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Abstract: Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted in-
creased attention recently due to its capability in detecting linear and nonlinear causal coupling
in both random and deterministic settings. One limitation with CCM is that it uses both past and
future values to predict the current value, which is inconsistent with the widely accepted definition
of causality, where it is assumed that the future values of one process cannot influence the past of
another. To overcome this obstacle, in our previous research, we introduced the concept of causalized
convergent cross mapping (cCCM), where future values are no longer used to predict the current
value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically,
we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling
in various settings through a large number of examples, including Gaussian random variables with
additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant
spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as
well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction
on the performance of cCCM and provide detailed guidelines on how to configure the key parameters
of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and
easy-to-implement tool for causality analysis in a wide spectrum of applications.

Keywords: causality; causalized convergent cross mapping; directed information

1. Introduction

Causality analysis aims to find the relationship between causes and effects by explor-
ing the directional influence of one variable on the other, and it has been a central topic in
science, economy, climate, and many other fields [1–9]. Compared with correlation, which
reflects the mutual dependence between two variables, causality analysis may provide
additional information since two time series with low correlation may have strong unidi-
rectional or bi-directional causal coupling between them. Some representative examples
can be found in [9].

The first practical causal analysis framework is Granger Causality (GC), which was
proposed by Granger in 1969 [10]. GC is a statistical approach that relies on a multi-step
linear prediction model and aims to determine whether the values of one time series are
useful in predicting the future values of the other. As a well-known technique, the validity
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and computational simplicity of GC have been widely recognized [11–14]. At the same
time, it has also been noticed that when there exists instantaneous and/or strong nonlinear
interactions between two regions, GC analysis may lead to invalid results [9,15]. Moreover,
GC may not be able to detect the causation in deterministic settings [10,16].

In 1990, directed information (DI)—the first causality detection tool based on in-
formation theory—was proposed by Massey [17] when studying discrete memoryless
communication channels with feedback. DI measures the directed information flowing
from one sequence to the other. As an information-theoretic framework, a major advantage
of DI is that it is a universal method that does not rely on any model assumptions of the
signals and is not limited by linearity or separability [18,19]. In refs. [9,18], the performance
of DI in causality analysis was demonstrated using both simulated data and experimental
fMRI data. It was found that DI is capable of detecting both linear and non-linear causal
relationships. However, it was also noticed that the direct evaluation of DI relies heavily on
probability estimation and tends to be sensitive to data length as well as the step size used
in the quantization process [9].

In 2012, convergent cross mapping (CCM), a new causality model based on state space
reconstruction was proposed by Sugihara et al. [16], and it was demonstrated that CCM
could serve as an effective tool in addressing non-separable systems and identifying weakly
coupled variables under deterministic settings, which may not be covered by GC. Since
then, CCM has attracted considerable attention from the research community in many
different fields [20–28].

Recall that causality aims to determine whether the current and past values of one
time series are useful in predicting the future values of another in addition to its own past
values. In CCM, however, both the past and future values are utilized to reconstruct the
current value [9]. As a result, the causality defined by CCM is inconsistent with the original,
widely accepted definition of causality where the key assumption is that the future values
of one process cannot influence the past of the other.

Motivated by this observation, in [9], we introduced the concept of causalized conver-
gent cross mapping (cCCM). More specifically, if only the current and historical values of
X and the past values of Y are used to predict the current value Y(t), and vice versa, then
CCM is converted to causalized CCM. We further proved the approximate equivalence of
DI and cCCM under stationary ergodic Gaussian random processes [9].

This study is a continued work of our previous research [9] and is focused on the
implementation perspective of cCCM in causality detection. More specifically, in this study,
we aimed to further investigate the effectiveness of cCCM in identifying both linear and
nonlinear causal coupling in various settings through a large number of examples, including
Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive
models, stochastic processes with a dominant spectral component embedded in noise,
deterministic chaotic maps, and systems with memory, as well as experimental functional
Magnetic Resonance Imaging (fMRI) data. In particular, we analyze the impact of shadow
manifold construction on the performance of cCCM and provide detailed guidelines on
how to configure the key parameters of cCCM (especially the shadow manifold dimension
and time lag) in different applications. Moreover, we examine the noise effect in cCCM and
show that, in general, reliable causality detection can be achieved when the signal-to-noise
ratio (SNR) is larger than 15 dB. Overall, our analysis indicates that CCM is a promising
and easy-to-implement tool for causality analysis in a wide spectrum of applications.

The rest of the paper is organized as follows. In Section 2, we briefly revisit the original
CCM, the causalized CCM (cCCM), the conditional equivalence between cCCM and DI, and
the extension of bivariate cCCM to multivariate cCCM. In Section 3, we present the major
results of the study, where we discuss the impact of noise on the performance of cCCM,
evaluate the effectiveness of cCCM in causality analysis through numerous examples,
provide detailed guidelines on the configuration of cCCM, and compare the performances
of bivariate and multivariate cCCM and GC through both simulation examples and ex-
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perimental fMRI data. Finally, we present the conclusions drawn from this research and
provide related discussions in Section 4.

2. A Revisit of Causalized Convergent Cross Mapping

In this section, we first briefly revisit convergent cross mapping (CCM) [16] and
introduce the concept of causalized CCM (cCCM) [9]. We then present the conditional
equivalence of cCCM and the directed information framework [9] and introduce the
extension of bivariate cCCM to multivariate cCCM.
Convergent cross mapping (CCM). The CCM algorithm is based on state-space reconstruc-
tion. Consider two dynamically coupled variables X and Y that share the same attractor
manifold M. Let Xn = [X1, X2, · · · , Xn] and Yn = [Y1, Y2, · · · , Yn] be the time series consist-
ing of samples of X and Y, respectively. The CCM causality analysis framework can be
summarized as follows:

• Step 1: Construct the shadow manifolds with respect to Xn and Yn.

Mx = {xt | xt = [Xt, Xt−τ , · · · , Xt−(E−1)τ ], t = (E − 1)τ + 1, · · · , n}, (1)

My = {yt | yt = [Yt, Yt−τ , · · · , Yt−(E−1)τ ], t = (E − 1)τ + 1, · · · , n}. (2)

• Step 2: For each vector xt, find its E + 1 nearest neighbors and denote the time indices
(from closest to farthest) of the E + 1 nearest neighbors of xt by t1, · · · , tE+1.

• Step 3: If the two signals X and Y are dynamically coupled, then the nearest neighbors
of xt in Mx would be mapped to the nearby points of Yt on manifold M. The estimated
Yt based on Mx, or say the cross mapping from X to Y, is defined as

Ŷt|Mx =
E+1

∑
i=1

wiYti (3)

where

wi =
ui

E+1
∑

j=1
uj

, with ui = exp{− d(xt, xti )

d(xt, xt1)
},

where d denotes the Euclidean distance between two vectors. Please note that for every
i, ωi is a function of t. The cross mapping from Y to X can be defined in a similar
way. As n increases, it is expected that X̂t|My and Ŷt|Mx would converge to Xt and
Yt, respectively.

