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Abstract: We study the quantum phase diagram and the onset of quantum critical phenomena in a
generalized Dicke model that includes collective qubit–qubit interactions. By employing semiclassical
techniques, we analyze the corresponding classical energy surfaces, fixed points, and the smooth
Density of States as a function of the Hamiltonian parameters to determine quantum phase transitions
in either the ground (QPT) or excited states (ESQPT). We unveil a rich phase diagram, the presence of
new phases, and new transitions that result from varying the strength of the qubits interactions in
independent canonical directions. We also find a correspondence between the phases emerging due
to qubit interactions and those in their absence but with varying the strength of the non-resonant
terms in the light–matter coupling. We expect our work to pave the way and stimulate the exploration
of quantum criticality in systems combining matter–matter and light–matter interactions.
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1. Introduction

Quantum phase transitions (QPT) are generally defined as the sudden change in the
properties of the ground state of a quantum system as a function of a control parame-
ter. They possess an essential role in modern physics, especially in studying many-body
quantum systems, quantum information, and quantum control [1,2]. The active interest in
quantum critical phenomena during the last two decades stems from their impact on the
spectral features and dynamics of complex quantum systems, leading, e.g., to the develop-
ment of new concepts such as that of Excited-State Quantum Phase Transition (ESQPT),
which is meant to explain the consequences of the propagation of critical behavior from the
ground state to the rest of the spectrum of a quantum system [3–6]; and that of Dynamical
Quantum Phase Transition (DQPT), seeking to fathom the onset of criticality exhibited in
non-equilibrium phenomena [7–9]. Typically, understanding Quantum Phase Transitions
depends on the specific system of study. Thus, the field remains an open challenge with
exciting avenues, striving to reach a general framework to describe the interplay between
many-body properties, strong interactions, and critical phenomena.

A paradigmatic example of a QPT is the Dicke Hamiltonian’s superradiant phase
transition [10,11]. The Dicke model describes a collection of atoms within the two-level
approximation interacting with a single-mode radiation field inside a cavity [12]. The super-
radiant QPT is characterized by a non-zero expectation value of the photon number when
the light–matter strength reaches a critical value in the thermodynamic limit. As it describes
the collective degrees of freedom of a set of two-level systems (qubits), the Dicke Hamilto-
nian offers a general description of the spin–boson interaction. Additionally, it constitutes a
paradigmatic example for the study of the ultra-strong coupling (USC) regime [13–15] Con-
sequently, the model has found a great reception in the description of several setups, mainly
in the context of quantum information [16–19]. In recent years, it has been experimentally
realized in a broad range of tunable systems, from Bose–Einstein condensates in optical lat-
tices [7,20–23], superconducting qubits [24–26] to cavity-assisted Raman transitions [27,28].
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Not only formal derivations of Dicke-like Hamiltonians have been found in the framework
of ultracold atoms in optical lattices [29–31], and for superconducting qubits [32–35], but su-
perradiant effects have also been proposed in nuclear physics [36], solid-state physics [37],
bidimensional materials [38,39], and quantum dots [40], among others. Moreover, its al-
gebraic simplicity allows one to employ it as a test bed for studying critical features in
the spectrum, several topics relevant to quantum information such as quantum chaos and
quantum correlations [41–43], and the quantum-classical correspondence [44–47]. The
latter is possible because the Hamiltonian can be mapped to only two relevant degrees of
freedom (those of the boson and the collective spin), so there is a well-defined classical
limit. This feature has raised questions about the nature of the superradiant QPT, being
deemed as a mean-field QPT due to its classicality and smallness of quantum fluctuations,
which are the ones driving phase transitions at low temperatures [48].

An additional feature in the systems where the Dicke model finds application is the
possibility to build up collective qubit–qubit interactions. Previous works have addressed
this problem by considering, e.g., dipolar interactions in atomic systems [49], shifts due to
the Stark effect in optomechanical setups [50,51], Josephson dynamics in a two-component
BEC [52–54], or the onset of chaos [55,56]. Two general results stand due to the presence of
matter interactions: the prediction of a first-order phase transition [53,55,57–59], the shift
of the critical coupling of the standard superradiant phase transition [32,49]—including
its possible suppression—and a richer phase diagram [55,60]. Despite previous studies of
the ground-state properties in this system, the interplay of these collective interactions on
the spectral properties of the Hamiltonian, as well as the understanding of the different
energy domains marked by the presence of quantum phase transitions, has not been
investigated exhaustively.

In this work, we are interested in studying the critical behavior of a generalized Dicke
Hamiltonian that includes collective qubit–qubit interactions. It will constitute an example
of the intriguing combination between matter–matter interactions and (ultra) strong light–
matter ones and the rich phase diagrams they can produce. Unlike previous works, here,
we add a general combination of non-linear interactions in the form of quadratic terms in
the collective pseudo-spin operators to the standard Dicke Hamiltonian in all the x-, y-,
and z-directions. Then, we perform a standard semiclassical analysis to obtain the behavior
of energy surfaces, the ground-state energy, and the Density of States (DoS) as a function
of the Hamiltonian parameters. This exploration allows us, from a unified perspective, to
obtain indicators of critical quantum behavior, i.e., both QPT and ESPQT, as has been done
previously in other works [55,61,62]. We offer a general overview that unifies some results
of previous works and found new behavior unlocked by the unique interplay between the
different directions of the interactions.

The article is organized as follows. In Section 2, we present the generalized Dicke
Hamiltonian, including qubit–qubit interactions. Next, in Section 3, we discuss the corre-
sponding classical Hamiltonian obtained via coherent states, the Hamilton equations of
motion, and the fixed points, commonly associated with critical behavior in the ground
state of the related quantum system. Furthermore, we present an overview of the classical
energy surfaces and classify the different phases according to the ground-state properties.
In Section 5, we calculate the semi-classical density of states (DoS) to identify the ESQPT
and the spectral domains. Finally, in Section 6, we present our conclusions. We include
several appendices with details on the calculations.

2. Generalized Dicke Hamiltonian

We study a generalized Dicke Hamiltonian that includes collective qubit–qubit interactions

ĤD = Ĥ0 + ĤI + Ĥqq, (1)
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where

Ĥ0 = ωâ† â + ω0 Ĵz,

ĤI =
γ√
N

[
(â Ĵ+ + â† Ĵ−) + ξ(â† Ĵ+ + â Ĵ−)

]
,

Ĥqq =
1
N

(
ηx Ĵ2

x + ηy Ĵ2
y + ηz Ĵ2

z

)
.

The first term denotes the non-interacting Hamiltonian Ĥ0, the second one is the ĤI usual
spin–boson interaction, and the last one contains the qubit–qubit interactions Ĥqq. Here, â†

(â) is the creation (annihilation) boson operator, and Ĵz,x,y are the pseudo-spin operators
representing the collective degrees of freedom of the set of N qubits, which follow the
rules of the su(2)-algebra. Generally, a set of N qubits is spanned into a 2N dimensional
Hilbert space; however, as we are interested in describing the collective degrees of freedom,
it suffices to work in the totally symmetric subspace corresponding to j = N/2, where
j(j + 1) is the eigenvalue of the pseudo-spin length operator Ĵ2. Thus, the dimension of
the Hilbert space is reduced to only N + 1, where the collective ground state lies. The
Hamiltonian parameter set is given by ω, ω0, and γ, which are the boson frequency, the
qubit energy splitting, and the spin–boson interaction. Additionally, we have ηi with
i = x, y, z, the collective qubit–qubit couplings in each direction. Depending on the setup,
one can grant a specific meaning to the interactions in the z and its perpendicular directions.
An intuitive approach comes from interacting Bose–Einstein condensates in a two-site
trap and Josephson effects. There, Ĵz is related to a relative population of particles in
the condensates and Ĵx ( Ĵy) to ladder operators and relative phases between them. Thus,
ηz and ηx (ηy) represent the strength of collective on-site and between neighboring sites
interactions (hopping effects), respectively [52]. Otherwise, interactions from the x and
y directions arise from dipolar coupling in atomic setups [49,63] or interactions between
superconducting qubits [32,34,35].

The Hamiltonian in Equation (1) possesses several well-known limits. In the absence
of qubit–qubit interactions (ηi = 0 for i = x, y, z), one recovers the standard light–matter
interaction. The parameter ξ takes the system from the integrable Tavis–Cummings model
(ξ = 0) [64], which describes a system in the strong coupling regime under the Rotating-
Wave Approximation (RWA), to the standard, non-integrable Dicke model (ξ = 1) typically
describing the USC [12]. In both limits, the superradiant QPT takes place when the light–
matter coupling crosses the critical value γξ+ =

√
ωω0/(1 + ξ). For values below the

coupling (γ < γξ+), the system is in a normal phase, characterized by a zero-average of
photon population in the thermodynamical limit (n̄ = 〈â† â〉/N = 0), while for γξ+ > γ
one finds a finite photon number n̄ 6= 0, thus called superradiant phase. Additionally, the
Hamiltonian exhibits two ESQPTs [61,65–67], which are identified as non-analyticities in
the derivative of the smooth DoS as a function of energy in the thermodynamic limit. One
at a critical energy E(c1)

− /ω0 j = ε
(c1)
− = −1 that only appears in the superradiant phase

(characterized by a logarithmic divergence in the derivative of the DoS as energy increases),
and a second one at ε

(c2)
+ = +1 that appears for every coupling as a jump singularity (a step

function in the DoS derivative) [68] and is related to the saturation of the collective qubit
Hilbert space.

A finite value of ξ ∈ (0, 1) leads to the generalized or extended Dicke model
instead [6,45,61,69]. There, a new superradiant phase appears whose critical point oc-
curs at γξ− =

√
ωω0/(1− ξ) [62,69,70]. While in the TC model γ0+ = γ0− and the new

phase is equal to the standard one; in the Dicke model, γ1− → ∞, so it becomes not
observable. The ESPQTs predicted in the Dicke model persist in the generalized one; the
only difference is that the ESQPT changes its type from a logarithmic singularity in the
derivative of the smooth DoS to a step function with a downward jump from lower to
higher energies in the interval γξ+ < γ < γξ− [4,6,70]. On the other hand, in the absence of
light–matter interaction, the boson is decoupled from the collective spin. Then, one arrives
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at a version of Lipkin–Meshkov–Glick Hamiltonian (LMG) [71–73], a well-known model
with one degree of freedom, originally stemming from nuclear physics, that nowadays is
connected to Josephson junctions and cold atoms in optical lattices [74]. Critical phenomena
in the LMG model have been extensively studied, and the system exhibits both a first-order
and a second-order QPT, as well as ESQPTs [75–83], to cite some works. Naturally, we
expect that the generalized Dicke Hamiltonian inherits critical features from the LMG
model by including the qubit–qubit interactions.

