Session 3, Part 1 Granular Instrumental Variables

Xavier Gabaix and Ralph Koijen

Spring 2024

IDENTIFICATION IN MACRO AND FINANCE

- Goal: Construct instruments, especially in macro and asset pricing, to measure *causal* linkages (Ramey '16, Stock and Watson '17, Chodorow-Reich '19).
- In this lecture we'll cover one reasonably systematic sources of instruments

"Granular Instrumental Variables" (GIVs): G. Koijen JPE '24

INTRODUCING GRANULAR INSTRUMENTAL VARIABLES

- Idiosyncratic shocks to large firms / countries / industries have a non-trivial impact on economic output (G. '11, di Giovanni and Levchenko '12): they're incompressible "grains" of economic volatility, economies are "granular."
- GIVs use idiosyncratic shocks (e.g. in TFP, demand) as instruments:
 - "Purge" data from aggregate shocks to obtain "purified" idiosyncratic shocks.
 - Optimally aggregate idiosyncratic shocks to obtain the most powerful instrument.
- Examples:
 - Industry-wide spillovers: if a firm expands, how do other firms react?
 - Sovereign financial sector doom loops.
 - The impact of intermediaries on asset prices.
 - Growth spillovers (micro-to-macro multiplier, Brexit, Chinese slowdown).

INTRODUCING GIVS

- GIVs lower the need for finding unique, one-off events (a tax reform, a China shock) that work only for some countries or some periods.
 - Can find 100 China shocks.
- Bartik instruments allow to estimated cross-sectional / micro effects: e.g., if California receives \$1 more than Oregon, the California's GDP increases by \$x more dollars than Oregon's GDP.
- GIVs estimate aggregate / macro effects.

NOTATIONS

$$egin{array}{rcl} X_E &:=& \displaystylerac{1}{N}\sum\limits_{i=1}^N X_i: ext{equal weighted}, \ X_S &:=& \displaystyle\sum\limits_{i=1}^N S_i X_i: ext{size-weighted}, \ X_\Gamma &:=& \displaystyle X_S - X_E. \end{array}$$

EXAMPLE: SIMPLE MODEL OF THE "OIL MARKET"

Country i's oil demand is (with S_i relative size)

$$D_{it} = \bar{Y}S_i(1+y_{it}), \qquad y_{it} = \phi^d p_t + \lambda_i \eta_t + u_{it}.$$

So, aggregate demand is (with $y_{St} := \sum_i S_i y_{it}$):

$$D_t = \sum_i D_{it} = \bar{Y} \left(1 + y_{St} \right).$$

Aggregate supply is

$$Y_t = ar{Y}\left(1 + rac{p_t - arepsilon_t}{lpha}
ight), \qquad p_t = rac{P_t - ar{P}}{ar{P}}.$$

Equilibrium: demand = supply

$$\bar{Y}(1+y_{St}) = \bar{Y}\left(1+\frac{p_t-\varepsilon}{\alpha}\right),$$

i.e.

$$p_t = \alpha y_{St} + \varepsilon_t$$

OLS estimate of α in pt = αySt + εt biased as E [εtySt] ≠ 0.
 Key assumption: (ηt, εt) ⊥ ut (ie. uncorrelated)

BASIC EXAMPLE: INELASTIC DEMAND (NO LOOP)

• Consumption change to country *i* is (assume for now $\lambda_i = 1$)

$$y_{it} = \phi^d p_t + \eta_t + u_{it}$$

Two averages:

$$y_{St} = \sum_{i} S_{i} y_{it} = \eta_{t} + u_{St}$$
$$y_{Et} = \sum_{i} E_{i} y_{it} = \eta_{t} + u_{Et}$$

Define "Granular Instrumental Variable" (GIV):

$$z_t := y_{\Gamma t} = y_{St} - y_{Et} = \left(\phi^d p_t + \eta_t + u_{St}\right) - \left(\phi^d p_t + \eta_t + u_{Et}\right)$$
$$= u_{St} - u_{Et} = u_{\Gamma t}.$$

- We extracted the GIV $z_t = u_{\Gamma t}$ size weighted idiosyncratic shock (minus a small u_E) from data y_{it} .
- Key assumption: $\varepsilon_t \perp u_{it}$.

