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Institute of Telecommunications, AGH University of Krakow, 30-054 Krakow, Poland
* Correspondence: kadziolka@agh.edu.pl

Abstract: Rapid and precise detection of significant data streams within a network is crucial for
efficient traffic management. This study leverages the TabNet deep learning architecture to identify
large-scale flows, known as elephant flows, by analyzing the information in the 5-tuple fields of
the initial packet header. The results demonstrate that employing a TabNet model can accurately
identify elephant flows right at the start of the flow and makes it possible to reduce the number of
flow table entries by up to 20 times while still effectively managing 80% of the network traffic through
individual flow entries. The model was trained and tested on a comprehensive dataset from a campus
network, demonstrating its robustness and potential applicability to varied network environments.

Keywords: flows; flow table; elephant; mice; traffic engineering; machine learning; TabNet; feature
importance; input information

1. Introduction

The term elephant flows refers to the most substantial data transfers across the Internet,
which, despite their limited numbers, usually carry the majority of the traffic. In contrast,
the numerous mouse flows constitute a large portion of the flow count but account for only
a minor fraction of total traffic. This imbalance surpasses the conventional 80/20 ratio
defined by the Pareto principle. Recent studies, including references such as [1,2], have
revealed that a mere 0.2–0.4% of all flows might be responsible for as much as 80% of the
entirety of Internet traffic, showcasing an extreme concentration of data within a small
fraction of flows.

The approach of flow-based traffic engineering has recently emerged as a powerful
technique for addressing the challenges of escalating network demands while preserving
the quality of service (QoS) [3–5]. This strategy involves assigning a unique forwarding
entry to each flow in the switch’s memory, with each entry detailing the subsequent hop
along the flow’s path. This arrangement allows for the use of varied paths for flows that
share the same source and destination, thereby facilitating multipath routing. Moreover,
paths for incoming flows can be chosen based on present or expected network congestion,
enabling an adaptive routing that effectively avoids congested links. Furthermore, this
method of flow-based adaptive routing is known to offer higher stability compared to
conventional dynamic load-balancing techniques.

The primary issue in flow-based traffic engineering arises from the fact that the
number of concurrent flows in a network often exceeds the capacity of the flow tables
within switches [6]. Furthermore, in centralized software-defined networks (SDNs), there
is a bottleneck concerning the controller’s ability to handle new flow setups due to its
throughput limitations. Beyond the issue of capacity, having fewer entries in the flow
tables can lead to faster table lookups, thereby enhancing the packet switching speed. One
viable approach to mitigate these challenges involves dedicating entries exclusively to
the largest flows. Consequently, the majority of smaller flows could be directed along
default, shortest-path routes. This strategy significantly reduces the number of flow table
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entries while still effectively managing a substantial volume of traffic through specialized,
flow-specific entries. It is crucial to predict these values as early as possible to quickly
establish individual entries and route most of their packets through specific paths. Ideally,
flows should be classified with their initial packet to prevent mid-connection rerouting,
which can disrupt transport protocols’ path state estimations. Additionally, we find that
first packet classification is mostly an unexplored field, especially within the context of SDN
traffic engineering. Therefore, we decided to focus solely on the first packet classification to
fill this gap.

Our research evaluates the efficacy of the TabNet [7] deep tabular data learning
architecture, with a particular focus on metrics vital for traffic engineering within SDNs.
The key contributions of our work are as follows:

• Traffic Coverage: We examine the volume of traffic managed by flows classified as
elephants following their identification, termed traffic coverage.

• Flow Table Reduction: We analyze the reduction in the necessity for individual flow
entries in the tables, denoted as flow table operation reduction.

• Entropy Analysis: We provide an analysis of the average information entropy con-
tained in each 5-tuple field in packet headers.

• Feature Significance: We identify which 5-tuple fields were the most significant
for predictions.

2. Related Work

The strategy of selectively managing elephant flows dates back to 1999 when the
idea of adaptively routing substantial data flows was introduced [8]. Initially, due to
the hardware constraints of the era, the concept was largely theoretical and confined to
academic discussions. However, the rise of SDNs has revitalized interest in this approach.
In the contemporary networking landscape, a controller with comprehensive insight into
network dynamics is well positioned to efficiently oversee large flows, leveraging the
advanced capabilities of SDNs.