• Step 4: The cross mapping correlations are defined as

ρCCM(X → Y) = ρ(Yn, Ŷn
) and ρCCM(Y → X) = ρ(Xn, X̂n

) (4)

where ρ denotes the Pearson correlation.
• Step 5: If ρCCM(X → Y) > ρCCM(Y → X) and converges faster than ρCCM(Y → X),

then we say that the causal effect of X on Y is stronger than that in the reverse.

Geometric illustration of convergent cross mapping. Here, we provide the geometric
illustration of convergent cross mapping from the shadow manifold Mx to the shadow
manifold My under both strong and weak causal coupling.

Figure 1a corresponds to the situation when there is a strong causal relationship
from X to Y, and Figure 1b illustrates the case when there is only a weak causation. For
illustration purpose, the dimension of the shadow manifold was chosen to be E = 2, the
neighborhood of xt is represented using a the simplex consisting of three nearest neighbors,
and the neighborhood of yt is represented in the same way.
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(a) Strong causation

(b) Weak causation

Figure 1. Geometric illustration of the cross mapping from Mx to My. (a) When strong causation
exists from X to Y, the nearest neighbors of xt are mapped to the nearest neighbors of yt. (b) When
there is only weak causation from X to Y, the nearest neighbors of xt are no longer mapped to the
nearest neighbors of yt.

Causalized convergent cross mapping (cCCM). Note that in CCM, both the past and future
values are used in data reconstruction, which is inconsistent with the original definition
of causality where it is assumed that the future values of one process cannot impact the
past of another. For this reason, we propose the concept of causalized convergent cross
mapping (cCCM).

More specifically, in CCM, if we limit the search of all the nearest neighbors in Mx to
ti < t, i.e., we only use the current and previous values of X and the past values of Y to
predict the current value Yt, operating in the same way for the other direction, and then we
obtained causalized CCM. That being said, Step 2 in cCCM now becomes

• Step 2 for cCCM: For each vector xt, find its E + 1 nearest neighbors in Mx with an
index smaller than t and denote the time indices (from closest to farthest) of the E + 1
nearest neighbors of xt by t1, ...tE+1. Note that for i = 1, 2, · · · , E + 1, we now have
ti < t.

Then, we follow Steps 3–5 above, and denote the corresponding causalized cross
mapping correlation, or the cCCM causation, as ρcCCM.
Conditional equivalence between cCCM and directed information. As an information-
theoretic causality model, directed information (DI) measures the information flow from
one time series to the other. DI plays a central role in causality analysis for two reasons.
First, it is a universal method that does not have any modeling constraints on the sequences
to be evaluated [29,30]. Second, DI serves as the pivot that links existing causality models
GC [10,18], transfer entropy (TE) [9,31,32], and dynamic causal modeling (DCM) [33,34]
through conditional equivalence between them.

In [9], we proved the conditional equivalence between cCCM and DI under Gaussian
variables and used DI as a bridge to connect cCCM to other representative tools of causality
analysis. More specifically, we showed that if (i) X and Y are dynamically coupled, zero-
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mean Gaussian random variables and their joint distribution is bivariate Gaussian, and (ii)
Xn,Yn are stationary ergodic random processes; then, when n is sufficiently large,

Īn(X → Y) ≈ −1
2

log(1 − ρ2
cCCM(X → Y)), (5)

where Īn(X → Y) denotes the average DI from X to Y, measured in bits per sample.
The conditional equivalence of DI and cCCM under Gaussian random variables was
demonstrated in [9] using experimental fMRI data.

This result also connects cCCM to other representative causality analysis frameworks
in the family—GC, TE (Transfer Entropy, 2000 [31]), and DCM (Dynamic causal modelling,
2003 [33])—through the conditional equivalence between them under Gaussian random
variables [9,12].

It is worth pointing out that the simulation-based analysis in [9] suggested that cCCM
is often more robust in causality detection than DI. This is mainly because the DI calcu-
lation is based on probability estimation, which is sensitive to the step size used in the
quantization process[35]. cCCM, on the other hand, gets around this obstacle through
geometric cross mapping between the corresponding shadow manifolds, at the cost of a
higher computational complexity. More specifically, cCCM relies on a K-nearest neighbor
search and has a computational complexity of O(n2) in the sequence length n, but the
computational complexity of DI is only O(n).
Extension of bivariate cCCM to multivariate cCCM. Bivariate cCCM can be extended
to multivariate conditional cCCM [9] based on a multivariate KNN search, which takes a
similar approach as in the multivariate KNN predictability approaches [36–39].

Let Ω = {X1, · · · , XL} denote the set of dynamically coupled random variables that
share the same attractor manifold. As shown in [9], the multivariate conditional cCCM
from Xj → Xi with respect to Ω ∖ {Xi, Xj} (i.e., all the remaining random variables in Ω)
is defined using the causality ratio as

cCCM(Xj → Xi|Ω ∖ {Xi, Xj}) =
Var(en

i |Ω ∖ {Xj})− Var(en
i |Ω)

Var(en
i |Ω ∖ {Xj})

,

where en
i |Ω ∖ {Xj} denotes the estimation error vector based on Ω ∖ {Xj}, and en

i |Ω is the
estimation error vector based on the whole Ω. The definition can be adjusted by modifying
Ω to reflect the conditional cCCM with respect to either an individual random variable or a
group of random variables.

3. Results
3.1. The Impact of Estimation Error in cCCM

Note that CCM and cCCM are based on data reconstruction, and the reconstructed
data converge to the true data as the data length goes to infinity when there exists causal
coupling between the random variables under consideration. Here, we consider the impact
of estimation error in cCCM.

As an example, we consider ρcCCM(X → Y) = ρ(Yn, Ŷn
) ≈ ρ(Y, Ŷ). Note that

Ŷt|Mx =
E+1

∑
i=1

wiYti (6)

where ti < t, and

wi =
ui

E+1
∑

j=1
uj

, with ui = exp{− d(xt, xti )

d(xt, xt1)
}.
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When there exists estimation error, we can model Ŷ as

Ŷ = Y + ne (7)

where ne denotes the estimation error, which is independent of Y. In assuming ne is of
zero-mean and variance σ2

e , it can be shown that (please refer to the Supplementary file
of [9])

ρ(Y, Ŷ) =
σY√

σ2
Y + σ2

e

. (8)

where σ2
Y denotes the variance of Y. This result implies that the cCCM value ρcCCM(X →

Y) ≈ ρ(Y, Ŷ) decreases as the estimation error power increases.
In the following, using the noise-free case as the benchmark, we examine the noise

effect on cCCM through simulation examples, including Gaussian random variable and
its signed and squared versions (Examples 1 and 2, respectively), as well as sinusoidal
waveforms (Example 3). As shown in Table 1, when we increase the SNR from 0 dB to
20 dB, the cCCM value of the noisy signal gradually converges to the noise-free result.
More specifically, our results suggest that reliable causality detection can be achieved when
the SNR is larger than 15 dB.

Table 1. Impact of estimation error (n1 and n2 are AWGN noise generated independently of X and
Y, respectively.)