BASIC EXAMPLE: WITH NO LOOP FOR NOW

• Recap, with $z_t \coloneqq y_{\Gamma t}$, $y_{it} = \eta_t + u_{it}$:

$$y_{St} = \eta_t + u_{St},$$

$$p_t = \alpha y_{St} + \varepsilon_t,$$

$$z_t := y_{\Gamma t} \implies z_t = u_{\Gamma t}.$$

We have

 $\mathbb{E} \left[\varepsilon_t z_t \right] = 0: \text{ Exogeneity}$ $\mathbb{E} \left[y_{St} z_t \right] \neq 0: \text{ Relevance.}$

• Given $p_t - \alpha y_{St} = \varepsilon_t$, we have

$$\mathbb{E}\left[\left(p_t - \alpha y_{St}\right) z_t\right] = 0,$$
$$\alpha = \frac{\mathbb{E}\left[p_t z_t\right]}{\mathbb{E}\left[y_{St} z_t\right]}.$$

We've identified price elasticity α via the GIV z_t = y_{Γt}!
 Empirically, take â_T := ¹/_T Σ_t p_tz_t/₁/_T Σ_t y_{St}z_t.

WHAT DO WE NEED FOR GOOD PRECISION?

Proposition (error in GIV estimator): The convergence is $\sqrt{T} (\hat{\alpha}_T - \alpha) \sim \mathcal{N} (0, \sigma_{\alpha}^2)$ with

$$\sigma_{\alpha} = \frac{\sigma_{\varepsilon}}{h\sigma_{u}},$$

$$\sigma_{u_{\Gamma}} = h\sigma_u, \qquad h \coloneqq \sqrt{-\frac{1}{N} + \sum_{i=1}^N S_i^2}.$$

• h = "Excess herfindahl", in $\left[0, \sqrt{1-\frac{1}{N}}\right]$.

- So, to achieve high precision, we need
 - high h = a few large firms / countries / industries / banks...).
 - Large idiosyncratic shocks.

Fortunately, it's typically the case: $h \in [0.2, 0.7]$, and $\frac{\sigma_u}{\sigma_e} \in [3, 10]$.

GENERALIZATIONS AND OBJECTIONS

- Next slides generalize the idea, and answer questions like:
- 1. Time-varying size: easy, replace S_i by $S_{i,t-1}$ assuming $S_{i,t-1}u_{it} \perp (\eta_t, \varepsilon_t)$
- 2. What if the shocks are heteroskedastic?
- 3. How to reach maximal precision?
 - 3.1 Do we add precision by adding other combinations of u_i 's (answer: no)
- 4. What if there is a richer factor structure?
- 5. How to estimate the elasticity of demand?
- 6. What if you have heterogeneous elasticity of demand?
- 7. What makes for valid idiosyncratic shocks?
- 8. Can we check this narratively?
- 9. What if common shocks are endogenous and come from idiosyncratic shocks?
- 10. Robustness to misspecification
- 11. Threats to identification
- 12. General case with severals loops and channels.

WHEN THE u_{it} ARE HETEROSKEDASTIC

When u_{it} are heteroskedastic with variance σ²_i, but still uncorrelated, we define the "pseudo-equal" weight

$$ilde{E}_i := rac{1/\sigma_{u_i}^2}{\sum_j 1/\sigma_{u_j}^2}, \qquad \sum_j ilde{E}_i = 1,$$

(so, in homoskedastic case, $\tilde{E}_i = \frac{1}{N}$) and set the GIV as:

$$\tilde{\Gamma}_i := S_i - \tilde{E}_i$$

and form the "true" GIV

$$z_t \coloneqq y_{\tilde{\Gamma}t} = \sum_i \tilde{\Gamma}_i u_{it}.$$

► Everywhere, replace E and Γ = S − E by Ẽ and Γ̃ = S − Ẽ
 ► Then l'Γ̃ = 0 and

$$\mathbb{E}\left[u_{\tilde{\Gamma}t}u_{\tilde{E}t}\right]=0.$$

THE ABOVE IS THE OPTIMAL GIV

• Recall
$$y_{it} = \eta_t + u_{it}$$
.