3. Classical Corresponding Hamiltonian

A classical Hamiltonian can be obtained by taking the expectation value of Equation (1)
over a tensor product of Glauber |z〉 and Bloch |w〉 coherent states as trial states [45,47,61,67,84],
where |0〉 and |j,−j〉 are the boson and pseudo-spin vacuum states, respectively [85],

|z〉 ⊗ |w〉 = e−|z|
2/2

(1 + |w|2)j ezâ†
ewĴ+ |0〉 ⊗ |j,−j〉. (2)

By dividing over j we obtain

H(ξ)
cl (z, w) = j−1〈z, w|ĤD|z, w〉 = ω|z|2 −

(
1− |w|2
1 + |w|2

)[
ω0 −

ηz

2

(
1− |w|2
1 + |w|2

)]
+ (3)

1

2(1 + |w|2)2

[(
ηx − ηy

)(
w2 + w̄2

)
+
(
ηx + ηy

)
2ww̄

]
+

γ(z + z̄)(w + w̄)√
2(1 + |w|2)

.

Instead of employing the complex numbers z and w, it is more convenient to use canonical
classical variables (q, p) and (jz, φ) for the boson and spin spaces, respectively. Here,
z =

√
j/2(q + ip) and w =

√
(1 + jz)/(1− jz)e−iφ. Additionally, due to the fixed value of

the pseudospin lenght j = N/2, we have jx =
√

1− j2z cos φ and jy =
√

1− j2z sin φ. In this
manner, we obtain a classical generalized Dicke Hamiltonian that reads

H(ξ)
cl =

ω

2
(q2 + p2) + jz

(
ω0 +

ηz jz
2

)
+

1
2

(
1− j2z

)(
ηx cos2 φ + ηy sin2 φ

)
+ (4)

+γ
√

1− j2z [(1 + ξ)q cos φ− (1− ξ)p sin φ].

To characterize the energy surfaces and identify the critical behavior, we will need the
equations of movement. The Hamilton equations are

q̇ =
∂H(ξ)

cl
∂p

= ωp− γ
√

1− j2z(1− ξ) sin φ. (5)

ṗ = −
∂H(ξ)

cl
∂q

= −ωq− γ
√

1− j2z(1 + ξ) cos φ, (6)

φ̇ =
∂H(ξ)

cl
∂jz

= ω0 + ηz jz − jz(ηx cos2 φ + ηy sin2 φ)− γjz√
1− j2z

[(1 + ξ)q cos φ− (1− ξ)p sin φ], (7)

j̇z = −
∂H(ξ)

cl
∂φ

=
(

1− j2z
)
(ηx − ηy) cos φ sin φ + γ

√
1− j2z [(1 + ξ)q sin φ + (1− ξ)p cos φ]. (8)

In Appendix A we present the Hamilton equations for ξ = 0 and ξ = 1.

4. Energy Surfaces and Their Extrema

In this section, we obtain the fixed, stationary, or equilibrium points (qs, ps, jzs, φs) of
the energy surface Hcl(qs, ps, jzs, φs) from Hamilton equations. They ease characterizing
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the system’s different quantum phases and transitions as a function of the Hamiltonian
parameters, employing that the minimum of the energy surface can be identified with the
ground-state energy [86]. In this case, the thermodynamic limit coincides with the classical
limit because we have an effective Planck’s constant given by h̄e f f = h̄/N. Therefoe, as
N → ∞, h̄e f f → 0 [87]. Thus, to find the fixed points, we make Hamilton Equations (5)–(8)
equal to zero. From the first two, we obtain a pair of equations defining the quadratures

ps =
γ

ω

√
1− j2zs(1− ξ) sin φs, and qs = −

γ

ω

√
1− j2zs(1 + ξ) cos φs, (9)

Next, we can insert them into Equations (7) and (8) to obtain a second pair of equations
that set the atomic (collective spin) variables

ω0 + jzs

{
ηz −

(
ηx cos2 φs + ηy sin2 φs

)
+

γ2

ω

[
(1 + ξ)2 cos2 φs + (1− ξ)2 sin2 φs

]}
= 0, (10)

(1− j2zs)

{
(ηx − ηy)−

γ2

ω

[
(1 + ξ)2 − (1− ξ)2

]}
cos φs sin φs = 0. (11)

We observe that Equations (10) and (11) are enough to determine the general conditions
to find the fixed points. To better visualize the energy surfaces we study throughout this
work, we use Equations (9) and a new set of atomic variables, as described in Appendix B.
Then, the energy surface is restricted to the atomic space, simplifying the identification of
fixed points.

4.1. Deformation of the Normal Phase

Two fixed points exist for every value of the Hamiltonian parameters. They come
from Equation (11), when one makes jzs = ±1. From Equation (9), at these values, one
automatically gets that ps = qs = 0, where φs is left indeterminate given that they coincide
with the poles of the unitary Bloch sphere. The coordinates of these stationary points are

(ps, qs, jzs, φs) = (0, 0,±1, indeterminate) (12)

and their energy is given by

ε± = ±1 +
ηz

2ω0
(13)

In the normal phase, the stationary point at jzs = −1 is a stable, absolute minimum [61]. It
corresponds to the lowest energy value of the system, marking the quantum ground-state
energy. As the expectation value of the photon number at the ground state 〈g.s.|â† â|g.s.〉/N
is in general proportional to |z|2 = q2 + p2, it characterizes the quantum features of each
phase. At the fixed point jz = −1, we have that qs = ps = 0, so we speak of a normal phase,
distinguished by the absence of a strong-correlated light–matter quantum state that could
lead, e.g., to a collective emission of photons. On the other hand, the point at jzs = +1,
which always belongs to a higher energy domain, is typically an unstable fixed point [88].
As this point signals the maximum energy of the pseudospin (given that |jzs| ≤ 1), the
entire phase space associated with the Bloch sphere becomes available for the pseudospin
dynamics. Any additional energy will only increase the boson energy. Thus, it marks the
onset of an ESQPT [61,66].

The existence of a single global minimum in the standard normal phase of both
the TC and the Dicke models is followed by energy surfaces that are invariant under φ
rotations. This is connected to the conservation of the total number of excitations operator
Λ̂ = â† â + Ĵz + jÎ, as in the normal phase, the system is virtually decoupled. In this case,
the shape of the potential corresponds to a single well, as shown in Figure 1(c3). However,
even though the nature of the fixed points does not change, when ηx − ηy 6= 0, the energy
surface becomes deformed thanks to the influence of interactions in x and y directions, and
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the rotational symmetry is broken at higher energies. We call this situation the deformed
normal phase. The energy surfaces corresponding to this situation are shown, for example,
in Figure 1(c4),(c7), where either the interactions in the y or x directions are present. Later,
once we identify the parameter domains for the other phases, we will explain how the
surface stretches depending on the qubit interaction directions.

Finally, we notice that the energy of the points at jz = ±1 is invariant concerning the
qubit interactions in the x and y directions. Still, it is uniformly shifted by the z-interactions,
as was noted before in previous works [53,55,89]. The normal phase is thus identified by
the presence of only these two fixed points. Additional stationary points will emerge, and
the point at jz = −1 will change its type of extrema according to the onset of the other
phases. Next, we solve Equations (9)–(11) to find those points and the phases for three
different situations: (1) The Tavis–Cummings limit (ξ = 0), (2) the Dicke limit (ξ = 1), and
(3) for an arbitrary value of ξ.

4.2. Tavis–Cummings Limit

By setting ξ = 0, we cancel the non-resonant terms in the Hamiltonian (â† Ĵ+ and â Ĵ−).
Hence, we recover a Tavis–Cummings model modified by the qubit–qubit interactions. It
corresponds to the situation where the Rotating-Wave Approximation (RWA) holds [90].
The Hamiltonian becomes

H(0)
cl =

ω

2
(q2 + p2) + jz

(
ω0 +

ηz jz
2

)
+

1
2

(
1− j2z

)(
ηx cos2 φ + ηy sin2 φ

)
(14)

+γ
√

1− j2z(q cos φ− p sin φ),

and Equations (10) and (11) are in this case

ω0 + jzs

(
ηz −

(
ηx cos2 φs + ηy sin2 φs

)
+

γ2

ω

)
= 0, (15)

(1− j2zs)(ηx − ηy) cos φs sin φs = 0. (16)

We find five different solutions for the stationary points (including jzs = ±1). The other
three conditions are given by the cases: cos φs = 0 (sin φs = ±1), sin φs = 0 (cos φs = ±1),
and ηx = ηy.

4.2.1. Superradiant-Symmetric Phase

We start studying the situation when the interactions in the x and y directions are the
same ηx = ηy = η. Equation (15) becomes

ω0 + jzs(ηz − η) +
γ2

ω
= 0. (17)

Thus, we can obtain jzs immediately as

jzs = −
ω0

ηz − η + γ2

ω

= − 1
f0

, f0 =
∆ηzs

ω0
+ f0+, (18)

where f0+ = γ2/γ2
0+, γ0+ =

√
ωω0 is the critical coupling of the superradiant phase in

the standard TC model, and ∆ηzs = ηz − η. Substituting the value of jzs in the definitions
Equation (9), we obtain the stationary points

(ps, qs, jzs, φs) =

(
γ

ω

√
1− 1

f 2
0

sin φs,−
γ

ω

√
1− 1

f 2
0

cos φs,−
1
f0

, indeterminated

)
. (19)

In other words, there is a continuum of fixed points, associated with the conservation of
the total number of excitations which makes the standard TC Hamiltonian integrable. This
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leads to the standard result from the TC model where the energy surface takes the form
of the Mexican hat potential [61], as shown in Figure 1(c3). These points are valid when
f0 ≥ 1, so the value of jzs remains real. Thus, there is a critical coupling given by

γc
0 = γ0+

√
1− ∆ηzs

ω0
, (20)

where we obtain the standard critical coupling of the TC model modified by a factor that
depends on the qubit–qubit interactions (for ∆ηzs ≥ 0 the critical coupling γc

0 becomes
zero). This set of points has an energy

εs0φ = −1
2

(
f0 +

1
f0

)
+

ηz

2ω0
. (21)

This value is obtained from ε = Hcl(qs, ps, jzs, φs)/ω0. As it can be straightforwardly
seen, for this parameter domain, εs0φ < ε−. Thus, if one calculates the Hessian matrix
(see Appendix C), one can identify these points as a set of minima. Instead, for f0 ≥ 1
the point at jzs = −1 becomes a local maximum, while the one at jzs = +1 remains the
absolute maximum. We notice that the ground-state energy is continuous, so εsφ = ε− at
f0 = 1. According to the form of ground-state energy, we have qs 6= 0 and ps 6= 0. As a
result, the domain where f0 ≥ 1 is recognized as a superradiant phase. One of the major
effects of the interactions with respect to the standard TC Hamiltonian is the shift in the
critical coupling: both the interactions in the z and x (y) directions change it. Moreover, we
notice that the critical coupling γc

0 becomes zero when ηz − η = ω0. This means that, for
interacting values where ηz − η ≥ ω0, there is only a superradiant phase, but not a normal
phase for every value of the coupling! Thus, the onset of the superradiant phase can be
suppressed or stimulated by choosing the right value of the relative interactions in the z
and perpendicular directions.

Interestingly, we observe that the rotational symmetry is not broken in this case
because the qubit–qubit interactions are balanced in x and y directions (ηx = ηy). Hence,
we call the quantum phase existing for f0 ≥ 1 and ηx 6= ηy the superradiant-symmetric
phase. Next, we consider the imbalanced case (ηx 6= ηy), which leads to two different, but
symmetric to each other, superradiant phases.

