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Abstract: Regenerative endodontic procedures (REPs) aim at recreating dental pulp tissue using
biomaterials such as hydrogels. Their bioactivity is mostly related to the nature of biomolecules or
chemical compounds that compose the endodontic hydrogel. However, many other parameters, such
as hydrogel concentration, bioactive molecules solubility, and apex size, were reported to influence
the reciprocal host–biomaterial relationship and hydrogel behavior. The lack of knowledge regarding
these various parameters, which should be considered, leads to the inability to predict the clinical
outcome and suggests that the biological activity of endodontic hydrogel is impossible to anticipate
and could hinder the bench-to-bedside transition. We describe, in this review, that most of these
parameters could be identified, described, and studied. A second part of the review lists some
challenges and perspectives, including development of future mathematical models that are able to
explain, and eventually predict, the bioactivity of endodontic hydrogel used in a clinical setting.

Keywords: regenerative endodontic procedures; hydrogels; tissue engineering; apical release;
preclinical model; review

1. Introduction

Endodontics encompass a wide range of approaches which aim at diagnosing, prevent-
ing, and treating pulpal and periapical diseases and endodontic infections [1], including
root canal treatment, one of the most performed dental procedures worldwide [2,3]. It
involves filling the endodontic space with a sterile root filling material, gutta percha. How-
ever, since this filling material is bioinert, root canal treatments often result in the loss of
the tooth’s immune defense, vascularization, and regenerative potential.

To address this limitation, researchers began exploring regenerative endodontic proce-
dures (REPs) as early as in the 1960s to restore pulpal vitality. This led to the emergence
of “revascularization” procedures in the 2000s, which are based on the concept of using
patient-derived bioactive materials in the context of cell-homing within the cleaned en-
dodontic space [4–6]. REPs are clinical strategies that aim at recreating dental pulp tissue
using strategies such as tissue engineering. REPs are based on the replacement of the
inflamed dental pulp by using a temporary scaffold based on hydrogels composed of
biomacromolecules, potentially associated with cells, and called endodontic hydrogels in
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this paper. The context of the endodontic root is one of the highest challenges for REPs due
to its size and anatomical complexity [7]. Numerous clinical and physicochemical parame-
ters, such as apex size and endodontic shape, were reported to influence the outcome of
REPs and results have varied greatly between patients [8–10]. Recent research in the field
of dental materials and endodontics has increasingly focused its attention in developing in-
novative bioactive materials that can improve molecules’ release and promote tissue repair
and regeneration [11–13]. Bioactivity, which can be defined as the biological activity of a
device or drug, is mostly linked to the nature of the biomolecules and chemical compounds
incorporated that can be released in the surrounding tissue [14]. Most of the endodontic
hydrogels that were studied for REPs incorporated bioactive compounds such as antibiotics,
peptides, or nanoparticles into their hydrogel, thus making them bioactive [13,15,16]. A
great variety of bioactive hydrogels has been studied in the literature. An overview is
proposed in Figure 1. Most are bioinspired, such as gelatin-based (GelMA), fibrin-based,
or hyaluronic acid-based scaffolds [17–29]. Some studies used scaffolds that will react or
dissolve at certain pH, or that are made from self-assembling peptides [19,25,30–32]. A
few used microspheres or nanofibers to build a bioactive scaffold laden with cells or active
molecules [31,33,34].
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However, one of the major scientific and clinic locks for REP strategies is the lack of
knowledge regarding the various parameters that could influence the release of bioactive
compounds, especially because of the number of parameters that needs to be considered
to predict and control such mechanisms [35,36]. This point is problematic because it will
complicate the clinical validation and hinder the transition from bench to bedside. In this
article, we reviewed most of the parameters that are or could be identified, individualized,
and studied in the near future. The clear identification of these biophysical parameters
will allow mathematical modeling to generate in silico tools to predicts bioactivity and its
potential release.
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This article proposes, first, to review and define what could be considered to be
bioactive endodontic hydrogels, and, then, identify and discuss some parameters already
investigated in the literature that could influence this bioactivity. Finally, the last section
considers some challenges and perspectives regarding the future of this field of research.