The Hedera traffic engineering system, unveiled in [9], was created to dynamically
reroute flows through an embedded controller once they surpassed a predefined threshold,
guiding these flows along paths selected in real time. It presupposes that edge devices
are responsible for collecting comprehensive flow statistics via OpenFlow counters, with a
focus on optimizing the performance of non-edge devices. DevoFlow, introduced in [10],
emphasizes the management of elephant flows by implementing sampling techniques
and utilizing threshold values for their identification. Nevertheless, the evaluation of
DevoFlow’s effectiveness is conducted based on the network’s aggregated performance,
not on flow table characteristics. A similar approach to DevoFlow is explored in [11], where
elephant flows are identified at edge devices using an adapted Bloom filter. This method’s
underlying traffic model, assuming a disproportionate contribution of 20% of the flows
to 80% of the traffic, diverges significantly from real-world data distributions, as recent
research, such as [1,2], suggests a much more tail-skewed distribution.

The referenced studies primarily employ rudimentary techniques such as sampling,
counters, and threshold settings for the detection of large flows. However, there has been
a shift towards more sophisticated, machine-learning-based approaches in recent years.
For instance, a decision tree model dedicated to identifying elephant flows was introduced
and assessed in [12], with a particular emphasis on the accuracy of detection. In another
study, ref. [13] by Poupart et al. explored the capabilities of three different machine learning
(ML) strategies for estimating flow sizes and categorizing them as elephant flows. Their
analysis was based on a comprehensive dataset of three million flows, covering both TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol). Their evaluation
focused on two principal metrics: the success rate in correctly identifying large flows (true
positive rate) and the success rate in accurately identifying smaller flows (true negative rate).

In [14], Liu et al. recommend the application of a random forest decision tree for
pinpointing eight essential features crucial for developing a classification model. They
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introduce a dual-layered architectural framework that involves an initial pre-classification
phase at the edge devices within an SDN setup, followed by a more detailed classification
at the network’s central controller. This classification scheme distinguishes between four
distinct types of flows: elephant, cheetah, tortoise, and porcupine, each representing
different characteristics and behaviors within the network traffic. The research primarily
evaluates the effectiveness of this system based on two metrics: the precision of the flow
classification and the time delay associated with the classification procedure.

In their research, Hamdan et al. [15] introduce a two-level classification framework
for network traffic, initially sorting flows at switches and finalizing classifications at the
central controller. This method uses the count-min sketch algorithm at the switch level to
separate mice from potential elephant flows, with a decision tree at the controller for final
decisions. The system’s algorithms are periodically refreshed with data from the controller,
emphasizing classifier accuracy, and validated with real traffic models.

He et al. [16] and Qian et al. [17], in 2022, each proposed sketch-based solutions for
flow table optimization. He et al. developed a single-level, lightweight scheme, while
Qian et al. introduced TCAM-based storage for elephant flow labels to balance accuracy
between elephant and mouse flow identification. Both studies utilized real Internet Service
Provider (ISP) packet traces for evaluation, indicating the practical effectiveness of their
approaches in traffic management.

In the study [18], da Silva et al. introduced a predictive model using the Locally
Weighted Regression (LWR) algorithm to estimate the size and duration of new network
flows by examining patterns from previous flows and their immediate correlations. Fol-
lowing up, in 2022, employing a hashing mechanism inspired by the Cuckoo Search
meta-heuristic for enhanced flow management [19] was proposed by the same authors.
Pekar et al. presented a novel threshold-agnostic heavy-hitter classification system [20],
which utilizes template matching to identify elephant flows based on the packet size distri-
bution observed in the initial packets, offering a nuanced method for flow classification
without predetermined thresholds.

The CrossBal system, detailed in [21], is a hybrid load-balancing solution that employs
Deep Reinforcement Learning (DRL) to specifically address elephant flows through a three-
level detection mechanism, including threshold-based filtering, followed by rerouting for
efficient load distribution. In a related study, Wassie et al. [22] introduced a deep learning
approach utilizing deep autoencoders, gradient boosting, and autoML predictive algo-
rithms like eXtreme gradient boosting (XGBoost) [23] and the gradient boosting machine
(GBM) [24], aimed at enhancing flow management.

