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Abstract: Statins are cholesterol-lowering drugs with a mechanism of inhibiting 3-hydroxy-3-
methylglutaryl-CoA reductase, but long-term use can cause side effects. An example of a plant
capable of reducing cholesterol levels is Angelica keiskei (ashitaba). Therefore, this study aimed
to obtain suitable compounds with inhibitory activity against the HMG-CoA reductase enzyme
from ashitaba through in silico tests. The experiment began with screening and pharmacophore
modeling, followed by molecular docking on ashitaba’s compounds, statins groups, and the na-
tive ligand was (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-methylethyl)-1H-imidazole-
1-yl]-3,5-dihydroxyheptanoic acid (4HI). Based on the results of the molecular docking simula-
tions, 15 hit compounds had a small binding energy (∆G). Pitavastatin, as the comparator drug
(∆G = −8.24 kcal/mol; Ki = 2.11 µM), had a lower ∆G and inhibition constant (Ki) than the na-
tive ligand 4HI (∆G = −7.84 kcal/mol; Ki = 7.96µM). From ashitaba’s compounds, it was found
that 4′-O-geranylnaringenin, luteolin, isobavachalcone, dorsmannin A, and 3′-carboxymethyl-4,2′-
dihydroxy-4′-methoxychalcone have low ∆G of below −6 kcal/mol. The lowest ∆G value was
found in 3′-carboxymethyl-4,2′-dihydroxy-4′-methoxy chalcone with a ∆G of −6.67 kcal/mol and Ki
value of 16.66 µM, which was lower than the ∆G value of the other comparator drugs, atorvastatin
(∆G = −5.49 kcal/mol; Ki = 1148.17 µM) and simvastatin (∆G = −6.50 kcal/mol; Ki = 22.34 µM).
This compound also binds to the important amino acid residues, including ASN755D, ASP690C,
GLU559D, LYS735D, LYS691C, and SER684C, through hydrogen bonds. Based on the results, the
compound effectively binds to six important amino acids with good binding affinity and only requires
a small concentration to reduce half of the enzyme activity.

Keywords: statins; HMG-CoA reductase; Angelica keiskei; in silico

1. Introduction

Cholesterol is a waxy, fat-like substance found in all cells within the body, specifically
the liver [1]. The presence of excess levels in the bloodstream is a major contributor to
plaque formation, which can clog the arteries thus causing heart attacks [2]. A crucial
enzyme in cholesterol biosynthesis is 3-hydroxy-3-methylglutaryl (HMG) Co-A reductase,
which catalyzes the conversion of HMG-CoA to mevalonic acid [3]. Statins are cholesterol-
lowering drugs commonly used by the public due to their efficacy as inhibitors of the
HMG-CoA reductase enzyme [4]. Statins have proven potential in reducing LDL levels by
20–60% [5–8]. Statins are divided into two groups, namely lipophilic and hydrophilic statins.
Bitzur et al., 2013, proved that lipophilic statins, including simvastatin and atorvastatin,
tend to cause myopathy compared to hydrophilic statins; in addition, long-term use
potentially causes side effects, including [9], hepatotoxicity, and increased risk of new-onset
type 2 diabetes [10]. As stated in the previous studies, statins could increase the risk of
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developing diabetes mellitus (DM), but the results have not been statistically significant. In
contrast, the West of Scotland Coronary Prevention Study (WOSCOPS) trial showed that
statins, specifically pravastatin [11] and pitavastatin [12], have the potential to reduce the
risk of diabetes.

Empirically, one of the herbal plants used to reduce cholesterol levels is ashitaba [13].
Angelica keiskei (Miq.) Koidzumi, commonly known as ashitaba or Japanese celery, orig-
inates from Japan but can be cultivated in Indonesia, specifically in the Mojokerto and Lom-
bok regions. Compounds isolated from ashitaba include various types of chalcones [14–25],
flavonoids [16,24], and coumarins [23,24]. Previous studies have also reported the pres-
ence of sesquiterpenes [26], diterpenes [27], triterpenes [27,28], and various other com-
pounds [23,24,27,28]. According to an in vivo study by Zhang et al., 2015, administration of
the ashitaba extract (0.01% and 0.1%, w/w) for 16 weeks, containing 4-hydroxyderricin and
xanthoangelol, effectively suppressed weight gain, as well as reduced plasma cholesterol,
glucose, and insulin levels. The treatment increased adiponectin levels, while also reducing
triglycerides and liver cholesterol levels in C57BL/6 rats [29]. Moreover, dry extracts of
the stems and leaves have been used in health and cosmetic products at a safe dose of
approximately 300 mg/kg [13].

Along with technological developments, the discovery and development of new drug
candidates classified as complex can be relatively shorter with in silico tests [30]. It is a
computational method used in drug design that provides convenience by shortening the
process of identifying hit compounds, as well as the selection of hit-to-lead compounds, and
prevents problems related to side effects from the drugs being developed [31]. Therefore,
this study aimed to carry out an in silico test to determine the inhibitory activity of the
active compounds in the ashitaba plant compared with the statin groups (approved by
FDA) (Supplementary S1) against the HMG-CoA reductase enzyme using pharmacophore
modeling methods and docking simulations.

2. Results
2.1. Visualization Results of the HMG-CoA Reductase Pharmacophore Feature

Pharmacophore modeling was conducted using two methods, namely structure-based
drug designing (SBDD) and ligand-based drug designing (LBDD). In the SBDD method,
the target protein used as a structural basis was HMG -CoA reductase (PDB ID: 3CCW)
complexed with a native ligand (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-
methylethyl)-1H-imidazole-1-yl]-3,5-dihydroxy heptanoic acid (C27H31N3O5F1) or 4HI.
This ligand has good pharmacophore features and compatibility with Lipinski’s rules,
possessing nine hydrogen bond acceptors, two hydrogen bond donors, four hydrophobic
interactions, one negative and zero positive ionized areas (Figure 1), as well as a molecular
weight of 496.56 g/mol, and cLogP of 0.80. The results suggest that the pharmacophore
features were present in one molecule recognized by the receptor site and are responsible
for the biological activity of the compounds.