4.2.2. Superradiant-x Phase

Now, we consider ηx 6= ηy (∆ηzx 6= ∆ηzy) and cos φs = ±1 (sin φs = 0). Here, we
obtain ps = 0, and from Equation (10) we obtain

jzs = −
(

ηz − ηx

ω0
+

γ2

ωω0

)−1

= − 1
f0x

, f0x =
∆ηzx

ω0
+ f0+, (22)

which looks exactly as in the previous case with a critical coupling given by

γc
0x = γ0+

√
1− ∆ηz,x

ω0
. (23)

where ∆ηzx = ηz − ηx. Similarly, for ∆ηzx ≥ ω0, the critical coupling γc
0x becomes zero.

Unlike the previous case, however, there is not an infinite set of stationary points, but only
two degenerated ones. This is the most common case for all the superradiant phases we
will see in the following for arbitrary ξ. Substituting in Equation (9), we derive qs, so the
fixed points are given by

(ps, qs, jzs, φs) =

(
0,∓ γ

ω

√
1− 1

f 2
0x

,− 1
f0x

, π or 0

)
, (24)
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with energy

εs0x = −1
2

(
f0x +

1
f0x

)
+

ηz

2ω0
, (25)

which lies always below ε−, as in the superradiant-symmetric case. Again, the expectation
value of the photon number operator becomes different from zero in the thermodynamic limit,
so the phase where these points exist corresponds to a superradiant one. Its emergence is de-
termined by ηx, independently of ηy, however. For this reason, we call it superradiant-x phase.
Here, the point at jzs = −1 becomes saddle point, as can be observed in Figure 1(c4)–(c6)
when increasing γ.

4.2.3. Superradiant-y Phase

This is identical to the x case, but in the y direction. If we consider ηx 6= ηy (∆ηzx 6=
∆ηzy) and cos φs = 0 (sin φs = ±1), now qs = 0 and

jzs = −
(

ηz − ηy

ω0
+

γ2

ωω0

)−1

= − 1
f0y

, f0y =
∆ηzy

ω0
+ f0+ (26)

where the critical is coupling given by

γc
0y = γ0+

√
1−

ηz − ηy

ω0
. (27)

Substituting in Equation (9), we can obtain ps. The two degenerated fixed points are

(ps, qs, jzs, φs) =

(
± γ

ω

√
1− 1

f 2
0y

, 0,− 1
f0y

,±π

2

)
. (28)

Finally, their energy is

εs0y = −1
2

(
f0y +

1
f0y

)
+

ηz

2ω0
. (29)

Again, εs0y ≤ ε−. The difference with respect to the previous superradiant phases
is that now, the fixed points are rotated in phase space by π/2, as can be seen from
Figure 1(c7)–(c9). As a result, the quadrature qs is the one that has become zero.

4.2.4. Quantum Phases in the Tavis–Cummings Limit

We have already seen that in the normal phase, there are only two extrema in the
energy surface located at jzs = ±1, whereas, in the superradiant phases described above, we
have found four (or a continuous set, in the symmetric case). The energy of the ground-state
across the different parameter domains can be expressed in a closed form as

ε
g.s.
0 = −1

2

(
F0 + F−1

0

)
+

ηz

2ω0
(30)

with

F0 =


f0 for ηx = ηz, and γ ≥ γc

0,
f0x for ηx 6= ηy, and γ ≥ γc

0x,
f0y for ηx 6= ηy, and γ ≥ γc

0y,
1 otherwise

(31)

Let us suppose that ηy = 0, so there are no interactions in the y direction. Then, as a function
of γ, the system undergoes a superradiant QPT at γ = γc

0x. As a result, the number of fixed
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points in the energy surface will change from two to four, and the minimum of the energy
surface will be modified, reflecting the change in the ground-state energy associated with
the QPT. The same will happen if we consider qubit–qubit interactions only in the y and z
direction, but not in the x directions.

The situation is different when considering the combination of interactions in the
x and y directions. In this case, there is a possibility that the fixed points arising from
each direction simultaneously appear. Then, we will speak of a superposition of the
phases. However, it is important to emphasize that even though the two phases appear
superimposed, only one set of degenerate fixed points will correspond to the minimum of
the energy surface, so the passage from a superradiant phase alone to a superposition of
phases is not followed by a QPT (although the smooth DoS will abruptly change announcing
the onset of new ESQPTs, hence the necessity to distinguish between a superradiant phase
alone and a superimposed one). Here, we observe that, if ηy ≥ ηx (∆ηzx ≥ ∆ηzy), then
we have that γc

0x ≤ γc
0y. Without loss of generality, we will take this as the standard case

for most of our expressions (otherwise, the superradiant-x and y phases will exchange
places). This condition separates the parameter domains in three zones: the normal
phase γ ∈ [0, γc

0x], the superradiant-x phase γ ∈ [γc
0x, γc

yx], and a superposition of the
superradiant-x and the superradiant-y phases γ ∈ [γc

0y, ∞). Hence, depending on the
values ∆ηzx and ∆ηzx, the energy surface could have up to six stationary points, where
only one (normal), two (superradiant), or an infinite set (superradiant-symmetric) can
correspond to the ground-state. We also notice that for ∆ηzx ≥ 0 (∆ηzy ≥ 0), the system
enters into the superposition of phases for every value of γ, going from four to six stationary
points in the energy surface, and with a ground state determined by the relationship
between γc

0x and γc
0y.

Thus, while in the normal phase there are only two relevant energies such that ε− ≤ ε+,
and in the superradiant-symmetric phase—three εs0φ ≤ ε− ≤ ε+, in the superradiant-x
and y, we will have four: εs0x < εs0y ≤ ε− ≤ ε+. This will become important later in
Section 5 when discussing ESQPTs. Notice that the superradiant-symmetric phase exists for
γ ∈ [γc

0, ∞) because ηx = ηy. Moreover, now we can explain the directions of the energy
surface deformation in the normal phase. It turns out that if γc

0x < γc
0y, the deformation

occurs in the x direction, as it is shown in Figure 1(c4) even if ηx = 0. The opposite is true:
if γc

0y < γc
0x, the deformation occurs in the y direction, as shown in Figure 1(c7).

The ground-state energy is continuous at the critical values of the light–matter coupling
γ. Nevertheless, the derivatives are discontinuous. The order of the discontinuity allows
us to classify the type of quantum phase transitions the system exhibits according to
Ehrenfest’s classification of phase transitions. To do so, we calculate the gradient of the
ground-state energy as a function of the interactions

∇ε
g.s.
0 =

(
∂ε

g.s.
0

∂γ
,

∂ε
g.s.
0

∂ηx
,

∂ε
g.s.
0

∂ηy
,

∂ε
g.s.
0

∂ηz

)
= (32)

1
2ω0


1− f 2

0x
f 2
0x

(
2ω0

γ f0x,−1, 0, 1
)
+ (0, 0, 0, 1) for γ ≥ γc

0x,
1− f 2

0y

f 2
0y

(
2ω0
γ0+

f0y, 0,−1, 1
)
+ (0, 0, 0, 1) for γ ≥ γc

0y,

(0, 0, 0, 1) otherwise

We need to evaluate the derivatives at three specific combinations of the parameters: Fc
0 = 1,

∆ηzx = ω0 (∆ηzy = ω0) and ∆ηzx = ∆ηzy. At the critical light–matter coupling, we have
Fc

0 = 1, so the ground-state energy from the normal to the superradiant phases as a function
of the parameter γ is continuous in the zeroth and first order, and only discontinuous at
the second one. Thus, a second-order phase transition occurs from normal to superradiant,
as expected from the standard TC model. As a function of ηx and ηy, there is a first-order
quantum phase transition at ∆ηx = ∆ηy because it is the border between the superradiant-x
and superradiant-y phases, i.e., the ground-state energy goes from being described by
Equations (25)–(29), passing through Equation (21) (see Figure 1b). Finally, there are other
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two first-order QPTs where the system goes directly from the normal to the superradiant
phase when ∆ηzx = ω0 or ∆ηzx = ω0 and γ = 0. This first-order phase transition was
identified in Refs. [53,91]. Here, we have found a generalization discovering that the
relevant parameter is not just ηz, but ∆ηzx (or ∆ηzx) instead. This is not surprising because
given that the pseudospin length is conserved, a single direction can be expressed in terms
of the others, i.e., Ĵ2

z = j(j + 1)Î− Ĵ2
x − Ĵ2

y , so the qubit-interacting Hamiltonian can be
written as

Ĥqq = − 1
N

(
∆ηzx Ĵ2

x + ∆ηzy Ĵ2
y

)
+

1
N

ηz j(j + 1)Î (33)

Hence, the role of x or y interactions is to shift the critical coupling of the superradiant QPT
and to shift the value of the interactions where the first-order phase transition emerges.
In Figure 1a, we show the quantum phases in the ∆ηzx versus γ space. There, we have
included an artificial shift ω0/2 between ηx and ηy to exhibit the onset of the superradiant-x
followed by a superposition of phases as the light–matter coupling increases, otherwise,
the phases overlap in the diagram (because of the symmetry). In Figure 2b, we show the
quantum phases in the ∆ηzy versus ∆ηzx space. This diagram depends on the value of γ;
here, we choose an illustrative value to always be in the superradiant phases.

Further information about the system can be obtained by studying the energy surfaces
as they are shown in Figure 1c–f. We employ representative values of the interaction
strengths in each direction to explore and better show the evolution of the surface as
the interacting parameters change. In the first row of Figure 1(c1)–(c3), we present a
configuration ηx = ηy, where we expect symmetry in the system. Increasing the light–
matter coupling makes the surface go from a spherical well with a minimum at the center
to the Mexican hat potential characteristic of the superradiant-symmetric phase, as shown
in Figure 1(c1). Next, the symmetry of the surface in both the normal and superradiant
phases is broken once we increase the interactions in a given direction other than z. In
the middle row of Figure 1c, we make ηy = 0.9ω0 and ηx = ηz = 0. As mentioned
before, here, we identify a stretching of the energy surface in the x direction (because
εs0x < εs0y). In Figure 1(c4), we select a coupling γ < γc

0x that locates us within the normal
phase. Eventually, increasing γ leads us to the superradiant-x phase with two minima
and a saddle point, as shown in Figure 1(c5). Then, in Figure 1(c6), we enter a regime of
superposition between the two superradiant phases. Now, there are two minima points,
two saddle points, and a maximum in the center. The situation is the same in the third
row. From Figure 1(c7)–(c9), the stretching of the energy surface is in the y-direction, and
we will recover the phenomenology of the last case, but rotated in π/2, characteristic of
the superradiant-y phase. Here, for larger γ, the dominant phase is the superradiant-y
as εs0y < εs0x. The reasoning is the same in the other examples we show in Figures 1d–f.
In Figure 1d, we fix one of the directions to zero and tune the other two equal to 1. In
the first two rows, we show the evolution of the surface as we increase γ, while making
ηx = ηz = 0.9 (ηy = ηz = 0.9). The situation becomes similar to that of Figure 1 because the
relevant parameters to determine the phases are ∆ηzx and ∆ηzy. In Figure 1e we choose a
different combination of values for the interactions in each direction. Finally, in Figure 1f,
we select negative values of the interactions. Given a set of interacting parameters ηi, we
can identify how the energy surface will be deformed, and increasing γ leads us always
to the superposition of phases x-y. In each figure, we will have different couplings γ to
highlight the system’s phase.

