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Abstract 

Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed 
the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and 
immune responses. 
Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from 
the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. 
WGCNA and differential expression analysis were subsequently conducted. Consensus clustering 
identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then 
conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 
algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune 
infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility 
to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒
PCR assays were subsequently conducted. 
Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in 
cluster A were superior to those of patients in cluster B. We constructed a prognostic model with 
perfect predictive capability and validated it in internal and external colon cancer datasets. We 
discovered significant discrepancies in immune infiltration and immune checkpoints between different 
risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for 
some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments 
demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC 
cells. 
Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, 
which will help a lot in the advancement of better forecasting and therapeutic approaches. 

Keywords: Colon cancer; Machine learning algorithm; E3 ubiquitin ligase; Immune response. 

Introduction 
Colorectal cancer (CRC) is the third most 

frequent cause of cancer death in both females and 
males in the United States [1]. With the rapid 
development of advances in early detection, targeted 
therapy and surgery in recent decades, progress in the 
treatment of tumors has accelerated, and there is a 

decreasing trend in the mortality of patients with 
colon cancer. However, early symptoms are not 
common in patients with colon cancer, and the 
disease is often confirmed at a very late stage, which 
leads to a low long-term survival rate because of 
limited treatment options [2]. Consequently, given 
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that colon cancer is a highly heterogeneous tumor [3], 
there is an urgent need for new strategies to predict 
the prognosis of colon cancer more credibly and guide 
individual treatment strategies. Importantly, recent 
studies indicate that risk models based on multigene 
expression are a viable option [4-6]. 

In colon cancer, the regulation of ubiquitination 
is an indispensable process that influences oncogene 
and tumor suppressor expression. Ubiquitination of 
the target protein is considered a three-step 
enzyme-linked reaction mediated by E1, E2, and E3 
ubiquitin ligases. E3s are strongly responsible for 
substrate specificity [7]. Not surprisingly, the 
activation of oncogenes and inactivation of 
oncosuppressors regulated by E3s have been 
implicated in the development of colon cancer. 
Proteasome-mediated degradation is important for 
the ubiquitylation involved in tumor development. 
For example, morn3 has been shown to accelerate the 
degradation of p53 by recruiting the E3 ligase MDM2 
to promote the proliferation of colon cancer cells [8]. 
Another famous tumor suppressor gene closely 
related to E3s is PTEN, which can be directly 
degraded by the E3 ligase WWP1 in colon 
adenocarcinoma [9]. However, nonproteolytic 
ubiquitylation does not involve ubiquitin-dependent 
proteolysis but rather involves immunological signal 
transduction, protein–protein interactions, membrane 
trafficking, and chromatin regulation during 
carcinogenesis [10, 11]. Wang and collegues [12] found 
that the ubiquitination of Sestrin2 by the E3 ligase 
RNF167 could influence its interaction with GATOR2 
and further disturb mTORC1 signaling in colon 
cancer. Therefore, E3-related genes (ERGs) are 
considered promising targets. Furthermore, E3-based 
prognostic models have been proposed for bladder 
cancer [13], glioma [14], and hepatocellular carcinoma 
[15]. Nonetheless, the value of ERGs in colon cancer 
classification and prognosis remains unknown. 

Cancer progression is strongly influenced by the 
tumor microenvironment (TME), which facilitates 
patient prognosis and the identification of potential 
targets for tumor therapy [16]. Ubiquitination is 
closely connected with the TME [17]. Recently, 
T-cell-mediated cytotoxicity, which is most important 
in killing cancer cells, has been regarded as a possible 
way to avoid an immune response [18]. PD-1 is a 
critical immune checkpoint on activated T cells and 
can promote immunosuppression. Ubiquitin- 
mediated modulation of the PD-1/PD-L1 pathway by 
E3s has obvious implications for immune responses in 
colon cancer [19]. For example, the E3 ligase SPOP has 
been shown to be disrupted by aldehyde 
dehydrogenase 2 (ALDH2), thereby preventing the 
proteasome-dependent degradation of PD-L1, which 

consequently inhibits T-cell tumor infiltration in CRC 
[20]. Nonetheless, the relationship between ERGs and 
the TME in colon cancer is not clear. 

In the present study, for the first time, we 
focused on 240 E3s, conducted a holistic analysis of 
ERGs, identified ERG-associated molecular subtypes, 
identified a new prognostic model for colon cancer 
based on the integration of multiple machine learning 
algorithms, and elucidated the connections between 
the risk model and immune response as well as 
sensitivity to antitumor drugs. Finally, to reveal the 
role of PRELP, we conducted in vitro experiments and 
found that PRELP may function as a tumor 
suppressor in CRC. Our research provides novel 
perspectives on the underlying mechanisms and 
E3-associated targets involved in colon cancer and 
may also provide a foundation for individualized 
therapy. 

Materials and Methods 
Data collection 

The transcriptomic and clinical information of 
normal colon samples and tumor samples was 
obtained from the Genotype-Tissue Expression 
(GTEx) database (https://www.gtexportal.org/) and 
The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/). Additionally, we 
retrieved datasets for colon cancer from the GEO 
database, including the GSE17537 (n=54) and 
GSE29621 (n=65) datasets. The FPKM values of the 
RNA-seq datasets were log2 transformed. Ultimately, 
data from 430 tumor samples with survival 
information and 349 normal samples were combined 
for further study. All the data were extracted and 
annotated with Strawberry Perl and R software 
(version 4.4.0). 

Screening of E3 ubiquitin ligase (E3)-related 
genes (ERGs) 

We retrieved 240 E3s from previously published 
literature. A list of those 240 E3s is provided in Table 
S1. Furthermore, the expression information of 240 
E3s was integrated from the public database. On the 
basis of the expression information in the public 
database, coexpression analysis was performed using 
the "limma"package of R (version 4.3.1) in order to 
identify ERGs. Genes with p<0.001 and |R2| >0.4 
were regarded as ERGs, which was refered to the 
previous literature [21]. 