Examples Direction
ρcCCM under Different SNR Values

0 dB 5 dB 10 dB 15 dB 20 dB Noise Free

1. X0 = randn(1000, 1),
X = X0 + n1,
Y = sgn(X0) + n2,

X → Y 0.1896 0.4691 0.6951 0.7819 0.8162 0.8215

Y → X 0.2598 0.5522 0.6858 0.7133 0.7190 0.7807

Difference −0.0701 −0.0830 0.0093 0.0686 0.0972 0.0408

2. X0 = randn(1000, 1),
X = X0 + n1,
Y = X2

0 + n2,

X → Y 0.1335 0.4332 0.6946 0.8141 0.8460 0.8639

Y → X 0.0033 0.0197 0.0510 0.1028 0.0473 0.0290

Difference 0.1302 0.4134 0.6435 0.7113 0.7987 0.8349

3. X(t) = sin(t) + n1,
Y(t) = cos(t) + n2.
t = 0 : 0.01 : 2π

X → Y 0.1960 0.3234 0.4728 0.6708 0.8917 0.9999

Y → X 0.3281 0.4981 0.6513 0.7761 0.9080 0.9999

Difference −0.1321 −0.1748 −0.1785 −0.1053 −0.0163 0

Here, randn(1000,1) returns a 1000-by-1 matrix of normally distributed random numbers.

The performance of cCCM is not only affected by noise but also closely related to the
selection of E and τ. For Examples 1 and 2 in Table 1, we chose E = 5 and τ = 1. For
Example 3, we used E = 5 and τ = 5. Here, a larger τ is used mainly because X(t) and
Y(t) are significantly over-sampled in Example 3. More discussion on the choice of shadow
manifold parameters can be found in Section 3.2.

3.2. Causality Detection Using cCCM and the Choice of Shadow Manifold Parameters

In this section, we illustrate the performance of cCCM (together with CCM) in causal-
ity detection through simulation examples, including autoregressive models, stochastic
processes with a dominant spectral component embedded in noise, deterministic chaotic
maps, and systems with memory. As will be seen, these examples show that CCM and
cCCM are sensitive to changes in coupling strength. It can be observed that CCM tends to
result in larger causation values than cCCM; this is expected since CCM uses both the past
and future values of X to predict the current value of Y (and vice versa), while cCCM only
uses both the past values of X to predict the current value of Y (and vice versa).
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We will also discuss the choice of key parameters—the dimension of shadow manifold
E and the time lag τ—in the cCCM algorithm and the impact of these parameters on
the detection of causal relationships. According to Takens’ theorem [40] and Whitney’s
embedding theorem [41,42], the “magic number” is E = 2d + 1, and often less [16], where
d is the dimension of the attractor M shared by X and Y. Another parameter, the time lag τ,
is generally chosen as τ = 1. When the signal is over-sampled, τ > 1 can also be used.

It should be noted that for an accurate assessment of the causation, the sampling
rate should always be chosen to be larger than the Nyquist rate. Otherwise, the causal
relationship identified by cCCM may be invalid since the under-sampled sequences cannot
capture the total information in the original signals.

3.2.1. Examples on Autoregressive Models

Example 4:
Let X and Y be random processes given by

X(t + 1) = 0.5X(t) + 0.05Y(t) + n1(t),

Y(t + 1) = 0.65X(t) + 0.08Y(t) + n2(t),

where n1, n2 ∼ N(0, 0.052), n1 and n2 are independent, t = [0, 1, 2, · · · , 2047], and X(0) =
Y(0) = 1.5. We chose E = 5 and τ = 1, and then the cCCM and CCM values between these
two time series are

ρcCCM(X → Y) = 0.5067, ρcCCM(Y → X) = 0.2210,

ρCCM(X → Y) = 0.5165, ρCCM(Y → X) = 0.2294.

The convergence of CCM and cCCM with respect to the data length is shown in Figure 2.
Example 5:

Let X and Y be random processes given by

X(t + 1) = 0.6X(t) + 0.3Y(t) + n1(t),

Y(t + 1) = 0.02X(t) + 0.8Y(t) + n2(t),

where n1, n2 ∼ N(0, 0.052), n1 and n2 are independent, t = [0, 1, · · · , 2047], and X(0) = Y(0) =
1.5. Then, the cCCM and CCM values between these two time series are

ρcCCM(X → Y) = 0.3599, ρcCCM(Y → X) = 0.5589

ρCCM(X → Y) = 0.4140, ρCCM(Y → X) = 0.6222

The convergence of CCM and cCCM with respect to the data length is shown in Figure 2.

Figure 2. Performance of cCCM and CCM versus the data length for Examples 4 and 5.
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3.2.2. Examples on Stochastic Processes with a Dominant Spectral Component

Example 6:
Let X and Y be two stochastic processes given by

X(t) = 0.1 sin(5πt) + 0.6 sin(20πt) + n1(t)

Y(t) = 0.6 sin(20πt) + n2(t)

where n1, n2 are independent AWGN noise with SNR = 10 dB, and t = 0 : 0.005 : 2 (here,
0.005 is the step size). Then, the cCCM and CCM values between these two time series are

ρcCCM(X → Y) = 0.9314, ρcCCM(Y → X) = 0.9175

ρCCM(X → Y) = 0.9362, ρCCM(Y → X) = 0.9242

The convergence of CCM and cCCM with respect to the data length is shown in Figure 3.
Example 7:

Let X and Y be two stochastic processes given by

X(t) = 0.6 sin(5πt) + 0.1 sin(20πt) + n1(t)

Y(t) = 0.1 sin(20πt) + n2(t)

where n1 and n2 are independent AWGN noise with SNR= 10dB, and t = 0 : 0.005 : 2.
Then, the cCCM and CCM values between these two time series are

ρcCCM(X → Y) = 0.7108, ρcCCM(Y → X) = 0.0616.

ρCCM(X → Y) = 0.7657, ρCCM(Y → X) = 0.0517.

The convergence of CCM and cCCM with respect to the data length is shown in Figure 3.

Figure 3. Performance of cCCM and CCM versus the data length for Examples 6 and 7.

We selected τ = 5 in Examples 6 and 7 to reduce the impact of noise; please refer to
Section 3.2.5 for more details.

3.2.3. Examples on Deterministic Chaotic Maps

Example 8:
Let X and Y be two stochastic processes given by

X(t + 1) = X(t)[3.8 − 3.8X(t)],

Y(t + 1) = Y(t)[3.2 − 3.2Y(t)− 0.1X(t)],

where t = [0, 1, · · · , 2047], X(0) = 0.7, and Y(0) = 0.1. Then, the cCCM and CCM values
between these two time series are
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ρcCCM(X → Y) = 0.2164, ρcCCM(Y → X) = 0.8923.

ρCCM(X → Y) = 0.1679, ρCCM(Y → X) = 0.9705.