All the mentioned studies focus on classifying flows after observing several initial
packets. However, our goal is to identify a flow as quickly as possible, ideally based on
the information carried in the first packet. Durner et al. [25] achieved flow classification
using just the first packet’s 5-tuple data and its size. Hardegen et al. [26] proposed using
multiclass prediction instead of binary classification (elephant/mouse) with a deep neural
network to predict flow characteristics from the first packet’s 5-tuple. This approach follows
a similar methodology to their earlier work [27] on predicting a flow’s bit rate from the first
packet’s 5-tuple.

Regarding the most recent works, in 2023 Gomez et al. [28] evaluated several machine
learning algorithms for classifying flows from the first packet. Similar to other studies, it fo-
cused on classification accuracy and not on flow table impact or traffic coverage. Xie et al.’s
2024 paper [29] proposed a two-stage decision tree system for elephant flow classification.
The first stage is utilizing information contained in first packet headers. The system was
developed in P4, but tested only in an emulator, lacking real-device validation.

Recent studies have also applied neural networks for network flow classification
with a focus on QoS rather than traffic engineering. Alkhalidi et al. [30] introduced a
one-dimensional convolutional neural network for classifying flows into various classes
using packet header information. A notable innovation is the automatic selection of specific
packet header bits, reducing feature count, processing time, and energy consumption while
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maintaining satisfactory accuracy. Yaseen et al. [31] employed a similar approach to classify
traffic and assign the Differentiated Services Code Point (DSCP) field, implementing their
system within an SDN controller and testing it in the Mininet emulator for emergency
traffic prioritization scenarios.

As can be seen, the referenced studies focus on flow classification accuracy or true
positive/true negative rates. However, they neglect the practical implications of these
algorithms for traffic engineering goals. For instance, misclassifying the largest flow in a
network can substantially impact traffic coverage, far more than the misclassification of
smaller flows. The metrics employed in these studies do not account for such nuances.
Specifically, there has been a lack of focus on metrics essential for traffic engineering, such
as the reduction in flow table entries or the volume of traffic managed after classification.
These aspects are critical for assessing the load on switches and controllers, as well as
for understanding the broader effects on traffic engineering strategies and overall system
performance. Moreover, an analysis of the significance and entropy of the information
contained in the first packet’s 5-tuple—specifically, identifying which fields are crucial for
detecting an elephant flow at its inception—has not yet been addressed.

3. Methodology

Predicting the size of a flow based on its initial packet is achievable with a type of
machine learning known as regression. Regression, a principal method of supervised
learning, requires labeled input data to train the model for predictive tasks. The TabNet
model utilized in this research is available in the GitHub repository: https://github.com/
dreamquark-ai/tabnet (accessed on 20 June 2024).

3.1. Training Environment

Training was conducted on a high-performance machine equipped with the follow-
ing specifications:

• Memory: 128 GB RAM
• Graphics Processing Unit (GPU): NVIDIA GeForce RTX 4090 with 24 GB of VRAM
• Central Processing Unit (CPU): Intel Core i9-13900KF with 24 cores

These resources were more than sufficient to conduct the training and validation
processes. In fact, the computational resources were not consumed beyond 20%, even
when using the most demanding hyperparameter combinations. Training times for a single
epoch ranged from as short as 10 s to as long as 2 min, depending on the complexity of
the hyperparameter configurations. This ample capacity ensured efficient handling of the
large dataset and complex computations involved in training the TabNet model, facilitating
timely convergence and optimal performance.

Inference, which involves using the trained model to make predictions on a validation
dataset, was also highly efficient. Inference latency varied from 10 to 23 s, depending
on the model complexity and the size of the validation dataset (maximum 1,303,496;
minimum 130,349). This capability is crucial for practical deployment in high-speed
network environments where timely decision-making is essential.

3.2. Dataset

The effectiveness of an ML algorithm is significantly influenced by the dataset it is
trained on. In our study, we base our evaluation on data that includes length and size dis-
tributions of flows, collected from a large campus network over 30 days [1]. For processing
these data, we employed the package described in [32].

The dataset in question comprises over 4 billion flows, with its complete flow records
amounting to approximately 278 GB in binary format. Given this immense size, we used
an anonymized subset of the data for training and evaluating our models, as published
in [33]. This subset represents one hour of traffic, encompassing 6,517,484 flows and 547 GB
of data transmission. This specific time frame was chosen to ensure it was free of anomalies
and that the theoretical reduction rate curve of a perfect elephant classifier for this hour

https://github.com/dreamquark-ai/tabnet
https://github.com/dreamquark-ai/tabnet
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closely mirrors that of the complete 30-day dataset. In the published open-source dataset,
IP addresses were anonymized using the prefix-preserving Crypto-PAn algorithm [34].
As demonstrated in [33], this anonymization process does not affect the performance of the
ML models.