Next, we will explore the other limit of the Hamiltonian, when the non-resonant terms
are completely included, i.e., the Dicke limit.
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Figure 1. Quantum phases in the Tavis–Cummings limit (ξ = 0) as a function of the Hamiltonian
parameters: (a) in the γ vs. ∆ηzx and (b) in the ∆ηzx vs. ∆ηzy spaces. The normal, superradiant-x,
and superradiant-y phases are colored in yellow, blue, and green, respectively. Filling with horizontal
lines indicates the superposition of superradiant phases. The dashed red and blue curves mark the
critical couplings separating the normal and superradiant phases. The dashed black curves signal
the limit of validity of the superradiant phase as a function of qubit interactions. In contrast, the
solid black line marks the separation between the superradiant-x and y phases. Red solid and blue
dashed arrows indicate second- and first-order QPT, respectively. (c–f) Contour plots of the energy
surfaces in the TC limit for different parameter configurations: (c) varying the interactions in one
direction while keeping the rest at zero; (d) keeping one direction to zero; (e) for arbitrary values
of the interactions; (f) for negative values of the interactions. Green, red, and yellow points depict
minimum, maximum, and saddle fixed points on the surface, respectively. Here, η̄i = ηi/ω0 for all
directions i.
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Figure 2. The same as in Figure 1, but for the Dicke limit (ξ = 1). The deformed phase is indicated in
purple. The quantum phase diagram in (b) is for γ = 0.5γ1+. Likewise, the thick solid black line in
(b) is calculated for a given value of γ such as f1+ = 0.5.

4.3. Dicke Limit

We now fully include the counter-rotating terms, i.e., we set ξ = 1. This corresponds to
the Dicke limit, meaning we obtain a Dicke Hamiltonian plus the qubit–qubit interactions.
It is given by

H(1)
cl =

ω

2
(q2 + p2) + jz

(
ω0 +

ηz jz
2

)
+

1
2

(
1− j2z

)(
ηx cos2 φ + ηy sin2 φ

)
+ (34)

+2γ
√

1− j2z q cos φ.
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Equations (10) and (11) become

ω0 + jzs

(
ηz −

(
ηx cos2 φs + ηy sin2 φs

)
+

4γ2

ω
cos2 φs

)
= 0, (35)

(1− j2zs)

[
(ηx − ηy)−

4γ2

ω

]
cos φs sin φs = 0. (36)

Just as in the case of the TC limit, we obtain five possibilities when searching stationary
points of the energy surface. The first four are identical: jzs = ±1, cos φs = 0 (sin φs = ±1),
sin φs = 0 (cos φs = ±1). However, the last one contains a different condition for the
parameters, given by 4γ2/ω = ηx − ηy. We immediately notice that the symmetry that was
found in the TC limit (ξ = 0) is now always broken because the relation ηx = ηy does not
lead to the existence of stationary points anymore. This is an expected result, given that
the standard Dicke model is non-integrable [47]. Moreover, from Hamilton equations, we
observe that ps is always zero in this limit.

We have a normal phase in the Dicke limit too, where the fixed point at jzs = −1
is an absolute minimum corresponding to the ground state, and the point at jzs = +1
is an absolute maximum. Both points have an energy given by ε± = ±1 + ηz/2ω0 and
the normal phase will be deformed if the interactions are privileged in either the x or y,
as it happened in the ξ = 0 limit. This case is shown in Figure 2(c1),(c4),(c7), where we
encounter the same deformations as in the TC limit. Next, we will explore the other phases
appearing for ξ = 1.

4.3.1. Superradiant-x Phase

When we have cos φs = ±1 (sin φs = 0), we encounter the same superradiant phase as
in the ξ = 0 limit, but with a modified critical coupling, as it would be expected [61]. Here,
the value of the collective atomic variable becomes

jzs = −
1

f1x
, f1x =

∆ηzx

ω0
+ f1+ (37)

where f1x = γ2/γ2
1+ and γ1+ =

√
ωω0/2 is the critical coupling of the standard Dicke model.

Using Equation (9) one gets the two degenerate minima typical of the superradiant phase

(ps, qs, jzs, φs) =

(
0,±2γ

ω

√
1− 1

f 2
1x

,− 1
f1x

, 0 or π

)
(38)

The energy associated to these points is

εs1x = −1
2

(
f1x +

1
f1x

)
+

ηz

2ω0
. (39)

An almost identical result as that of the TC-like superradiant-x phase. The ground-state
energy of the system is always below ε−; thus, the energy of these points corresponds to
the ground-state energy. This phase also is valid for values of the light–matter coupling
γ ≥ γc

1x, where

γc
1x = γ1+

√
1− ∆ηzx

ω0
. (40)

Suppose the interactions ηx,z vanish. In that case, we recover the standard result for the
Dicke model, again, we observe that the role of the interactions is to shift the critical
coupling. This effect has been observed before in several previous works for interactions
in the x [32,34] and z [58,59,89,91] directions, and a combination of x and y directions [49].
Not only in the case of the Dicke limit but for arbitrary ξ, the critical coupling to attain
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superradiance can become zero with a suitable choice of the interactions in the z and x
(y) directions, given that the relevant parameter is the difference between the ∆ηzx (∆ηzy)
relative interactions, as we have seen before.

A specific feature of the ξ = 1 limit is that breaking the rotational symmetry leads to
the exclusion of the superradiant-y phase. Instead, we have the deformed phase, as we will
immediately explain.

4.3.2. Deformed Phase

Instead of the superradiant-y phase, there is a new quantum phase emerging from the
interactions. From the condition where cos φs ± 1 (sin φs = 0), we obtain

jzs = −
ω0

∆ηzy
= − 1

f1y
, (41)

This leads to two new fixed points

(ps, qs, jzs, φs) =

(
0, 0,− 1

f1y
,±π

2

)
, (42)

whose energy is given by

εs1y = − 1
2 f1y

+
ηy

2ω0
, (43)

However, if we add and subtract ηz/2ω0, it reads

εs1y = −1
2

(
f1y +

1
f1y

)
+

ηz

2ω0
, (44)

The main difference with previous cases (the superradiant phases) is that f1y is independent
of γ, so this phase exists for every value of the light–matter coupling given that ∆ηzy ≥ ω0.
This phase was identified before in Ref. [55] in the absence of ηy. It is characterized by the
two degenerate fixed points whose orientation in the atomic angle φ is rotated by π/2 with
respect to the superradiant-x phase’s fixed points (a result inherited from the superradiant-
y phase). There, the photon number’s expectation value becomes zero because qs = ps = 0.
Furthermore, we have that because | f1y| ≤ 1, εs1y ≤ ε− < ε+. Then, they mark the
ground-state energy, and the point at jzs = −1 becomes a saddle point, as it happens in the
usual superradiant phases. However, because it is neither a normal, nor a superradiant
phase, we deem it as a deformed phase, although one could name it a subrradiant phase.
The energy surfaces in this phase are shown in Figure 2(e7),(f7).

Finally, we study the last condition for stationary points, given by the parameter
relation

ηx − ηy

ω0
=

∆ηzy − ∆ηzx

ω0
=

γ2

γ2
1+

= f1+ (45)

Since we can write Equation (35) as

ω0 + jzs

[
ηz − ηy − cos2 φ

(
ηy − ηx +

4γ2

ω

)]
= 0, (46)
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it is clear that, when applying the condition in Equation (45), the factor multiplying the
cosine function vanishes, so we obtain a stationary point. Here, we find the following value
of jzs with energy

(ps, qs, jzs, φs) =

(
0, 0,− 1

f1y
,±π

2

)
, (47)

εs1y = −1
2

(
f1y +

1
f1y

)
+

ηz

2ω0
,

i.e., the stationary points from the deformed phase. Nevertheless, we can write Equation (45) as

∆ηzy

ω0
=

∆ηzx

ω0
+ f1+. (48)

Therefore, εs1x = εs1y and the stationary points coincide with those of the superradiant-x
phase. This means that Equation (45) marks the frontier between the superradiant-x, the
deformed phases, and the normal phase (for f1y = 1), a similar result to ηx = ηy for ξ = 0.

4.3.3. Quantum Phases in the Dicke Limit

The existence of the deformed phase changes the quantum phase diagram in the Dicke
limit. In the TC, there is a chance of a superposition of the two superradiant phases. We
recall that, in this case, only one set of stationary points becomes the minimum, either
those from the superradiant-x, or those from the superradiant-y phases. Instead, there is
a stricter separation between phases because the deformed phase appears for ∆ηzy ≥ ω0.
Then, we have only two stationary points at the normal phase and only four for both the
superradiant-x and deformed phases. We can write the ground-state energy in closed
form too:

ε
g.s.
1 = −1

2

(
F1 + F−1

1

)
+

ηz

2ω0
(49)

with

F1 =


f1x for γ ≥ γc

1x and ∆ηzx ≤ ω0,
f1y for ∆ηzy ≥ ω0,
1 otherwise

(50)

We also recall that f1y is independent from γ. Again, if we suppose ηy = ηz = 0, the
ground state evolves as a function of γ from the normal γ ∈ [0, γc

1x] to the superradiant-x
phase γ ∈ [γc

1x, ∞). Then, the situation remains the same for ∆ηzy 6= 0, but the deformed
phase emerges above ω0. Similarly to the TC limit, we will have the following energy
intervals εs1x < εs1y < ε− < ε+ in the superradiant-x phase and εs1y < ε− < ε+ in the
deformed phase.

Next, we obtain the gradient of the ground-state energy as a function of the interactions,
just like we did in the TC regime:

∇ε
g.s.
1 =

1
2ω0


1− f 2

1x
f 2
1x

(
2ω0

γ f1x,−1, 0, 1
)
+ (0, 0, 0, 1) for γ ≥ γc

1x, and ∆ηzx ≤ ω0,
1− f 2

1y

f 2
1y

(0, 0,−1, 1) + (0, 0, 0, 1) for ∆ηzy ≥ ω0,

(0, 0, 0, 1) otherwise

,

(51)

There are three sets of parameter values to look for the presence of QPT. First, Fc
1 = 1,

where we obtain a generalization of well-known second-order Dicke QPT from the normal
to the superradiant-x phase. Next, at ∆ηc

zy = ω0, we obtain a first-order QPT from the
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normal and superradiant-x phases to the deformed one as a function of ∆ηzx or ∆ηzy,
recovering the results in Ref. [55], when ηx = ηy = 0. Finally, at ∆ηzy − ∆ηzx = ω0 f1+,
we have the corresponding behavior we found for the TC limit at ηx = ηy: there is a
first-order QPT signaling the border between the x and y sides. In Figure 2a,b, we show the
different phases in the system as a function of the Hamiltonian parameters. The presence
of first-order phase transitions in the Dicke model due to qubit–qubit interactions were
predicted before considering interactions in the y direction [57], and later in the z [58,60,91],
and are inherited from the LMG model as well.