The convergence of CCM and cCCM with respect to the data length is shown in Figure 4.
Example 9:

Let X and Y be two stochastic processes given by

X(t + 1) = X(t)[3.8 − 3.8X(t)− 0.1Y(t)],

Y(t + 1) = Y(t)[3.2 − 3.2Y(t)− 0.1X(t)],

where t = [0, 2047], X(0) = 0.7, and Y(0) = 0.1. Then, the cCCM and CCM values between
these two time series are

ρcCCM(X → Y) = 0.8693, ρcCCM(Y → X) = 0.9122.

ρCCM(X → Y) = 0.9704, ρCCM(Y → X) = 0.9717.

The convergence of CCM and cCCM with respect to the data length is shown in Figure 4.

Figure 4. Performance of cCCM and CCM versus the data length for Examples 8 and 9.

3.2.4. Examples on Systems with Memory

In this subsection, we examined the causal relationship in systems with memory
(Examples 10–14) using CCM and cCCM under different choices of E and τ.
Example 10:

Consider a system with memory

X = randn(1024, 1),

Y(t) = 0.2X(t − 1) + 0.85X(t − 4).

Here, (i) the MATLAB command “randn(1024,1)” returns an 1024-by-1 matrix of normally
distributed random numbers; (ii) t = [0, 1, · · · , 1023] and X(t) = 0 while t < 0. The results
corresponding to different E or τ values are displayed in Table 2.
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Table 2. Results for Example 10.

Values for E and τ cCCM CCM

ρcCCM(X → Y) : 0.0198 ρCCM(X → Y) : 0.0495
E = 3, τ = 1 ρcCCM(Y → X) : −0.0600 ρCCM(Y → X) : 0.0087

MSE(Xn, X̂n
) : 1.2416 MSE(Xn, X̂n

) : 1.1896
MSE(Yn, Ŷn

) : 0.9031 MSE(Yn, Ŷn
) : 0.8711

ρcCCM(X → Y) : 0.9395 ρCCM(X → Y) : 0.9535
E = 3, τ = 2 ρcCCM(Y → X) : 0.0079 ρCCM(Y → X) : 0.0630

MSE(Xn, X̂n
) : 1.1876 MSE(Xn, X̂n

) : 1.1472
MSE(Yn, Ŷn

) : 0.0846 MSE(Yn, Ŷn
) : 0.0632

ρcCCM(X → Y) : 0.9522 ρCCM(X → Y) : 0.9776
E = 5, τ = 1 ρcCCM(Y → X) : −0.0210 ρCCM(Y → X) : −0.0225

MSE(Xn, X̂n
) : 1.0941 MSE(Xn, X̂n

) : 1.0871
MSE(Yn, Ŷn

) : 0.0868 MSE(Yn, Ŷn
) : 0.0458

We can see that the causation from X → Y cannot be fully captured when E = 3 and
τ = 1.
Example 11:

Consider

X = randn(1024, 1),

Y(t) = 0.85X(t − 1) + 0.85X(t − 4).

where t = [0, 1, · · · , 1023], and X(t) = 0 while t < 0. Then, for different E or τ values, the
results are displayed in Table 3.

Table 3. Results for Example 11.

Values for E and τ cCCM CCM

ρcCCM(X → Y) : 0.5451 ρCCM(X → Y) : 0.5833
E = 3, τ = 1 ρcCCM(Y → X) : −0.0521 ρCCM(Y → X) : −0.0616

MSE(Xn, X̂n
) : 1.2205 MSE(Xn, X̂n

) : 1.2204
MSE(Yn, Ŷn

) : 0.9445 MSE(Yn, Ŷn
) : 0.8887

ρcCCM(X → Y) : 0.5651 ρCCM(X → Y) : 0.5818
E = 3, τ = 2 ρcCCM(Y → X) : 0.0382 ρCCM(Y → X) : 0.0750

MSE(Xn, X̂n
) : 1.1485 MSE(Xn, X̂n

) : 1.1060
MSE(Yn, Ŷn

) : 0.8996 MSE(Yn, Ŷn
) : 0.8884

ρcCCM(X → Y) : 0.9496 ρCCM(X → Y) : 0.9762
E = 5, τ = 1 ρcCCM(Y → X) : −0.0113 ρCCM(Y → X) : 0.0123

MSE(Xn, X̂n
) : 1.0797 MSE(Xn, X̂n

) : 1.0597
MSE(Yn, Ŷn

) : 0.1742 MSE(Yn, Ŷn
) : 0.0906

We can see that the causation from X → Y cannot be fully captured when E = 3 and
τ = 1, 2.
Example 12:

Consider a system with different dominant delays from Example 11:

X = randn(1024, 1),

Y(t) = 0.85X(t − 2) + 0.85X(t − 4).

where t = [0, 1, · · · , 1023], and X(t) = 0 while t < 0. Then, for different E or τ values, the
results are displayed in Table 4.
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Table 4. The results of Example 12.

Values for E and τ cCCM CCM

ρcCCM(X → Y) : 0.5373 ρCCM(X → Y) : 0.5819
E = 3, τ = 1 ρcCCM(Y → X) : −0.0490 ρCCM(Y → X) : −0.0151

MSE(Xn, X̂n
) : 1.2765 MSE(Xn, X̂n

) : 1.2074
MSE(Yn, Ŷn

) : 0.9430 MSE(Yn, Ŷn
) : 0.8876

ρcCCM(X → Y) : 0.9696 ρCCM(X → Y) : 0.9910
E = 3, τ = 2 ρcCCM(Y → X) : −0.0184 ρCCM(Y → X) : −0.0416

MSE(Xn, X̂n
) : 1.2204 MSE(Xn, X̂n

) : 1.2342
MSE(Yn, Ŷn

) : 0.0854 MSE(Yn, Ŷn
) : 0.0266

ρcCCM(X → Y) : 0.9471 ρCCM(X → Y) : 0.9762
E = 5, τ = 1 ρcCCM(Y → X) : −0.0052 ρCCM(Y → X) : 0.0088

MSE(Xn, X̂n
) : 1.0647 MSE(Xn, X̂n

) : 1.0573
MSE(Yn, Ŷn

) : 0.1802 MSE(Yn, Ŷn
) : 0.0913

We can see that the causation from X → Y cannot be fully captured when E = 3 and
τ = 1.
Example 13:

Consider

X = randn(1024, 1),

Y(t) = 0.8X(t − 1) + 0.8X(t − 4) + 0.6X(t − 5)

where t = [0, 1, · · · , 1023], and X(t) = 0 while t < 0. Then, for different E or τ values, the
results are displayed in Table 5.

Table 5. The results of Example 13.