Ligand-based pharmacophore modeling was carried out using 299 active compounds
(actives) HMG-CoA reductase inhibitors and 8884 inactive compounds (decoys) down-
loaded from the DUD-E (A Database of Useful Decoys). From the results, 10 models were
obtained with the pharmacophore features including 2 hydrogen bond acceptors, 1 hydro-
gen bond donor, and 1 hydrophobic interaction. Figure 2 shows the visualization of the
essential features of a ligand-based pharmacophore with biological effects on the target.



Molecules 2024, 29, 2983 3 of 16
Molecules 2024, 29, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Visualization of pharmacophore features based on HMG-CoA reductase structure. 

Ligand-based pharmacophore modeling was carried out using 299 active compounds 
(actives) HMG-CoA reductase inhibitors and 8884 inactive compounds (decoys) downloaded 
from the DUD-E (A Database of Useful Decoys). From the results, 10 models were obtained 
with the pharmacophore features including 2 hydrogen bond acceptors, 1 hydrogen bond do-
nor, and 1 hydrophobic interaction. Figure 2 shows the visualization of the essential features 
of a ligand-based pharmacophore with biological effects on the target. 

 
Figure 2. Visualization of ligand-based pharmacophore features. 

2.2. The Pharmacophore Model Validation Results 
The pharmacophore model needs to be validated before being used as a reference in 

virtual screening. This step aims to ensure the ability of the pharmacophore model to dis-
tinguish between active and inactive compounds. Pharmacophore validation was carried 
out using 1 structure-based and 10 ligand-based pharmacophore models. 

Figure 3 shows the ROC curve from the result of a plot between true positive (sensi-
tivity) on the Y-axis and false positive (1-specificity) on the X-axis in the best model, 
namely ligand-based model 7. The area under the ROC curve (Figure 3) was in the range 

Figure 1. Visualization of pharmacophore features based on HMG-CoA reductase structure.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Visualization of pharmacophore features based on HMG-CoA reductase structure. 

Ligand-based pharmacophore modeling was carried out using 299 active compounds 
(actives) HMG-CoA reductase inhibitors and 8884 inactive compounds (decoys) downloaded 
from the DUD-E (A Database of Useful Decoys). From the results, 10 models were obtained 
with the pharmacophore features including 2 hydrogen bond acceptors, 1 hydrogen bond do-
nor, and 1 hydrophobic interaction. Figure 2 shows the visualization of the essential features 
of a ligand-based pharmacophore with biological effects on the target. 

 
Figure 2. Visualization of ligand-based pharmacophore features. 

2.2. The Pharmacophore Model Validation Results 
The pharmacophore model needs to be validated before being used as a reference in 

virtual screening. This step aims to ensure the ability of the pharmacophore model to dis-
tinguish between active and inactive compounds. Pharmacophore validation was carried 
out using 1 structure-based and 10 ligand-based pharmacophore models. 

Figure 3 shows the ROC curve from the result of a plot between true positive (sensi-
tivity) on the Y-axis and false positive (1-specificity) on the X-axis in the best model, 
namely ligand-based model 7. The area under the ROC curve (Figure 3) was in the range 

Figure 2. Visualization of ligand-based pharmacophore features.

2.2. The Pharmacophore Model Validation Results

The pharmacophore model needs to be validated before being used as a reference
in virtual screening. This step aims to ensure the ability of the pharmacophore model
to distinguish between active and inactive compounds. Pharmacophore validation was
carried out using 1 structure-based and 10 ligand-based pharmacophore models.

Figure 3 shows the ROC curve from the result of a plot between true positive (sensitiv-
ity) on the Y-axis and false positive (1-specificity) on the X-axis in the best model, namely
ligand-based model 7. The area under the ROC curve (Figure 3) was in the range of zero to
one or 0–100%. The higher the area under the curve, the better the prediction of the model
for active compounds than the decoy [32].
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Model 7 recognized 970 hits with an AUC value of 0.8%, an EF value of 6.4, and
a GH score of 0.3. The best model selected had a partial area under the curve (pAUC)
value of 0.77, 0.95, and 0.97 at 1%, 5%, and 10%, respectively. In addition, this model was
sensitive, identifying 201 active compounds out of 209, representing 67% of the total active
compounds. The high selectivity and sensitivity indicate that the pharmacophore model is
an excellent filter for recognizing HMG-CoA reductase inhibitors. All model validation
parameters shown in Table 1 suggest the good quality of the pharmacophore model for the
screening stage of hit compounds.

Table 1. Pharmacophore Modeling Validation Parameters.

Parameter Result

Total compounds in database (D) 9183

Active total in database (A) 299

Total hits (Ht) 970

Active hits (Ha)/True Positive (TP) 201

False Positives (FP) 769

True Negatives (TN = D − FP) 8414

False Negatives (FN = A − Ha) 98

Area Under ROC Curve (AUC) 0.8

Enrichment Factor (EF = [Ha × D]/[Ht × A]) 6.4

Goodness of Hit score (GH = [
{Ha(3A+Ht)}

4HtA ]{1 − (Ht−Ha)
(D−A)

}) 0.3

Sensitivity (TPR = TP/A) 0.67

Specificity (TNR = TN/D) 0.92

Accuracy (ACC = (TP + TN)/(A + D)) 0.91

2.3. Hit Compound Screening Results

Table 2 showed that 15 out of 36 hit compounds had the highest pharmacophore fit
scores. The screening was carried out using a database of tests and standards with a validated
pharmacophore model through Ligandscout. These 15 hit compounds were then molecularly
docked to HMG-CoA reductase (PDB:3CCW) using the AutoDockTools-1.5.6 software.
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Table 2. Pharmacophore Screening Result.