3.3. Input Features

The input data, sourced from the flow 5-tuple, encompasses the source IP address, des-
tination IP address, transport layer source port, transport layer destination port, and trans-
port layer protocol, cumulatively contributing to 104 bits. Our investigation focuses on two
distinct representations of this input data:

• Bits: Each header field is segmented into separate bits, yielding 104 unique features,
which are denoted as binary values (0 or 1).

• Octets: Headers that exceed 8 bits in length, such as IP addresses or ports, are seg-
mented into distinct octets. This approach produces 13 features, with each feature
represented as an 8-bit integer.

3.4. Balancing the Dataset

Achieving a balanced training dataset was key to the effectiveness of the model. In our
initial training dataset of 5,213,988 flows, mouse flows greatly outnumbered elephant flows,
necessitating measures to balance this disparity for optimal accuracy. The results discussed
in this paper stem from the model trained on a balanced dataset, achieved through various
ratios, following these steps:

1. Define the ratio, e.g., 10%.
2. Calculate the balanced dataset size as the size of the initial training dataset multiplied

by the ratio (5,213,988 × 10% = 521,398 flows).
3. Organize the initial training dataset in descending order, with the largest flows posi-

tioned at the start.
4. Extract the top half of the balanced dataset size number of flows from the start of this

sorted list.
5. Randomly select the remaining half of the balanced dataset size number of flows from

the rest of the initial dataset.

3.5. Training

This phase encompasses the selection of hyperparameters, normalization of labels,
and the model training process. The workflow of the training phase is depicted in Figure 1.

The model underwent training on a shuffled, balanced training dataset before its
performance was assessed using the validation dataset. Training and validation were
carried out with several combinations of hyperparameters. The hyperparameters that were
varied are listed in Table 1, while those that remained unchanged throughout all training
sessions are detailed in Table 2. We also present the table with the parameters that varied
and are coupled directly to the TabNet model in Table 3.

Table 1. Variable hyperparameters.

Batch Size Learning Rate Loss Function Balancing Ratio

2560 1 × 10−3 Mean Absolute Error (MAE) 10%
5120 3 × 10−3 Mean Square Error (MSE) 20%

10,240 6 × 10−3 100% (no balancing)
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Figure 1. Training and evaluation of the TabNet model.

The batch size was varied to observe its effect on model convergence and generaliza-
tion. The selected range of 2560 to 10,240 was chosen based on several considerations:

• Computational Efficiency: Batch sizes in the range of 2560 to 10,240 were selected
to balance between memory usage and computational efficiency. Very small batch
sizes might lead to inefficient Graphics Processing Unit (GPU) utilization, while very
large batch sizes could exceed the memory limits of the hardware, leading to slower
training times due to increased paging or the need to reduce model complexity.

• Empirical Performance: Preliminary experiments indicated that this range of batch
sizes yielded good performance across various metrics. A batch size of 2560 provided
a good trade-off between frequent weight updates and manageable noise in gradi-
ent estimates. Increasing the batch size to 5120 and 10,240 allowed for more stable
training with slightly slower convergence, which was beneficial in achieving better
generalization on the validation set.

• Model and Data Characteristics: The nature of the dataset and the model architecture
also influenced the choice of batch size. Given the large dataset (5,213,988 flows) and
the complexity of the TabNet architecture, batch sizes within this range were found
to be effective in leveraging the computational capabilities of modern GPUs while
ensuring efficient training dynamics.

Different learning rates were tested to find the optimal balance between convergence
speed and stability. A lower learning rate (1 × 10−3) allows for finer weight adjustments,
potentially reducing the risk of overshooting minima. Higher learning rates (6 × 10−3)
can accelerate convergence but may require careful tuning to avoid instability. In general,
a larger batch size can lead to more stable training by decreasing the likelihood of overfitting
the model. In tandem with increasing the batch size, we also scaled the learning rate. This
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approach enabled the model to more quickly locate local minima and maxima without
necessitating a proportional adjustment in the number of epochs. The use of different loss
functions, MAE and MSE, allows us to assess their impact on regression performance. MAE
is less sensitive to outliers compared to MSE, which penalizes larger errors more heavily.
Specific balancing dataset ratios were chosen to ensure a sufficient number of elephant
flows were included without overwhelming computational resources. A 10% ratio provides
a conservative balance, while a 20% ratio allows for a more comprehensive inclusion of
elephant flows. The 100% ratio indicates no rebalancing was performed, serving as a control
to compare against the balanced scenarios. These steps ensure that minority classes are
adequately represented, improving the model’s ability to generalize across different traffic
types while keeping the computational expense manageable.

