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Abstract: Unexplained euploid embryo transfer failure (UEETF) is a frustrating and unanswered
conundrum accounting for 30 to 50% of failures in in vitro fertilization using preimplantation genetic
testing for aneuploidy (PGT-A). Endometriosis is thought by many to account for most of such losses
and menstrual suppression or surgery prior to the next transfer has been reported to be beneficial.
In this study, we performed endometrial biopsy in a subset of women with UEETF, testing for the
oncogene BCL6 and the histone deacetylase SIRT1. We compared 205 PGT-A cycles outcomes and
provide those results following treatment with GnRH agonist versus controls (no treatment). Based
on these and previous promising results, we next performed a pilot randomized controlled trial
comparing the orally active GnRH antagonist, elagolix, to oral contraceptive pill (OCP) suppression
for 2 months before the next euploid embryo transfer, and monitored inflammation and miRNA
expression in blood, before and after treatment. These studies support a role for endometriosis in
UEETF and suggest that medical suppression of suspected disease with GnRH antagonist prior to
the next transfer could improve success rates and address underlying inflammatory and epigenetic
changes associated with UEETF.
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1. Introduction

Endometriosis is an inflammatory, estrogen-dependent disorder affecting up to 10% of
reproductive-aged women [1,2]. Infertility and endometriosis are closely associated, noted
in over 50% of women with this disease [3,4]. There remains a significant delay in diagnosis
of endometriosis from 4 to 11 years [5,6] due in part to the dramatic decrease in laparo-
scopies now being performed for infertility indications [7]. When sought, endometriosis
is discovered in women with unexplained infertility in a majority of cases [8–12], and
treatment has been shown to improve fertility outcomes [9,13,14]. Despite this, laparoscopy
is currently not recommended as part of a routine infertility evaluation [15].

Endometriosis and its accompanying inflammation affect endometrial function, lead-
ing to progesterone resistance [16–18]. The endometrium is a highly dynamic tissue that
plays an essential role in establishment of pregnancy, with a window of implantation (WOI)
occurring between 6 to 10 days after ovulation [19,20]. These changes, which are referred
to collectively as “endometrial receptivity”, are complex and arise in response to ovarian
steroids and related autocrine and paracrine factors [17,21]. In women with unexplained
infertility or endometriosis, this window is often delayed or absent, leading to implantation
failure or miscarriage [11]. Without clear diagnostic guidance, many women suffer with
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unexplained infertility or recurrent pregnancy losses without the benefit of proven or even
recommended treatment options.

There is an increasing demand for Assisted Reproductive Technologies (ART), which
offer the potential to improve fertility outcomes for many couples [22]. Despite the promise
of these advanced technologies, many women undertaking IVF still encounter failure, with
live births nationwide between 25 to 50%, in women under 40 (www.sartcorsonline.com,
accessed on 1 June 2024). Even with the addition of Preimplantation Genetic Testing for
Aneuploidy (PGT-A), success rates still range from 35–50%. Those who fail to conceive,
despite transfer of a normal, euploid embryo, often have no identifiable reasons for their
lack of success. As with unexplained infertility, these women with unexplained IVF failure
often have undiagnosed endometriosis [23]. With new biomarkers, endometriosis has
been shown to be common in women with unexplained infertility as well as those with
IVF failure [24]. Identifying and providing preemptive treatment to those affected could
improve outcomes through laparoscopic resection or medical suppression of disease [14].