No. Compound Fit-Pharmacophore Score (%)

1 4HI 47.05

2 Pitavastatin 48.14

3 Atorvastatin 48.07

4 Lovastatin 47.55

5 Simvastatin 47.44

6 Mevastatin (Compactin) 47.39

7 4′-O-Geranylnaringenin 47.98

8 Luteolin 47.70

9 Cynaroside 47.47

10 7-O-Methyl prostratol F 47.40

11 Xanthokeismin A 47.31

12 Daucosterol 46.92

13 Isobavachalcone 46.92

14 Dorsmannin A 46.91

15 3′-Carboxymethyl-4,2′-dihydroxy-4′-methoxy chalcone 46.90

16 Xanthokeistal A 46.71

2.4. The Results of Molecular Docking Validation

The validation of the molecular docking or redocking was carried out between the
prepared native ligand and the target protein, namely 3CCW, to identify and ascertain the
location of the binding site on the enzyme. The size of the grid box used was 40 × 40 × 40 Å to
ensure sufficient space to search for the best position of the ligand on the binding site. An
overly large grid box size can lead to non-specific ligand binding and biased test results.
The coordinates used were x (3.788), y (30.858), and z (5.445), particularly for positioning
the ligand in the active pocket of the HMG-CoA reductase receptor. From this process, an
RMSD value of 0.98 Å was obtained, indicating that the molecular docking method met
the qualifications and showed good quality of bond pose reproduction because the RMSD
value was less than 2.00 Å (Figure 4) [33,34]. The native ligand 4HI binds to the important
amino acids ARG590C, ASN755D, ASP690C, and SER565D. It also binds to other amino
acids including ALA856D, ASN658C, CYS561D, GLY560D, HIS752D, and LEU853D. In the
native ligand, the result of re-docking showed an ∆G of −7.84 with a Ki value of 7.96 µM.
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2.5. The Molecular Docking Result of Hit Compounds to HMG-CoA Reductase

Molecular docking was carried out to determine the possible interactions between the
hit test compounds and important amino acid residues of the target enzyme HMG-CoA
reductase in the body compared to native ligands and marketed comparators. The amino
acid residues crucial to the catalytic site of the HMG-CoA reductase enzyme according to
Sarver et al., 2008, include GLU559, SER565, ARG590, SER684, ASP690, LYS691, LYS735,
and ASN755 through hydrogen bonding [7]. This was also supported by Istvan et al., 2001,
stating that important amino acids were in the cis loop area, including GLU559, ARG590,
SER684, ASP690, LYS691, LYS692, LYS735, and ASN755 [35]. The molecular docking used
the grid box arrangement obtained in the validation process to center the test ligands
with the active sites on the native ligands. Among the 100× dockings performed, the
conformation of the best cluster and the lowest bond energy was selected.

The lowest bond affinity (∆G) value was found in 3′-carboxymethyl-4,2′-dihydroxy-4′-
methoxy chalcone, which is lower than the ∆G value of the comparator drugs atorvastatin
and simvastatin. This compound also binds to the important amino acid residues including
ASN755D, ASP690C, GLU559D, LYS735D, LYS691C, and SER684C through hydrogen bonds.
Pitavastatin, as the comparator drug, had a lower ∆G and inhibition constant than the
native ligand.

3. Discussion

The process of cholesterol synthesis begins with the condensation of two molecules of
acetyl-coenzyme A (acetyl-CoA) to form the intermediate acetoacetyl-CoA, catalyzed
by acetyl-CoA acetyltransferase (thiolase enzyme). Furthermore, the reaction of two
acetoacetyl-CoA molecules allows the formation of 3 hydroxy-3-methylglutaryl CoA (HMG-
CoA) catalyzed by HMG-CoA synthase, then the reduction to mevalonate by the enzyme
HMG-CoA reductase (two molecules of NADPH serve as cofactors). These reactions are the
rate-limiting steps of the body’s overall cholesterol synthesis and are known as regulatory
enzymes [6,36]. Istvan and colleagues successfully performed crystallographic analysis
on the catalytic site of human HMGR, a tetramer form, which is composed of two dimers
having two active sites (first dimer: monomer 1α and 1β; second dimer: monomer 2α and
2β). They also revealed that the catalytic monomer of hHMGR consists of three domains
as follows: N-domain (in N-terminal; residues 460–525; helices Lα1-5), a large L-domain
(residues 528–590 and 694–872; helices Lα1-11 and Lβ1-6) and a small S-domain (residues
592–682; helices Sα1-3 and Sβ1-4). The S and L domains are connected by strands, Lβ3 and
Sβ1, and a loop (residues 682–694; known as a ‘cis-loop’) that is important in the HMG
binding site [36]. On the other hand, Costa and colleagues studied the conformational
changes of HMGR in complex with HMG-CoA (binds Lα1-domain; amino acid 528–590)
and NADPH (binds S-domains) by constructing a model of human HMGR (hHMGR),
which comprised ligand-free hHMGR (Apo form), hHMGR complexed with HMG-CoA
and NADPH (holo form), and phosporylated hHMGR. Their study also found that the
L2-domain located with the HMG-CoA binding region on the B chain does not interact
with substrates and cofactors [37].