Table 2. Constant hyperparameters.

Epochs Optimizer

200 Adam

The model was trained for up to 200 epochs to ensure sufficient learning time for
convergence. This duration was selected based on preliminary experiments indicating that
200 epochs allow the model to adequately learn from the data without overfitting. However,
training did not always take the full 200 epochs thanks to the early stopping feature, which
halted training when no significant improvement in performance was observed over a
set number of epochs. The Adam optimizer was chosen for its adaptive learning rate
capabilities, which can improve convergence speed and stability.

Table 3. TabNet parameters.

Width of the Decision
Prediction Layer

Width of the Attention
Embedding for Each Mask

Number of Steps in the
Architecture

8 8 3
16 16 6
32 32 9

Varying the width of this layer (8, 16, 32) allows us to investigate the impact of model
capacity on performance. A wider layer can capture more complex patterns but may also
increase the risk of overfitting. Similar to the decision layer, varying the width of the
attention embedding (8, 16, 32) helps us understand how the model’s attention mechanism
scales with complexity. Wider embeddings can capture more detailed feature interactions.
The number of steps (3, 6, 9) determines how many sequential decision and attention layers
the data pass through. More steps can improve model performance by allowing more
complex transformations but at the cost of increased computational requirements.

Training and validation were conducted with various normalization techniques. We ex-
plored two distinct approaches to label normalization, designated as NONE, and MINMAX:

• NONE refers to the absence of label normalization. Models are trained and as-
sessed using the unaltered labels, which vary from 64 bytes (minimum flow size)
to 3,218,210,994 bytes (maximum flow size).

• MINMAX is a transformation where its minimum value becomes 0, its maximum
value becomes 1, and all other values are scaled proportionally to fall within the range
of 0 to 1. The procedure is detailed in Equation (1).

Let labels = {l1, l2, . . . , ln}, then for each label li in labels, the normalized value T(li)
is defined by:

T(li) =
li − lmin

lmax − lmin
(1)
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3.6. Model

The TabNet [7] model is a type of neural network architecture designed specifically
for tabular data. Developed by researchers at Google Cloud AI, TabNet uses sequential
attention mechanisms to selectively choose which features to process at each decision step,
effectively enabling the model to make decisions based on important, learned features from
the data. This selective feature processing allows TabNet to interpret and learn from the
data in a way similar to how decision trees isolate important features but with the added
flexibility and power of a neural network. TabNet’s design also promotes interpretable
decision-making, which is a valuable attribute for applications requiring transparency in
how input features affect predictions. This model has been shown to perform competitively
on various benchmark datasets, outperforming traditional ensemble models like random
forests and gradient-boosting machines in some cases.

3.7. Model Decision

In regression analysis, the algorithm predicts a continuous outcome, which, for our
study, corresponds to the anticipated flow size in bytes. To illustrate the relationship
between flow table reduction and traffic coverage, retraining and refitting the model
repeatedly is unnecessary. We can simulate decision-making adjustments by modifying the
threshold for classifying a flow as an elephant based on its predicted size. Here, the term
label denotes the true flow size as extracted from the dataset.

3.8. Evaluation

Current research in the field largely neglects metrics essential for assessing the ef-
fectiveness of flow-based traffic engineering. Many studies emphasize the accuracy of
flow classification, measuring success through parameters such as the true positive rate,
true negative rate, and precision in predicting flow size and duration. Yet, these metrics
offer limited insights into the practical implementation of algorithms in this research area.
Crucially, the misclassification of a network’s largest flow disproportionately affects overall
traffic coverage compared to the misclassification of smaller flows. The metrics commonly
used in existing literature fail to capture this significant disparity. Apart from the metrics,
it is also unknown which information is the most important for predicting which flow
belongs to which class.