Endometriosis likely contributes to implantation failure through epigenetically me-
diated changes in endometrial receptivity, associated with progesterone resistance [25].
A biomarker of endometriosis, BCL6, was shown to be associated with poor outcomes
in in vitro fertilization (IVF) [24]. SIRT1, a histone deacetylase, has also been shown to
be co-expressed with BCL6 and contribute to the inflammatory response associated with
endometriosis [26]. As an estrogen responsive disease, ectopic endometriotic implants
require estrogen; aberrant expression of the enzyme aromatase (CYP19a), maintains local
estrogen production promoting disease proliferation. Aromatase expression and local
estradiol production in both ectopic and eutopic endometrium are driven by inflamma-
tory cytokines, including IL-6 and IL-17, among others [27,28]. This process stimulates
cyclo-oxygenase activity, leading to increased levels of prostaglandin E2 (PGE2) and NF-kB
signaling, which in turn leads to local estrogen action and progesterone resistance. This
inflammation-driven cascade interferes with normal endometrial receptivity at the time of
implantation (Figure 1a) [29,30].
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Figure 1. (a) Normal endometrial receptivity is largely regulated by progesterone which down-
regulates estrogen receptors and initiates an extensive list of activated genes, along with stromal
decidualization which is critical for successful pregnancy (left). In endometriosis, due to immune
activation and inflammatory cytokines, progesterone action is suppressed and estrogen signaling
amplified, contributing to infertility and pregnancy loss. (b) Pregnancy success rates (live birth and
ongoing pregnancy) in first attempt PGT-A (First PGTA), compared to those with prior failure and
GnRH agonist suppression for 2 months (GnRHa) or no further treatment (NoTx). The pregnancy
success rate (95% CI) was 71.65% (63.27% to 78.77%), 68.09% (53.83% to 79.6%), and 35.71% (16.34%
to 61.24%), respectively. No treatment was inferior to either GnRHa suppression or first time PGT-A
success rates (p = 0.02, chi-squared).
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Emerging strategies to improve outcomes for women with implantation failure in-
volve suppression of suspected endometriosis prior to embryo transfer [14,31]. Protocols
to suppress suspected endometriosis also vary widely, with differences in both treatment
agents, timing and duration. In pursuit of better therapeutic options for women with unex-
plained implantation failure, we evaluated potential benefit of GnRH agonist suppression
compared to “no treatment” in women with unexplained euploid embryo transfer failure
(UEETF) and evaluated the presence of BCL6 and SIRT1, an associated histone deacetylase,
in their endometrium prior to their next transfer. Based on these results, we performed a pi-
lot randomized controlled trial using the orally active GnRH antagonist elagolix, compared
to oral contraceptive pills (OCPs) for 2 months (EFFECT Trail; Elagolix for Fertility Enhance-
ment Clinical Trial; NCT04039204) to compare inflammatory and epigenetic changes in
blood in response to both treatments. These findings presented here support the hypothesis
that negative pregnancy outcomes in IVF are associated with systemic inflammation and
that suppression of suspected endometriosis, based on endometrial biopsy testing, may
have a role in improving outcomes for this population of women.

2. Results
2.1. Rationale

Defects in endometrial receptivity due to inflammation and endometriosis have been
proposed as a mechanism for both lack of implantation as well as pregnancy loss (Figure 1a).
This is based, in part, on evidence that endometrial biopsy-based testing for BCL6 [32,33]
and SIRT1 [26] is predictive for the presence of endometriosis in women with infertility.

2.1.1. Non-Randomized Results

A survey of IVF cycles from 2019 to 2023 included 205 frozen embryo transfer (FET)
cycles following PGT-A testing, including 127 first-time attempts (FirstPGTA) (Figure 1b).
The demographics of each group are shown in Table 1. There were 61 cases with prior failure
despite transfer of normal embryos with PGT-A testing. Of these, 48 (78.7%) consented for
endometrial biopsy to rule out endometritis and test for BCL6 and/or SIRT1. HSCOREs
for BCL6 testing were positive in 42 of 48 cases (87.5%), while HSCOREs for SIRT1 were
positive in 39 of 45 cases tested (86.7%).

Table 1. PGT-A Cycle Groups Demographics.

Demographics FirstPGTA GnRHa NoTx p

Age (median)
(range)

36
(23–44)

35
(28–42)

37
(31–41) 0.3 a

BMI (median)
(range)

29
(17–43)

28
(20–40)

27.3
(18–40) 0.8 a

Race n = 127 n = 47 n = 14

0.07 bWhite 89 41 13
Black 14 1 0

Asian/other 24 5 1
a Kruskal–Wallis. b chi-square for trend.

Of the sixty-one unexplained euploid embryo failure (UEETF) subjects who under-
went subsequent monitored FET cycles with another single euploid embryo transfer, the
47 pretreated with GnRH agonist (GnRHa) for two months prior to transfer and had a
significantly better ongoing pregnancy/live birth rate of 68.1% (32/47), compared to those
with no additional treatment (NoTx; 35.7%; 5/14) (p = 0.02; chi-square) (Figure 1b).