Statins are drugs that can bind well to the active side of the HMG-CoA reductase
enzyme to inhibit the interaction of the enzyme with the substrate. There is some dis-
agreement regarding the use of statins as anti-cholesterol drugs to increase the occurrence
of diabetes. Atorvastatin and simvastatin have an increased risk of DM compared to
pravastatin [38]. Still, Cho et al., 2015 [11], reported that there was no significant difference
in the risk of T2DM between hydrophilic (pravastatin and rosuvastatin) and lipophilic
(simvastatin, atorvastatin, and pitavastatin) statins. The structure and bioavailability of
statins do not significantly impact the diabetogenic effect, which is a condition of increased
glucose production through carbohydrate/glucose metabolism [11]. Sarver et al., 2008,
succeeded in synthesizing imidazole compound 1 (4HI), which has good in vivo efficacy as
an inhibitor with an IC50 of 7.9 nM and excellent hepatoselectivity (>1000-fold). This com-
pound, which is complex with HMG-CoA reductase, was crystalized with X-ray diffraction
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and deposited in rcsb.org (accessed on 3 February 2023). (PDB ID: 3CCW) and used in this
study [7].

In this study, we used a pharmacophore modeling approach with the two models
namely, the SBDD and LBDD methods [6]. In the SBDD method, the target protein used
as a structural basis was HMG-CoA reductase (PDB ID: 3CCW). This ligand has good
pharmacophore features and compatibility with Lipinski’s rules, possessing nine hydrogen
bond acceptors, two hydrogen bond donors, four hydrophobic interactions, one negative
and zero positive ionized areas, as well as a molecular weight of 496.56 g/mol, and cLogP
of 0.80. The results suggest that the pharmacophore features were present in one molecule
recognized on a receptor site and responsible for the biological activity of compounds.

In the discovery of new compounds, it is necessary to use active compounds and
decoy compounds in a ratio of 1:10 [39,40]. Ligand-based pharmacophore modeling was
conducted using 299 active compounds (actives) of HMG-CoA reductase inhibitors and
8884 inactive compounds (decoys) downloaded from the DUD-E database (A Database
of Useful Decoys) [41]. The DUD-E site already stores data on active compounds which
are compounds that are proven to have activity against HMG-CoA reductase enzymes, so
they can be used as positive controls. Conversely, decoy compounds are compounds in
nature that do not have biological activity against the HMG-CoA reductase enzyme, so
they are used as negative controls [40,42]. Pharmacophore validation was carried out using
1 structure-based and 10 ligand-based pharmacophore models. The higher the area under
the curve, the better the prediction of the model for active compounds than decoy [32].
The best model, namely ligand-based model 7, was sensitive in identifying 201 active
compounds out of 209, representing 67% of the total active compounds. The high selectivity
and sensitivity indicate that the pharmacophore model is an excellent filter for recognizing
HMG-CoA reductase inhibitors.

All statins are good competitor inhibitors of HMG-CoA reductase because they
have pharmacophore groups that show great similarity to the HMG-CoA molecule [43].
Markowska et al., 2020, suggested that statins that have a hydroxy acid form in the side
group (pravastatin, atorvastatin, cerivastatin, fluvastatin, pitavastatin, and rosuvastatin)
are predicted to have pharmacological activity, while the lactone form in the side group of
statins (mevastatin, lovastatin, and simvastatin) could reduce pharmacological activity [8].
Different results appear in this study, based on pharmacophore study, and showed that
36 hit compounds (9 statins and 27 ashitaba’s compounds) had pharmacophore fit scores.
This shows that ligand-based model 7 could recognize the active compound (all statins) on
the HMG-CoA reductase receptor. We selected 15 compounds (5 statins and 10 ashitaba’s
compounds; >46% pharmacophore-fit scores) for molecular docking (Table 2). Pitavastatin
and atorvastatin, which have a hydroxy acid form, are hit compounds (fit-pharmacophore
results of 48.14% and 48.07%, respectively); however, compounds which have lactone
sides such as lovastatin, simvastatin, and mevastatin (compactin) are included in the hit
compounds as well (fit-pharmacophore results of 47.55%; 47.44%, and 47.39%), based on
pharmacophore screening results.

The molecular docking parameter in this study is the affinity energy/binding energy
(∆G)). Binding energy shows the energy required to bind two molecules; the smaller the
energy required to bind to the target protein, the more effective it is. The second parameter
is the Ki value. This is a semi-empirical free energy constant usually indicates the inhibition
of receptors in micromolar units (µM), which virtually explores the dose concentration.
The calculation of the inhibition constant (Ki) value is obtained from the binding energy
(∆G) using the following formula: Ki = exp (∆G/RT), where R is the universal gas constant
(1.985 × 10−3 kcal mol−1 K−1) and T is the temperature (298.15 K). Thereafter, we analyzed
the interaction between ligands and receptors at coordinates x = 3.788; y = 30.858; and
z = 5.445. The expected interaction is the ligand with key amino acids on the receptor
that plays a role in providing biological activity. Amino acid residues which play a role
in the catalytic site of the HMG-CoA reductase enzyme, according to Sarver et al., 2008,
include GLU559, SER565, ARG590, SER684, ASP690, LYS691, LYS735, and ASN755 through
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hydrogen bonding [7]. This was also supported by Istvan et al., 2001, who has crystalized
six statins with X-ray diffraction and studied the mechanism. They found that when
HMG-CoA or CoA substrates are bound to amino acid residues, the C-terminal extension
is partially fixed. Still, when the NADP+, HMG, and CoA or NADP+ and HMG-CoA
substrates are complexed together, the helix at the C-terminal of Lα11 (residues 870 and871)
binds to the protein core (known as the cis loop) [36,44]. This configuration would cause
the active site to be closed by the Lα11 helix, and no statins would be able to occupy
the NADP(H) binding site, which is a finding that is in line with their kinetic studies, as
statins are competitive inhibitors of HMG-CoA substrates but are not competitive with
NADPH [35,36]. The important amino acids were in the cis loop area, including GLU559,
ARG590, SER684, ASP690, LYS691, LYS692, LYS735, and ASN755 (with polar interaction,
hydrogen bonding, forming a salt bridge and hydrophobic interaction) [35]. Istvan et al.,
2001, also stated that hydrophobic statin compounds with a large molecular weight can
occupy the surface of the HMG-CoA binding pocket, causing the substrate of HMG-CoA to
HMGR to be blocked [35]. Van der Waals bonds are also formed between the hydrophobic
side chains, namely the amino acids LEU562, VAL683, LEU853, ALA856, and LEU857 with
statins and ashitaba’s compounds [35].