Analysis of differentially expressed ERGs 
between normal and cancerous tissues in the 
colon 

By comparing the transcription profiles of 
samples in the GTEx and TCGA datasets with the 
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“limma” R package, differentially expressed ERGs 
were identified (|log2-fold change (FC)| > 1, false 
discovery rate (FDR) < 0.01). Next, 1,493 ERGs with 
differential expression were analyzed for enrichment 
in GO (Gene Ontology) and KEGG (Kyoto 
Encyclopedia of Genes and Genomes) to investigate 
their biological functions and pathways (p < 0.05). 
Bubble, histogram, and circle plots were used for 
annotation analysis with the R packages “enrichplot”, 
“GOplot”, and “ggplot2” [22], respectively. 

Functional enrichment analysis by gene set 
enrichment analysis (GSEA) 

The c2.cp.kegg.v7.5.1.symbols.gmt subclass was 
obtained from the Molecular Signatures Database 
(http://www.gsea-msigdb.org/gsea/downl-oads.jsp
) for analyzing important pathways and molecular 
functions using specific gene expression profiles. To 
conduct the GSEA, we used the total transcriptome of 
tumor samples and considered gene sets with P < 
0.001 and FDR, q < 0.001 as statistically significant. 

Weighted gene coexpression network analysis 
(WGCNA) 

WGCNA [23], a freely accessible R software 
package, establishes a coexpression network by 
converting coexpression correlations into connection 
weights. Based on this background, ERGs were 
applied to establish a weighted gene coexpression 
network. The parameter β is a threshold parameter 
that emphasizes strong relationships and attenuates 
weak relationships between different genes. The 
weighted adjacency matrix was transformed into a 
topological overlap matrix (TOM) for assessing 
network connectivity, with hierarchical clustering 
used to create the clustering tree structure of the 
TOM. The genes were separated into different 
modules depending on different similarity measures 
based on the TOM. In this study, we set the 
mergeCutHeight, minModuleSize and deepSplit as 
0.25, 60 and 2, respectively. Finally, we identified 11 
coexpression modules. The eigengene dendrogram 
confirmed that in terms of the correlation coefficient, 
turquoise had the highest value of 0.93. A total of 788 
hub genes in the turquoise module with module 
membership (MM) > 0.8 and gene significance (GS) > 
0.5 were identified. 

Identification of ERG‑associated subtypes 
409 potential ERGs were discovered by 

combining differentially expressed ERGs with hub 
genes from the turquoise module of WGCNA. Then, a 
Venn plot was used to display the intersection genes. 
Consensus clustering was applied to identify distinct 
E3-associated classifications by the k-means algorithm 

based on the 409 ERGs by using the 
“ConsensusClusterPlus” R package [24]. The Kaplan–
Meier method was used to evaluate overall survival 
(OS) between the two clusters. Furthermore, immune 
genes, immune cells and immune functions were 
compared. Finally, a total of 800 DEGs (|logFC|>1, 
p<0.05) between the two ERG‑associated clusters 
were identified using the R package “limma” [25]. 

Risk model constructed based on integrated 
machine learning approaches 

A high-accuracy risk model was constructed 
using ten machine learning algorithms and 92 
algorithm combinations. The 10 algorithms used for 
integration included Lasso, Ridge, random survival 
forest (RSF), stepwise Cox, generalized boosted 
regression modeling (GBM), CoxBoost, supervised 
principal component (SuperPC), survival support 
vector machine (survival-SVM), elastic network 
(Enet), and partial least squares regression for Cox 
(plsRcox). The specific steps are described by Liu [26]. 

Validation of the risk model 
Randomly, patients were segmented into 

training and testing datasets at a 1:1 ratio by 
employing the “caret” R package. Using the 
"survminer" package, an optimal cutoff point was 
calculated. Then, the training and validation datasets 
were segmented into high- and low-risk patients. The 
risk model's ability to predict was shown through 
survival analysis, risk plots, and receiver operating 
characteristic (ROC) curves in the TCGA training 
dataset. R package “timeROC” was used to predict 
overall survival. Furthermore, the prognostic model 
was validated in a validation dataset (TCGA testing 
dataset, TCGA entire dataset, GSE17537 and 
GSE29621). Afterward, different risk subcategories 
and clinical characteristics, such as age, gender, TNM 
stage, tumor size, metastasis status, and lymph node 
involvement, were examined within the entire TCGA 
database. In addition, we employed univariate and 
multivariate Cox regressions to confirm these 
autonomous prognostic indicators. Finally, a 
prognostic nomogram was developed, followed by 
the utilization of the “rms” R package to create a 
calibration plot using the coefficients. 

Comparison of immune infiltration and 
immune characteristics among different risk 
subgroups 

We applied different algorithms, including 
ESTIMATE, CIBERSORT and single-sample gene set 
enrichment analysis (ssGSEA), to evaluate immune 
cell abundance and immune function in different risk 
groups of patients with colon cancer. The R package 
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“ESTIMATE” [27] was applied to estimate the three 
immunoscores between different risk groups: the 
stromal, immune, and ESTIMATE scores. Moreover, 
we used the CIBERSORT [28] method with the 
expression profiles of patients with colon cancer to 
evaluate the infiltration of 22 types of immune cells in 
the high- and low-risk subclasses. Furthermore, 
ssGSEA [29] was applied to explore the enrichment of 
immune functions, and the correlations between these 
functions and risk scores were subsequently 
determined by Pearson correlation analysis Which 
was finished by using “GSVA” package of R software 
[30]. Additionally, we explored the connections 
between immune checkpoints and different risk 
groups as well as the 12 risk genes. 

Comparison of immune checkpoints and 
sensitivity to routine chemotherapy drugs in 
the two risk subgroups 

Initially, we predicted the effectiveness of 
immunotherapy by applying the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm [31]. 
Drug resistance is an obstacle to cancer treatment. 
Thus, to explore the sensitivity of routine 
chemotherapy drugs in the two subgroups, we 
computed and compared the half maximal inhibitory 
concentration (IC50) values of different antitumor 
drugs by employing the Wilcoxon signed-rank test 
with the R packages “ggplot2” and “oncoPredict” 
[32]. 