The energy surfaces for the same parameter configurations we employed in the TC
limit are shown in Figure 2c–f. In some cases, we slightly change the value of the interac-
tions to highlight the phase in which the system is located. We observe the onset of the
fixed points and what kind of extreme point they correspond to (minimum, maximum,
saddle point) in each phase as a function of the interacting parameters. For ηx = ηy = 0
(Figure 2(c1)–(c3)), the system goes from the normal to the superradiant-x case, but the
normal phase is not deformed. As usual, changing the balance between ηx and ηy breaks
the overall symmetry of the normal phase but, in this case, it leaves unaffected the super-
radiant phase. In the Dicke limit, we have only a restriction for γ given by γc

1x, as the
deformed phase is independent of the light–matter coupling. As a direct consequence,
the deformation tends to stretch in the horizontal direction, but we have cases as those
in Figure 2(c7),(d7), where the energy surface in the normal phase is deformed in the y
direction. We can observe that for most sets of parameters, the situation is similar to that
of Figure 2(c4)–(c6). In (c4) γ < γc

1x, the system is in the normal phase. Increasing the
parameter γ makes the system enter the superradiant-x phase where the minima are in the
horizontal direction, and a saddle point appears. We can identify the appearance of the
deformed phase in (e7) and (f7), where the minima emerge in the vertical direction, and
the point at the center becomes a saddle point. Finally, we stress that there is no situation
where more than four stationary points appear, contrasting with the TC limit.

4.4. Arbitrary Coupling

We are ready to treat the general case, i.e., when ξ ∈ (0, 1). Here, we expect to find
effects similar to those in the TC and Dicke limits. In the absence of qubit interactions, the
main difference with those limits is the presence of two different superradiant domains that
can coexist for some values of the light–matter coupling. Hence, three phases separated
by the critical values of the light–matter coupling appear γξ± =

√
ωω0/(1± ξ), such that

γξ+ < γξ− [6,62,69,70]. Given that γξ+ < γξ−, in the interval γξ+ < γ < γξ−, one finds
the standard effect of the Dicke model that we will call here superradiance-(+). Instead,
for γξ− < γ, there are two additional stationary points whose nature is that of saddle
points that are attributed to a superradiance-(−) effect. However, in this superposition
of superradiant phases, the fixed points from the superradiance-(+) are the minima, so
there is no QPT [62]. We immediately notice the similarity with what we have observed
in the TC model in the presence of qubit interaction. A result that will take importance
later when we explore the energy domains. If we take ξ → 0, then γ0+ = γ0−, and for the
TC limit, the two superradiant phases become one. We can anticipate that the presence
of the interactions ηx and ηy creates a similar result and produces two domains separated
by the two critical couplings we have already described γc

0x and γc
0y. On the other hand,

when ξ → 1 the critical coupling γ1− → ∞, the new superradiant-(−) phase is pushed to
larger values of the coupling until it vanishes. Hence, in the Dicke model, there is only one
superradiant phase. In our case, this effect has been reflected on the onset of the deformed
phase. As we will discuss below, by including the qubit–qubit interactions, we obtain
a similar result for arbitrary ξ, where the superradiant-(+) [((−))] phase is modified by
interactions in x (y) directions.



Entropy 2022, 24, 1198 17 of 34

Once more, we obtain five conditions for fixed points from Equations (10) and (11):
jzs = ±1, cos φs = ±1 (sin φs = 0), sin φs = ±1 (cos φs = 0), and the special parameter
relationship that now takes the form:

ηx − ηy

ω0
=

∆ηzy − ∆ηzx

ω0
=

γ2

γ2
ξ+

− γ2

γ2
ξ−

= fξ+ − fξ−, (52)

jzs = ±1 leads to the two stationary points that mark the absolute minimum in the normal
phase and the absolute maximum. Thus, we have again a (deformed) normal phase, as in
the two previous cases, Next, we will recover the most general superradiant phases.

4.4.1. Superradiant-x and y Phases

If we evaluate the condition cos φs = ±1 (sin φs = 0), we obtain the two degenerate
stationary points corresponding to the superradiant ground state given by

(ps, qs, jzs, φs) =

(
0,∓2γ

ω

√
1− 1

f 2
ξx

,− 1
fξx

, 0 or π

)
, (53)

where now

fξx =
∆ηzx

ω0
+ fξ+. (54)

At these points, the energy surface becomes

εsξx = −1
2

(
fξx +

1
fξx

)
+

ηz

2ω0
(55)

and they exist for γ ≥ γc
ξx with

γc
ξx = γξ+

√
1− ∆ηzx

ω0
. (56)

Symmetrically, if we opt for the case sin φs = ±1 (cos φs = 0), the stationary points are
rotated by π/2, as expected,

(ps, qs, jzs, φs) =

(
±2γ

ω

√
1− 1

f 2
ξy

, 0,− 1
fξy

,±π

2

)
, (57)

where

fξy =
∆ηzy

ω0
+ fξ−. (58)

In the same way, these points appear only for γ ≥ γξy with

γc
ξy = γξ−

√
1−

∆ηzy

ω0
. (59)

Their energy is

εsξy = −1
2

(
fξy +

1
fξy

)
+

ηz

2ω0
. (60)

As anticipated, these phases correspond to a generalization of the superradiant−x and y we
have found in the TC and Dicke limits. Similar to the case of the Dicke model, the condition
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in Equation (52) lies at the border between the superradiant phases, as it is exhibited in
Figure 3b.

Figure 3. The same as in Figure 1, but for an arbitrary coupling set at ξ = 0.1 in (a) and at ξ = 0.5
from (b–f). We have selected a shift ηx − ηy = ω0/2. The thick solid black line in (b) is calculated for
f1+ = 0.5. Here, η̄i = ηi/ω0 for all directions i.
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4.4.2. Quantum Phases for Arbitrary Coupling

For arbitrary ξ, several of the results we have found before for ξ = 0, 1 stand. The
major difference was the existence of the deformed phase in the Dicke. In fact, the phase
diagram for ξ ∈ (0, 1) is very similar to the one for the TC limit, except for the absence of
symmetry (for intermediate ξ the Hamiltonian is non-integrable) and for the dependence
of the border between the superradiant x and y phases given by Equation (52) that now is
explicitly in terms of ξ and γ.

What is truly new about the intermediate ξ case is the correspondence between the
interactions in the x direction and the superradiant-(+) phase and those in the y direction
and the superradiant-(−) phase. This effect explains our previous findings. For ξ = 0,
both phases are completely analogous except that one depends on ηx and the other on
ηy. Instead, for ξ = 1 the superradiant-y phase vanishes completely because γξ− goes to
infinity. ( fξy → ∆ηzy/ω0). Therefore, in the Dicke limit, the superradiant-y transforms into
the deformed phase. The correspondence is explicit once we recognize the dependence of
the light–matter critical couplings on the interactions in the x and y direction.

Surprisingly, qubit interactions can shift the order in which the two superradiant
phases x and y occur, a situation we have already encountered in the TC limit, but excluded
in the standard case, i.e., for the superradiant-(+) and (−) phases. For ηx = ηy = 0, it
holds that γc

ξx ≤ γc
ξy (because γc

ξ+ ≤ γc
ξ−). However, if we tune ηx and ηy independently,

we can obtain that γc
ξy < γc

ξx. The condition to invert the order of the two critical couplings
occurs for the set of parameters where

∆ηzy =
γ2

ξ+

γ2
ξ−

∆ηzx −ω0

[
1−

γ2
ξ+

γ2
ξ−

]
(61)

For ξ = 0, this condition becomes ηx = ηy, because γc
0+ = γc

0−. It is the same special
parameter relation we find earlier, leading to the superradiant-symmetric phase. For ξ = 1,
we have that

(
γc

1−
)−1

= 0. Then, the condition is now ∆ηzy = ω0, the limiting condition
where the deformed phase emerges. This effect is shown in Figure 3a for ξ = 0.1, where
we have introduced an artificial shift ∆ηzy = ∆ηzx + ω0/2 (the equivalent of what we have
done in Figure 1) to exhibit that the two curves of γc

ξx and γc
ξy cross as a function of γ

thanks to the interactions.
Once more, it is possible to express the ground-state energy in a general and simple form:

ε
g.s.
1 = −1

2

(
Fξ + F−1

ξ

)
+

ηz

2ω0
(62)

with

Fξ =


fξx for γ ≥ γc

ξx,
fξy for γ ≥ γc

ξy,
1 otherwise

(63)

The gradient as a function of the interactions reads

∇ε
g.s.
ξ =

1
2ω0


1− f 2

ξx
f 2
ξx

(
2ω0γ

γ2
ξ+

,−1, 0, 1
)
+ (0, 0, 0, 1) for γ ≥ γc

ξx,

1− f 2
ξy

f 2
ξy

(
2ω0γ

γ2
ξ−

, 0,−1, 1
)
+ (0, 0, 0, 1) for γ ≥ γc

1y,

(0, 0, 0, 1) otherwise

(64)

As a generalization of the TC and Dicke cases, we have a second-order QPT at Fc
ξ = 1, a

first-order QPTs between the superradiant-x and y phases at ∆ηyz = ∆ηzx + ω0
(

fξ+ − fξ−
)
,

and first-order QPTs from the normal to the superradiant-x (y) phases at the values of the
parameters where the other superradiant-y (x) phase becomes prohibited. This is shown in
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Figure 3a,b. In Figure 3b, the region available for the superradiant-x and y phases change
according to the value of γ. We are selecting the case for γ/γξ+ = 0.5 and ξ = 0.1 as
an example. For other values of the light–matter coupling and the parameter ξ, we will
have larger or smaller domains of validity for the superradiant phases. Similar to the two
previous cases, in Figure 3c–f, we also illustrate the different behaviors and nature of the
fixed points by showing the energy surfaces using the same interacting parameters as in
Figures 1 and 2, but for ξ = 0.5.

5. Semiclassical Density of States

The study of quantum critical behavior is not limited to the ground state, but extends
to excited energies. Next, we explore and classify the distinct energy domains emerging
in each phase we have discussed in the previous section by considering the onset of
Excited-State Quantum Phase Transitions (ESQPT) as a function of the light–matter and
matter–matter interactions. To achieve this aim, we follow the standard methodology that
has been developed for the study of ESQPTs, i.e., we analyze the energy dependence and
singularities of a semi-classical approximation to the Density of States (DoS) νξ(ε), obtained
by calculating the available phase space volume at given energy using Weyl’s law [92]

νξ(ε) =
1

(2π)2

∫
dq dp djz dφ δ

[
εω0 − Hξ

cl(q, p, jz, φ)
]
. (65)

Although signatures of ESQPTs can be found in the smoothed level flow, the energy
densities of some observables, and the oscillatory part of the DoS [4,6], the easiest way to
identify them is via the smoothed DoS.

To integrate Equation (65), we need to eliminate first the bosonic degrees of freedom,
following closely the methodology in Refs. [61,62], first, we clear the variable q from
Hξ

cl(q, p, jz, φ) = ε in terms of p, jz and φ. As one obtains a quadratic equation in q and p, it
always yields two roots for every value of the parameters. The two solutions are

qξ± = − γ

ω

√
1− j2z(1 + ξ) cos φ±

√
−p2 + aξ p + bξ , (66)

where

aξ =
2γ

ω

√
1− j2z(1− ξ) sin φ, (67)

bξ = − 2
ω

jz(ω0 +
ηz jz

2
)− 1

ω

(
1− j2z

)(
ηx cos2 φ + ηy sin2 φ

)
+

2εω0

ω
+ (68)

γ2

ω2 (1− j2z)(1 + ξ)2 cos2 φ.