To bridge these gaps, we introduce new metrics specifically designed to evaluate ML
models in the context of detecting elephant flows for traffic engineering purposes. We
employ two particular metrics for this evaluation: the reduction in the number of flow
table entries created and the percentage of traffic covered. These metrics are intended to
provide a more relevant assessment of how well the models perform in practical traffic
management scenarios, focusing on optimizing network efficiency and capacity utilization.

It is important to understand the inherent trade-off between these metrics. Increasing
the threshold for elephant flow detection results in a larger reduction in the number of
flow table entries, but it also diminishes the percentage of traffic that is covered. Striking
the right balance between these factors is crucial for optimizing network efficiency and
maintaining high QoS.

Additionally, we assess the information contained in the input 5-tuple (entropy) and
its significance in influencing the output predictions’ (feature importance). Our analysis
explores the impact of information across the two proposed input data approaches. This
study aims to provide a more in-depth understanding of which elements of the input data
are more relevant than others.

4. Results

Out of 504 distinct results (two input data types, three dataset ratios, seven TabNet
hyperparameter combinations, three batch size and learning rate combinations, two loss
functions, and two normalization types) we selected the best result per input data type
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and dataset ratio. In this research, the best means the largest flow table reduction at 80%
traffic coverage.

4.1. Flow Table Reduction vs. Traffic Coverage

The visual representations illustrate the reduction in flow table operations and achieved
traffic coverage. Remarkably, the y-axis exhibits a logarithmic scale. On the y-axis, each unit
corresponds to a multiplier (e.g., 1000 indicates a reduction by a factor of 1000, resulting
in the number of created flow table entries being 1/1000 of its original value). The goal is
to minimize creation of individual flow entries while preserving optimal traffic coverage.
A model is deemed more effective as its curve approaches the top-right corner of the graph.

The black line, identified as Data, illustrates the projected performance derived from
the validation dataset, comprising 1,303,496 flows. This projection is predicated on the
assumption of perfect prediction of each flow’s size on its initial packet. This methodology,
described in [35] as the first method, involves selecting the smallest subset of the largest
flows, arranged by size in descending order, which collectively represent a predetermined
percentage of the total network traffic.

Figures 2–4 present results for bit vector input data representation and the balanced
dataset with ratios of 10%, 20%, and 100%, whereas Figures 5–7 present results for octet
input data representation and the balanced dataset with ratios of 10%, 20%, and 100%.
Additionally, as seen in Figures 4 and 7 we were unable to draw the reduction vs. coverage
result for the MAE with MINMAX normalization type, due to the fact that obtained results
did not fit in the traffic coverage area of interest (50–100%). It seems that the model in these
configurations was extremely underfitted, and it was not able to sufficiently recognize
trends and patterns based on the input data.

In Table 4, we presented the five top-performing configurations. The table illustrates
how varying training configurations can impact the effectiveness of TabNet models in
reducing created flow entries number while maintaining constant 80% traffic coverage.
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Figure 2. Flow table reduction for the balanced dataset with 10% ratio and bit vector input data.
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Figure 5. Flow table reduction for the balanced dataset with 10% ratio and octets input data.
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Figure 6. Flow table reduction for the balanced dataset with 20% ratio and octets input data.
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Figure 7. Flow table reduction for the unbalanced dataset (100% ratio) and octets input data.

Table 4. Top 5 results and hyperparameter values for the 80% traffic coverage.

Input Dataset
Ratio

Model
Parameters Normalization Loss

Function Batch Size Learning
Rate

Flow Table
Reduction (Best)

Flow Table
Reduction (SD)

bits 100% 8/8/3 NONE MSE 5120 0.003 20.14 5.32
bits 100% 16/16/3 NONE MSE 2560 0.001 18.74 3.79
bits 100% 8/8/3 NONE MSE 2560 0.001 14.25 2.98
bits 10% 32/32/3 NONE MSE 10,240 0.006 12.92 2.61
bits 20% 16/16/3 NONE MSE 2560 0.001 12.59 2.51

4.2. Feature Entropy and Importance

To provide additional insight into which features are most essential for providing an
accurate prediction, we performed an analysis of the information amount contained in
the input 5-tuple (feature entropy) and its significance in influencing the model (feature
importance). The results of the analysis are presented in Figures 8 and 9.