Mutation characteristics of the two risk 
subgroups 

To elucidate the correlations between gene 
mutations and the two risk subgroups, we 
downloaded mutation information associated with 
colon cancer from the TCGA database. Then, the 
somatic variants in the two risk subgroups were 
comprehensively explored using the “Maftools” R 
package [33]. 

Cell culture, plasmid transfection and 
antibodies 

RPMI 1640 medium containing 10% fetal bovine 
serum was used to culture the Hct-116 and Lovo 
colorectal cell lines at 37 °C in a humidified 
environment with 5% CO2. The PRELP-FLAG gene 
was produced by GENECHEM (Shanghai, China) and 
transferred to colorectal cells by Lipofectamine 3000 
(Thermo Fisher Scientific, #L3000150). Standard 
procedures were followed to maintain stable 
infection. FLAG-tag antibodies (Cell Signaling 
Technology, #8146) were used to detection the 
expresson of PRELP in this study. 

Quantitative real-time PCR (qRT‒PCR) 
The mRNAs were isolated using TRIzol Up 

(TransGen Biotech, #ET111-01-V2) and reverse- 
transcribed into single-strand cDNA using a reverse 
transcription kit (TransGen Biotech, #AT341-01). For 
RT‒PCR, PerfectStart® Green qPCR SuperMix 
(TransGen Biotech, #AQ601-01-V2) and PCR primers 
(PRELP: forward, 5'-GAACCAGCAGAGCCAACA 
GACC-3', and reverse, 5'-CAGGTTGCGGCTATC 
ACAGTAGAG-3') were used in a LightCycler®96 
Real-Time PCR machine (Roche). The instructions 
provided with the reagents were used to perform the 
test. 

Western blotting 
Proteins were lysed using RIPA lysis buffer 

(Beyotime Biotechnology, #P0013B). Protein levels 
were quantified using the BCA protein assay kit 
(Thermo Fisher Scientific, #23225). After boiled with 
5× protein loading buffer and separated using 10% 
SDS-PAGE, the denatured protein was then 
transferred onto a PVDF membrane. 5% skimmed 
milk was used to block non-specific binding sites for 
1.5 h at room temperature. We put the protein bands 
into box and make it react with the primary antibody 
overnight at 4 °C. Following three washes with TBST 
for 10 min, the protein bands was exposed to second 
HRP-conjugated antibodies for 1 h at room 
temperature. The membrane was subjected to blotting 
using a chemiluminescence system (BIO-RAD, USA). 

Cell Counting Kit-8 (CCK8) and 
scratch-wound assays 

A CCK8 assay (Beyotime Biotechnology, 
#C0037) was conducted to determine cell viability. 
Briefly, 100 µl of culture medium containing 3.0×10^3 
cells was added to 96-well plates to determine cell 
viability. Then, 10 µl of CCK8 solution was added to 
each well at the indicated time points, and the 
absorbance at 450 nm was measured. For the 
scratch-wound assays, 1×10^6 colorectal cancer cells 
were inoculated in 6-well plates containing culture 
medium. A 200 µl pipette tip was used to create 
scratches after the cells reached 90% confluency. The 
cells were washed and then cultivated in serum-free 
RPMI 1640 medium, after which the medium was 
discarded. After wounding, the cells were 
photographed 0 and 48 hours later. We calculated the 
wound closure area as follows: migration area (%) = 
(M0 − Mn)/M0×100. In this case, A0 is the initial 
wound area, and An is the remaining wound area at 
the metering point. 

Statistical analysis 
We used R version 4.4.0 to analyze the clinical 
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and expression profile information. Survival analysis 
was implemented using Kaplan–Meier curves and the 
Wilcoxon log-rank test. Two independent samples 
were compared using either the Mann-Whitney U test 
or t test. Categorical data were analyzed with Fisher’s 
exact probability method or the χ2 test. A P value 
less than 0.05 was deemed statistically significant, 
with ns representing not significant, * representing P 
less than 0.05, ** representing P less than 0.01, and *** 
representing P less than 0.001. 

Results 
Identification of ERGs 

An overview of this research can be found in 
Figure S1. Initially, 240 E3s were identified from 
previous literature (Table S1). After acquiring the 
data from the TCGA-COAD and GTEx datasets, we 
integrated the expression information of 240 E3s. To 
identify ERGs, we used coexpression analysis. Then, 
based on these E3s, we applied Spearman correlation 
analysis to identify ERGs in colon cancer samples. 
Finally, a total of 6,268 ERGs were selected (|R2|>0.4 
and p < 0.001). 

ERGs that were expressed differently in colon 
cancer and normal tissues 

We identified 1,493 differentially expressed 
ERGs in colon cancer samples compared to normal 
samples from the TCGA and GTEx datasets. Among 
these genes, 1,117 were upregulated, and 376 were 
downregulated. A heatmap depicting 50 genes, 
including upregulated and downregulated genes, is 
shown in Figure 1A. In addition, a volcano plot of the 
differentially expressed ERGs is presented in Figure 
1B. GO analysis revealed that the differentially 
expressed genes were related to mitotic nuclear 
division, nuclear division, and chromosome 
segregation in the biological process (BP) category. 
Regarding the molecular function (MF) category, 
differentially expressed genes were associated with 
CXCR chemokine receptor binding, microtubule 
binding, and glycosaminoglycan binding. Moreover, 
they were principally enriched in collagen-containing 
extracellular matrix, chromosomal region, and 
spindle in the cellular component (CC) category 
(Figure 1C). According to the KEGG analysis, genes 
related to cytokine−cytokine receptor interactions, the 
cell cycle, and the IL−17 signaling pathway were 
enriched (Figure 1D). 