Consider another GIV with some weights Γ

$$z_t = \Gamma' y_t$$

with $\iota'\Gamma = 0$ so as to have $z_t \perp \eta_t$.

► Then, $\sqrt{T} (\hat{\alpha}_T - \alpha) \sim \mathcal{N} (0, \sigma_{\alpha}^2 (\Gamma))$. We wish find the optimal GIV:

$$\min_{\Gamma} \sigma_{\alpha}^{2}(\Gamma) \text{ s.t. } \iota' \Gamma = 0.$$

Proposition: The optimum GIV weights Γ is:

$$\tilde{\Gamma} = S - \tilde{E}.$$

Likewise, GIV is

- (i) optimally-weighted GMM estimator, optimal combination of all moments E_T [(p_t − αy_{St}) (u_{it} − u_{jt})] = 0
- (ii) the MLE (assuming Gaussianity)

So, "adding other combinations of u_i's" won't help − all other combinations are dominated by z_t = Ĩ'y_t.

ENRICHMENT: ADD FACTOR STRUCTURE

$$y_{it} - y_{Et} = \sum_{f=1}^r \lambda_i^f \eta_t^f + \check{u}_{it}, \qquad p_t = \alpha y_{St} + \varepsilon_t.$$

• We assume
$$u_t \perp (\eta_t, \varepsilon_t)$$

▶ We do a factor analysis with $\sum_{f} \lambda_{i}^{f} \eta_{t}^{f}$, extract u_{it}^{e} , form the GIV

$$z_t \coloneqq \sum_i (S_i - E_i) u_{it}^e = u_{\Gamma t}^e.$$

SUPPLY AND DEMAND

Demand y_{it}, supply s_t (in fractional growth terms):

$$y_{it} = \phi^d p_t + \eta_t + u_{it},$$

$$s_t = \phi^s p_t + \varepsilon_t.$$

with $\phi^d < 0 < \phi^s$.

• In equilibrium supply = demand: $s_t = y_{St}$, so

$$y_{St} = M \left(u_{St} + \eta_t + \frac{\phi^d}{\phi^s} \varepsilon_t \right),$$

$$p_t = \frac{M}{\phi^s} \left(u_{St} + \eta_t - \varepsilon_t \right),$$

with $M = \frac{\phi^s}{\phi^s - \phi^d}$.

- We want to estimate both elasticities ϕ^d , ϕ^s , which is equivalent to estimating M and M/ϕ^s .
- Can't do OLS $s_t = \phi^s p_t + \varepsilon_t$, as p_t is correlated with ε_t .

SUPPLY AND DEMAND: CONSTRUCTING THE GIV

$$y_{it} = \phi^d p_t + \eta_t + u_{it}, \qquad s_t = \phi^s p_t + \varepsilon_t.$$

Observe

$$y_{St} = \phi^d p_t + \eta_t + u_{St} = \sum_i S_i y_{it}$$
$$y_{Et} = \phi^d p_t + \eta_t + u_{Et} = \sum_i E_i y_{it}$$

► We form the GIV:

$$z_t \coloneqq y_{\Gamma t} = y_{St} - y_{Et},$$
$$= u_{St} - u_{Et} = u_{\Gamma t}.$$