Then, we employ the properties of the Dirac delta function to obtain

νξ(ε) =
1

(2π)2

∫
dq dp djz dφ

δ(q− qξ+)

∣∣∣∣∣∂H(ξ)
cl

∂q

∣∣∣∣∣
−1

qξ+

+ δ(q− qξ−)

∣∣∣∣∣∂H(ξ)
cl

∂q

∣∣∣∣∣
−1

qξ−

. (69)

Evaluating the derivatives leads to∣∣∣∣∣∂H(ξ)
cl

∂q

∣∣∣∣∣
qξ±

=

∣∣∣∣ω[− γ

ω

√
1− j2z(1 + ξ) cos φ±

√
−p2 + aξ p + bξ

]
+ γ

√
1− j2z(1 + ξ) cos φ

∣∣∣∣ = (70)

ω
√
−p2 + aξ p + bξ .
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Thus, the q integration yields

νξ(ε) =
1

(2π)2
2
ω

∫
djzdφ

dp√
−p2 + aξ p + bξ

. (71)

The limits in the variables jz, φ and p are determined by the condition −p2 + aξ p + bξ ≥ 0.
The p integration is easily performed by writing

−p2 + aξ p + bξ = (pξ+ − p)(p− pξ−), (72)

where

pξ± =
1
2

(
−aξ ±

√
a2

ξ + 4bξ

)
(73)

are the roots (pξ− ≤ pξ+) of the quadratic polynomial −ω2 p2 + aξ p + bξ = 0. Hence,

νξ(ε) =
2

ω(2π)2

∫
djz
∫

dφ
∫ pξ+

pξ−
dp

1√
(pξ+ − p)(p− pξ−)

=
1

2πω

∫
djz
∫

dφ (74)

This result is valid, provided that the roots pξ± are real, which, in turn, occurs only if
the discriminant

a2
ξ + 4bξ ≥ 0 (75)

is greater than or equal to zero. By substituting the values aξ and bξ , this condition
explicitly reads

1
2

(
1− j2z

)[(
fξ+ −

ηx

ω0

)
cos2 φ +

(
fξ− −

ηy

ω0

)
sin2 φ

]
≥ ηz

2ω0
j2z + jz − ε, (76)

or

cos2 φ ≥ gξ(jz, ε), (77)

where

gξ(jz, ε) =

{
2

1− j2z

[
ηz

2ω0
j2z + jz − ε

]
−
(

fξ− −
ηy

ω0

)}[(
fξ+ − fξ−

)
−
(

ηx

ω0
−

ηy

ω0

)]−1
. (78)

We observe these expressions only depend on the phase space volume over the region of
the Bloch sphere covered at a given energy. They allow us to determine the limiting values
for (jz, φ) in the Bloch sphere, given that 0 ≤ cos φ0 ≤ 1. If fξ(jz, ε) < 0, then the condition
can be satisfied for all the values of φ ∈ [0, 2π), covering the Bloch sphere. Instead, if
fξ(jz, ε) > 1, the condition cannot be fulfilled. It would be valid only within an interval of
φ given by the limiting angle

φξ = arccos
√

gξ(jz, ε) = (79)

arccos

{[
2

1− j2z

[
ηz

2ω0
j2z + jz − ε

]
−
(

fξ− −
ηy

ω0

)]1/2[(
fξ+ − fξ−

)
−
(

ηx

ω0
−

ηy

ω0

)]−1/2
}

.

such that [−φξ , φξ ] or [π − φξ , π + φξ ]. In general, we can obtain limiting values for jz and
ε where the condition is satisfied by taking into account the aforementioned limits of cos φ.
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First, we consider the limits given by cos φ± = ±1. It leads to a quadratic equation for
jz which reads

j2z

{
ηz

2ω0
+

1
2

(
fξ+ −

ηx

ω0

)}
+ jz −

{
ε +

ηz

2ω0
+

1
2

(
fξ+ −

ηz − ηx

ω0

)}
= 0, (80)

where we have inserted a zero by adding and substracting ηz/2ω0. We observe that the
effect of the interactions in z direction is to shift the energy, while in the x direction, it is to
shift the critical coupling. The resulting roots are

j(±)zξ (ε) = − 1
fξx

[
1∓

√
2 fξx(ε− εsξx)

]
(81)

Second, we obtain the limits given by cos φ1,2 = 0. Likewise, we obtain a quadratic equation
which reads

j2z

[
ηz

2ω0
+

1
2

(
fξ− −

ηy

ω0

)]
+ jz −

[
ε +

ηz

2ω0
+

1
2

(
fξ− −

ηz − ηy

ω0

)]
= 0. (82)

where we have also added and subtracted ηz/2ω0. We notice it is identical to Equation (80),
but changing ηx → ηy and fξ− → fξ+. Consequently, the solutions are given by

j(1,2)
zξ (ε) = − 1

fξy

[
1∓

√
2 fξy(ε− εsξy)

]
. (83)

In the following, we will study the particular cases of the TC (ξ = 0) and Dicke (ξ = 1)
to understand the effects of the interactions on the emergence of energy domains and
critical energies. Finally, we will comment on the arbitrary ξ case and the general typology
of ESQPTs.

5.1. Energy Domains in the TC Limit

In the TC limit, the key functions determining the integral in Equation (74) are given by

φ0(jz, ε) = arccos

{[
2

1− j2z

(
ηz

2ω0
j2z + jz − ε

)
−
(

f0+ −
ηy

ω0

)]1/2( ηy

ω0
− ηx

ω0

)−1/2
}

, (84)

j(±)z0 (ε) = − 1
f0x

[
1∓

√
2 f0x(ε− εs0x)

]
, (85)

j(1,2)
z0 (ε) = − 1

f0y

[
1∓

√
2 f0y(ε− εs0y)

]
. (86)

We observe the expressions for the critical coupling and the ground-state energy of
the superradiant-x and y phases of the TC limit are recovered when one considers either
j(±)z0 or j(1,2)

z0 , respectively. We note that j(1)z0 ≤ j(2)z0 . We must compare these values with
those coming from the stationary points jz = ±1, i.e., the ones that are present in all the
phases and whose energy is given by ε± = ±1 + ηz/2ω0. Subsequently, we recognize four
different energy phases and three critical energies using the comparison between the values
of jz, the conditions in Equation (84), and what we learned in Section 3. These energy
domains correspond to various behaviors of the function gξ(jz, ε). In turn, they determine
the intervals of the variable jz. Without loss of generality, let us assume that we select ηx
and ηy such that εs0x < εs0y. Then, the energy phases are:

(a) The upper interval where ε+ < ε. Here, the function g0(jz, ε) is always less than
one. The whole pseudospin sphere is available: jz ∈ [−1, 1] and φ0 ∈ [0, 2π).
Consequently, the available phase space volume (per j) saturates to its limiting value
ν0(ε) = 2/ω.
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(b) The interval where ε− < ε < ε+. Here, jz takes values only in the interval
[
−1, j(+)

z0

]
with

∣∣∣j(+)
z0

∣∣∣ ≤ 1. This interval is always present for all values of parameters and
corresponds to available phase space from the absolute minimum point at jz = −1
and the absolute maximum at jz = +1.

(c) The interval that is only present in the superradiant-y phase, ε0sy < ε ≤ ε−.
(d) The interval arising in presence of both the superradiant-x and y phases, ε0sx ≤ ε ≤

ε0sy. Here, the south pole of the pseudospin sphere (jz = −1) is inaccessible and the

variable jz is restricted to the interval j(−)z0 ≤ 1 ≤ j(+)
z0 . Considering that ε0sx < ε0sy

is the ground-state energy in the superradiant-x phase.

Clearly, we have three critical energies given by ε
(c1)
0 = εs0y, ε

(c2)
0 = ε−, and ε

(c1)
0 =

ε+. All of them correspond to stationary points of the energy surface and to what we
have already found in Section 3. The semiclassical approximation to the DoS in the TC
model becomes

ω

2
ν0(ε) =



1
π

∫ j(+)
0

j(−)z0

φ0(jz, ε)djz, ε ∈ [ε0sx, ε0sy] and γ ∈ [γc
0x, γc

0y],

1
π

[∫ j(1)z0

j(−)z0

φ0(jz, ε)djz +
∫ j(+)

z0

j(2)z0

φ0(jz, ε)djz

]
ε ∈ [εs0y, ε−] and γ ∈ [γc

0y, ∞),

+ 1
2

(
j(2)z0 − j(1)z0

)
,

1
π

∫ j+z0

j(1)z0

φ0(jz, ε)djz + 1
2

(
j(1)z0 + 1

)
, ε ∈ [ε−, ε+], and γ ∈ [0, ∞),

1, ε+ ≤ ε, and γ ∈ [0, ∞).

(87)

The onset of these energy domains depends on the three intervals of γ that we discussed in
Section 3. The boundary between each energy domain signals the existence of an ESQPT,
as the DoS has a critical change characterized by a singularity in its derivative, even though
the DoS is continuous in the energy variable. The type of ESQPT is encoded in the first
derivative of the DoS, dν0(ε)/dε, which in turn is in terms of the derivative

∂φ0

∂ε
=

1
1− j2z

{
[1− g0(jz, ε)]g0(jz, ε)

(
ηy − ηx

ω0

)}−1/2
. (88)

It can be shown that those ESQPTs at ε0sy corresponds to a logarithmic-type discontinuity,
and the ones at ε− and ε+ are of the jump type. This is not the typical behavior of the
standard TC model: we recover it only when ηx = ηy. There, the symmetry leads to two
jump-type singularities at ε0sy = ε0sx and ε+ [61,66]. This is because ε0sy becomes the
ground state, so only the ESQPTs corresponding to the fixed points at jzs = ±1 remain.
We will offer a unified explanation of this behavior later, when we discuss the arbitrary ξ
case. The volume of the available phase space for the TC model, encoded in the form of the
semiclassical DoS, is shown for three different sets of interacting parameters, as a function
of the energy, in the top row of Figure 4a–c, where we have chosen interacting parameters
to highlight the different domains.

5.2. Energy Domains in the Dicke Limit

Following the same reasoning as in the previous section, we derive the expressions for ξ = 1:

φ1(jz, ε) = arccos

{[
2

1− j2z

[
ηz

2ω0
j2z + jz − ε

]
+

ηy

ω0

]1/2(
f1+ −

(
ηx

ω0
−

ηy

ω0

)]−1/2
}

, (89)

j(±)z1 (ε) = − 1
f1x

[
1∓

√
2 f1x(ε− εs1x)

]
, (90)

j(1,2)
z1 (ε) = − 1

f1y

[
1∓

√
2 f1y(ε− εs1y)

]
. (91)
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where j(1)z1 ≤ j(2)z1 . We recall that f1y is independent of the light–matter coupling. For the
Dicke model, the range of the jz variable is given by the same expressions as in the TC
model. Thus, we obtain the following intervals:

(a) The interval ε+ < ε, where, as in the TC model the whole pseudo-spin sphere is
available jz ∈ [−1, 1], φ1 ∈ [0, 2π), and ν1(ε) = 2/ω.