2. Bioactive Endodontic Hydrogel

The bioactivity of a biomaterial refers to its ability to interact with biological systems
such as living tissues. A variety of bioactive materials were already designed and proposed
to improve interactions between cells and tissues, triggering processes such as cell adhesion,
proliferation, differentiation, and the promotion of tissue regeneration [37,38]. Surface
properties and chemical composition of these materials play a crucial role in facilitating
biocellular interactions, allowing the materials to merge with the surrounding biological
environment. Bioactive endodontic hydrogels could be considered to be advanced and
innovative materials for REPs that were specifically designed to promote and enhance
dental pulp regeneration.

Many endodontic hydrogels have already been suggested and reported in the liter-
ature for REPs, mostly in injectable forms [39–41]. The main components of bioactive
endodontic hydrogels include a matrix, one or more bioactive agents, and a cross-linking
mechanism. A hydrogel matrix provides a three-dimensional scaffold that can mimic
the natural extracellular matrix, offering support for cell adhesion and tissue ingrowth.
Several polymers, such as chitosan, gelatin, or hyaluronic acid, were commonly reported as
promising materials for REP, due to their biological properties [18,19,42]. The cross-linking
mechanism is also a key parameter to consider and can be achieved through physical or
chemical methods [43,44].

The use of bioactive endodontic hydrogels in root canal therapy offers several ad-
vantages over conventional inert materials. Firstly, an endodontic hydrogel, which is a
bio-inspired hydrogel such as a fibrin-based hydrogel, will be able to a promote regenera-
tive process, characterized by the formation of a dentin-pulp-like complex [45]. Secondly,
the bioactive agents incorporated in the hydrogel are easily released to create a favorable
microenvironment for tissue regeneration. Bioactive agents could be biomolecules such as
growth factors that stimulate tissue repair and regeneration. Growth factors, such as trans-
forming growth factor-beta (TGF-β), bone morphogenetic proteins (BMPs), and vascular
endothelial growth factor (VEGF), have already been reported to stimulate cell prolifer-
ation and differentiation, angiogenesis, and tissue regeneration of the dental pulp when
incorporated into hydrogels [29,46–48]. Additionally, bioactive endodontic hydrogels may
include antimicrobial agents, such as chlorhexidine or silver nanoparticles, to avoid bacte-
rial infection and reduce the risk of treatment failure [39,49–54]. Furthermore, bioactive
endodontic hydrogels can be clinically administered using minimally invasive techniques,
such as syringe injection, allowing for precise placement within the endodontic space. This
minimizes the risk of per operative complications and promotes the preservation of the
remaining tooth structure.

In conclusion, endodontic hydrogels, notably those based on bio-inspired molecules
such as fibrin or chitosan, are promising candidates that could improve the success of REPs.
The most challenging obstacle with these devices is how to control the spatio-temporal
bioactivity to create a specific microenvironment that ensures prolonged effects to enhance
REP’s chances of success. However, this controlled bioactivity is nowadays overlooked or
simplified in the context of endodontic hydrogel, suggesting the need to deeply investigate
this multifactorial problem.
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3. Bioactive Endodontic Hydrogel: A Multifactorial Problem (Figure 2)
3.1. Properties of Hydrogels

The physical and chemical properties of any endodontic hydrogel used for REPs
should have controlled biochemical properties (release, swelling. . .) to achieve proper
dental pulp regeneration. Several parameters such as porosity, mechanical strength, or
biocompatibility of the hydrogel could strongly promote or reduce it [55,56]. Moreover, cell
adhesion and proliferation were also reported to influence the release kinetics of various
molecules by contracting the hydrogel and synthesizing a new extracellular matrix that
also affects the cell–biomaterial relationship [55,57–59]. This is illustrated by the work of
Jeon et al. (2006), which reports that the lower the fibrin concentration, the greater the
release of FGF2, which is a growth factor correlated with cell adhesion [60]. Changes of
the endodontic environment can be explained by numerous characteristics, such as the
ability of the hydrogel to contract and modulate its shape, its degradation over the time, the
efficiency of molecules entrapping and releasing, or swelling and volume variations when
in contact with fluids [22,61–64]. In summary, many biological, physical, and chemical
properties can influence the hydrogel’s behavior and the bioavailability of supplemented
bioactive compounds.