The GIV satisfies

$$\mathbb{E}\left[\left(\varepsilon_{t}, \eta_{t}, u_{Et}\right) z_{t}\right] = 0: \text{ Exogeneity}$$
$$\mathbb{E}\left[\rho_{t} z_{t}\right] \neq 0: \text{ Relevance.}$$

SUPPLY AND DEMAND: OLS APPROACH

• With
$$M = \frac{\phi^s}{\phi^s - \phi^d}$$
 and $z_t \coloneqq y_{\Gamma t} = y_{St} - y_{Et} \implies z_t \perp (e_t^y, e_t^p)$:

$$y_{St} = M\left(u_{St} + \eta_t + \frac{\phi^d}{\phi^s}\varepsilon_t\right)$$
$$= Mz_t + e_t^{\gamma},$$
$$p_t = \frac{M}{\phi^s}(u_{St} + \eta_t - \varepsilon_t)$$
$$= \frac{M}{\phi^s}z_t + e_t^{p},$$

- We can estimate *M* and $\frac{M}{\phi^s}$ using OLS and all standard OLS properties apply.
- We can recover ϕ^s and ϕ^d from these OLS estimates, which turns out to be equivalent to the IV estimator.

SUPPLY AND DEMAND: IV APPROACH

$$y_{it} = \phi^{d} p_{t} + \eta_{t} + u_{it}, \qquad s_{t} = \phi^{s} p_{t} + \varepsilon_{t}.$$

First stage, with $b = \frac{1}{\phi^{s} - \phi^{d}}$
 $p_{t} = bz_{t} + e_{t}^{p},$

and define $p_t^e = b^e z_t$ the instrumented price change. Second stage

$$s_t = \phi^s p_t^e + e_t^s.$$

 $y_{Et} = \phi^d p_t^e + e_t^d.$

- Standard IV inference (including weak instruments tests) can be used in this case.
- We can estimate both elasticities with disaggregated data on either supply or demand.

HETEROGENEOUS EXPOSURES: PARAMETRIC CASE

• Parametric heterogeneity: $\phi_i^d = \sum_{\ell=1}^k X_{i\ell t} \dot{\phi}_{\ell}^d = X_{it} \dot{\phi}^d$, and $\lambda_i = X_{it} \dot{\lambda}$

$$y_{it} = X_{it}\dot{\phi}^d p_t + X_{it}\dot{\lambda}\eta_t + u_{it}, \qquad s_t = \phi^s p_t + \varepsilon_t.$$

1. For each date, run cross-sectional regression

$$y_{it} = X_{it}\dot{y}_t + \check{u}_{it} = \sum_{\ell=1}^k X_{i\ell t}\dot{y}_{\ell t} + \check{u}_{it}$$

and get slopes $\dot{y}_t = (\dot{y}_{\ell t})_{\ell=1...k}$ (interpretation: $\dot{y}_t \simeq \dot{\phi}^d p_t + \dot{\lambda} \eta_t$)

- 2. Form GIV: $z_t \coloneqq \sum_i S_i \check{u}_{it}$
- 3. Estimate slopes by instrumenting p_t by z_t

$$\begin{split} & \mathbb{E}\left[\left(s_t - \phi^s \rho_t\right) z_t\right] = 0 \\ & \mathbb{E}\left[\left(\dot{y}_{\ell t} - \dot{\phi}_{\ell}^d \rho_t\right) z_t\right] = 0 \quad \text{for } \ell = 1 \dots k \end{split}$$

Paper has also non-parametric heterogeneity.

WHAT IS AN IDIOSYNCRATIC SHOCK?

- Plainly, it's a u_{it} such that $\mathbb{E}_{t-1}[\eta_t u_{it}] = 0$.
- Simple example: "demand shock" or "supply shock": $y_{it} = \lambda_i \eta_t + u_{it}$
- Slightly more subtle: $y_{it} = (\lambda_i + \check{\lambda}_{it}) \eta_t + v_{it}$, with $\mathbb{E}_{t-1} \left[(\eta_t, \eta_t^2) \check{\lambda}_{it} \right] = 0$. Then,

$$u_{it} = \check{\lambda}_{it}\eta_t + v_{it}$$

is idiosyncratic.