Identification of hub genes and critical 
modules with WGCNA 

On the basis of the expression matrix of 6,268 
ERGs, we established a weighted gene coexpression 

network. Samples from the TCGA and GTEx datasets 
were separated into tumor samples (430 samples) and 
normal samples (349 samples). In Figure 2A, the 
horizontal axis represents the threshold, and the 
vertical axis represents the evaluation parameters of 
the scale-free networks. As the network's evaluation 
parameters increase, they become more consistent 
with the characteristics of a scale-free network. The 
horizontal line in the graph indicates a threshold 
value of 0.90. To create a scale-free network (Figure 
2A), we established a soft threshold power β of 8 
based on the connection between the soft threshold 
and mean connectivity. The ERGs with analogous 
expression types converged into the same modules 
with a cutting height difference of less than 0.25, 
which ultimately produced 11 coexpression modules 
(Figure 2B). The results revealed that 788 genes in the 
turquoise module (cor=0.93, p=0.000) were strongly 
associated with colon cancer (Figure 2C–D). In brief, 
the findings illustrated that the turquoise module was 
closely associated with colon cancer. Therefore, 788 
hub genes of the turquoise module were subjected to 
further investigation. 

Identification of prognostic clusters based on 
ERGs in patients with colon cancer 

By identifying the overlapping genes among the 
hub genes of the turquoise module with WGCNA and 
the differentially expressed ERGs, we identified 409 
overlapping genes (Figure 3A). Among the 409 
overlapping ERGs evaluated, we identified distinct 
prognostic subtypes by using consensus clustering, 
which revealed that the best number of clusters was 
two. Specifically, the delta area of the cumulative 
distribution function (CDF) showed that two was the 
most suitable number of clusters (Figure 3B–D). In 
addition, clusters A and B were distinct according to a 
principal component analysis (PCA) plot (Figure 3E). 
Based on the findings from Kaplan–Meier survival 
analysis (Figure 3F), samples in cluster B had a worse 
prognosis than those in cluster A. According to 
GSVA, cluster A was enriched in pathways associated 
with DNA repair (base excision repair, nucleotide 
excision repair) and the cell cycle, while cluster B was 
related to ECM–receptor interaction, basal cell 
carcinoma, and focal adhesion (Figure 3G). 

To further understand the correlation between 
the two clusters and immunity, the "ESTIMATE" 
package was used to evaluate the TME scores 
(immune score, stromal score, and ESTIMATE score) 
of the two clusters. Regarding the TME score, higher 
immune scores or stromal scores indicate greater 
relative abundances of immunocytes or stromal cells 
in the TME, and the ESTIMATE score represents the 
aggregation of immune scores and stromal cells in the 
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TME. The results revealed higher TME scores in 
patients in cluster B (Figure 3H). In addition, the 
numbers of immune cells in these two clusters are 
compared in Figure 3I, which illustrates a significant 
discrepancy in the immune response between the two 
clusters. Moreover, comparisons of immune scores 
revealed that patients in cluster B possessed stronger 
immune functions than patients in cluster A, while the 
tumor purity was greater than that of patients in 
cluster A (Figure 3K). Furthermore, we compared the 
expression levels of immune checkpoints in the two 
clusters and demonstrated that most checkpoints, 
such as CTAL4, were more strongly expressed in 
cluster B (Figure 3J). Additionally, combining with 
the results of GSVA, cluster B had significantly more 
pathways promoting tumor development than did 
cluster A. Collectively, the findings provide a basis for 
supporting the greater degree of malignancy of 

cluster B. Immune infiltration analysis revealed that 
cluster B had higher immune scores than did cluster 
A, which may be partially explained by intra- and 
intertumor heterogeneity and the presence of many 
exhausted immune cells in the TME [34]. 

Construction of an ERGs signature associated 
with prognosis 

To further study the potential mechanisms of 
these two tumor clusters, we obtained 800 DEGs 
between clusters A and B. Moreover, we screened 62 
genes connected with OS in patients with colon cancer 
by univariate Cox regression analysis (Table S2). 
Then, we randomly divided the colon cancer samples 
into training and testing datasets at a 1:1 ratio. 
Afterward, a prognostic model was constructed based 
on 10 machine learning algorithms and 92 algorithm 
combinations.  

 

 
Figure 1: Presentation and functional annotation of differentially expressed ERGs. (A) Heatmap showing fifty differentially expressed ERGs, with red dots indicating 
significantly upregulated genes and blue dots indicating significantly downregulated genes; (B) Volcano map of differentially expressed ERGs between colon tissues and normal 
tissues; Histogram depiction (C) in the aspects of the BP, CC, MF categories; Histogram depiction (D) of the top 16 enriched pathways. 
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Figure 2: WGCNA of ERGs and identification of E3-related hub genes. (A) Analysis of the scale-free index and mean connectivity for the confirmation of 
soft-thresholding powers; (B) Hierarchical clustering dendrogram of ERGs in a variety of modules; (C) Correlation analysis between different tissues and the module eigengenes; 
(D) Scatter plots of GS score and MM for ERGs in the turquoise module. 

 
In the TCGA training dataset, 92 kinds of 

forecasting models were fitted through the LOOCV 
framework. Additionally, C-indexes were calculated 
for each model, including the TCGA testing dataset 
and the GSE17537 and GSE29621 datasets (Table S3). 
Ultimately, the two best risk models for all the 
validation datasets with the highest average C-index 
(0.656) were identified (Figure 4A). The first one was a 
combination of stepwise Cox (direction = both) and 
Ridge consisting of 24 genes, while the other was a 
combination of Cox (direction = both) and Enet 
(alpha=0.1) consisting of 12 genes (Table S3). 
Notably, the 12 genes comprising the latter model 
were included in former model. Therefore, we chose 
the latter model constructed by the combination of 
Cox (direction = both) and Enet (alpha=0.1) for further 
study. The 12 genes in the optimal risk model were 
DEPDC1, CDC25C, PRELP, CDCA2, HEYL, GPX3, 
TIMP1, SERPINE1, FSTL3, ELFN1-AS1, CXCL2, and 
C2CD4A. 

The expression levels of the 12 risk genes above 
significantly differed between the two risk groups 
(Figure 4B). Furthermore, we applied the risk scores 
of the optimal model obtained from machine learning 
algorithms to classify all the individuals as high- or 
low-risk on the basis of optimal cutoff point value of 
training dataset. Furthermore, patients in the low-risk 
subgroup had obviously better overall survival (OS) 
in the TCGA training dataset (p < 0.001) (Figure 4C). 
Additionally, an ROC curve was created to confirm 
the precision of the training data, showing AUC 
values of 0.710, 0.755, and 0.739 for 1-, 3-, and 5-year 
OS, respectively (Figure 4D). The expression of the 
risk genes in different risk subgroups of patients with 
colon cancer, as well as the increased risk scores 
accompanied by increasing patient mortality, are 
revealed in the heatmap in Figure S2A–B.  

