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Abstract: We assessed the test–retest reliability and discriminative ability of a somatosensory temporal
discrimination (SSTD) assessment tool for fibromyalgia syndrome (FMS) and determined if pain-
related variables were associated with SSTD performance. Twenty-five women with FMS and
twenty-five asymptomatic women were assessed during two sessions 7 to 10 days apart. The
proportion of correct responses (range 0–100) was calculated. Sociodemographic information was
collected for both groups. The participants with FMS also completed the widespread pain index
and the Brief Pain Inventory. Test–retest reliability was verified by calculating intraclass correlation
coefficients. Discriminative ability was verified by a between-group comparison of scores using a
t-test. Associations between SSTD score and pain variables were tested using Pearson or Spearman
correlation coefficients. The test–retest reliability of the SSTD score was excellent (ICC > 0.9, CI:
0.79–0.96) for the asymptomatic group and good for the FMS group (ICC: 0.81, 95% CI: 0.62–0.91). The
median (Q1–Q3) test session SSTD score differed significantly between the FMS 84.1 (71–88) and the
asymptomatic 91.6 (83.4–96.1) groups (p < 0.001). Only pain duration was associated with the SSTD
score. In conclusion, the new SSTD test seems reliable for people with FMS and is discriminative.
Further studies should examine its sensitivity to change and correlations with other SSTD tests.

Keywords: somatosensory discrimination; fibromyalgia syndrome; chronic pain; tactile acuity;
reliability; discriminative ability

1. Introduction

Fibromyalgia syndrome (FMS) is characterised by diffuse, chronic, widespread pain
and symptoms such as fatigue, sleep disorders, cognitive dysfunctions, and mood distur-
bances [1]. FMS is believed to be related to changes in the central nervous system and
immunological activity [2,3] caused by an increase in central sensitisation and an impair-
ment in pain processing [4,5]. Cortical reorganisation associated with chronic pain can lead
to changes in the person’s image of their own body and a loss of somatosensory discrimi-
nation (SSD) [6–8]. SSD, or tactile acuity, is the ability to distinguish between two tactile
stimuli. It is generally assessed using the two-point discrimination test [9,10], which fo-
cuses on spatial discrimination. Somatosensory temporal discrimination (SSTD) is the
perception of two distinct stimuli applied separately at short intervals [11]. SSTD involves
the activation of the somatosensory cortex and striatal neurons [12] and is thought to reflect
the reorganisation of the somatosensory cortex more strongly than spatial SSD [13]. Both
types of discrimination involve central and peripheral neuronal mechanisms, but central
phenomena are thought to predominate in temporal SSD [14]. Furthermore, SSTD seems to
depend on inhibitory mechanisms within the primary somatosensory area (S1) [14], which
may be impaired in chronic pain [15].
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Several studies have evaluated SSTD [11,13,16–18], but only one focused on people
with FMS [11]. It suggested that SSTD capacity is correlated with pain and disability
scores [11]. The authors suggested these findings could be related to a cortical reorganisa-
tion of the somatosensory cortex, disturbance of self-awareness, or cognitive disturbances
with impaired attention–focusing. Some evidence suggests that training tactile acuity in
people with chronic pain could reduce pain [7] and increase function [19]. Furthermore,
divided attention tasks directed at two distinct areas of the body [20] and localised body-
focused attention [21,22] appear to reduce pain; therefore, including attention flexibility
tasks in the test appears relevant. Based on these findings, a novel gamified technology
for remotely delivered somatosensory training in people with chronic pain was developed.
The system trains pain modulation via an attentional focus on non-painful stimuli. It
uses vibrotactile pods to deliver vibrational stimuli, rather than the more commonly used
electrical stimuli, which are not always comfortable for individuals with pain syndromes.
In a pilot study, we found that this system was feasible for use in people with FMS and
resulted in high engagement, satisfaction, and adherence [23].

The primary aims of this study were to examine the test–retest reliability and ability to
discriminate symptomatic individuals with a diagnosis of FMS in asymptomatic individuals
through a new SSTD test. The secondary aim was to determine associations between SSTD
scores and pain variables in people with FMS.

2. Materials and Methods
2.1. Design

We used a repeated measures design to determine the test–retest reliability of the
SSTD test. We included a group of people with FMS and a group of asymptomatic people
without FMS to determine the discriminative ability of the SSTD test.

All the participants were informed of the objective of the project and consented to their
participation. The study was approved by the Liege University Hospital Human Ethics
Committee (29 March 2021: B7072021000013).

The guidelines for reporting reliability and agreement studies (GRRAS) were fol-
lowed [24].

2.2. Participants

Participants were recruited through advertisements placed in hospitals, healthcare
clinics, and the social media accounts of some FMS associations. Inclusion criteria for the
symptomatic group were women aged 18–70 years with a diagnosis of FMS made by a
specialist physician using the 2016 criteria [25]. We excluded people who self-rated their
average pain intensity over the previous week as <3/10 on a numerical rating scale.