In this research, the native ligand 4HI binds to the important amino acids ARG590C,
ASN755D, ASP690C, and SER565D. It also binds to other amino acids including ALA856D,
ASN658C, CYS561D, GLY560D, HIS752D, and LEU853D. For the native ligand (4HI), the
result of re-docking showed an ∆G of −7.84 with a Ki value of 7.96 µM. Based on the results
of molecular docking simulations, 15 hit compounds had a small binding energy (∆G).
Pitavastatin, as the comparator drug, (∆G = −8.24 kcal/mol; Ki = 2.11 µM) had lower ∆G
and inhibition constant (Ki) than the native ligand 4HI. From ashitaba’s compounds, we
found that the compounds 4′-O-Geranylnaringenin, luteolin, isobavachalcone, dorsman-
nin A, and 3′-Carboxymethyl-4,2′-dihydroxy-4′-methoxy chalcone have a low ∆G below
−6 kcal/mol (Table 3). The lowest ∆G value was found in 3′-carboxymethyl-4,2′-dihydroxy-
4′-methoxy chalcone with a ∆G of −6.67 kcal/mol and Ki value of 16.66 µM, which was
lower than the ∆G value of the comparator drugs atorvastatin (∆G = −5.49 kcal/mol;
Ki = 1148.17 µM) and simvastatin (∆G = −6.50 kcal/mol; Ki = 22.34 µM). This compound
also binds to the important amino acid residues including ASN755D, ASP690C, GLU559D,
LYS735D, LYS691C, and SER684C through hydrogen bonds (Figure 5). Based on the results,
the compound effectively binds to six important amino acids with good binding affinity
and only requires a small concentration to reduce half of the enzyme activity.

Table 3. Molecular docking results of the hit compounds.

No. Compound ∆G
(kcal/mol)

Ki
(µM) Important Amino Acid Residues [7] Other Amino Acid Residues

Reference Drugs

1 Pitavastatin −8.24 2.11 ARG590C, ASN755D, ASP690C,
GLU559D, LYS691D, SER565D

LEU562D, LYS692C, HIS752D,
LEU853D, ALA856D

2 Atorvastatin −5.49 1148.17 ARG590C, GLU559D, LYS735D,
SER684C CYS561D, ALA564D, LEU853D

3 Lovastatin −6.88 10.65 ARG590C, ASP690C, LYS691C LEU562D, HIS752D, LEU853D,
ALA856D

4 Simvastatin −6.50 22.34 ARG590C, ASP690C, LYS735D,
SER684C

SER661C, VAL683C, LYS692C,
HIS752D, LEU853D, LEU857D

5 Mevastatin
(Compactin) −6.86 11.82 ARG590C, LYS691C, SER565D CYS561D, LEU562D, MET657C,

LEU853D, LEU857D



Molecules 2024, 29, 2983 9 of 16

Table 3. Cont.

No. Compound ∆G
(kcal/mol)

Ki
(µM) Important Amino Acid Residues [7] Other Amino Acid Residues

Ashitaba’s Compounds

1 4′-O-Geranylnaringenin −6.48 20.24 ARG590C, ASN755D, ASP690C,
LYS691C, SER684C

CYS561D, LEU562D, ASN686C,
ALA751D, HIS752D, LEU853D,

ALA856D

2 Luteolin −6.03 40.69 ASP690C, GLU559D, LYS735D,
SER565D, SER684C

LEU562D, ALA751D, HIS752D,
LEU853D

3 Cynaroside −5.43 153.65 ARG590C, ASP690C, ASN755D,
GLU559D

LYS692C, ALA751D, LEU853D,
ALA856D

4 7-O-Methyl prostratol F −5.84 70.70 ASN755D, ASP690C, GLU559D,
LYS735D, LYS691C, SER684C

CYS561D, CYS688C, HIS752D,
LEU853D

5 Xanthokeismin A −5.11 202.71 ARG590C, ASN755D, ASP690C,
LYS691C, SER565D, SER684C

CYS561D, LEU562D, VAL683C,
LEU853D, ALA856D, LEU857D

6 Daucosterol −5.41 203.28 ARG590C, ASN755D, ASP690C,
GLU559D, LYS735D, LYS691C

CYS561D, ALA564D, ALA751D,
ALA856D, LEU853D

7 Isobavachalcone −6.00 42.71 ARG590C, ASP690C, GLU559D,
LYS691C, SER565D

MET657C, ALA751D, SER852D,
LEU853D, ALA856D

8 Dorsmannin A −6.65 15.78 ARG590C, ASP690C CYS561D, LEU562D, LEU853D,
ALA856D

9
3′-Carboxymethyl-4,2′-
dihydroxy-4′-methoxy

chalcone
−6.67 16.66 ASN755D, ASP690C, GLU559D,

LYS735D, LYS691C. SER684C
CYS561D, CYS688C, HIS752D,

LEU853D

10 Xanthokeistal A −4.77 487.55 ASP690C, LYS691C, SER565D CYS561D, LYS692C, ALA751D,
HIS752D, LEU853D, ALA856D
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The C-terminal region (residue 870–886), Flap domain, was involved in the open-
closed movement of the active site [37]. In humans, HMGR activity can be modulated by
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phosphorylation. If phosphorylation occurs at residue 872, close to the important catalytic
residue 866, it can reduce protein activity. Istvan’s finding that the position of residue
872 is around the α-phosphate of NADP and the side chain of residue 871, not close to
residue 866. Phosphorylation can cause a decrease in affinity for NADPH [36]. Our docking
results showed that neither the statins nor/or ashitabas’s compounds bind to residues
870–872 at the C-terminus, so neither statins nor ashitaba’s compounds may be competitive
with NADPH.