Evaluation of the ERGs-related risk model 
On the basis of the optimal cutoff point of the 
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risk score, the patients in the validation dataset were 
divided into low- and high-risk subgroups. We 
further explored the TCGA testing dataset and the 
entire dataset as well as two GEO datasets (GSE17537 
and GSE29621) as validation datasets to verify the 
reliability and accuracy of prognosis prediction. The 
validation set showed that patients in the low-risk 
group had a higher OS rate compared to patients in 
the high-risk group according to Kaplan–Meier 

survival analysis (Figure 4E, 4G, 4I, 4K). The AUCs 
for 1-, 3-, and 5-year OS in the TCGA testing dataset, 
the entire TCGA dataset, GSE17537, and GSE29621 
were 0.635, 0.610, and 0.607; 0.669, 0.681, and 0.683; 
0.768, 0.648, and 0.648; and 0.673, 0.736, and 0.735, 
respectively (Figure 4F, 4H, 4J, 4L). In addition, the 
risk score, risk plot, and risk gene expression in the 
validation dataset (Figure S2C–J) corresponded to 
those in the training dataset. 

 

 
Figure 3: Consensus clustering. (A) Venn diagram analysis showing the overlapping ERGs of the differentially expressed ERGs and hub genes from WGCNA; (B) The relative 
change in the area under the CDF curve from k = 2 to 9;(C) Empirical CDF plots from 2 to 9; (D) Consensus matrix heatmap for K = 2; (E) PCA analysis based on the two clusters; 
(F) Kaplan–Meier curves of OS in the two clusters in colon cancer; (G) GSVA representing the different biological pathways between the two clusters;(H) Correlation between 
two clusters and the tumor microenvironment;(I)Comparison of immune-related cells between cluster A and B;(J) Comparison of immune checkpoints between cluster A and 
B;(K) Comparison of immune functions between cluster A and B. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5384 

 
Figure 4: A prognostic model was constructed and validated based on 10 machine learning algorithms and 92 algorithm combinations. (A) A total of 92 kinds of prognostic 
models though LOOCV framework and the C-index of each model in all validation datasets; (B) Differential expression of the 12 risk genes between high- and low- risk subgroup; 
(C,E,G,I,K)Kaplan–Meier survival curves revealed that patients in the high-risk group had a worse prognosis compared with those in low-risk group in the training and validation 
dataset. (D,F,H,J,L) ROC curves validated the prognostic capability of the risk model based on risk genes in the training and validation dataset. 
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As the prognostic risk model was verified well in 
the validation set, we used the whole TCGA dataset 
for further study. In addition, we considered clinical 
characteristics (such as age, sex, tumor stage, T stage, 
M stage, and N stage) to identify whether the risk 
model could be applied as the best predictive factor 
for OS. Then, univariate and multivariate Cox 
regression analyses were conducted to determine 
whether the ERG-related risk score could be 
considered an independent predictor. Univariate Cox 
analysis revealed that age (p=0.030), tumor stage (p< 
0.001), T stage (p= 0.006), M stage (p< 0.001), N stage 
(p< 0.001) and risk score (p < 0.001) were associated 
with prognosis (Figure 5A), while multivariate Cox 
regression analysis revealed that age (p< 0.001), 
tumor stage (p < 0.05), T stage (p= 0.048), M stage 
(p=0.026) and risk score (p < 0.001) may be 
independent prognostic markers for colon cancer 
(Figure 5B). In addition, stage II was the main 

constitution in the low-risk group, whereas stage III 
accounted for a large proportion of the high-risk 
group (Figure 5C). Tumor stage exhibited notably 
discrepancy between the two risk subgroups. Finally, 
considering the clinical features and gene expression, 
we integrated the risk model based on 12 risk genes, 
age, T stage, M stage and tumor stage into a 
prognostic nomogram, which could be applied to 
forecast the OS of patients with colon cancer in terms 
of 1-, 3-, and 5-year OS (Figure 5D). Moreover, a 
calibration plot for 1-, 3- and 5-year OS probabilities 
revealed reasonable consistency between the 
nomogram predictions and the actual observations 
(Figure 5E). In addition, we explored the AUC values 
for 1-, 3-, and 5-year prognosis in the entire cohort and 
found that the prognostic nomogram model had the 
optimum AUC values among those factors (Figure 
5F–I). 

 

 
Figure 5: Cox regression analyses of OS and the establishment of a nomogram model. (A) Forest plot of univariate regression analyses; (B) Forest plot of 
multivariate Cox regression to identify the independent prognostic factors; (C) Distribution of tumor stage in the high- and low-risk groups in the TCGA cohort (p=0.001);(D) 
A nomogram model integrating the risk score and clinical features for the prediction of OS in colon cancer patients in the whole TCGA dataset; (E) Calibration plots of 1-, 3- and 
5-year OS probabilities of the nomogram model; (F-I) AUC curves of 1-, 3-, and 5-year OS verified the potential prediction value of the prognostic indicators. 
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Clinical correlation and stratified analyses of 
different risk groups 

We divided some clinical features into 2 
subgroups, and the correlations between clinical 
features and risk subgroups, as well as risk genes, are 
shown in the heatmap in Figure 6A. Specifically, we 
found that age, TNM stage, T stage, N stage and M 
stage were obviously different between the two risk 
groups (Figure 6B–G, Table S4). Furthermore, a 
stratified analysis of the two subgroups was 
performed. The risk score could be used to markedly 
stratify colon cancer patients into low- and high-risk 

groups on the basis of different clinical characteristics 
(such as age >65 years, age ≤65 years, male and 
female sex, stages I&II, stages III&IV, T3&4, N0, N1&2 
and M0), illustrating the model's excellent predictive 
ability based on a variety of clinical features (Figure 
6H–K, 6M–P, 6R–S). According to the findings from 
the K-M analysis, the risk model had obviously 
different risk stratification properties in patients with 
colon cancer, suggesting that patients with low-risk 
colon cancer had an obviously better prognosis. 
However, this conclusion was not reached for the T1–
2 (Figure 6L) or M1 (Figure 6Q) subgroups. 

