrounding the tumor 
cell nests, rather than penetrating their parenchyma. 
The stroma can be confined to the tumor envelope or 
penetrate the tumor itself, making immune cells 
appear truly inside the tumor [49-51]. More 
importantly, we found that MMPcluster-A exhibited a 
distinct stromal activation status, combined with TME 
cell infiltration features in each cluster. Patient 
prognosis opposed expectations; therefore, we 
speculated that stromal activation in MMPcluster-A 
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inhibited the antitumor effect of immune cells. 
Significant prognostic differences existed between the 
two clusters, confirming the reliability of our 
immunophenotype classification for different MMP 
expression patterns. Therefore, fully exploring the 
TME cellular infiltration characterization induced by 
different MMP expression patterns demonstrated that 
MMPcluster-A could further lead to poor prognosis 
through the function of suppressed immune cells. In 
addition, comparing MMP genetic and expression 

alterations between CC tissues and normal tissues 
showed a certain heterogeneity, indicating that MMP 
expression imbalance may play an important role in 
CC occurrence and progression. Our seminal 
exploration of the overall MMP expression pattern 
role in TME infiltration in CC will contribute to a 
deeper understanding of the mechanism of TME 
antitumor immune response and a more effective 
strategy for guiding immunotherapy. 

 

 
Figure 6. (A-D) Immunohistochemical analysis was performed on cervical tissues from control patients (n = 12) and those with CC (n =12). Representative images and data are 
shown. Scale bars: 200.0 µm(10X). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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In this study, MMP gene analysis identified three 
genomic subtypes that were also significantly 
associated with matrix activation and immune 
response, similar to the clustering results for MMP 
expression. This demonstrates that MMP expression 
has important implications for shaping different 
TMEs. Therefore, a comprehensive evaluation of 
MMP expression patterns will enhance our 
understanding of the characterization of TME cellular 
infiltration. However, previous analysis was mainly 
based on patient population and could not accurately 
predict the expression pattern in individual patients. 
Considering the individual heterogeneity of MMP 
expression, its pattern must be urgently quantified in 
single tumors. In this study, this deficiency was well 
compensated by constructing an MMP scoring 
system, evaluating the MMP expression pattern in CC 
patients, and visualizing property changes in 
individual patients. The expression pattern 
dominated by the MMPcluster-B expression signature 
exhibited a high MMPscore, suggesting that the 
MMPscore is a reliable and powerful tool to 
comprehensively assess MMP expression patterns in 
individual tumors that can be used to further 
determine the TME infiltration pattern, also known as 
the tumor immunophenotype. More importantly, the 
MMPscore showed good assessment ability in terms 
of patient clinical characteristics, including tumor 
differentiation level, mutation burden, pathological 
stage, body weight, age, and clinical prognosis, and it 
could guide clinical treatment. Comprehensive 
analysis showed that MMPscore was an effective 
indicator of biological prognosis in CC. Our 
MMPscore has shown excellent predictive power in 
CC precision immunotherapy utilizing the immune 
escape feature. 

The heterogeneity of solid tumors and the TME 
has been well mapped. In this study, we elucidated 
the heterogeneity and tumor infiltration pattern in CC 
through different MMP expression patterns. Some 
studies have shown that the CC TME is 
heterogeneous [52], and we further analyzed its 
biological and transcriptomic heterogeneity at the 
single-cell level. Different CC cell markers identified 
tumor cell heterogeneity, as well as apparent 
heterogeneity in MMP expression, compared with 
tumor stromal cells, which suggested that different 
transcriptomes of individual cells might reflect their 
tumor biological characteristics, further 
demonstrating the possibility that MMPs are involved 
in and influence tumor progression. By using 
scRNA-seq, we identified all cell types in CC, 
including those of neutrophils, T cells, smooth muscle 
cells, trophoblast progenitors, trophoblast stem cells, 
megakaryocytic progenitors, endothelial cells, 

myoepithelial cells, Purkinje cells, myeloid cells, and 
fibroblasts, as well as 12 cell types of unknown 
significance. Further dimension reduction analysis 
showed that the proportion of each cell subtype 
differed significantly between cancer tissues and 
normal tissue stroma. GSEA of the marker genes of 
each cancer cell cluster revealed some association 
with the MMP family, further validating the cell 
identity and biological pathways described above and 
elucidating specific gene expression signatures in CC 
cell types while comparing the different cell 
infiltration in tumor tissues and showing their MMP 
enrichment. Single-cell transcriptomics explain the 
potential link between tumor cells and MMPs by 
identifying rare cell subpopulations. In addition, the 
effectiveness of MMPscore was also well validated in 
CC tissue. Therefore, we anticipate that these findings 
will provide important clues for the developing 
applications of the MMP family in CC. 

Unfortunately, our data did not show a 
significant correlation between MMPscore and tumor 
mutational burden. However, it is worth noting that 
patients in high MMPscore group showed better 
prognosis regardless of high or low tumor burden, 
and then it was speculated that survival analysis by 
MMPscore combined with tumor mutational burden 
could yield more nuanced prognostic results. Our 
results showed that MMP expression plays a 
non-negligible role in shaping different stromal and 
immune TMEs, implying that it may influence the 
therapeutic efficacy of immune checkpoint blockade. 
In addition, MMPscore integration with various 
biomarkers, including PD-1 expression and stromal 
and immune TME, may lead to a more effective CC 
immunotherapy strategy, which should be verified by 
further experimental results. Moreover, the 
correlation between MMPscore and tumor stage, 
degree of invasion, and prognosis analysis did not 
show significant effect in all grades. The correlation 
between MMPscore and patient weight and age 
factors and its survival predictive effect were also not 
obvious. With the power of single-cell transcriptomics 
to identify cellular subsets and interpret links between 
tumor cells and endothelial cells, scRNA-seq is 
inherently limited to transcript-level measurements, 
so the functional implications of each population 
require further investigation. 

Scholars performing pan-cancer analysis showed 
that MMPs had prognostic value only in clear cell 
renal cancer [36]. This study elucidates the role of 
MMPs in cancer by developing an MMPscore scoring 
system, which may serve as an independent marker 
for predicting patient survival prognosis and provide 
new insights into CC immunotherapy. These new 
ideas may target MMP-related genes, reverse 
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unfavorable TME cell infiltration characterization, 
and help develop novel drug combination strategies 
or novel immunotherapeutic agents in the future. We 
provide new ideas for improving patient clinical 
responses to immunotherapy, identifying distinct 
tumor immune phenotypes, and promoting 
personalized CC immunotherapy in the future. In 
conclusion, the MMPscore can be used in clinical 
practice to comprehensively evaluate the MMP 
expression pattern of individual patients and their 
corresponding TME cell infiltration characteristics, 
further determine the tumor immune phenotype, and 
guide more effective clinical practice. 

Conclusions 
In summary, this work demonstrates a broad 

regulatory mechanism of the CC TME by the MMP 
expression landscape. Differences in MMP expression 
patterns are a non-negligible factor contributing to the 
heterogeneity and complexity of individual TMEs. 
The MMPscore exhibited a strong predictive function 
in CC patient survival analysis that could provide 
guidance for clinical work-up. Single cell 
transcriptomics used to investigate the intratumoral 
heterogeneity of CC at the cellular level validated the 
strong correlation between MMPs and tumorigenesis 
and revealed the biological nature of tumorigenesis. 
Comprehensive assessment of MMP expression 
patterns in individual tumors will enhance our 
understanding of the characteristics of cellular 
infiltration in the TME. The correlation between 
MMPscore and immune checkpoints and immune 
cells may provide strategies and directions for 
subsequent immunotherapy research. 
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