In this study, we conducted the predictions of physicochemical properties for 15 hit
compounds by screening Lipinski’s rule of five (RO5). The RO5 bases pharmacokinetic
drug properties such as absorption, distribution, metabolism, and excretion on certain
physicochemical properties [45]. A compound can be used as a drug compound if it has
a molecular mass of less than 500 Daltons because the molecular weight parameter is
related to the polymer chemical properties of the compound. A high polymer molecular
weight indicates stronger polymer chemical properties. In addition, it is also related to the
compound distribution process, because compounds with molecular weights of more than
500 Da cannot passively diffuse so in penetrating biological membranes, the absorption
of compounds in the body becomes longer [46,47]. Second, the partition coefficient (logP)
should be less than five. A large logP value indicates that the compound is hydrophobic
and tends to have a high level of toxicity, retained longer in the lipid bilayer, and distributed
more widely in the body so that the compound’s affinity to the enzyme is reduced. A
negative logP value would make it difficult for the compound to pass through the lipid
bilayer membrane [48], which allows for rapid interaction of the molecule with the water
solvent [47]. Finally, the number of hydrogen bond donors should be less than 5, and
hydrogen bond acceptors should be less than 10. This was because the higher the hydro-
gen bond capacity, the higher the energy required in the absorption process, so that the
ability of the hydrogen bond acceptor is reduced [48]. The physicochemical profiles of
compounds would be similar across industries if the testing methodology, selection criteria,
and compounds screened were similar. The results of Lipinski’s rule of five analysis on
15 compounds (Supplementary S2) that fit the pharmacophore modeling could provide
data on the physicochemical properties of these compounds, which may be useful in
subsequent in vitro or in vivo testing. We conduct this RO5 as a tool to guide early-stage
drug discovery.

4. Materials and Methods
4.1. Instruments

The tools used in computational testing include hardware and software with different
functions and purposes. The hardware comprised a personal laptop with AMD A9-9420e
Radeon R5 processor specifications, 5 computer cores 2C + 3G 1.80 GHz; 8.00GB RAM;
system type 64 bit, x64-based processor; and Windows 10 Pro version 22H2 operating
system. On the other hand, software was obtained free of charge for academic users.
These included the following: LigandScout 4.4.5 (InteLigand, https://ligandscout.software.
informer.com/, Vienna, Austria; accessed on February–May 2023) for pharmacophore
modeling and screening. AutoDockTools-1.5.6 (The Scripps Research Institute, http://
autodock.scripps.edu/), Command Prompt, and Notepad-11.2307.27.0 were used for ligand
and receptor preparation, validation, as well as molecular docking simulations. The
BIOVIA Discovery Studios 2021 Client (Dassault Systems Biovia, https://discover.3ds.
com/discovery-studio-visualizer-download) was used for the preparation of receptors
with native ligands, to visualize the results of complex molecular docking, bonding between
ligands and receptors, geometrical optimization, and overlays in the validation process.
Moreover, ChemDraw Ultra 12.0 (PerkinElmer Inc., http://www.cambridgesoft.com/) was
used to draw the 2D structures of the ligand compounds. Chem3D Pro 12.0 (PerkinElmer
Inc., http://www.cambridgesoft.com/) was used to convert the 2D structure ligand into
a 3D shape and optimize the energy. Open Babel-2.4.1 (Open Babel community http:
//openbabel.org/docs/Installation/install.html) was used to convert chemical file formats,

https://ligandscout.software.informer.com/
https://ligandscout.software.informer.com/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
http://www.cambridgesoft.com/
http://www.cambridgesoft.com/
http://openbabel.org/docs/Installation/install.html
http://openbabel.org/docs/Installation/install.html
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while the DUD-E site accessed on https://dude.docking.org/ was used to get active
and decoy databases. The NCBI site, accessed at https://www.ncbi.nlm.nih.gov/, was
used to search for recorded test compounds. The Protein Data Bank site accessed at
https://www.rcsb.org/structure/3CCW was used to search for the target receptor code
and SwissADME at http://www.swissadme.ch/index.php was utilized for the prediction
of physicochemical properties.

4.2. Materials

The materials used in this study included the three-dimensional structure of the target
receptor resulting from an X-ray crystallographic depiction of the HMG-CoA reductase
enzyme in the Homo sapiens/human organism (PDB ID: 3CCW), with a good resolution
of 2.10 Å downloaded through the Protein Data Bank (http://www.rcsb.org/, accessed
on January–May 2023). Molecular docking validation was carried out using the BIOVIA
Discovery Studios 2021 Client. The ligand used as a positive control/reference drug was
the three-dimensional structure of (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-
methylethyl)-1H-imidazole-1-yl]-3,5-dihydroxyheptanoic acid (4HI), which was separated
from the target protein using the BIOVIA Discovery Studios 2021 Client program, as well
as the statins (Supplementary S1) available on the market. In addition, the tested ligands
used were two-dimensional structures of 115 secondary metabolites isolated from ashitaba
plant, namely 42 chalcones, 7 flavanones, 3 flavones, 5 flavonols, 39 coumarins, 2 phenolics,
3 sesquiterpenes, 1 diterpene, 3 triterpenes, and 12 other compounds obtained by prepara-
tion using the ChemDraw Ultra 12.0 and Chem3D Pro 12.0.