3.2. Properties of the Biomolecular Building Block

Hydrogels are formed by the 3D organization of biomolecular building blocks, which
will organize into fibers in combination with biomolecules entrapped between the fibers.

The added biomolecules play a major role during the release from the endodontic
space to the periapical environment [65–67]. Parameters of the released biomolecules,
such as size, shape, charge, and solubility in hydrophilic or hydrophobic media, play a
critical role in their bioactivity and bioavailability, as they modify its ability to diffuse
through and interact with the hydrogel and the surrounding host tissue [18,68]. Current
hydrogels developed for endodontic treatment include, most of the time, molecules such as
growth factors, antibiotics, and anti-inflammatory agents [29,69–71]. Several studies point
out the importance of physicochemical studies focusing on detailing diffusion kinetics
inside hydrogels and gels from a mathematic point of view [55,63,72]. In summary, the
physicochemical properties of the molecule in combination with a specific hydrogel will
strongly affect reciprocal interactions and greatly influence the release kinetics and therefore
the bioactivity of endodontic hydrogels.

3.3. Periapical Composition (Cells/Medium/pH, Inflamation)

The composition of the periapical host tissues can also influence the release of molecules
from an endodontic material (hydrogel) [65,67]. Each molecule, according to its own physic-
ochemical properties, will have varying affinities depending on the tissue, hydrogel, pH,
etc. [63,68]. Labille et al. (2007) explored the way Brownian movement (the random
movement of molecules in a solution) is modified in a gel/solution interface, and how the
interface itself influences the gel’s behavior and porosity. Leddy et al. (2004) described
how hydrogels surface in contact with organic structures or liquids would swell and
degrade at various rates according to the properties of both the scaffold and the environ-
ment [35,61,62,73]. The inflammatory response, in the periapical areas, was also reported to
potentially influence the local pH and therefore the ionization state of reactive groups, thus
modifying the solubility and, in turn, the release kinetics of molecules from the endodontic
material [74]. In summary, endodontic hydrogels are not isolated, and their interactions
with surrounding host tissues and liquids will strongly influence their rheological, chemical,
and bioactive properties.
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3.4. Hydrogel Degradation and Remodeling

The degradation of the hydrogel also needs to be considered in the release kinetics
of the bioactive molecules over time [17,75]. For example, some hydrogels such as fibrin,
GelMa, or agarose have been used as an endodontic material for their ability to be degraded,
inducing the gradual release of bioactive molecules over time [21,28,62]. The degradation
rate of the material can be adjusted, especially by modulating the hydrogel concentration
and cross-linking, or by adding specific enzymes, to achieve the desired release profile.
Other studies, on different matrixes, also used the fine-tuning of gelatin hydrogels to
control the degradation rate and, thus, the release [29,56,73]. However, in the case of fibrin
hydrogels, cell colonization will lead to matrix contraction, and although the fibrin matrix
might be degraded, the production of a new matrix by cells leads, according to Leddy et al.
and Lepsky et al., to a decrease in molecule release [57,61,76].