Feature importance analysis was performed for the all input data variations and all
dataset balancing ratios. In entropy analysis, we calculated the entropy for both input
data representations. In this context, entropy measures the average amount of information
contained in a feature (byte or bit, depending on the input data representation). Higher
entropy indicates greater randomness, while lower entropy indicates less varied values. We
express the entropy in bits. This tells us how many bits on average are needed to encode
the information contained in a particular feature.



Entropy 2024, 26, 537 13 of 17

Header field

    0
    1
    2
    3
    4
    5
    6
    7
    8
    9

   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63

H
ea

de
r 

fe
at

ur
e 

bi
t n

um
be

r

S
ou

rc
e 

IP
 a

dd
re

ss
D

es
tin

at
io

n 
IP

 a
dd

re
ss

Octets
[bits]

Bit vector
[bits]

   6.57    0.99
   6.57    0.99
   6.57    0.99
   6.57    0.96
   6.57    0.97
   6.57    0.99
   6.57    0.98
   6.57    0.98
   6.05    0.96
   6.05    0.89
   6.05    0.76
   6.05    0.89
   6.05    0.93
   6.05    0.90
   6.05    0.92
   6.05    0.97
   7.20    0.88
   7.20    0.90
   7.20    0.93
   7.20    0.99
   7.20    1.00
   7.20    1.00
   7.20    1.00
   7.20    1.00
   5.85    0.79
   5.85    0.84
   5.85    0.80
   5.85    0.95
   5.85    0.94
   5.85    0.90
   5.85    0.94
   5.85    0.93
   4.71    0.80
   4.71    0.83
   4.71    0.83
   4.71    0.84
   4.71    0.80
   4.71    0.83
   4.71    0.77
   4.71    0.79
   4.24    0.83
   4.24    0.78
   4.24    0.79
   4.24    0.81
   4.24    0.79
   4.24    0.80
   4.24    0.86
   4.24    0.84
   7.30    0.90
   7.30    0.91
   7.30    0.92
   7.30    0.99
   7.30    1.00
   7.30    1.00
   7.30    1.00
   7.30    0.99
   5.95    0.80
   5.95    0.84
   5.95    0.82
   5.95    0.93
   5.95    0.93
   5.95    0.91
   5.95    0.92
   5.95    0.93

Entropy

Octets
10% ratio

Octets
20% ratio

Octets
100% ratio

Bit vector
10% ratio

Bit vector
20% ratio

Bit vector
100% ratio

   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.01    0.00
   0.15    0.01    0.04    0.00    0.01    0.00
   0.15    0.01    0.04    0.00    0.00    0.00
   0.15    0.01    0.04    0.00    0.08    0.00
   0.15    0.01    0.04    0.00    0.00    0.00
   0.15    0.01    0.04    0.00    0.00    0.00
   0.15    0.01    0.04    0.00    0.00    0.00
   0.15    0.01    0.04    0.01    0.00    0.00
   0.15    0.01    0.04    0.01    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.01    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.01    0.00    0.00
   0.02    0.00    0.00    0.00    0.01    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.02    0.00    0.00    0.00    0.00    0.00
   0.01    0.11    0.04    0.00    0.05    0.00
   0.01    0.11    0.04    0.00    0.00    0.00
   0.01    0.11    0.04    0.00    0.00    0.00
   0.01    0.11    0.04    0.02    0.00    0.00
   0.01    0.11    0.04    0.00    0.00    0.00
   0.01    0.11    0.04    0.01    0.00    0.00
   0.01    0.11    0.04    0.00    0.00    0.00
   0.01    0.11    0.04    0.00    0.00    0.00
   0.03    0.00    0.01    0.00    0.00    0.00
   0.03    0.00    0.01    0.00    0.01    0.00
   0.03    0.00    0.01    0.00    0.00    0.00
   0.03    0.00    0.01    0.01    0.00    0.00
   0.03    0.00    0.01    0.00    0.00    0.00
   0.03    0.00    0.01    0.00    0.01    0.00
   0.03    0.00    0.01    0.00    0.01    0.00
   0.03    0.00    0.01    0.00    0.00    0.00
   0.19    0.00    0.00    0.00    0.00    0.00
   0.19    0.00    0.00    0.00    0.00    0.00
   0.19    0.00    0.00    0.00    0.00    0.00
   0.19    0.00    0.00    0.00    0.00    0.00
   0.19    0.00    0.00    0.00    0.00    0.00
   0.19    0.00    0.00    0.05    0.00    0.00
   0.19    0.00    0.00    0.00    0.01    0.00
   0.19    0.00    0.00    0.00    0.02    0.00
   0.19    0.00    0.01    0.00    0.01    0.00
   0.19    0.00    0.01    0.00    0.00    0.00
   0.19    0.00    0.01    0.00    0.00    0.00
   0.19    0.00    0.01    0.01    0.00    0.00
   0.19    0.00    0.01    0.00    0.00    0.00
   0.19    0.00    0.01    0.00    0.00    0.00
   0.19    0.00    0.01    0.00    0.01    0.00
   0.19    0.00    0.01    0.00    0.00    0.00
   0.02    0.07    0.02    0.00    0.00    0.00
   0.02    0.07    0.02    0.00    0.01    0.00
   0.02    0.07    0.02    0.00    0.01    0.00
   0.02    0.07    0.02    0.01    0.00    0.00
   0.02    0.07    0.02    0.00    0.00    0.00
   0.02    0.07    0.02    0.01    0.00    0.00
   0.02    0.07    0.02    0.00    0.01    0.00
   0.02    0.07    0.02    0.00    0.00    0.00