- For instance. Take η_t=common bank shock. If the sensitivity of bank *i* on that can of bank *i* is higher than expected λ_i + Å_{it} rather than λ_i), then the difference (Å_{it}η_t) is an idiosyncratic shock).
- If we have a "common variance shock" (u_{it} = σ_tv_{it} with v_{it} i.i.d., independent of σ_t), u_{it} is still idiosyncratic, even if σ_t is correlated with η_t.

NARRATIVELY-CHECKED GIV

- Another "check" is extract u_{it}, and do a "narrative check": do they really correspond to idiosyncratic shocks?
- ► Select e.g. top events by $S_i |u_{it} u_{Et}|$ (formally, set $z_t = \sum_i S_i \tau (u_{it} u_{Et})$ where $\tau (x) = x \mathbf{1}_{|x| \ge b}$).
- Consider N the set of shocks that pass the narrative check.
 Then, we can construct

$$z_t^{\mathcal{N}} = \sum_{i:(i,t)\in\mathcal{N}} \Gamma_i u_{it}$$

and just use that one.

- What GIV adds to the traditional narrative approach:
 - By controlling for factors, we can easily identify a list of potential events that may otherwise be masked by aggregate fluctuations.
 - By relying on salient historical events, the estimated elasticities are particular to extreme events if demand/supply curves are non-linear.

OVER-IDENTIFICATION TESTS

Recall

$$z_t = \sum_i S_i \check{u}_{it}, \qquad \check{u}_{it} = u_{it} - u_{Et}$$

We can construct more instruments, and partition the *i*'s into two sets (e.g. rich vs poor countries), and get *z_{kt}* = ∑_{*i*∈*I_k} S_{<i>i*} ŭ_{*i*t} for *k* = 1, 2 and test whether *z*_{1t} and *z*_{2t} (and *z_t*) give the same estimate?</sub>

ESTIMATION PROCEDURE: USER'S GUIDE

$$y_{it} = \phi^{d} p_{t} + \lambda_{it} \eta_{t} + u_{it} + mC_{it}^{y},$$

$$p_{t} = \alpha y_{St} + \eta_{t}^{F} + m^{F} C_{t}^{F},$$

1. Panel regression: With time fixed effects, get \check{y}_{it}^{e}

$$y_{it} = a_i + b_t + mC_{it}^y + \check{y}_{it}$$

2. Factor estimation: If loadings x_{it} are available, get $\eta_t^{x,e}$ from

$$\check{y}_{it}^e = b_t + x_{it}\eta_t^x + e_{it},$$

In addition, do PCA on \check{y}_{it}^{e} and collect factors as $\eta_{t}^{PCA,e}$. Stack $\eta_{t}^{e} \coloneqq \left(\eta_{t}^{x,e}, \eta_{t}^{PCA,e}\right)$.

3. Multiplier estimation using OLS: We form $Z_t = y_{\Gamma t}$ and estimate $M = \frac{1}{1 - \alpha \phi^d}$ and αM :

$$y_{St} = MZ_t + \beta^y \eta_t^e + C_{St}^y \beta^{C^y} + a_S + \varepsilon_t^y,$$

$$p_t = \alpha MZ_t + \beta^p \eta_t^e + C_t^F \beta^{C^p} + b + \varepsilon_t^p.$$

ESTIMATION PROCEDURE

4. Elasticity estimation using instrumental variables: We estimate α using IV, with Z_t as an instrument for y_{St} in

$$p_t = \alpha y_{St} + \eta_t^F + m^F C_t^F.$$

To estimate ϕ^d , we consider the regression

$$y_{Et} = \phi^d p_t + mC_{Et}^y + \lambda_{Et}\eta_t^e + a_E + u_{Et},$$

and we use Z_t as an instrument for p_t .