3.5. Root Anatomy and Composition

The periapical diameter of the tooth is one of the main parameters to be considered
as it could vary greatly in size, shape, and direction according to the patient and also
influence the release properties accordingly [77,78]. Fick’s law of diffusion supposes a
linear impact of the contact surface and concentration gradient on diffusion rates and
amounts. The apical diameter determines the contact surface between endodontic hydrogel
and host periapical tissues. As a result, the increase in the apical diameter should lead to an
increase in the diffusion of the hydrogel components in the host periapical tissues. Fick’s
law was validated in previous studies of Abbott et al. and Robert et al. [70,79], but subtle
variations in the shape and the direction of the endodontic space still need to be taken
into consideration. Moreover, it is well known that the bioactivity of endodontic hydrogel
will not only rely on the periapical region but also on the diffusion of molecules across
the porous surface of dentine around the root [80]. In the other way around, the release
of molecules from dentine through the hydrogel is also a key point to considered. Indeed,
dentin-derived growth factors were reported to be sufficient to promote the recruitment and
differentiation of stem/stromal cells [78,81,82]. As a result, the overall diffusion through the
hydrogel is a sum of bi-directional mechanisms of the release of hydrogel-derived molecules
from the hydrogel to the dentin and of the release of dentin-derived biomolecules from the
dentin to the hydrogel. The patient-specific shape of the endodontic space plays a crucial
role in these mechanisms of release by varying the dentin–hydrogel contact surface. These
points strongly complexify the modeling of the release of hydrogels and they suggest the
need to integrate these anatomic parameters in order to personalize REP treatment.

3.6. Use of Carriers

Carriers or vectors can be used to deliver the therapeutic molecules to the site of
interest in a controlled manner [50,53]. These carriers can be incorporated into the material
structure or added separately as a coating or filler. Jeon et al. (2006) encapsulated bFGF
on polymeric nanoparticles to achieve a controlled and sustained release over weeks and
to limit the burst effect that was frequently observed in fibrin hydrogels [60]. Bekhouche
et al. (2020) loaded clindamycin on PLGA nanoparticles to achieve a sustained release and
maintain the antibacterial action within a fibrin hydrogel [27]. By modifying the vector’s
properties such as ionic charge, hydrophilicity, etc., it is also possible to deeply modify the
release kinetics from a material and to achieve finely-tuned bioactivity. Vectors could be
cell- or space-specific using surface targeting or they could achieve an on-demand release
in “smart” devices [55,83,84]. Figure 2 is an overview of all the parameters cited herein.
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4. Bioactive Endodontic Hydrogels: Challenges and Perspectives
4.1. Deep Characterization of Biochemical Characteristics of the Endodontic Players

Bioactivity can be defined as the biological activity of a device or drug. Fibrin hy-
drogels are an example of potential endodontic hydrogels that harbor several bioactivi-
ties [20,21,23,24,27]. Hydrogel macromolecular properties such as stiffness, fiber and pore
sizes, and reactive groups were reported to impact the bioactivity [25,71]. One can easily
imagine the immense amount of data and knowledge necessary to achieve a deep under-
standing of the bioactive properties of a hydrogel, especially in combination with active
molecules such as growth factors or antibiotics. This use of antibiotic components remains,
however, controversial due to potential bacterial resistances and the lack of knowledge
surrounding exact root canal delivery and apical diffusion to the periodontal host tissues
leads to such components being avoided in the most recent guidelines on regenerative
procedures [85]. Controlled delivery with a vector, such as a nanoparticle for example,
adds a great number of parameters, such as size, solubility, or shape, that complexify the
understanding of the release even further and, therefore, the bioactivity of the loaded
bioactive molecule. Although the physicochemical characteristics of biomolecules are often
well documented in the literature, they need to be taken into consideration in the specific
context of encapsulation in a hydrogel, as well as for the patient-specific morphology of
the endodontic space to control the in situ and released bioactivities [57,65–67,86]. Encap-
sulating an active molecule in a hydrogel makes the hydrogel a de facto vector, and the
release of an active molecule with a specific release profile causes them to become not only
scaffolds but also galenic objects.

Galenic could be defined as the science of a medication’s shape and vector, which
could be optimized according to the molecule vectorized, as well as the patient’s context
and needs. In order to safely go from bench to bedside, hydrogels in endodontics must be
explored as galenic objects, as well as scaffolds, and it would be interesting to conduct more
galenic research and scale-up investigations to explore the bioactivity of these devices.
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4.2. Create and Validate Standardizable Models