Values for E and τ cCCM CCM

ρcCCM(X → Y) : 0.7900 ρCCM(X → Y) : 0.8242
E = 5, τ = 1 ρcCCM(Y → X) : −0.0054 ρCCM(Y → X) : −0.0016

MSE(Xn, X̂n
) : 1.0799 MSE(Xn, X̂n

) : 1.0736
MSE(Yn, Ŷn

) : 0.5641 MSE(Yn, Ŷn
) : 0.4796

ρcCCM(X → Y) : 0.4700 ρCCM(X → Y) : 0.4972
E = 3, τ = 2 ρcCCM(Y → X) : −0.0197 ρCCM(Y → X) : −0.0194

MSE(Xn, X̂n
) : 1.1890 MSE(Xn, X̂n

) : 1.1829
MSE(Yn, Ŷn

) : 1.1990 MSE(Yn, Ŷn
) : 1.1764

ρcCCM(X → Y) : 0.9388 ρCCM(X → Y) : 0.9694
E = 6, τ = 1 ρcCCM(Y → X) : −0.0300 ρCCM(Y → X) : −0.0194

MSE(Xn, X̂n
) : 1.0425 MSE(Xn, X̂n

) : 1.0419
MSE(Yn, Ŷn

) : 0.2551 MSE(Yn, Ŷn
) : 0.1462

From this example, we can see the following: (i) when E = 5, τ = 1, we have
x(t) = [X(t), X(t − 1), · · · , X(t − 4)], and the causation corresponding to item 0.6X(t − 5)
cannot be captured; (ii) when E = 3 and τ = 2, we have x(t) = [X(t), X(t − 2), X(t − 4)],
and the causation corresponding to items 0.8X(t − 1) and 0.6X(t − 5) cannot be captured; and
(iii) when E = 6 and τ = 1, we have x(t) = [X(t), X(t − 1), · · · , X(t − 5)], and the causation
corresponding to all the items can be captured.

Now, if we consider the time-delayed causality, in which X(t) remains the same and
Y1(t) = Y(t + 1), then this is equivalent to considering the causality from X1(t) = X(t − 1)
to Y(t). In this case, as shown in Table 6, even when E = 5 and τ = 1, we have
x1(t) = [X(t − 1), X(t − 2), · · · , X(t − 5)], and the causation corresponding to all the
items can be captured.
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Table 6. The results of time-delayed causality analysis in Example 13.

Values for E and τ cCCM CCM

ρcCCM(X → Y1) : 0.9490 ρCCM(X → Y1) : 0.9753
E = 5, τ = 1 ρcCCM(Y1 → X) : 0.5947 ρCCM(Y1 → X) : 0.6380

MSE(Xn, X̂n
) : 0.5841 MSE(Xn, X̂n

) : 0.5362
MSE(Yn

1 , Ŷn
1 ) : 0.2032 MSE(Yn

1 , Ŷn
1 ) : 0.1061

ρcCCM(X → Y1) : 0.6621 ρCCM(X → Y1) : 0.6854
E = 3, τ = 2 ρcCCM(Y1 → X) : 0.5309 ρCCM(Y1 → X) : 0.5683

MSE(Xn, X̂n
) : 0.6814 MSE(Xn, X̂n

) : 0.6404
MSE(Yn

1 , Ŷn
1 ) : 0.8317 MSE(Yn

1 , Ŷn
1 ) : 0.7992

ρcCCM(X → Y1) : 0.9421 ρCCM(X → Y1) : 0.9705
E = 6, τ = 1 ρcCCM(Y1 → X) : 0.5861 ρCCM(Y1 → X) : 0.6405

MSE(Xn, X̂n
) : 0.5874 MSE(Xn, X̂n

) : 0.5332
MSE(Yn

1 , Ŷn
1 ) : 0.2555 MSE(Yn

1 , Ŷn
1 ) : 0.1450

Example 14:
Consider

X = randn(1024, 1),

Y(t) = 0.8X(t − 4) + 0.6X(t − 5)

where t = [0, 1, · · · , 1023], and X(t) = 0 while t < 0. Then, for different E or τ values, the
results are displayed in Table 7.

Table 7. The results of Example 14.

Values for E and τ cCCM CCM

ρcCCM(X → Y) : 0.6947 ρCCM(X → Y) : 0.7286
E = 5, τ = 1 ρcCCM(Y → X) : −0.0250 ρCCM(Y → X) : −0.0024

MSE(Xn, X̂n
) : 1.0910 MSE(Xn, X̂n

) : 1.0849
MSE(Yn, Ŷn

) : 0.4670 MSE(Yn, Ŷn
) : 0.4287

ρcCCM(X → Y) : 0.7019 ρCCM(X → Y) : 0.7309
E = 3, τ = 2 ρcCCM(Y → X) : −0.0327 ρCCM(Y → X) : 0.0119

MSE(Xn, X̂n
) : 1.1890 MSE(Xn, X̂n

) : 1.1829
MSE(Yn, Ŷn

) : 1.2170 MSE(Yn, Ŷn
) : 1.1760

ρcCCM(X → Y) : 0.9479 ρCCM(X → Y) : 0.9718
E = 6, τ = 1 ρcCCM(Y → X) : −0.0300 ρCCM(Y → X) : −0.0194

MSE(Xn, X̂n
) : 1.0425 MSE(Xn, X̂n

) : 1.0419
MSE(Yn, Ŷn

) : 0.2551 MSE(Yn, Ŷn
) : 0.1462

In this example, both E = 5, τ = 1 and E = 3, τ = 2 can only capture the causation corre-
sponding to 0.8X(t − 4), and E = 6 and τ = 1 can capture the overall causation accurately.

Now, if we consider the time-delayed causality, in which X(t) remains the same and
Y3(t) = Y(t + 3), then this is equivalent to considering the causality from X3(t) = X(t − 3)
to Y(t). In this case, as shown in Table 8, E = 5 and τ = 1 work even better than
E = 6 and τ = 1 since E = 5 leads to a manifold with a lower dimension and, hence, a
higher nearest neighbor density.
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Table 8. The results of time-delayed causality analysis in Example 14.

Values for E and τ cCCM CCM

ρcCCM(X → Y3) : 0.9543 ρCCM(X → Y3) : 0.9782
E = 5, τ = 1 ρcCCM(Y3 → X) : −0.0378 ρCCM(Y3 → X) : −0.0095

MSE(Xn, X̂n
) : 1.0968 MSE(Xn, X̂n

) : 1.0736
MSE(Yn

3 , Ŷn
3 ) : 0.1210 MSE(Yn

3 , Ŷn
) : 0.0636

ρcCCM(X → Y3) : 0.4445 ρCCM(X → Y3) : 0.4568
E = 3, τ = 2 ρcCCM(Y → X) : −0.0606 ρCCM(Y3 → X) : −0.0611

MSE(Xn, X̂n
) : 1.2451 MSE(Xn, X̂n

) : 1.2306
MSE(Yn, Ŷn

3 ) : 0.7748 MSE(Yn
3 , Ŷn

3 ) : 0.7743

ρcCCM(X → Y3) : 0.9424 ρCCM(X → Y3) : 0.9703
E = 6, τ = 1 ρcCCM(Y3 → X) : −0.0293 ρCCM(Y3 → X) : −0.0173

MSE(Xn, X̂n
) : 1.0545 MSE(Xn, X̂n

) : 1.0432
MSE(Yn

3 , Ŷn
3 ) : 0.1590 MSE(Yn

3 , Ŷn
3 ) : 0.0927

From Examples 10–14, it can be seen that in systems with memory, the selection of
the shadow manifold dimension E and the signal lag τ largely rely on the positions of the
dominant delays in the channel impulse response.