4.3. Methods

This study was carried out using the in silico (computation-based) method, with
initial stages including modeling, validation, and pharmacophore screening using Ligand-
Scout 4.4.5. Other steps were molecular docking simulations, prediction of pharmacokinetic
properties and ligand toxicity, as well as reviewing the achievement of Lipinski’s Rule of
Five (RO5).

4.4. Pharmacophore Modeling

Pharmacophore modeling was carried out through the Structure-Based Drug Design
(SBDD) and Ligand-Based Drug Design (LBDD) methods. Structure-based pharmacophore
modeling was conducted by opening and then resetting LigandScout 4.4.5 first to the default
settings. In the ‘Structure-Based’ section, the 3D structure of the HMG-CoA reductase
target protein with the 3CCW PDB code was downloaded. Following this, the ‘Create
Pharmacophore’ icon was clicked until the pharmacophore features of the native ligands
were visible to the target protein.

In the ligand-based pharmacophore modeling, the material needed during the pre-
pared test included three databases, namely active, decoy, and test compounds. The
database was made by opening the LigandScout 4.4.5 program and clicking the ‘Ligand
Based’ column. Active/decoy files obtained from the DUD-E website were opened for the
active/decoy database, while for the test database, the test compound was opened to be
tested and optimized in 3D form. In the ‘Type’ section, all compounds were in the ‘training’
form for active and decoy databases, while for the database, all compounds were in the
‘Test’ form. The files were stored in the LDB format, and the pharmacophore modeling
stage was continued after all databases were deemed ready.

In the ‘Ligand Based’ section of the active database previously opened, the cluster was
made on all compounds, then the sequence of compounds was ‘sorted by cluster’. This was
achieved by clicking the ‘Cluster ID’ column, and one type of ‘training’ file was selected
from each cluster. The ‘Create Pharmacophore’ icon was clicked, and 10 pharmacophore
models were stored in the PMZ format.

https://dude.docking.org/
https://www.ncbi.nlm.nih.gov/
https://www.rcsb.org/structure/3CCW
http://www.swissadme.ch/index.php
http://www.rcsb.org/
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4.5. Pharmacophore Validation

The pharmacophore model previously obtained was tested for validity by moving to
the ‘Screening’ column by clicking the ‘Copy to Other Perspective’, and then the ‘Screening
Perspective’ icon. In the ‘Screening’ column, ‘Load Screening Database’ was clicked to
select the active and decoy database with the LDB format previously created. The active
database entered was marked in green, while the decoy was marked in red. The ‘Perform
Screening’ icon was clicked to allow LigandScout 4.4.5 to perform the screening process. To
visualize the validity of the ‘Plot ROC Curve’, the AUC value was observed, and then the
best ROC and EF from the 10 models were selected.

4.6. Screening of Hit Compounds

In the ‘Screening’ column, ‘Load Screening Database’ was clicked to select the test
database of the test compound previously created. The database is marked in green and
in the ‘Ligand Based’ section, the best model was moved to the ‘Screening’ column. The
‘Perform Screening’ icon was then clicked to derive a hit compound.

4.7. Molecular Docking Simulation
4.7.1. Separation of Native Ligands and Receptors

The HMG-CoA Reductase enzyme as macromolecules (receptors) originating from
humans, with the PDB code 3CCW, was downloaded on the bank data protein website
(https://www.rcsb.org/, accessed on January–May 2023). The receptors were cleaned from
other components not needed in docking protocols, including water molecules and ligands
using BIOVIA Discovery Study 2021 Client (https://discover.3ds.com/discovery-studio-
visualizer-download, accessed on May–July 2023) and saved to the PDB format. This step
was also carried out to separate the native ligands from the macromolecules.

4.7.2. Ligand Preparation

The ligand structure was designed by opening the ChemDraw Ultra 12.0 to form
113 structures of the compound from ashitaba and on ChemACX.Com, accessed on January–
May 2023). Structural modification was carried out by adding or removing according to
the structure source of compounds on the NCBI site or the reference literature, and the file
was then stored in a CDX format. Furthermore, 2D structures/images were converted to
3D, followed by the minimization of energy (MM2) using the Chem3D Pro 12.0 to obtain
a more stable structure. The files were stored in the PDB format. Autodock Tools-1.5.5
was used to edit the PDB format ligand by adding hydrogen atoms then selecting ‘Merge
Non-Polar’, computing Gasteiger charge, and adding torsion. The files were stored in the
PDBQT format.

4.7.3. Macromolecule Preparation

Macromolecule preparation was performed using Autodock Tools-1.5.5, followed by
editing the receptor file in a PDB format by adding hydrogen and then selecting ‘Polar
Only’ and Kollman charge. The files were stored in the PDBQT format. To determine the
binding site ligand in the receptor, the grid parameter was determined using Autodock
Tools-1.5.6. The receptors were selected as macromolecules, and the ‘map type’ was set by
selecting ligands. The search for active site receptors was carried out by clicking ‘Center on
Ligand’ to obtain the size of the Center Grid Box (X, Y, and Z). This size must be used in
adjusting between the active side of the receptor and other ligands. The files were stored in
the GPF (Grid Parameter File) format.