 
 

 
Figure 6: Clinical correlation analysis and stratified analysis of the high- and low-risk subgroups. (A) A heatmap of the correlations between clinical features and 
risk subgroups, as well as risk genes;(B-G) A strip chart revealed the difference of clinicopathological features between different risk subgroups(***p < 0.001; **p < 0.01;*p < 
0.05); Kaplan–Meier curves showing the prognostic value of different risk subgroups for the patients separated by each clinicopathological feature. (H,I) Age; (J,K) Gender; (L,M) 
T Stage; (N,O) N stage; (P,Q) M stage; and (R,S) stage. 
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Discrepancies in immune infiltration, levels of 
immune checkpoints and somatic mutation 
characteristics between the two risk 
subgroups 

The whole TCGA dataset was used to determine 
the associations between the prognostic risk model 
and immune cell abundance, immune checkpoint 
molecule levels, and therapeutic effects. The 
advancement of colon cancer is impacted by immune 
cells infiltrating the tumor microenvironment. 
Initially, we found that there was a close relationship 
between risk score and immune cell abundance based 
on different software programs (Figure 7A). In 
addition, the proportions of immune cells in the two 
risk groups are shown in Figure 7B, which illustrates 
a significant discrepancy in the immune response 
between the two risk subgroups. Additionally, we 
evaluated the TME scores of the two risk subgroups. 
The TME scores of patients were greater in the 
high-risk group than in the low-risk group (Figure 
7C). In the high-risk subgroup, we revealed that M0 
and M2 macrophages were more common, while in 
the low-risk subgroup, plasma cells, eosinophils and 
CD4 memory resting T cells were more abundant 
(Figure 7E). Furthermore, we investigated the 
correlation between the risk score and the infiltration 
of 6 types of immune cells and demonstrated that the 
risk score had the strongest correlation with 
macrophages (p<0.001, cor>0.4) (Figure 7F–K). The 
M1 and M2 subgroups are derived from M0 
macrophages. It has been widely reported that M2 
macrophages can facilitate tumor development [35]. 
Previous study has demonstrated that the invasion of 
resting CD4+ memory T cells could be used to predict 
good prognosis [36]. Additionally, comparisons of 
immune scores revealed that high-risk patients 
possessed stronger immune functions than low-risk 
patients did (Figure 7D). Given the indispensable role 
of immune checkpoint blockade (ICB) in colon cancer 
therapy, we explored the discrepancy in the 
expression profiles of immune checkpoints between 
the two risk groups. Furthermore, the correlations 
between immune checkpoints and risk scores as well 
as risk genes are shown in Figure 7L. 

Finally, we delved into the connections between 
gene mutations and different risk categories in order 
to gain a deeper understanding of the fundamental 
biological factors. First, we found that the proportion 
of mutations in the high-risk subgroup was greater 
than that in the low-risk subgroup. Moreover, we 
confirmed the top 20 mutated genes in different risk 
subgroups (Figure 7M–N). The mutation rates of 
APC, TP53, TTN, KRAS, PIK3CA, SYNE1, MUC16, 
FAT4 and RAY2 in different risk subgroups were 

greater than 20%. In addition, compared to patients 
with TP53 mutations, patients who carried wild-type 
TP53 had markedly lower risk scores (p<0.001, Figure 
7Q), which could partly explain the high malignancy 
of patients in the high-risk group. Moreover, the 
tumor mutational burden (TMB) did not differ 
significantly between the two risk subgroups (Figure 
7O), and the correlations between the two subgroups 
and the TMB were not significant (Figure 7P). 

Discrepancies in drug sensitivity, GSEA and 
GSVA between the two risk subgroups 

For patients with unresectable CRC, the primary 
treatment is systemic therapy, including cytotoxic 
chemotherapy, targeted therapy, immunotherapy, 
biologic therapy, and their combinations, which may 
improve patient prognosis [37]. First, we explored the 
associations between the risk subgroups and the 
effectiveness of chemotherapy and targeted therapies 
in patients with colon cancer based on the GDSC 
database with a total of 198 drugs using the 
OncoPredict algorithm. As shown in Figure 8A–N, we 
found that the low-risk subgroup had lower IC50 
values for chemotherapy drugs (5-fluorouracil, 
docetaxel, cyclophosphamide, oxaliplatin, vinblastine 
and cytarabine) and targeted drugs (osimertinib, 
sapitinib, erlotinib, gefitinib, sorafenib, dabrafenib, 
tamoxifen and fulvestrant) (all p<0.001), which 
indicated that the sensitivities to commonly used 
therapeutic agents obviously differed between the 
two risk groups. Conversely, dabrafenib was more 
appropriate for the high-risk subgroup because of its 
lower IC50 value (p < 0.001, Figure 8O). Furthermore, 
to evaluate the status of immune escape in patients 
with colon cancer, we calculated the TIDE score to 
forecast the clinical efficacy of immunotherapy. 
Higher TIDE scores represent a greater potential for 
immune escape, illustrating that patients are unlikely 
to benefit from ICB [31]. The high-risk subgroup had 
higher TIDE scores (Figure 8P). We further used TCIA 
to predict susceptibility to immunotherapy and 
revealed that the immunophenoscore (IPS) was 
significantly lower in the high-risk group compared to 
the low-risk group (all p<0.05, Figure 8Q–T). This 
finding illustrated that patients with high-risk 
characteristics may experience reduced effectiveness 
from immunotherapy. 