Inclusion criteria for the asymptomatic group were females aged 18–70 years with no
diagnosis/history of FMS and no history of chronic pain.

Exclusion criteria for both groups were difficulty understanding instructions (or
French) or an intellectual deficit, pregnancy or in the post-partum period, diagnosis of
a neurological disease (stroke, epilepsy, or peripheral neuropathy) that may affect the
somatosensory system, and having participated in the somatosensory rehabilitation pro-
gramme we previously proposed using this technology, or participation in the testing
conducted during the development of the somatosensory temporal discrimination assess-
ment application in the past year.

Asymptomatic participants were included after the inclusion of the participants with
FMS in order to match them (i.e., position the vibrotactile pods in similar zones in both
groups, see below).

2.3. Evaluation Sessions

All the participants underwent a test session and a retest session 7 to 10 days later,
conducted by one of two final-year physiotherapy students who received specific training for
this purpose. The same person supervised the test and retest sessions for a given participant.
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The test session included a general questionnaire, clinical questionnaires, a pain
intensity evaluation, an explanation of the SSTD test, a familiarisation phase, and the SSTD
test. The retest session was identical except that the familiarisation phase was omitted, and
the general questionnaire was replaced by a question about whether a particular event
had occurred since the last session that might have altered the person’s somatosensory
discrimination capacity and/or pain status (e.g., change in medication).

2.4. Assessments

Participants could either complete the questionnaires online just prior to attending the
session or at the beginning of the session.

The general information questionnaire asked about demographic information and
professional situations. The FMS participants were asked to mark their area of greatest
pain among prespecified areas on a body chart (posterior shoulders/trapezius, anterior
shoulders, thoracic spine/scapula/ interscapular area, lumber area, hips, or knees). This
information was used to determine the position of the vibrotactile pods for the SSTD test.

Pain and its characteristics were evaluated using the widespread pain index (WPI)
(FMS participants only) and the Brief Pain Inventory (BPI) (all participants).

The WPI assesses the degree of pain in 19 body locations (e.g., shoulder girdle left,
shoulder girdle right, chest, neck, lower back, etc.) over the past week. We used the French
version [26]. One point is attributed to each area marked; the points are summed to yield a
total score ranging from 0 to 19, with higher scores indicating more widespread pain. This
tool is also used to diagnose FMS; we did not use the section relating to diagnosis since all
FMS participants already had a medical diagnosis of the condition [27].

The BPI assesses pain intensity (severity) and the impact of pain on functioning
(interference) [28,29]. We used the French version [30]. It assesses pain intensity using
4 numerical pain scales ranging from 0 (no pain) to 10 (maximum pain), including the
highest and lowest pain intensities during the previous week, average pain levels, and pain
at the time of the assessment. The BPI also contains 7 items exploring the impact of the
person’s pain on their daily life (i.e., general activity, walking, work, mood, enjoyment of
life, relations with others, and sleep). To score the BPI, the assessor calculates the average
of the four severity items (pain severity subscale) and the average of the seven interference
items (pain interference subscale).

The pain intensity in the area designated as the area of greatest pain was evaluated
using a numerical rating scale (0–10 points) (FMS participants only).

2.5. Temporal Somatosensory Discrimination (SSTD) Test

The SSTD device (TrainPain Inc., Wilmington, DE, USA) consists of a box linked by
wires to 2 vibrotactile pods that are operated via Bluetooth by a smartphone application.
The same device can be used to train and assess SSTD. One vibrotactile pod was positioned
on the most painful area indicated by the participant and the other on the same area on
the contralateral side of the body (Figure 1). Measurements were taken with reference to
anatomical landmarks to ensure that the vibrotactile pods were repositioned in the same
places at the retest session. Asymptomatic participants were matched to FMS participants,
and the vibrotactile pods were positioned in the same places. The participants sat in a chair
with care taken to ensure the vibrotactile pods were not in contact with the chair. They wore
earplugs to ensure they did not hear the vibrations. The vibrotactile pods on the tested
side of the body provided three or four consecutive vibration trails, while the contralateral
vibrotactile pod provided distractor vibrations. The test was divided into four different
phases, with a 3-min rest in between, and included 112 trials (28 for each phase). These
four phases differed regarding the stimulation modalities, i.e., the time between pulses
of the vibrotactile pods on the tested side and the strength/intensity of the pulses of the
distraction pods. All the instructions were provided by the application on the phone screen
(e.g., “count how many vibrations you feel on the RIGHT (or LEFT) side of your body”
accompanied by an arrow indicating the side concerned). Once the vibrations had been
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emitted, the screen changed and offered several response options: the participant had to
indicate the number of vibrations they felt on the side indicated, and they could also ask to
‘feel again’ (maximum twice per phase) or select ‘I don’t know’ (Figure 2).
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Figure 2. Example of the application used for the SSTD test.