It can be seen that in systems with memory, for the accurate evaluation of CCM and
cCCM causality, the following conditions need to be satisfied:

(a) E · τ > dd,max, where dd,max denotes the largest dominant delay.
(b) For each t, the shadow manifold constructing vector x(t) = [X(t), X(t − τ), · · · ,

X(t − (E − 1)τ)] should contain all the samples corresponding to the dominant delays.

It is also observed that if the conditions above are not satisfied, time-delayed cCCM
from X(t − τ) to Y(t) might still capture the causation accurately if the instantaneous
information exchange between X(t) and Y(t) is not significant. More specifically, if we

consider a linear time-invariant (LTI) system Y(t) = X(t) ∗ h(t) =
L
∑

l=0
h(l)X(t − l), where

h(t) denotes the channel impulse response, when h(0) is negligibly small, we say that there
is no significant instantaneous information exchange between X(t) and Y(t).

In the following two examples, we compare the performance between cCCM and
Granger causality (GC) for systems with memory.
Example 15:

Consider a system with memory:

X = randn(1024, 1), (9)

Y(t) = 0.8X(t) + 0.2X(t − 1) + 0.2X(t − 2) + 0.2X(t − 5) + n(t), (10)

where t = [0, 1, · · · , 1023], and X(t) = 0 while t < 0. Here, we assume that n(t) ∼ N(0, σ2)
is independent of X. We then compare the performances of GC and CCM under different
noise powers, and the results are shown in Table 9.

Table 9. Results for Example 15.

Noise
n(t) ∼ N(0, σ2)

σ2 = 0 σ2 = 10−6 σ2 = 10−2 σ2 = 10−1 σ2 = 4

SNR(dB) ∞ (noise free) 52.26 dB 12.26 dB 2.26 dB −7.74 dB

GC(X → Y) 6.078 × 10−5 6.383 × 10−4 0.0065 0.0345 0.0277

GC(Y → X) 6.862 × 10−5 6.589 × 10−4 0.0019 0.0040 0.0035

ρcCCM(X → Y) 0.9169 0.9168 0.9070 0.8314 0.1897

ρcCCM(Y → X) 0.9024 0.9023 0.8873 0.8043 0.1413
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As can be seen, as long as the signal-to-noise ratio (SNR) is not too small, cCCM can
capture the strong bidirectional causality between X(t) and Y(t), but GC cannot. This is
mainly because cCCM takes the instantaneous information exchange between X(t) and Y(t)
into consideration, but GC does not. That is, when there exists instantaneous information
exchange between X(t) and Y(t), GC may fail to capture the causal coupling between X(t)
and Y(t).

It is also observed that the ρcCCM value decreases as the noise power increases, which
is consistent with our analysis in Section 3.1. When σ2 = 4 and SNR = −7.74 dB, both
cCCM and GC can no longer deliver valid results due to the strong noise effect.

Recall that the most commonly used method in Granger causality [10–12] analysis is
to compare the following two prediction errors ei and ẽi:

Yi =
K

∑
j=1

ajYi−j + ei

Yi =
K

∑
j=1

bjYi−j +
L

∑
j=1

cjXi−j + ẽi,

And the Granger causality is defined to be the log-likelihood ratio

GC(X → Y) = ln
|cov(e)|
|cov(ẽ)| , (11)

where e = [e1, e2, . . . , en]T , ẽ = [ẽ1, ẽ2, . . . , ẽn]T , and |cov(·)| stands for the determinant of
the covariance matrix.

Our results in Table 9 and the definition of GC suggest that the small fluctuations in
the GC values as the noise variance increases from 10−6 to 4 are more likely to reflect the
impact of the noise rather than the detection of the causality.
Example 16:

Consider

X = randn(1024, 1),

Y(t) = 0.8X(t − 1) + 0.2X(t − 2) + 0.2X(t − 5) + n(t),

where t = [0, 1, · · · , 1023], X(t) = 0 while t < 0, and n(t) ∼ N(0, 10−6) is an independently
generated Gaussian noise. Then, the Granger causality between X and Y is

GC(X → Y) = 11.3901,

GC(Y → X) = 0.0002.

and the causality detected by cCCM is

ρcCCM(X → Y) = 0.9138,

ρcCCM(Y → X) = 0.0128.

In this example, there is no instantaneous information exchange between X(t) and
Y(t), and both GC and cCCM detect the strong unidirectional causality from X to Y and
deliver consistent results.

3.2.5. Additional Examples on the Selection of the Dimension of the Shadow Manifold E
and Time Lag τ

In this subsection, we illustrate the impact of E and τ on the performance of cCCM
through some additional simulation examples, including single-tone time series embedded
in noise (Example 13) and Gaussian stochastic process (Example 14). As in Example 3,
it was found that a large E · τ value may help enhance the performance of cCCM under
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noise. However, it is also noticed that if E is too large, cCCM may no longer deliver valid
results, as the excessively high dimension of the shadow manifold significantly reduces
the density of the nearest neighbors, leading to inaccurate state-space reconstruction and
causality evaluation.
Example 17:

This is a revisit of Example 3, with additional discussions on the selection of E and τ
and different sampling instants. Consider the following noisy single-tone time series:

X(t) = sin(t) + n1(t),

Y(t) = cos(t) + n2(t),

where t = 0 : 0.01π : 2π, and n1(t) and n2(t) are independent AWGN noises with SNRs
varying in 0, 5, 10, 15, and 20 dB, or equal to 0 for all t in the noise-free case. By changing
the values for E and τ, we are able to observe different noise effects. The simulation results
for E = 5, τ = 1 and E = 5, τ = 5 are shown in Table 10 below.

Table 10. Performance of cCCM under additive white Guassian noise with different E and τ values.

Values for E and τ Direction 0 dB 5 dB 10 dB 15 dB 20 dB Noise Free

E = 5, τ = 1
X → Y 0.2378 0.2410 0.3497 0.5156 0.6273 0.9566

Y → X 0.2476 0.4446 0.6194 0.7267 0.8447 0.9945

E = 5, τ = 5
X → Y 0.3497 0.6116 0.8278 0.9432 0.9799 0.9985

Y → X 0.5570 0.7566 0.8893 0.9693 0.9877 0.9991

As can be seen, as we increase the length of the data span E · τ, the noise effect is
reduced. In particular, compared with E = 5 and τ = 1, when we choose E = 5 and τ = 5,
a much better noise immunity is achieved, since E · τ is sufficiently long.

Note that increasing τ leads to the downsampling of the time series, and increasing
E expands the dimension of the shadow manifolds. An over-increase in E or τ might
downgrade the performance of cCCM. From Example 14, it can be seen that if E is much
larger than 2d + 1, cCCM may deliver inaccurate results.
Example 18:

Consider

X = randn(1024, 1), Y = |X|,

In this example, there is a strong unidirectional causality from X to Y, but very weak
causation in the inverse direction. Choose τ = 1. From Figure 5, we can see that as E
increases, the cCCM value keeps on decreasing and reduces to 0.2 when E = 50, which no
longer reflects the strong unidirectional causality from X to Y.
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Figure 5. cCCM results for Example 18 (X = randn(1024, 1), Y = |X|): an excessively large E may
downgrade the performance of cCCM; here, τ = 1.