ROBUSTNESS TO MISSPECIFICATION

▶ If we keep only some shocks, not others: unbiased, provided $u_{St} = z_t + e_t$ with $z_t \perp e_t$

► E.g.: $z_t = \sum_{i \in I_t} S_i (u_{it} - u_{Et})$, summing over top K firms

- If we assume homogeneous coefficients on elasticities, while they are heterogeneous:
 - We're fine if we control for η_t well (we estimate ϕ_E); we're not fine otherwise
- Suppose we misspecify sizes, e.g. use S° rather than S, and use $z_t = u_{S^{\circ}t} u_{Et}$.

• IV is still valid:
$$\mathbb{E}\left[\left(p_t - \alpha y_{St}\right)z_t\right] = 0$$
 still

▶ but OLS can be biased
$$u_{St} = \psi z_t + e_t$$
, so (recalling $b^p = \frac{1}{\phi^s - \phi^d}$, $M = \frac{\phi^s}{\phi^s - \phi^d}$) $b^{p,e} = b^p \psi$ and $M^e = M\psi$, and $\phi^{s,e} = \frac{b^{p,e}}{M^e} = \phi^s$ is unbiased.

THREATS TO IDENTIFICATION

- Threat to identification: if we don't control for common factors $z_t = u_{\Gamma t} + \lambda_{\Gamma} \eta_t \lambda_{\Gamma}^e \eta_t^e$
- Solutions:
- 1. Over-identification test: with several GIVs (e.g. even-odd)
- 2. Test for number of factors (Bai Ng '02), or check stability if you add 1 or 2 factors
- 3. Do narrative GIV: check top \sim 15 events
- 4. Filter out "sporadic factors"

SOVEREIGN YIELD CONTAGION

- Default concerns of a sovereign may spill over to other countries in the Euro area if losses are partially shared.
- A simple sovereign default model suggests

$$\Delta r_{it} = \gamma \Delta r_{St} + \lambda'_i \eta_t + u_{it},$$

where

$$\Delta r_{it} = \frac{\Delta y_{it}}{y_{i,t-1}},$$

with y_{it} the yield spread between country *i* and Germany.

The size weight is "expected loss under default"

$$S_{i,t-1} = \frac{B_{i,t-1}y_{i,t-1}}{\sum_{j} B_{j,t-1}y_{j,t-1}},$$

where B_{it} is the government debt of country *i*.

If a country suffers \$1 billion loss on its debt because of some idiosyncratic bad news u_{it}, then the market value of aggregate debt of all European governments falls by M = 1/(1-γ) billions.

DATA

- Sample period: Daily from September 2009 until August 2018.
- Yield data: Thomson-Reuters benchmark yields with a maturity of 10 years.
- Debt data: General government gross debt from Eurostat.

ESTIMATION PROCEDURE

• Compute rolling $Var_{t-1}(\Delta r_{it})$ using 60 days and

$$\sigma_{i,t-1}^{2}=\max\left(\mathit{Var}_{t-1}\left(\Delta \mathit{r}_{it}
ight)$$
 , $\mathit{m}_{t-1}
ight)$,

where $m_{t-1} = median(Var_{t-1}(\Delta r_{it}))$.

Panel regression with country and time fixed effects with E-weights based on \(\sigma_{i,t-1}^2\)

$$\Delta r_{it} = a_t + k_i + e_{it}.$$

Step 2: We extract principal components of the normalized residuals, <u>e_{it}</u>.

• Step 3: Estimate the multiplier $M = \frac{1}{1-\gamma}$

$$\Delta r_{St} = k + M \Delta r_{\Gamma t} + \lambda'_S P C_t + e_t.$$

To narratively check the shocks, run the panel (size weighted)

$$\Delta r_{it} - \Delta r_{Et} = c + \lambda' P C_t + u_{it},$$

where u_{St}^e is identical to the residual of the regression of $\Delta r_{\Gamma t} = c + \lambda' P C_t + u_{St}^e$. We report the largest $S_{i,t-1}u_{it}^e$.