2.1.2. EFFECT Trial

EFFECT Trial (NCT04039204) enrolled subjects with failed euploid embryo transfers
who had tested positive for both BCL6 and SIRT1 as described in the Section 4. The results
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are shown in Table 2. Two out of five in the OCP group had excessive bleeding and
opted out of frozen embryo transfer. Based on intention to treat, the pregnancy rate was
60%. Two of three pregnant subjects experienced biochemical pregnancies resulting in an
ongoing/delivered rate of only 20%. In the elagolix group, there was a 100% pregnancy
rate (5/5), with two who suffered miscarriage and three with a successful delivery (live
birth rate of 60%). Due to the small numbers of subjects enrolled, statistical significance
was not obtained (p = 0.4, Fisher’s exact test).

Table 2. EFFECT Trial outcomes after 2 months treatment with elagolix or OCPs.

Outcome Elagolix
(n = 5)

OCP
(n = 5) p a

Pregnant 5 3

0.4
Miscarriage/Biochemical 2 2

Delivered/Ongoing 3 1
Not pregnant 0 2

a Fisher’s exact test.

2.1.3. Inflammatory Array Results

EFFECT Trial participants had their blood sampled before and after treatment. Inflam-
matory array results for the OCP group are shown before and after treatment using PAX
tubes (whole blood in RNA later). Gene (mRNA) expression profiling was performed on
the nCounter SprintTM Profiler (Nanostring Technologies Inc., Seattle, WA, USA) using the
nCounter Human Inflammation panel of 255 genes. A complete list of targets is included
in the Supplementary Table S1. The overall results are provided in the Supplementary
Table S2, but a heatmap of 10 differentially expressed transcripts (DETs) were generated
based on t-test and significance level at p < 0.01 before and after suppression with OCPs
(Figure 2a). Messenger RNA isolated from blood drawn in PAX tubes® before and after
elagolix treatment was likewise analyzed and those results presented in Figure 2b and
Supplementary Table S3. In the elagolix group, 42 DETs were detected based on similar
significance levels. Interestingly, the OCP group displayed both up and down-regulated
inflammation targets, while the elagolix DETs were uniformly up-regulated after treatment
and the two groups had few inflammatory DEGs in common. Principal component analysis
(PCA) for OCPs vs. elagolix treatment is shown in Figure 2c,d.

In the OCP group, seven DETs were elevated before treatment including CCL11, IL12,
CCL19 and GNGT1, while three DETs increased with treatment including TGFB1, IL10-RB,
and MX2. In the elagolix group, 42 DETs were detected that all increased after suppression,
compared to before treatment, including CSF2 and CSF3, CCL2, CCL8, CCL22, TWIST2,
IL21, CCL19, FLT1, MMP3, CXCL10, PDGFA, IL13, IL11, CCL17, TGFB2 and TGFB3, CCL4
and ALOX15.

2.1.4. MiRNA Array Results

MicroRNAs were also assessed on nCounter Sprint Profiler (Nanostring Technologies
Inc., Seattle, WA, USA) using the nCounter Human miRNA Expression Assay kit (Human
v3 assay) consisting of 827 miRNAs (see Supplementary Table S4). These data are presented
in the Supplementary Tables S5 and S6, and a heatmap of this comparison is shown in
Figure 3a,b. The heat map for OCPs treatment displayed 10 differentially expressed tran-
scripts (DETs) based on t-test and significance level at p ≤ 0.05 before and after suppression
(Figure 3a), while the elagolix group had 337 differentially regulated miRNAs (Figure 3b).
PCA plots for both OCPs and elagolix treatment are shown in Figure 3c,d, respectively.
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Figure 2. Differential expression of inflammation-related genes comparing pre- and post- treatment.
(a) Heatmap of 10 differentially expressed transcripts (DETs; p ≤ 0.05) in peripheral blood detected
using the Nanostring Inflammation panel before and after OCPs treatment. (b) Heatmap of 42 DETs
(p ≤ 0.05) detected before and after elagolix treatment. Principal component analysis (PCA) plot for
the OCP group (c) before and after treatment, and a PCA plot for the elagolix group (d).
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Figure 3. Differential expression of miRNAs comparing pre- and post- treatment. (a) Heatmap of
10 differentially expressed miRNA transcripts (DETs; p ≤ 0.05) in peripheral blood detected using
the Nanostring Human miRNA panel before and after OCPs treatment. (b) Heatmap of 337 DETs
(p ≤ 0.05) detected before and after elagolix treatment. Principal component analysis (PCA) plot for
the OCP group (c) before and after treatment, and a PCA plot for the elagolix group (d).