The study of endodontic hydrogel bioactivity will require, in the future, simple, cheap,
and reproducible models to study all the previously listed parameters and therefore im-
prove our knowledge. From a methodological point of view, the release of molecules from
the apex was studied for decades with “ex vivo” models, in vitro models such as pipettes
hung in syringes, and in vivo models such as roots implanted in mice backs [36,79,80].
However, the “ex vivo” model using human teeth is challenging due to the difficulty, or
even impossibility, of obtaining human tissues. Moreover, it involves labor-intensive and
time-consuming manual preparation of each endodontic space, and the interindividual
variability in root and canal anatomy can lead to heterogeneous results and masks the
effect of each parameter. To overcome these limitations, an alternative model was pro-
posed using a pipette system hung in a syringe filled with agarose to simulate the apical
environment and study the release of Ca(OH)2. Although this new model eliminated the
need for human tissues, it still required significant preparation time for each individual
pipette [79]. Finally, a root model implanted in a mouse was used to explore the release of
radio-traced molecules and gain a deeper understanding of the systemic consequences of
endodontic materials releasing molecules in the whole organism. This model is interesting
but also presented several limitations, as they are painful experiments for the animals and
also comes with a high financial toll. This explains why most of the release kinetics of
endodontic hydrogels are investigated with partial models, such as covering a hydrogel
disk of PBS in a well or a beaker. This approach provides a relatively large surface area,
sometimes exceeding 1 cm2, which is unrealistic for assessing apical release and can lead to
an overestimation of any potential clinical effects. This observation is supported by study
results showing a maximum of a 35% release after 24 h from fibrin in an endodontic model,
while Lepsky et al. (2021) reported up to a 90% release at the same time point, with a
partial model. This dramatically overestimates the potential bioactivity of any endodontic
hydrogel [28,32,34,87]. To address this issue and achieve a more standardized approach for
investigating apical release, a simple and efficient model can be suggested.

4.3. Emulate Mathematical Model for Understanding and Personalize Endodontic Hydrogels
(Figure 3)

Descriptive mathematical models, also called fitting models, such as the Peppas–
Korsmeyer or the first-order kinetic model, have already been used to investigate the
release from an endodontic biomaterial [28]. Dubey et al. used a model to fit and describe
the release of antibiotics from a GelMa endodontic hydrogel and concluded the gel’s release
kinetic as being a mix of Fickian diffusion and swelling-triggered diffusion in PBS [28].
Peppas, as well as other curve fitting models are powerful tools for describing the diffusion
from a hydrogel and they contribute greatly to a better understanding of the behavior of
bioactive materials [28,88,89].

In the past decade, there has been a remarkable surge in the generation of experimental
and clinical data in biology and dental medicine. However, due to the wide diversity of
models used, it has become challenging to compare and extrapolate findings. The future
advancements in artificial intelligence and 3D imaging of endodontic spaces hold the poten-
tial to address this issue by designing virtual models based on scientific databases, such as
those produced by omics for high throughput screening and the prediction of pathological
biomarkers [90,91]. Similarly, such approaches could be efficiently used to anticipate the
bioactivity of these hydrogels based on galenic properties of endodontic hydrogels [88,89].
In the future, this would lead to an even more personalized medicine, which is tailored to
each patient’s needs and biological parameters, such as age, inflammation, bacterial load
and strains, root anatomy, or medical history [92]. Figure 3 proposes a synthesis of this
perspective.
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5. Conclusions

Anticipating the bioactivity of a hydrogel in and around the periapical area is complex,
mostly due to the numerous parameters that could influence the release of molecules.
Understanding these properties can help guide the development of endodontic hydrogels
that can effectively release therapeutic molecules and drive a more personalized bioactivity.

To achieve this goal, numerous scientific and technical obstacles still exist. Further
studies are required to: (1) improve the knowledge of the release of molecules and en-
dodontic hydrogels, to ensure knowledge and safety regarding all products brought to
endodontic practice, (2) create and validate standardizable models to enable investigation
of a greater number of parameters influencing the release in a more precise and efficient
manner, (3) emulate mathematical models that could predict the release from any endodon-
tic hydrogel and as a result anticipate the behavior of hydrogels in a clinical setting. This
point would allow us to go directly from in silico modeling to clinical use in a safe and
controlled manner.
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