GSEA and GSVA were applied to analyze the 
pathways enriched in different risk subgroups to 
discover molecular discrepancies. The GSEA results 
suggested that the genes in high-risk group were 
primarily involved in the calcium signaling pathway, 
cell adhesion molecules (CAMs), focal adhesion, 
neuroactive ligand receptor interaction, and vascular 
smooth muscle contraction (Figure 8U).  
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Figure 7: Relationships between the risk signature and immune infiltration, immune checkpoint genes and somatic mutation features. (A) Correlation 
between risk scores and immune cell abundance based on different software programs;(B) The proportion of 22 immune cells between the high- and low-risk subgroups;(C) The 
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discrepancy of tumor microenvironment between high- and low-risk subgroups; (D) Comparison of immune functions between the different risk groups; (E) Comparison of 
immune cell between the different risk groups;(F-K) Pearson correlation analysis between the risk score and infiltration of six types of immune cells; (L) Correlations between 
immune checkpoints and risk scores as well as risk genes; (M,N) Waterfall plot of somatic mutation characteristics in the high- and low-risk subgroups; (O,P) The relationships 
between the TMB and risk signatures; (Q) Correlation analysis between risk scores and the mutated gene(TP53). ***p < 0.001; **p < 0.01; *p < 0.05. 

 
In the low-risk group, glycosylphosphatidy-

linositol (GPI) anchor biosynthesis, homologous 
recombination, pentose and glucuronate 
interconversions, and peroxisome and retinol 
metabolism were enriched (Figure 8V). Moreover, we 
applied GSVA to explore the discrepancies involved 
in KEGG pathway enrichment between the two 
subgroups, and the results are revealed in Figure 8W. 
These findings illustrate that tumor-associated 
signaling pathways may contribute to the distinct 
TMEs and drug sensitivities of different risk 
subgroups. 

PRELP inhibits the proliferation and migration 
of CRC cells 

It has been shown that all of these risk genes, 
except PRELP, are related to colorectal cancer. 
Although PRELP has been found to be a tumor 
suppressor in hepatic cancer [38], bladder cancer [39] 
and retinoblastoma [40], its role in colorectal cancer is 
unclear. To further clarify its role in CRC, we 
conducted in vitro experiments. A scratch-wound 
healing assay was used to determine the effect of 
PRELP on the migration of CRC cells. PRELP 
significantly reduced the motility of Hct116 and Lovo 
cells and prevented cell migration (Figure 9A–C). 
CCK-8 analysis was performed on Hct116 and Lovo 
cells, and the results indicated that overexpression of 
PRELP resulted in a significant decrease in 
proliferation (Figure 9D–E). Besides, we conducted 
qRT-PCR and WB analysis to detection the expression 
of PRELP after exogenous transfection (Figure 9F-G). 
Above all, in vitro experiments uncovered that PRELP 
is a potential predictor of CRC. 

Discussion 
Due to tumor heterogeneity, chemotherapy, 

targeted therapy and immunotherapy are currently 
ineffective for some patients with colon cancer [41]. In 
this respect, new classifications and prognostic risk 
models for colon cancer are particularly needed to 
help promote individualized medicine. In the present 
study, we first identified ERGs and explored two 
molecular subtypes based on the screened ERGs that 
were markedly different in terms of prognosis and 
immune infiltration. Then, a prognostic risk model 
based on the DEGs between these two subtypes was 
identified by using 92 machine learning algorithm 
combinations. This model was further found to be a 
potential independent prognostic indicator with 

favorable predictive properties. Moreover, marked 
differences in immune infiltration and immune 
checkpoints between the two clusters and risk groups 
were detected. Furthermore, the relationship between 
the prognostic model with 12 risk genes and drug 
sensitivity was investigated, which may aid in the 
development of precise therapies for colon cancer. 

It is predicted that genetic biomarkers and 
related diseases could be better understood with the 
advancement of interaction prediction research in 
various fields of computational biology. A recent 
report revealed that a new deep learning algorithm 
named GCNAT (graph convolutional network with 
graph attention network) could predict metabolites 
associated with disease and their potential 
associations [42]. Additionally, novel deep learning 
predictive models, such as DMFGAM [43], were 
developed for predicting cardiotoxicity associated 
with hERG channel blockers. It has become equally 
important to study gene/protein signaling networks 
and establish theoretical models to understand 
regulatory mechanisms and find potential therapeutic 
targets. In this research, we established a prognostic 
risk model to predict the prognosis and therapy 
response of colon cancer using 92 algorithm 
combinations based on the integration of 10 machine 
learning algorithms, elucidated the different risk 
genes and then constructed a model influenced by 
ubiquitin modification. 

Most of the twelve risk genes in the prognostic 
model have been implicated in tumor development, 
especially CRC. Wang et al [44] reported that 
DEPDC1 could promote the proliferation, invasion, 
and EMT of CRC via the regulation of 
zest12-mediated H3K27Me3. Additionally, DEPDC1 
is associated with the sensitivity of CRC to 
5-fluorouracil [45] and oxaliplatin [46]. CDC25C is 
involved in regulating the G2/M phase and 
mediating DNA damage and repair, as well as a key 
part of tumorigenesis and tumor development [47-49]. 
Recent research demonstrated that CDC25C was 
involved in the proliferation and cell cycle 
progression of CRC cells [50]. PRELP plays a crucial 
role in regulating the EMT process and further 
inhibits the progression of retinoblastoma [40]. In 
addition, CDCA2 can promote progression and may 
be related to poor prognosis and radioresistance in 
CRC [51]. TIMP1 can accelerate tumor progression 
and metastasis by regulating the FAK-PI3K/AKT and 
MAPK pathways in colon cancer [52].  
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Figure 8: Comparison of the two risk groups in routine drug sensitivity, molecular typing of immune escape and pathways. (A-O) Correlations between the 
two risk subgroups and sensitivity to routine antitumor drugs. (P)The high-risk group had higher TIDE scores than the low-risk group; (Q-T) Comparison of immunophenoscore 
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(IPS) between different risk subgroups; (U,V,W) GSEA and GSVA representing the different biological pathways between the high- and low-risk subgroups. P values are presented 
as follows: ***p < 0.001; **p < 0.01; *p < 0.05; ns: not significant; 

 
Figure 9: PRELP inhibit the migration and proliferation of Hct116 and Lovo cells. (A,B) PRELP inhibited the migration of Hct116 and Lovo cells based on scratch 
wound analysis. Scale bar: 1000μm. (C) Migration rate quantitative analysis in (A,B). (D,E) CCK-8 assay revealed that PRELP inhibited the proliferation of Hct116 and Lovo cells. 
(F,G) Detection of the expression of PRELP after exogenous transfection by qRT-PCR and WB analysis. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the control group. 