3. Discussion

This study addresses, at least preliminarily, the question regarding how to address IVF
failure following transfer of a euploid embryo. Recurrent implantation failure is considered
by some a rare occurrence and report acceptable cumulative pregnancy after repeated
transfers, without intervention [34]. Pirtea et al. [35] performed successive euploid embryo
transfers after FET failure, and reported miscarriage rates were fairly constant in subsequent
transfers, using euploid embryos, with a cumulative pregnancy rate of 92%. A criticism of
this study was the high dropout rate and the supplementation of new subjects that dilute
the results of subsequent transfers, making actual success rates difficult to ascertain.

Studies on Endometrial Receptivity Testing (ERA) have been popular and are based
on the premise that the window of endometrial receptivity is short and variable, and that
success rates could be improved by tailoring the timing of transfer [36]. Recent double-blind
studies found that ERA testing with modification of transfer day did little to improve live
birth rates [37]. Coutifaris demonstrated that histological dating was not related to fertility
status [38], further bringing into question the ERA results. Finally, the study by Wilcox and
colleagues had previously shown that the window of implantation is relatively wide [20].
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The expanding use of PGT-A-defined “normal” embryos has focused attention back
to the endometrium, which can represent a barrier to implantation, except during the WOI.
High BCL6 expression in the endometrium is an indicator for the presence of inflammation
and endometriosis, and predicts unexplained IVF failure [24,39]. We routinely employ
GnRH agonist suppression before the next euploid embryo transfer to improve outcomes in
women with UEETF. In the present study involving strict inclusion limited to unexplained
euploid embryo failure subjects, we found statistically significant improvement using
GnRHa alone for 2 months compared to a “no treatment” regime. While these findings are
significant and may help expand treatment options for those who failed a subsequent FET,
we were prompted to further investigate the basis for this improvement. We registered and
performed a limited RCT comparing the better-tolerated, orally active GnRH antagonist,
elagolix as a possible treatment option in women with UEETF, the EFFECT Trial. During
that study, we noted a 100% implantation rate and a 60% life-birth rate in the elagolix group
compared to a 20% live birth rate in the OCP control group. Importantly, this study afforded
us the opportunity to obtain leukocyte-containing blood extracts (using PAX® tubes) before
and after both treatments to compare the inflammatory characteristics and miRNA changes
after suppression in women with suspected endometriosis based on positivity of BCL6 and
SIRT1 testing.

We employed the nCounter inflammation panel to examine changes in inflammation
between the OCP and elagolix treatments. We report that in the OCP group, 7 DETs were el-
evated before treatment including IL12, CCL2, CCL11, CCL19, NOX1, MASP2, and GNGT1,
while 3 DETs increased after treatment, including TGFB1, IL10-RB, and MX2. CCL11,
also known as eotaxin-1, is an inflammatory biomarker that was reportedly elevated in
peritoneal fluid and eutopic and ectopic endometrium of women with endometriosis [40],
and induced in endometriotic stromal cells by interleukin-4 (IL-4) [41]. Importantly, it
induces angiogenesis in endothelial cells, thus contributing to the pathogenesis of en-
dometriosis [42]. We previously showed that CSF-2, aka GM-CSF, was elevated in plasma
of women with endometriosis and decreased after surgery for this disease [43] and both
CSF-2 and IL12 have been shown to be elevated in peritoneal fluid as well as endometrial
and endometriotic cells of women with endometriosis [43–45]. CCL19 is also present in
the peritoneal fluid of endometriosis cases and regulates proliferation and invasion of
endometriotic cells via the PI3K/AKT pathway [46].