YIELD DYNAMICS AND SIZE WEIGHTS

ESTIMATION RESULTS

Adding more PC's (up to 5) does not change the results.

	Δr_{St}	Δr_{St}	Δr_{St}	Δr_{St}
Z_t	1.442	1.299	1.215	1.251
	(63.89)	(46.50)	(43.60)	(44.19)
DC		0 00171	0 00209	0.00100
FC_{1t}		0.00171	0.00206	0.00192
		(8.47)	(10.50)	(9.70)
DC.			0.00246	0 00240
FC_{2t}			0.00240	0.00240
			(12.46)	(12.23)
PC.				0 00143
TC_{3t}				-0.00145
				(-5.94)
N	2307	2307	2307	2307
R^2	0.639	0.650	0.672	0.677

t statistics in parentheses

INTERPRETATION

- ▶ We find a multiplier $M = \frac{1}{1-\gamma} \simeq 1.25$ and hence a spillover parameter $\gamma \simeq 0.2$
- Interpretation:
 - Suppose that Italy suffers a bad shock that makes its debt likelier to default, and the market value of its debt falls by 1 billion euros.
 - The aggregate debt of all European governments falls by 1.25 billion
 - The spillover is an extra 0.25 billion of expected losses in European sovereign debt markets (could be cash-flow or discount rate news)

NARRATIVE CHECK

- Largest shocks (top 3 for Greece; largest for Italy and Portugal)
 - March 12, 2012: Greece announced Friday that its private-sector creditors will take part in a historic restructuring of the government's debt, setting the stage for the nation to secure more bail-out money and skirt a messy default.
 - July 10, 2015: The Greek government submitted its highly anticipated plan for the country's economic overhaul to bailout authorities.
 - June 29, 2015: Greek banks are closed and will stay shut for the week, after the country's debt crisis took a dramatic turn.
 - May 29, 2018: Italy appointed a former IMF official as interim prime minister, with the task of planning for snap polls and passing a budget. Investors believe it will deliver an even stronger mandate for anti-establishment, eurosceptic politicians, casting doubt on the Italy's future in the euro zone.
 - July 6, 2011: Portugal received a blow Tuesday as Moody's Investors Service downgraded its sovereign-debt rating to junk status, saying the country, like Greece, will likely require further aid.

ONE CAN USE GIVS TO DO MUCH MORE

- Impact of 100 "China shocks": there are lots of idiosyncratic foreign export shocks, look at their impact, generalizing Autor et al. '13
- Do firm-specific hiring and investment spill over to peer firms operating in the same product market?
- Foreign inflows and their impact on the exchange rates (Camanho, Hau Rey '22) / on GDP...
 - ... and then impact of exchange rates on trade (GIV with idiosyncratic demand shocks by large investment funds)
- What's the impact of an increase concentration (via GIV on Herfindahl) on wages, employment? (Schubert and Stansbury '22)
- If there is an export boom, what's the impact on the exchange rate, and the rest of the economy? (Use export shocks to large firms)
- What's the impact on flows into the stock market on aggregate valuations? (using idiosyncratic demand shocks, G.-K. '22)

ONE CAN USE GIVS TO DO MUCH MORE

- With idiosyncratic shocks to investment demand: impact on the interest rates, and can do impact of a change in the interest rate on investment...How much do country-specific shocks spill over in the Euro area?
- Impact of shocks to financial intermediaries on asset prices.
- How much do constraints of financial intermediaries (e.g., broker dealers) matter for asset prices?

CONCLUSION ON GIV

- GIV: A simple idea with potentially many applications.
- Allows to
 - estimate new things
 - Step towards systematically constructing instruments
 - Lowers the need for finding unique, one-off events (a tax reform, a China shock) or painstaking narrative analyses
 - Fairly general source of instruments, when none were available