 
FSTL3 was found to be related to tumor invasion 

and metastasis in CRC by activating EMT [53, 54], and 
T-cell exhaustion and macrophage and fibroblast 
polarization [55]. Furthermore, recent research has 
revealed that C2CD4A can interact with p53 and 
increase its ubiquitination and degradation to restrain 
the p53 signaling pathway in CRC [56]. CXCR2, a type 
of chemokine receptor, has been reported to be 
expressed on CRC cells [57]. Notably, the CXCR2 
ligand CXCL2 can promote the development of colon 

cancer by binding to CXCR2 [58, 59] and remodeling 
the TME [60-62]. In CRC, the lncRNA ELFN1-AS1 can 
accelerate the proliferation, invasion and migration of 
tumors by targeting miR-4270 [63], miR-191-5p [64], 
miR-1250 [65], miR-4644 [66] and miR-191-5p [67]. In 
addition, the lncRNA ELFN1-AS1 can promote 
oxaliplatin resistance [68]. GPX3 acts as both an 
oncogene and a tumor suppressor in different tumor 
types, suggesting that it plays a dichotomous role [69]. 
In a meta-analysis of 17 eligible articles, Zhou et al 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5392 

[70] reported that GPX3 methylation is related to 
cancer and may be an important indicator for 
predicting lymph node metastasis. In colon cancer, 
Sarah and colleagues reported that HEYL inhibits the 
intravasation of metastatic CRC cells in vivo, hence 
negatively regulating metastasis formation [71]. In 
colon cancer, the knockdown of SERPINE1 inhibits 
the EMT process, invasion and proliferation ability of 
cancer cells and increases apoptosis [72]. Moreover, 
Kanto et al. discovered that the function of PRELP 
could be partially regulated by an HDAC inhibitor to 
suppress the development of bladder cancer. Given 
that PRELP play a role in tumor inhibition in hepatic 
cancer [38], bladder cancer [39] and retinoblastoma 
[40], the exact role of PRELP in CRC is not clear. 
Therefore, we further conducted an in vitro 
experiment and demonstrated that PRELP could 
inhibit the migration and proliferation of CRC cells. 
However, the potential molecular mechanisms by 
which risk genes influence the process of 
ubiquitination in colon cancer need further 
investigation. 

As previously mentioned, considering the close 
connections between E3s and the TME, we used three 
immune analysis tools (CIBERSORT, ssGSEA, and 
ESTIMATE) to investigate the discrepancies in the 
immune response between the two risk subgroups 
based on 12 risk genes. Patients classified in the 
high-risk subgroup are very likely to experience 
poorer overall survival and a significantly modified 
tumor microenvironment. Increasing research has 
confirmed that ubiquitination plays a vital role in the 
immune response. Distinct modifications of proteins 
by ubiquitin in tumor or immune cells affect immune 
function to some extent [73, 74]. Hence, detecting 
specific E3s-related biomarkers may help us better 
understand the immune mechanism of colon cancer. 
In the present research, the E3s-related genes applied 
for establishing the risk model to some extent was 
proved to be associated with tumor immunity and 
therapy. For instance, CDC25C has been proven to be 
degraded by the ubiquitin ligases BRCA1 [75] and 
MDM2 [76]. It has been reported that CDC25C is 
associated with cell cycle arrest in macrophages [77] 
and T-cell leukemia/lymphoma cells [78]. 
Additionally, in colorectal cancer cells with p53 
mutations, CDC25C was shown to be involved in 
irinotecan-induced radiosensitization via the 
ATM/CHK/CDC25C/CDC2 pathway [79]. A 
previous study revealed that SerpinE1 was negatively 
regulated by the E3 ligand RNF123 in aggressive 
glioblastoma tumors [80]. Moreover, Serpine1 mRNA 
could accelerate the exclusion of CD8+ T cells from 
colon adenocarcinomas and confer mesenchymal 
characteristics to the cell [81]. Additionally, 

SERPINE1 may serve as a biomarker of chemotherapy 
resistance in patients with soft tissue sarcoma [82]. 
CDCA2 can act on SMAD-specific E3 ubiquitin 
protein ligase 1 and inhibit the degradation of 
ubiquitin-dependent Aurora kinase A (AURKA) to 
promote melanoma progression [83]. Another study 
revealed that elevated CDCA2 expression was linked 
to the upregulation of immune checkpoints (PD-L1, 
PD-L2 and CTLA4) [84]. Furthermore, CDCA2 could 
be involved in the growth inhibition of RCC cells by 
decitabine, which may function by suppressing 
p38/NF-κB signaling [85]. This result indicates that 
the influence of ubiquitin modification on the 
expression of risk genes may be related to the extent 
of immune function and tumor progression. Thus, it 
revealed marked differences in sensitivity to routine 
chemotherapy, targeted therapy, and immunotherapy 
between the two risk subgroups, providing a new 
approach for combined immunotherapy and 
individualized treatments for colon cancer. In 
summary, these results illustrate that risk scores may 
be relevant to discrepancies in the immune response 
and could predict susceptibility to routine antitumor 
drugs as well as ICB. 

Despite the potential clinical implications of our 
study, several limitations remain to be resolved. First, 
our study was a retrospective study, and the 
prognostic risk model needs to be validated with 
independent prospective cohorts. Second, although 
some studies have reported the relationship between 
these risk genes and tumors, this specific mechanism 
needs further experimental verification. Finally, the 
molecular mechanism of prognostic ERGs and their 
crosstalk with corresponding E3s in colon cancer are 
still unclear and need to be further investigated. 

Conclusions 
In conclusion, we established a novel prognostic 

model using many bioinformatics and integrated 
machine learning algorithms and effectively validated 
it with internal and external colon cancer datasets. We 
demonstrated that this model is linked to the immune 
landscape and drug sensitivity in colon cancer. 
However, detailed research on ubiquitination and its 
corresponding target genes as well as downstream 
signaling pathways in colon cancer is still lacking. 
Moreover, the value of risk genes as potential drug 
targets deserves further investigation. 
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