Following OCP treatment, we also noted increased expression of several interesting
inflammation pathway members. Transforming growth factor-beta 1 (TGFB1) is an anti-
inflammatory cytokine that has been shown to play a role in endometriosis
pathogenesis [47,48] and suppresses or promote endometrial cancer depending on CD73
expression [49]. Its decreased expression after OCPs will require further investigation. Loss
of CXCR4, the receptor for CXCL12, in response to OCPs is also interesting, as this has
been reported to reduce proliferation and lesion number in endometriosis [50]. Blocking
CXCL12/CXCR4 actions also decreases invasion and migration of the endometriotic 12Z
cell line [51]. Finally, IL-23a and its association with the IL-17 axis promotes endometriosis
and is involved in the pathogenesis of this disease [52]. It is reduced in response to 2 months
of OCP use, suggesting a direct effect on this important and relevant inflammatory pathway.

In the elagolix group, 42 DETs were detected that all increased after suppression
compared to before treatment, including IL22RA2, CSF2 and CSF3, CCL2, CCL8, CCL22,
TWIST2, IL21, CCL19, FLT1, MMP3, CXCL10, PDGFA, IL13, IL11, CCL17, TGFB2 and
TGFB3, CCL4 and ALOX15. Of these IL22 binding proteins, IL22RA2, increased after
elagolix treatment is worthy of further investigation. IL22 in the setting of endometriosis
promotes proliferation of ESCs via secretion of CCL2 and IL-8. CSF3 down-regulation
by elagolix is also interesting, as it has been shown to be higher in PF of women with
endometriosis [53]. Other moieties with anti-inflammatory roles in endometrial recep-
tivity were elevated after elagolix treatment, including IL10, IL13, CCL18 and TWIST2
(see [54–58]). Genes associated with a receptive endometrium were also represented as
elevated in response to 2 months of suppression with elagolix, including FLT1, IL11,
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CCL2 and CSF3 [59–63]. In addition, ALOX15, an essential enzyme for the metabolism
of fatty acids, was elevated following elagolix treatment. ALOX15 has been reported to
be induced by progesterone and likely essential for embryo implantation as shown in
the mouse model [64], possibly indicating an improvement in progesterone resistance
following medical suppression with elagolix.

Of note, there are several puzzles presented by these data. CCL19 is increased in blood
from these volunteers, which has been found to be elevated in PF of infertile women with
endometriosis [65]. Likewise, mRNA for IL17A was increased in blood following treatment
for 2 months with elagolix.

MicroRNA expression levels were also assessed using nCounter Sprint Profiler (Nanos-
tring Technologies Inc., Seattle, WA, USA) with the Human miRNA Expression Assay kit
(Human v3 assay) consisting of 827 miRNAs. As shown in Figure 3a, a limited number of
miRNAs were up- (n = 5) and down- (n = 5) regulated in the OCP treatment group. MiR-
2110 was the most up-regulated miRNA and has been shown to be highly up-regulated
in serum of healthy control women compared to PCOS [66]. PCOS is associated with sub-
fertility, heavy and prolonged menses, progesterone resistance and endometriosis [67,68].
Mir-RNA-25-3p has been shown to be anti-inflammatory [69] and was up-regulated fol-
lowing two months of OCP treatment in our study. This miRNA is down-regulated in
endometriosis [70] and targets SP1, a transcription factor involved in the pathogenesis of
endometriosis and estrogen metabolism [71]. Finally, miRNA-204-5p was up-regulated
in the OCP group; it promotes apoptosis by targeting BCL2 in prostate cells [72] and is
a tumor suppressor in breast cancer [73], and lower levels predict lymph node negative
status in endometrial cancers [74].

The miRNA array data for elagolix treatment was quite different from OCP results with
most of the miRNAs being up-regulated by treatment with this GnRH antagonist (Figure 3b).
The most up-regulated miRNA, miR-582-5p, targets CREB1/CREB5-NF-κB signaling [75]
and is down-regulated in monocytes by opioid-induced immunosuppression. Its role in
fertility and endometriosis or improved endometrial receptivity has not been examined.
MiR-490-39 is 5-fold increased after elagolix treatment and has been shown to down-
regulate NOTCH1 [76]. Interestingly, NOTCH1 is up-regulated by IL6 and inflammatory
pathways in endometriotic lesions [77]. Elevated NOTCH1 is associated with progesterone
resistance and lower progesterone receptor (PR) levels. Notch1 activity also mediates
estrogen-stimulated stromal cell invasion in endometriosis [78].