4.7.4. Molecular Docking

PDBQT format receptors were first designated as macromolecules, then as ligands
for the docking process. Docking was performed using the Lamarckian GA (Genetic Al-
gorithm) with parameters set for 100 runs, followed by adjustment to the default docking
parameter, and files were then stored in the DPF (Docking Parameter File) format. Further-

https://www.rcsb.org/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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more, the molecular docking process was carried out using the Command Prompt feature.
Determination of the ligand conformation with the results of the best molecular docking
was conducted by selecting ligand conformation with the lowest bond energy level. Free
binding energy values and RMSD were derived from the histogram in the DLG format
docking file using Notepad. The conformations were then made into a complex file in PDB
format. Complex files were visualized using the BIOVIA Discovery Studio 2021 Client to
observe the overlay display of re-docking results and ligand interactions with receptors in
2D or 3D diagrams. Docking visualization is needed to find out the locations of the ligand
and the receptor. In addition to visualizing the inhibited side, visualization also helps avoid
errors in the docking process.

4.7.5. Overview of Lipinski’s Rule of Five (RO5)

Lipinski’s Rule of Five (RO5) was conducted to guide early-stage drug discovery.
Predictions of the physicochemical properties were conducted online on the SwissADME
website (http://www.swissadme.ch/index.php, accessed on January–May 2023). The can-
didates for active compounds in the drugs should comply with Lipinski’s five rules, namely
molecular weight ≤ 500, hydrogen bonds acceptor ≤ 10, hydrogen bond
donors ≤ 5, and logP value ≤ 5 (or MlogP ≤ 4.15) [49].

5. Conclusions

In conclusion, for the native ligand (4HI), the result of re-docking showed an ∆G
of −7.84 with a Ki value of 7.96 µM. Based on the results of molecular docking simula-
tions, 15 hit compounds had a small binding energy (∆G). Pitavastatin, as the comparator
drug, had lower ∆G and Ki values than the native ligand 4HI. The best docking result
of ashitaba’s compound, 3′-carboxymethyl-4,2′-dihydroxy-4′-methoxy chalcone has one
hydrophobic interaction, one hydrogen bond donor, and two hydrogen bond acceptors
based on modeling with a pharmacophore fit score of 46.90%. This compound also had
six hydrogen interactions with the important amino acid residues, ASN755D, ASP690C,
GLU559D, LYS735D, LYS691C, and SER684C, with a ∆G value of −6.67 kcal/mol and a
Ki value of 16.66 µM. Our docking results showed that neither statins nor/or ashitabas’s
compounds bind to residues 870–872 at the C-terminus, so neither statins nor ashitaba’s
compounds may be competitive with NADPH. The results of Lipinski’s rule of five analysis
on 15 compounds provided data on the physicochemical properties of these compounds,
which may be useful in subsequent in vitro or in vivo testing. We used this RO5 as a tool to
guide early-stage drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29132983/s1, Supplementary S1. Structure of Statins
Group. Supplementary S2. Lipinski Rule of Five (RO5) Hit Compound.

Author Contributions: Conceptualization, D.LA., D.R. and S.M.; methodology, D.L.A. and S.M.;
software, S.R.A., S.M. and M.M.; validation, D.LA., D.R. and S.M.; formal analysis, S.R.A.; writing—
original draft preparation, S.R.A.; writing—review and editing, D.LA., D.R. and S.M.; visualization,
S.R.A.; supervision, D.LA., S.M. and M.M.; funding acquisition, D.L.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Universitas Padjadjaran (Riset Percepatan Lektor Kepala) to
Diah Lia Aulifa No. 2203/UN6.3.1/PT.00/2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated in the present study may be requested from the
first author upon reasonable request.

http://www.swissadme.ch/index.php
https://www.mdpi.com/article/10.3390/molecules29132983/s1
https://www.mdpi.com/article/10.3390/molecules29132983/s1


Molecules 2024, 29, 2983 14 of 16

Acknowledgments: We would like to thank Universitas Padjadjaran for supporting this work
and APC.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. NIH. HMGCR 3-Hydroxy-3-Methylglutaryl-CoA Reductase [Homo Sapiens (Human)]. Available online: https://www.ncbi.nlm.

nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3156 (accessed on 12 January 2023).
2. Harvard Health Publishing. How It’s Made: Cholesterol Production in Your Body—Harvard Health. Available online: https:

//www.health.harvard.edu/heart-health/how-its-made-cholesterol-production-in-your-body (accessed on 9 February 2023).
3. Takei, S.; Nagashima, S.; Takei, A.; Yamamuro, D.; Wakabayashi, T.; Murakami, A.; Isoda, M.; Yamazaki, H.; Ebihara, C.; Takahashi,

M.; et al. β-Cell–Specific Deletion of HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Causes Overt Diabetes
Due to Reduction of β-Cell Mass and Impaired Insulin Secretion. Diabetes 2020, 69, 2352–2363. [CrossRef] [PubMed]

4. Islam, S.; Ahmed, K.; Al-Mamun, H.; Hoque, F. Preliminary Assessment of Heavy Metal Contamination in Surface Sediments
from a River in Bangladesh. Environ. Earth Sci. 2015, 73, 1837–1848. [CrossRef]

5. Gesto, D.S.; Pereira, C.M.S.; Cerqueira, N.M.F.S.; Sousa, S.F. An Atomic-Level Perspective of HMG-CoA-Reductase: The Target
Enzyme to Treat Hypercholesterolemia. Molecules 2020, 25, 3891. [CrossRef] [PubMed]

6. Shanmugam, G.; Jeon, J. Computer-Aided Drug Discovery in Plant Pathology. Plant Pathol. J. 2017, 33, 529–542. [CrossRef]
[PubMed]

7. Sarver, R.W.; Bills, E.; Bolton, G.; Bratton, L.D.; Caspers, N.L.; Dunbar, J.B.; Harris, M.S.; Hutchings, R.H.; Kennedy, R.M.; Larsen,
S.D.; et al. Thermodynamic and Structure Guided Design of Statin-Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A
Reductase. J. Med. Chem. 2008, 51, 3804–3813. [CrossRef] [PubMed]
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