(b) The interval ε− < ε < ε+. Here, the jz variable takes values only in the interval

[−1, j(+)
z1 ] and φ1 is restricted. When jz ∈ [−1, ε], φ1 takes values in the whole

interval [0, 2π), but if ε < jz ≤ j(+)
z1 , 0 < φ1 < π.

(c) The interval ε1sy < ε ≤ ε−. It only appears in the deformed phase.
(d) The lower interval ε1sx ≤ ε ≤ ε1sy. Here, the south pole of the Bloch sphere

(jzs = −1) is inaccessible and the jz variable becomes restricted to the interval
jz ∈ [j(−)z1 , j(+)

z1 ].

The expression for the semiclassical DoS in the Dicke limit becomes

ω

2
ν1(ε) =



1
π

∫ j(+)
z1

j(−)z1

φ1(jz, ε)djz, ε ∈ [εs1x, εs1y] and γ ∈ [γc
1x, ∞),

1
π

[∫ j(1)z1

j(−)z1

φ1(jz, ε)djz +
∫ j(+)

z1

j(2)z1

φ1(jz, ε)djz

]
ε ∈ [εs1y, ε−], γ ∈ [γc

1x, ∞],

+ 1
2

(
j(2)z1 − j(1)z1

)
, and ∆ηzy ≥ ω0,

1
π

∫ j(+)
z1

j(1)z1

φ1(jz, ε)djz + 1
2

(
j(1)z1 + 1

)
, ε ∈ [ε−, ε+] and γ ∈ [0, ∞],

1, ε+ ≤ εand γ ∈ [0, ∞].

(92)

If we cancel the interactions in z and y directions (ηx = ηy), we recover Equation (19) in [55],
where εs1y = −ω0/2ηz and

φ1(jz, ε) = arccos

{[
2

1− j2z

(
ηz

2ω0
j2z + jz − ε

)]1/2
f−1/2
1+

}
. (93)

The volume of the available phase space for Dicke model for three different couplings,
as a function of the energy, is shown in the middle row of Figure 4d–f for representative
values of the parameters. The singular behavior of the DoS is encoded in the derivative

∂φ1

∂ε
=

1
1− j2z

{
[1− g1(jz, ε)]g1(jz, ε)

(
f1+ −

ηx − ηy

ω0

)}−1/2
. (94)

Even though the fixed points belonging to the deformed phase do not appear as
extrema in the superradiant-x phase, they still impact the energy domains, given that they
are related to the interactions in the z directions via j(1,2)

z1 . Then, one can still find four
different energy domains and three ESPQT. As it is shown in Figure 4 (middle row), the
DoS curves for the Dicke and TC limits are very similar as a function of the energy ε for
small couplings. The behavior becomes analogous to the TC case. Although this result is
similar to that of an extended Dicke model, it differs from the standard Dicke model, where
the singularity at ε− is of the logarithmic type [61,66].
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Figure 4. (a–i) Density of States ωνξ(ε)/2 as a function of energy for the TC limit (top row), the
Dicke limit (middle row), and an arbitrary coupling set at ξ = 0.5 (bottom row), for several values of
the light–matter coupling and the qubit–qubit interactions chosen to highlight the different energy
domains. We assume the case where the superradiant-x phase is below the superradiant-y phase.
Thus, we exhibit three general regimes: normal (left column), superradiant-x (middle column), and
superradiant-x modified by the fixed points from the superradiant-y or deformed phases (right
column). The four energy domains that can be encountered are marked with different colors:
[εsξx, εsξy] (blue), [εsξy, ε−] (green), [ε−, ε+] (brown), [ε+, ∞) (red). The relevant energies, including
the ground-state and critical ones, are indicated with black vertical dashed lines. (j) Diagram of
the energy domains as a function of γ for ξ = 0.2, ηx = ηy = 1 and ηz = 2. The colors indicate
the corresponding domain to (a–i). The relevant energies are indicated with dashed curves and the
critical couplings with dashed vertical lines.

5.3. Energy Domains for Arbitrary Couplings and Typology of ESQPTs

Finally, we offer some considerations about the most general case. When an ar-
bitrary value of ξ ∈ (0, 1) is chosen, we obtain a general expression by combining
Equations (79), (81), and (83). It reads
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ω

2
νξ(ε) =



1
π

∫ j(+)
zξ

j(−)zξ

φξ(jz, ε)djz, εsξx ≤ ε ≤ εsξy, and γ ∈ [γc
ξx, γc

ξy],

1
π

[∫ j(1)z

j(−)zξ

φ0(jz, ε)djz +
∫ j(+)

zξ

j(2)zξ

φ0(jz, ε)djz

]
εsξy < ε ≤ ε−, and γ ∈ [γc

ξy, ∞],

+ 1
2

(
j(2)zξ − j(1)zξ

)
,

1
π

∫ j(+)
zξ

j(1)zξ

φ0(jz, ε)djz + 1
2

(
j(1)zξ + 1

)
, ε− < ε ≤ ε+, and γ ∈ [0, ∞),

1, ε+ < ε and γ ∈ [0, ∞).

(95)

Given that εsξx < εsξy. This expression reunites the effects of the qubit–qubit interactions
and the arbitrary light–matter coupling ξ. As discussed before, the phenomenology of this
result is similar to what is found in absence of interactions but for arbitrary ξ, as shown
in Refs. [6,62,69,70]. The main difference is the modification of the critical coupling of the
superradiant-(+) phase by ηx, the critical coupling of the superradiant-(−) phase by ηy
and the direct shift of the energy and jz intervals of validity by ηz. Additionally, in this case,
we have as a general expression

∂φξ

∂ε
=

1
1− j2z

{[
1− gξ(jz, ε)

]
gξ(jz, ε)

[(
fξ+ − fξ−

)
−

ηx − ηy

ω0

]}−1/2
. (96)

ESQPTs can be classified using two numbers: the index of the transition r, which
denotes the number of negative eigenvalues of the Hessian matrix of the classical Hamilto-
nian at the stationary points (where the phase space volume changes), and the number of
relevant degrees of freedom f of the system, determining in which derivative of the smooth
DoS the discontinuity associated to the ESQPT appears [68]. This classification is tied to
the properties of the Hessian matrix describing the local dependence of the Hamiltonian
around the fixed points of the energy surface, so it is valid only if the Hessian does not
have zero or singular eigenvalues. r determines the type of singularity: for even f systems,
r = 1 a logarithmic-type singularity, while r = 2 indicates a jump-type one [6,68,70]. As
the Dicke model has only two degrees of freedom (the collective spin and the boson), it
has f = 2. The integrability of the standard TC model reduces to f = 1 instead [70]. For
arbitrary ξ, it has been shown that there are three ESPQT marked by three critical energies
given by εc1

ξ = εsξ+, εc2
ξ = ε−, and εc3

ξ = ε+. Their indices correspond r = 1, r = 2, and
r = 2, respectively, corresponding to saddle points (r = 1) or maxima (r = 2), as discussed
in Section 3.

A major result of our exploration is that the interactions in ηx and ηy play a similar
role to an arbitrary value of ξ in both the ground-state and excited-state properties. ηx
modifies the magnitude of γc

ξ+, and ηy does the corresponding for γc
ξ−. As a result, the

ESQPT coming from the transition between the superradiant-x and superradiant-y domains
(and vice versa) are analogous to the transition between the superradiant-(+) and (−)
phase at ηi = 0. This ESQPT has an index r = 1 [69]. Likewise, for an arbitrary value of
matter–matter interactions and ξ both ESQPTs, the one at the stationary point jzs = −1
and the one due to the saturation of the Bloch sphere (jzs = +1) have r = 2 [61,69,70].
This explains our findings for the TC and Dicke limits. In the first case, the extended TC
model, including interactions, is not integrable anymore. In the Dicke case, we could still
have a finite ηx modifying the DoS even though the critical coupling γc

1− goes to infinity.
Therefore, as it is revealed in Figure 4g–i, where we use ξ = 0.5 and various values of the
qubit interactions as representative examples, we will find a similar typology to the cases
we have mentioned in the absence of qubit–qubit interactions. Finally, in Figure 4j, we
illustrate the possible energy domains and the location of the critical energies as a function
of γ for ξ = 0.2, ηx = ηy = 1 and ηz = 2.
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6. Discussion and Conclusions

In this work, we have investigated the quantum phases emerging in an extended
Dicke model that involves qubit–qubit interactions. We have also included the possibility
of varying the strength of the non-resonant terms so that the system can go from the Tavis–
Cummings to the Dicke regimes. To this end, we used standard semiclassical techniques,
whose central element is considering the expectation value of the quantum generalized
Hamiltonian over a tensor product of Bloch and Glauber coherent states. By studying the
shape of the energy surfaces, their stationary points, and the behavior of the semiclassical
approximation to the Density of States, one can identify and characterize the QPT, ESQPTs,
quantum phases, and energy domains resulting from the combination of light–matter
(spin–boson) and matter–matter (collective spin) interactions.

We have found general expressions for the ground-state energy and analyzed the QPTs
as a function of the Hamiltonian parameters in three cases: for the Tavis–Cummings limit
(ξ = 0), the Dicke limit (ξ = 1), and for an arbitrary interaction strength in between these
two. We have considered a general combination of collective qubit interactions represented
by operators Ĵ2

i with strengths ηi and i = x, y, z. This is the most general case for two-body
interactions between the collective degrees of freedom of the qubits. Each direction has a
particular role in modifying the critical phenomena of the standard light–matter system for
both the ground and excited states. To start, we examine the results for interactions in the z
direction. As mentioned before, three main results have been discovered before due to a
finite ηz: shifting of the ground-state by ηz/2, the onset of first-order phase transitions, and
the modification of the critical value of the light–matter interaction where the superradiant
QPT appears (see, e.g., Ref. [55]). Indeed, we have confirmed these results and generalized
them as we have found that the same phenomena occur in the presence of interactions in the
x and y directions. Furthermore, we have noted that the relevant parameters of the system
are the differences ∆ηz,x and ∆ηz,y, which is a natural result due to the conservation of the
pseudospin length. Tuning these quantities allows for the stimulation and suppression of
superradiance via manipulating the light–matter interaction.

However, this is not the only effect of the x and y interactions. In terms of the ∆ηzi
(i = x, y) parameters, they produce two new quantum phases, the superradiant-x and
superradiant-y phases. If we assume the interactions in the x and y directions are balanced,
we recover the distinctive rotational symmetry of the standard TC model. Regardless of
the value of ξ, the normal phase would be symmetric, and, in the case of the TC limit,
the superradiant phase will correspond to the well-known Mexican hat potential. Thus,
we call it the superradiant-symmetric phase. In the imbalanced case, we observe new
effects. The integrability of the TC Hamiltonian breaks down, and the two superradiant
phases appear. Moreover, the energy surface of the normal phase is deformed for every
ξ stretching in the x or y direction depending on the relationship between ∆ηzx and ∆ηzy.
Additionally, new effects appear, such as first-order QPT between the x, y, and normal
phases and the existence of parameter domains where the fixed points of both the x and
y phases coexist. We refer to this situation as a superposition of phases, where one of
them can be dominant [62]. The passage between a single superradiant phase to one in a
superposition does not imply a QPT because the ground state remains the same. Still, it
will affect the energy domains and ESQPT present for that specific parameter set. On the
other hand, the Dicke limit becomes a situation where the superradiant-y phase vanishes
and leaves a deformed or subradiant phase first identified in Ref. [55]. It only occurs for
∆ηzy ≥ 1 independently of γ. The onset of this phase produces the development of a
new first-order QPT between it, the superradiant-x, and normal phases. Additionally, it
suppresses any superposition between phases.