Other pertinent up-regulated miRNAs of interest on this elagolix-treated array include
miR-1205, acting like a tumor suppressor by inhibiting KRAS [79]. KRAS mutations play an
important role in endometriosis invasion and pathogenesis [26,80]. Mir-520b targets PTEN
in breast cancer cells and inhibits T cells and NK cells, and transforms macrophages toward
the M2 type [81] and inhibits endothelial activation by targeting NF-kB transcription factor
P65, and inflammation [82]. Finally, miR-509-3-5p was a previously shown miRNA up-
regulated in endometriosis cases [83]. Of the few down-regulated miRNA in the elagolix
treatment array, miR-142-3p was previously shown to modulate cell invasion and migration
in colorectal cancers, and its down-regulation in suspected endometriosis cases by elagolix
is open to speculation.

4. Materials and Methods

Electronic records of 205 frozen embryo transfer (FET) cycles using euploid embryos
between 2019 and 2023 were examined. A total of 127 first IVF attempts (FirstPGTA) were
evaluated and compared to 61 transfers in women with prior UEETF. We compared 47 of
those who were treated in a non-randomized case series with long-acting GnRHa (Lupron®)
suppression for 2 months (GnRHa) and 14 who received no treatment (NoTx) prior to
the next euploid embryo FET. Pregnancy success was defined as live birth or ongoing
pregnancy (heartbeat after 12 weeks).

To investigate these losses more fully, and using IRB-approved protocols, we pro-
cured endometrial biopsies from 48 women with prior UEETF, and performed standard
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immunohistochemistry (IHC) staining for BCL-6 and SIRT1 as previously described [24,26].
HSCORE was assigned as part of immunohistochemical (IHC) analysis, by a blinded ob-
server as previously reported [83]. A cut-off of 1.4 and 2.0 (out of 4.0) was considered
positive for BCL-6 and SIRT1, respectively. Pregnancy success rates are reported as a 95%
CI and compared using chi-square for trend testing.

Ethics was approved for this study by the Institutional Review Board (IRB) for human
subjects research at Atrium Health Wake Forest Baptist including endometrial biopsy
and BCL6 and SIRT1 testing for failed euploid embryo transfer (Cellular Mechanisms
of Infertility) and a randomized controlled study “Elagolix for Fertility Enhancement
Clinical Trial” (Unexplained euploid embryo transfer failure). This RCT was registered on
ClinicalTrials.gov (NCT04039204). Inclusion for this subset of women who failed a euploid
embryo transfer using preimplantation genetic testing for aneuploidy (PGT-A), included
age 18 to 42, parity G0 or greater, AMH >0.5 to <10, and each person was required to have
failed a euploid embryo transfer with viable remaining euploid embryos for transfer. All
subjects were required to be positive for endometrial BCL6 and SIRT1. Exclusion criteria
included uterine fibroids >4 cm, polycystic ovary syndrome using Rotterdam criteria,
ovarian failure, diabetes mellitus (Type I or II), untreated hypothyroidism, or elevated
anticardiolipin and/or lupus anticoagulant abnormalities by history, hyperprolactinemia,
uncorrected uterine anomaly, severe renal disease, osteoporosis, moderate or severe hepatic
impairment defined by Child–Pugh classes B (moderate) or C (severe), women taking
CYP3A inhibitors (e.g., ketoconazole) and women at high risk of thromboembolic disorders
including smokers or those with cardiac valvular disease, atrial fibrillation or history of
severe migraines. Endometritis on endometrial biopsy was exclusionary.

Prior to the next frozen embryo transfer (FET) using a remaining euploid embryo,
subjects were randomized to receive either elagolix (200 mg twice a day (BID)) or oral
contraceptives (OCPs) consisting of Orthocyclin for 2 months. Elagolix (Orilissa) is a new-
generation FDA-approved orally active GnRH antagonist that is rapidly reversible, for the
treatment of endometriosis and pelvic pain [84]. Following two months of treatment, sub-
jects began a programmatic administration of estradiol followed by progesterone support
before subsequent embryo transfer of a single euploid embryo. FET cycles were begun
without intervening menstruation. Subjects began estrace 2 mg BID, plus estradiol patch
every 3 days. Progesterone in oil IM injections were started when the lining was >6.5 mm
and has a trilaminar appearance. Transvaginal ultrasound was performed between day
12 and 16. Transfer was performed 126 h after the start of progesterone, which was contin-
ued until 10 weeks of gestation if pregnant. If the human chorionic gonadotropin (hCG)
test is negative, progesterone in oil administration was discontinued.