3.2.6. Examples of the Impact of Sampling Frequency on cCCM

In this subsection, we show that for the accurate assessment of causation, signals under
consideration should be sampled with a sampling frequency higher than the Nyquist rate.
Example 19:

Consider

X = sin(kπt),

Y = cos(kπt),

where t = 0 : 0.005 : 4, and k = 150, 200, 400. From Figure 6, it can be seen that if
the sampling frequency is higher than the Nyquist rate, then strong bidirectional causal
coupling can be detected between X and Y. On the other hand, if the sampling frequency
is lower than the Nyquist rate, then the resulted cCCM value is no longer valid.

(a) (b) (c)

Figure 6. Impact of sampling frequency on cCCM convergence speed: an illustration using sinusoidal
waveforms with different frequencies. (a) f0 = 75 Hz; (b) f0 = 100 Hz; (c) f0 = 200 Hz. Here, f0

denotes the frequency of the corresponding sinusoidal waveform. The sampling time sequence was
chosen as t = 0 : 0.005 : 4; that is, sampling frequency fs = 200 Hz. As can be seen, cCCM works
well when the sampling rate is above the Nyquist rate, as shown in (a) but may or may not deliver
meaningful results when the sampling frequency is below or equal to the Nyquist rate, as shown
in (b,c).

3.2.7. Examples on Data Repetition in Causality Analysis

The following examples illustrate that even if X and Y are two independent signals
that are not causally coupled, a causal pattern can be enforced in the concatenated time
series through data repetition.
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Example 20:
Let X = randn(1000, 1) and Y = randn(1000, 1) be two independent normally dis-

tributed time series. We have

ρcCCM(X → Y) = 0.0198, ρcCCM(Y → X) = −0.0326.

That is, X and Y are not causally coupled. Consider

X̃ = [X; X; X] Ỹ = [Y; Y; Y],

Then, we have

ρcCCM(X̃ → Ỹ) = 0.7860, ρcCCM(Ỹ → X̃) = 0.7810.

As can be seen, data concatenation results in strong causality that does not exist in the
original X and Y.

3.2.8. An Example of Multivariate Conditional cCCM

Example 21:
Let X0 =randn(1024,1), Y0 =randn(1024,1), and Z =randn(1024,1) be independent

and normally distributed Gaussian random variables. Consider

X = 0.7X0 + 10Z,

Y = 0.4Y0 + 12Z.

Then, the bivariate cCCM between X and Y is

ρcCCM(X → Y) = 0.9574, ρcCCM(Y → X) = 0.9601,

which provides a delusion that there exists strong bidirectional causality between X and Y.
On the other hand, the multivariate cCCM between X and Y conditioning on Z is

cCCM(X → Y|Z) = 0.0298, cCCM(Y → X|Z) = 0.0306,

which accurately reflect the independent relationship between X and Y. From this ex-
ample, it can be seen that conditional cCCM can help inspect the dependence among
the random variables under consideration and may deliver more accurate results in the
causality evaluation.

3.3. Application of cCCM for Brain Causality Analysis Using Experimental fMRI Data

In this study, we applied both bivariate and multivariate cCCM for a causality analysis
of the brain network using experimental fMRI data and compared the results with those
of GC [10,43].

We considered an fMRI dataset where fourteen right-handed healthy college students
(7 males and 7 females, 23.4 ± 4.2 years of age) from Michigan State University volunteered
to participate in a task-driven fMRI-based study. For each subject, fMRI datasets were
collected on a visual stimulation condition with a scene–object fMRI paradigm, where
each volume of images was acquired 192 times (8 min) while a subject was presented
with 12 blocks of visual stimulation after an initial 10 s resting period. In a predefined
randomized order, the scenery pictures were presented in six blocks, and the object pictures
were presented in another six blocks. All pictures were unique. In each block, ten pictures
were presented continuously for 25 s (2.5 s for each picture), followed with a 15 s baseline
condition (a white screen with a black fixation cross at the center). The subject needed to
press their right index finger once when the screen was switched from the baseline to the
picture condition. More details on fMRI data acquisition and preprocessing can be found
in [44].
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Region of Interest (ROI) selection: we selected 10 ROI regions, including the left pri-
mary visual cortex (LV1), left parahippocampal place area (LPPA), left sensory motor cortex
(LSMC), left parahippocampal white matter (LPWM), left retrosplenial cortex (LRSC), right
primary visual cortex (RV1), right parahippocampal place area (RPPA), right sensory motor
cortex (RSMC), right frontal white matter (RFWM), and right retrosplenial cortex (RRSC).

3.3.1. Results for Bivariate and Multivariate cCCM

Note that the total length of the fMRI BOLD time series under visual stimulation
condition was n = 192, with the sampling period being 2.5 s. In the literature, it was
reported that increasing the sampling rate of the fMRI signal can improve the robustness of
the causality analysis [45]. Here, we first interpolate the fMRI sequence by a factor of 2 using
the spline interpolation command in MATLAB and then conducted causality analysis for
all the possible unidirectional regional pairs using both bivariate and multivariate cCCM.

The causality analysis results based on bivariate cCCM (averaged over all 14 subjects)
are shown in Figure 7. Our results suggest the presence of unidirectional causality from
LV1 → LSMC, RV1 → LSMC, LV1 → LPWM, LV1 → RFWN, and LPPA → LPWM.

The results corresponding to multivariate conditional cCCM with respect to individual
brain regions are shown in Figure 8. As can be seen, RV1 has the most significant impact
on the conditional causality from LV1 → LSMC, LV1 → LPWM, and LV1 → RFWM.
This implies that RV1 has the highest inter-region dependence with LV1. For the same
reason, LV1 has the most significant impact on the conditional causality from RV1 → LSMC.
That is, multivariate conditional cCCM with respect to individual regions can detect
unidirectional causality and also reflect the impact of interdependence between the ROIs
on the conditional causality.

Figure 7. FMRI-based causality analysis using bivariate cCCM. Unidirectional causality was
detected in the brain network under a visual simulation condition with a scene–object fMRI paradigm.
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(a) (b)

(c) (d)

Figure 8. FMRI-based causality analysis using multivariate conditional cCCM with respect to
individual regions. (a) LV1 → LSMC, (b) RV1 → LSMC, (c) LV1 → LPWM, (d) LV1 → RFWM.
The results indicate that multivariate cCCM (with respect to individual regions) can detect uni-
directional causality and also reflect the impact of interdependence between the ROIs on the
conditional causality. More specifically, it can be seen that due to the dependence between the
brain regions, multivariate conditional CCM values are much smaller than the bivariate cCCM
values. In particular, RV1 has the most significant impact on the conditional causality from
LV1 → LSMC, LV1 → LPWM, and LV1 → RFWM. This implies that RV1 has the highest de-
pendence with LV1. For the same reason, LV1 has the the most significant impact on the conditional
causality from RV1 → LSMC.

3.3.2. Results for Bivariate and Multivariate Granger Causality (GC)

For comparison purposes, we analyzed the brain network causality using both bivari-
ate and multivariate GC [12] with the same fMRI dataset.