Feature importance

Figure 8. Feature entropy (calculated) and importance (from TabNet) (bits 0–63).
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Figure 9. Feature entropy (calculated) and importance (from TabNet) (bits 64–103).

5. Discussion

The flow table reduction results show the superiority of MSE over the MAE loss
functions. MSE employs an error amplification mechanism. For larger errors, the squared
term magnifies their impact, which accelerates the minimization process during training.
MSE amplifies the influence of outliers, which seems to fit our scenario much better than
the MAE, which, on the other hand, treats all errors equally, minimizing the impact of
outliers on the loss function. Additionally, as can be seen in the reduction results, TabNet
worked much better on unnormalized labels rather than normalized labels. Regarding
the TabNet parameters, the best results were obtained with the width (both the decision
prediction layer and attention embedding for each mask) set to 8. The best reduction rate
achieved for the 80% traffic coverage was 20.14. As shown in Figure 10 this is a 25% higher
reduction rate than achieved previously with neural networks comprising solely linear
layers, which provided only 15-fold reduction for the best parameter combination [36].

Feature entropy analysis shows that the most predictable fields are related to the
transport protocol, and source port in both input data representations. This is expected,
as the transport protocol field contains mostly one of the two values: 6 for TCP and
17 for UDP. The least predictable (most random) fields are the addresses (both source and
destination) and destination port.

As the results show, only a fraction of initial input data is significant for the model in
predicting the flow size. Features are also not equally important across dataset balancing
ratios. In the octets data, different features like transport protocol, ports, and addresses
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dominate depending on the ratio. For the 100% ratio, the transport protocol has significantly
higher weight than the other features. For the 20% ratio, the source and destination ports
are the most important, while for the 10% ratio, the source and destination addresses are
the most important. Conversely, in the bit vector data, the transport protocol and destination
port are consistently important, while the source and destination addresses are not, and the
source port’s importance declines at lower ratios.

The variation in feature importance across different dataset ratios can be attributed
to the nature of the balancing process itself. At higher ratios, where the dataset is more
imbalanced, the model may rely heavily on more generalized features such as transport
protocols that are universally present in all flows. However, at lower ratios, where the
dataset is more balanced, the model can discern more nuanced patterns and dependencies,
leading to a higher significance of specific features like source and destination addresses.
This deeper exploration reveals that feature importance is inherently tied to the compo-
sition and characteristics of the training data, impacting the model’s predictive behavior
depending on the dataset’s balance.
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Figure 10. Comparison of TabNet and the best neural network from [36].

6. Conclusions

As demonstrated in this study, employing a TabNet model to identify elephant flows
from the initial packets enables a reduction in the number of flow table entries by approx-
imately 20-fold while still encompassing 80% of the traffic. The reduction in number of
required flow table entries can not only enable flow-based traffic engineering on switches
with limited capacities but also positively influence flow table lookup, consequently en-
hancing the switching rate. We also evaluated the significance of the information carried
by the initial packet 5-tuple. It was determined that only a subset of all features is truly
important for the model in providing accurate results. Utilizing this subset of the input data,
one can achieve faster training and inference time, which can result in quicker elephant
flow classification and minimization of the additional latency.
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