Human chorionic gonadotropin (hCG) levels were measured 7 to 8 days after the
transfer twice over 2 days and followed with vaginal ultrasound at 7 weeks determination
to document viability of a positive pregnancy test. Patients were followed for up to
9 months if pregnant and primary outcomes determined including: “cancellation”, “not
pregnant”, “biochemical pregnancy or miscarriage” or “ongoing pregnancy/delivered”
and “live birth rate”. Blood was obtained in redtop and purple top tubes for serum and
plasma and PAX tubes (RNA later) at the beginning of the study and after the completion
of the medication administration, and stored for future use.

Using intention to treat analysis, we randomized 10 UEETF subjects to this RCT. All
patients had a prior endometrial biopsy and blood draw before initiating suppression ther-
apy and at the conclusion of 2 months of treatment. Gene (mRNA) expression profiling was
performed on the nCounter SprintTM Profiler (Nanostring Technologies Inc., Seattle, WA,
USA) using the nCounter Human Inflammation panel of 255 genes. A list of differentially
expressed transcripts (DEGs) was generated based on t-test and significance level at p < 0.01.
Clinical outcomes were analyzed and compared using Fisher’s exact test. MicroRNAs were
also assessed on nCounter Sprint Profiler (Nanostring Technologies Inc., Seattle, WA, USA)
using the nCounter Human miRNA Expression Assay kit (Human v3 assay) consisting of
827 miRNAs.
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4.1. RNA Isolation

Total RNA was isolated from whole blood, originally collected and stored in PAXGene
tubes, using the QIACube Connect instrument (Qiagen, German Town, MD, USA) and
reagents according to the manufacturer’s protocols. RNA quantity was assessed using a
NanoDrop Spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).

4.2. Gene Expression Analysis

Total RNA (100 ng/per sample) was used in multiplexed assays to measure gene
expression with either the nCounter® Human Inflammation Panel (249 genes known to be
differentially expressed in inflammation) or the nCounter® Human miRNA Expression Kit
(contains 827 human miRNA targets). Multiplex gene expression profiling was performed
according to the manufacturer’s protocols using the nCounter® Sprint Profiler instrument
(NanoString Technologies Inc., Seattle, WA, USA), and the raw data files were uploaded
to the web-based nSolver software (https://nanostring.com/products/ncounter-analysis-
system/ncounter-analysis-solutions/, accessed on 10 June 2024) suite for evaluating QC
metrics, data normalization, and differential gene expression analysis.

4.3. Variables

Sample was divided into 3 groups: FirstPGTA, GnRHa and No Treatment groups.
The following variables were analyzed: age (years), BMI (kg/m2), ongoing pregnancy

(yes/no), race (white, black, Asian/other). Pregnancy was sub-divided into those with
ongoing/delivered, and miscarriage/biochemical.

4.4. Statistical Analysis

Parametric data (age and BMI) were compared between 3 groups and the Kruskal–
Wallis test was used for analysis. Fisher’s exact test was used to compare the pregnancy
outcomes of individuals who used elagolix or OCPs. HSCORE was used as dichotomous
data (using the cut-off 1.2 and 2.0 for BCL6 and SIRT1, respectively) and we calculated the
percentage of positive cases in the whole population.

5. Conclusions

Based on non-randomized assessment of outcomes, we report that GnRH agonist sup-
pression of endometriosis restored normal implantation and live birth rates compared to
no treatment options for women with UEETF. In a pilot RCT comparing elagolix-mediated
suppression (GnRH antagonist) for 2 months to OCP suppression, we documented dif-
ferences in response. Elagolix dramatically changed the inflammatory milieu in blood
compared to OCP suppression. A trend toward higher pregnancy rates and live birth rates
was also reassuring and suggests that larger studies are warranted.
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