Notoriously, one can understand these results from a unified point of view by looking
at the arbitrary ξ case in general. In the absence of interactions, an intermediate value of the
light–matter interaction leads to the existence of two phases, the superradiant-(+) and (−).
Their position in the quantum phases landscape is fixed, depending on the relationship
between the critical couplings γc

ξ±. As a result, for a light–matter interaction larger than
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γc
ξ−, the two phases are superimposed [6,62,69,70]. It turns out the superradiant-x (y) phase

is a generalization of the superradiant-(+) [(−)] phase. Therefore, the phenomenology
of critical phenomena for both the ground and excited states is similar. This has been
confirmed by analyzing the semiclassical Density of States in the three regimes of the
light–matter coupling and for the various cases of qubit interaction strengths. We have
obtained general expressions for the DoS and the limiting values of the atomic variables
(jz, φ) in the Bloch sphere that allow to identify energy domains and critical energies tied
to ESQPTs. Finally, we have unveiled a unique feature due to the qubit interactions. Unlike
the superradiant-(±), the landscape of the superradiant x and y phases can be modified at
will by independently tuning the qubit interaction strengths. This specific feature is left to
be studied in the near future.

Our study provides a broad perspective of critical phenomena in collective models
combining strong light–matter and matter–matter interactions. Future directions, such as
the exploration of the existence and robustness of Goldstone and Higgs modes in quantum
optical setups [89], may benefit from the general description of the quantum phases our
results provide. Moreover, as experimental progress promises to make individually con-
trolled interactions in each direction feasible soon, we expect our work to be a reference for
exploring critical quantum phenomena in quantum information, atomic physics, quantum
optics, and condensed matter systems involving collective qubits interactions.
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Appendix A. Hamilton Equations for the TC and Dicke Limits

Here, we present Hamilton equations Equations (5)–(8) for ξ = 0. They turn out to be:

q̇ = ωp− γ
√

1− j2z sin φ, ṗ−ωq− γ
√

1− j2z cos φ, (A1)

φ̇ = ω0 + ηz jz − jz(ηx cos2 φ + ηy sin2 φ)− γjz√
1− j2z

(q cos φ− p sin φ), (A2)

j̇z =
(

1− j2z
)
(ηx − ηy) cos φ sin φ + γ

√
1− j2z(q sin φ + p cos φ). (A3)
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Likewise, the Hamilton Equations for ξ = 1 are

q̇ = ωp, ṗ = −ωq− 2γ
√

1− j2z cos φ, (A4)

φ̇ = ω0 + ηz jz − jz(ηx cos2 φ + ηy sin2 φ)− 2γjz√
1− j2z

q cos φ, (A5)

j̇z =
(

1− j2z
)
(ηx − ηy) cos φ sin φ + 2γ

√
1− j2z q sin φ. (A6)

Appendix B. Variables to Plot Energy Surfaces

We employ a new set of variables u and v associated with the qubit subspace to
visualize better the energy surfaces:

u = arccos(−jz) cos φ, v = arccos(−jz) sin φ, (A7)

being the inverse transformation

jz = − cos
√

u2 + v2, jx =
u√

u2 + v2
sin
√

u2 + v2, jy =
v√

u2 + v2
sin
√

u2 + v2. (A8)

The u and v variables correspond to the angles φ and θ =
√

u2 + v2, i.e., the zenithal
angle measured with respect to the pole. Then, we eliminate the bosonic variables q and p
by employing Hamilton Equations (5) and (6). Therefore, we obtain the energy surfaces
(ε = E/ω0) only as a function of the new variables (u, v)

ε(ξ, u, v) = sin2
√

u2 + v2 1
2(u2 + v2)

[
u2
(

ηx

ω0
− fξ+

)
+ v2

(
ηy

ω0
− fξ−

)]
− (A9)

cos
√

u2 + v2
(

1− ηz

2ω0
cos

√
u2 + v2

)
with fξ± = γ2/γc

ξ±.

Appendix C. Hessian Matrix

Here, we offer general expressions for the Hessian matrix of the system. Using the
Hamilton from the main text we calculate that

D(ξ)(q, p, jz, φ) =



∂2 H(ξ)
cl

∂2 p
∂2 H(ξ)

cl
∂q∂p

∂2 H(ξ)
cl

∂jz∂p
∂2 H(ξ)

cl
∂φ∂p

∂2 H(ξ)
cl

∂p∂q
∂2 H(ξ)

cl
∂2q

∂2 H(ξ)
cl

∂jz∂q
∂2 H(ξ)

cl
∂φ∂q

∂2 H(ξ)
cl

∂p∂jz
∂2 H(ξ)

cl
∂q∂jz

∂2 H(ξ)
cl

∂2 jz
∂2 H(ξ)

cl
∂φ∂jz

∂2 H(ξ)
cl

∂p∂φ

∂2 H(ξ)
cl

∂q∂φ

∂2 H(ξ)
cl

∂jz∂φ

∂2 H(ξ)
cl

∂φ2


. (A10)

The second derivatives of the classical Hamiltonian are

∂2H(ξ)
cl

∂p2 =
∂2H(ξ)

cl
∂q2 = ω,

∂2H(ξ)
cl

∂q∂p
=

∂2H(ξ)
cl

∂p∂q
= 0, (A11)

∂2H(ξ)
cl

∂jz∂p
=

∂2H(ξ)
cl

∂p∂jz
=

γjz√
1− j2z

(1− ξ) sin φ (A12)
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∂2H(ξ)
cl

∂jz∂q
=

∂2H(ξ)
cl

∂q∂jz
= − γjz√

1− j2z
(1 + ξ) cos φ, (A13)

∂2H(ξ)
cl

∂φ∂p
=

∂2H(ξ)
cl

∂p∂φ
= −γ

√
1− j2z(1− ξ) cos φ, (A14)

∂2H(ξ)
cl

∂φ∂q
=

∂2H(ξ)
cl

∂q∂φ
= −γ

√
1− j2z(1 + ξ) sin φ, (A15)

∂2H(ξ)
cl

∂φ∂jz
=

∂2H(ξ)
cl

∂jz∂φ
= jz

(
ηx − ηy

)
2 cos φ sin φ +

γjz√
1− j2z

[(1 + ξ)q sin φ + (1− ξ)p cos φ], (A16)

∂2H(ξ)
cl

∂j2z
=
[
ηz −

(
ηx cos2 φ + ηy sin2 φ

)]
− γ

(1− j2z)
3/2 [(1 + ξ)q cos φ− (1− ξ)p sin φ], (A17)

∂2H(ξ)
cl

∂φ2 =
(

1− j2z
)(

ηx − ηy
)(

sin2 φ− cos2 φ
)
− γ

√
1− j2z [(1 + ξ)q cos φ− (1− ξ)p sin φ]. (A18)

The determinant of the Hessian matrix becomes

D(ξ)(q, p, jz, φ) = ω2

∂2H(ξ)
cl

∂j2z

∂2H(ξ)
cl

∂φ2 −
(

∂2H(ξ)
cl

∂jz∂φ

)2− γ2 jz(1− ξ)(1 + ξ)+ (A19)

−ωγ2

{(
1− j2z

)[
(1− ξ)2 cos2 φ + (1 + ξ)2 sin2 φ

]∂2H(ξ)
cl

∂j2z
+

j2z
1− j2z

[
(1− ξ)2 sin2 φ + (1 + ξ)2 cos2 φ

]∂2H(ξ)
cl

∂φ2 +

2jz cos φ sin φ
[
(1− ξ)2 − (1 + ξ)2

]∂2H(ξ)
cl

∂jz∂φ

}

As an example, the Hessian at the points with jzs = ±1, and qs = ps = 0 is

D(ξ)(0, 0,±1, φs) = −ω2(ηx − ηy)
2 sin2 2φs+

ωγ2(ηx − ηy)
[(

(1 + ξ)2 cos2 φs + (1− ξ)2 sin2 φs

)
cos 2φs − 4ξ sin2 2φs

]
+γ4(1− ξ)2(1 + ξ)2,

If we consider the symmetric case ξ = 0 when ηx = ηy, where the rotational symmetry is
obtained one gets D0

ηx=ηy(0, 0,±1, φs) = γ4. Thus, the points at jzs = 1±must be either a
maximum or a minimum. A simple inspection of the energy surfaces reveals their nature,
which is confirmed if one calculates the spectrum of the Hessian matrix.

Appendix C.1. Hessian Determinant in the Tavis–Cummings Limit

For the Tavis–Cummings limit (ξ = 0), the determinant of the Hessian takes the form

D(0)(q, p, jz, φ) = ω2

∂2H(0)
cl

∂j2z

∂2H(0)
cl

∂φ2 −
(

∂2H(0)
cl

∂jz∂φ

)2− γ2 jz+ (A20)

−ωγ2

[(
1− j2z

)∂2H(0)
cl

∂j2z
+

j2z
1− j2z

∂2H(0)
cl

∂φ2

]
.
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with

∂2H(0)
cl

∂jz∂φ
= jz

(
ηx − ηy

)
2 cos φ sin φ +

γjz√
1− j2z

(q sin φ + p cos φ), (A21)

∂2H(ξ)
cl

∂j2z
=
[
ηz −

(
ηx cos2 φ + ηy sin2 φ

)]
− γ

(1− j2z)
3/2 (q cos φ− p sin φ), (A22)

∂2H(0)
cl

∂φ2 =
(

1− j2z
)(

ηx − ηy
)(

sin2 φ− cos2 φ
)
− γ

√
1− j2z(q cos φ− p sin φ). (A23)

Appendix C.2. Hessian Determinant in the Dicke Limit

Instead, for the Dicke limit (ξ = 0), the determinant of the Hessian becomes

D(1)(q, p, jz, φ) = ω2

∂2H(1)
cl

∂j2z

∂2H(1)
cl

∂φ2 −
(

∂2H(1)
cl

∂jz∂φ

)2+ (A24)

−ωγ2

{(
1− j2z

)
4 sin2 φ

∂2H(1)
cl

∂j2z
+

j2z
1− j2z

4 cos2 φ
∂2H(1)

cl
∂φ2 + −8jz cos φ sin φ

∂2H(1)
cl

∂jz∂φ

}
.

with

∂2H(1)
cl

∂jz∂φ
= jz

(
ηx − ηy

)
2 cos φ sin φ +

2γjz√
1− j2z

q sin φ, (A25)

∂2H(1)
cl

∂j2z
=
[
ηz −

(
ηx cos2 φ + ηy sin2 φ

)]
− 2γq cos φ

(1− j2z)
3/2 , (A26)

∂2H(1)
cl

∂φ2 =
(

1− j2z
)(

ηx − ηy
)(

sin2 φ− cos2 φ
)
− 2γ

√
1− j2z q cos φ. (A27)
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