From Figures 7 and 9, it can be seen that bivariate GC delivers similar results as cCCM
except for the causal coupling from LV1 → LSMC. More specifically, cCCM shows that
there exists unidirectional causality from LV1 → LSMC, while GC shows that there exists
bidirectional causality between LV1 and LSMC but no significant unidirectional causality.
In ref. [9], the DI-based causality analysis also verified the presence of unidirectional
causality from LV1 → LSMC for the same dataset, which is consistent with the results
of cCCM. These results suggest that for this fMRI dataset, cCCM tends to deliver a more
accurate causality evaluation than GC.
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Figure 9. FMRI-based causality analysis using bivariate GC. The results of GC are largely consistent
with those of bivariate cCCM except from LV1 → LSMC. This may be because (i) cCCM takes the
instantaneous information exchange between X(t) and Y(t) into consideration, but GC does not; and
(ii) cCCM can capture both linear and nonlinear causal causal coupling, and GC may have difficulty
in detecting nonlinear causality. That is, when there exists instantaneous information exchange and/or
a nonlinear causal relationship between X(t) and Y(t), GC may fail to capture the underlying causal
coupling accurately.

A natural question arises: how should we explain the difference between cCCM and
GC for the causality analysis here? Since based on the central limit theorem, fMRI signals
can be modeled as Gaussian random variables for which cCCM and GC are conditionally
equivalent. The underlying argument is that the equivalence between cCCM and GC under
Gaussian random variables is subject to two conditions: (i) both X(t) and Y(t) follow
the linear auto-regression model; and (ii) there is no significant instantaneous informa-
tion exchange between X(t) and Y(t). More specifically, cCCM takes the instantaneous
information exchange between X(t) and Y(t) into consideration, but GC does not. For
this reason, when there exists instantaneous information exchange between X(t) and Y(t),
GC may fail to capture the causal coupling between X(t) and Y(t), but cCCM succeeds.
This is demonstrated through simulations in Example 15. In addition, cCCM can capture
both linear and nonlinear causal causal coupling, but GC may have difficulty in detecting
nonlinear causality. For these reasons, cCCM might be a more robust causality analysis tool
than GC.

In the multivariate case, the theoretical relationship between cCCM and GC is not clear
yet. In comparing Figures 8 and 10, it can be seen that the results of multivariate cCCM and
GC are largely consistent for LV1 → LSMC and LV1 → RFWM. However, they deliver
very different results for the conditional causality from RV1 → LSMC and LV1 → LPWM
with respect to other individual regions. In particular, for these two region pairs, the
results of multivariate cCCM with respect to other individual regions are consistent with
their bivariate counterparts and also reflect the impact of inter-region dependence on the
conditional causality. However, the corresponding results of multivariate GC with respect
to other individual regions vary significantly with the region under consideration, and 50%
or more are no longer consistent with those of the bivariate GC.
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(a) (b)

(c) (d)

Figure 10. FMRI-based causality analysis using multivariate conditional GC with respect to individual
regions. (a) LV1 → LSMC, (b) RV1 → LSMC, (c) LV1 → LPWM, (d) LV1 → RFWM. It can be seen that
the results of multivariate cCCM and GC are largely consistent for (a,d). However, for (b,c), multivariate
cCCM and GC deliver very different results. In particular, for the conditional causality from RV1 → LSMC
and LV1 → LPWM, the results of multivariate cCCM with respect to other individual regions are
consistent with their bivariate counterparts and also reflect the impact of inter-region dependence on
the conditional causality. However, the corresponding results of multivariate GC with respect to other
individual regions vary significantly with the region under consideration, and 50% or more are no longer
consistent with those of the bivariate GC.

Further theoretical analysis is needed on the theoretical relationship between condi-
tional GC and multivariate cCCM, as well as the relationship between DI and the recent
minimum entropy framework [46] in both bivariate and multivariate scenarios.

4. Conclusions and Discussion

In this paper, we revisited the definition of original CCM, identified the gap between
CCM and the traditional definition of causality, presented causalized CCM (cCCM), and
discussed the conditional equivalence of cCCM and directed information and the extension
of bivariate cCCM to multivariate cCCM. We then evaluated the effectiveness of cCCM in
the detection of causality through a large number of examples including Gaussian random
variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic
processes with a dominant spectral component embedded in noise, deterministic chaotic
maps, and systems with memory, as well as experimental fMRI data. We also examined
the impact of noise on the performance of cCCM, and our results suggest that, in general,
reliable results can be achieved when SNR > 15 dB. In particular, we provided detailed
discussions on the choice of the dimension of the shadow manifolds E and the time lag τ
and the impact of these parameters on the detection of causal relationships using cCCM.
Finally, we applied both bivariate and multivariate cCCM for the causality analysis of the
brain network using experimental fMRI data and compared the results with those of GC.

Based on the conditional equivalence of cCCM and DI [9], we can see that cCCM
provides an alternative way to evaluate the directed information transfer between stationary
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ergodic Gaussian random variables. Compared with DI, which relies heavily on probability
estimation and tends to be sensitive to data length and quantization step size, cCCM, on
the other hand, gets around this problem through geometric cross mapping between the
manifolds involved.

However, the advantage of cross-mapping-based causality detection techniques comes
with prices. The major limitation with CCM and cCCM is that they are based on the
K-nearest neighbor (KNN) search algorithm and hence have a high computation complexity
O(n2), where n is the data length. The convergence speeds of CCM and cCCM also vary
with the signals under applications and need to be taken into consideration in causality
analysis, especially in dynamic systems where the causal relationships are time-variant.
It is worthy to point out that when combined with the sliding window approach [47,48],
cCCM can be used to evaluate time-varying causality in dynamic networks such as brain
networks [49].

Overall, both our theoretical [9] and numerical analysis demonstrated that cCCM
is a promising and easy-to-implement tool for causality detection in a wide spectrum of
applications. In this paper, we showed that appropriate choices of E, τ, and the sampling
frequency are critical for cCCM-based causality analysis and provided detailed guidelines
on the configuration of cCCM. We wish that this paper can serve as a helpful reference on
the implementation of cCCM for causality detection in different applications.
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CCM Convergent cross mapping;
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GC Granger causality;
DI Directed information;
fMRI Functional magnetic resonance imaging;
SNR Signal-to-noise ratio;
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DMN Default mode network;
BOLD Blood-oxygen-level-dependent;
KNN K-nearest neighbor;
TE Transfer entropy;
DCM Dynamic causal modeling;
AWGN Additive white Gaussian noise;
MSE Mean square error;
CR Causality ratio;
ROI Region of interest;
LV1 Left primary visual cortex;
LPPA Left parahippocampal place area;
LSMC Left sensory motor cortex;
LPWM Left parahippocampal white matter;
LRSC Left retrosplenial cortex;
RV1 Right primary visual cortex;
RPPA Right parahippocampal place area;
RSMC Right sensory motor cortex;
RFWM Right frontal white matter;
RRSC Right retrosplenial cortex.
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