The outcome analysed was the SSTD score, which corresponded to the success rate on
the SSTD test, calculated as the proportion of correct responses out of the total number of
responses. Therefore, the lowest possible score was 0 and the highest was 100.

A familiarisation phase was performed prior to the test. It consisted of 10 trials similar
to those at the end of phase 1 (the easiest trials, i.e., with long intervals between pulses and
the lowest distractor intensity). The participants were informed that the test would also
include some trials with slightly different characteristics.
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2.6. Statistical Analysis

Regarding the sample size, our target was to include 25 patients with FMS and
25 matched asymptomatic participants. This pragmatic sample size was based on recruit-
ment feasibility and staff capacity (considering this was a non-funded study).

Statistical analyses were carried out using Excel and R commander version 4.2.2
statistical software.

The data distribution was verified using the Shapiro–Wilk test for each variable.
The participant demographic characteristics and SSTD scores were compared be-

tween groups using the parametric Student’s t-test or the Mann–Whitney U test, as ap-
propriate. The chi-square test was used to compare laterality and professional situations
between groups.

Test and retest SSTD scores were compared using a paired Student t-test. The reliability
of the SSTD score for each group and the total sample was assessed using the intra-class
correlation coefficient, ICC 3.1, and calculation of the standard error of measurement (SEM):
SD ×

√
(1−ICC).

In the FMS group, correlation analyses were performed by calculating Pearson or
Spearman correlation coefficients (depending on the normality of the distributions). The
variables included were duration of pain, pain intensity in the area of greatest pain, and
BPI and WPI scores.

A p-value < 0.05 was considered significant for all the analyses.

3. Results
3.1. Participants

Twenty-five participants with FMS and twenty-five asymptomatic participants were
included. All the participants performed both sessions. Their characteristics are shown
in Table 1. The groups did not differ in terms of age or laterality, however, they differed
significantly in terms of professional situation; significantly fewer people in the FMS than
the asymptomatic group were currently working.

Table 1. Demographic characteristics of all participants and pain-related scores for the FMS group.

FMS
(N = 25)

Asymptomatic
(N = 25) p-Value

Age (years), mean (SD)
[min–max]

51.4 (9.5)
[24–65]

49.1 (6.2)
[37–60] 0.27

Laterality
Right-handed 24 (96%) 32 (92%) 0.55
Left-handed 1 (4%) 2 (8%)

Professional situation 0.0001
Retired 24% (n = 6) 0% (n = 0)

Unemployed 4% (n = 1) 0% (n = 0)
Sick leave 40% (n = 10) 0% (n = 0)
Working 32% (n = 8) 100% (n = 25)

Duration of pain (years) 14.9 (9.56) [1–38] -
BPI, mean (SD) [min–max]

Pain severity score (0–10)
Pain interference score (0–10)

5.84 (1.77) [2.25–9.5]
5.47 (1.89) [2.14–9.7] -

WPI (0–19) 13.1 (4.16) [5–19] -
Most painful area and location of
the vibrotactile pods
Shoulders (posterior/trapezius) 44% -

Lumbar 20% -
Hips 20% -

Knees 8% -
Thoracic area 8% -

Shoulders (anterior) 0% -
FMS: fibromyalgia syndrome; BPI: Brief Pain Inventory; WPI: widespread pain index.
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3.2. Test–Retest Reliability (Table 2)

The test–retest reliability was excellent (ICC > 0.9) for the asymptomatic group and
good for the FMS group (0.75 < ICC < 0.9). The SEM was slightly higher in the FMS than in
the asymptomatic group. The SSTD performance did not differ between the sessions for
either group.

No participants had a score of 0; therefore, there was no floor effect. There was also no
ceiling effect, as the overall score of 100% was only achieved by two participants, both in
the FMS group.

Table 2. Test–retest reliability.

Test Retest p-Value ICC 95% CI SEM

FMS (N = 25) 84.1 (71–88)
[61.4–100]

80.6
(72.7–92.6)
[67.5–100]

0.67 0.81 0.63–0.92 5.4

Asymptomatic
(N = 25)

91.6 (83.4–96.1)
[48.8–99]

92.5
(86.2–95.1)
[47.8–99]

0.85 0.90 0.80–0.96 3.6

Total (n = 50) NA NA 0.21 0.86 0.77–0.92 4.6
Data are the median (Q1–Q3) [min–max]. SEM: standard error of measurement, FMS: fibromyalgia syndrome,
NA: not applicable.

3.3. Discriminative Ability

The median (Q1–Q3) test session scores of the FMS 84.1 (71–88) and the asymptomatic
91.6 (83.4–96.1) groups differed significantly (p < 0.001).

3.4. Associations between Discrimination Performance and Pain Variables in the FMS Group
(Table 3)

Only the duration of pain in years was significantly correlated with the SSTD score.
Pain intensity, BPI scores, and WPI were not.

Table 3. Correlations between SSTD performance and pain variables.

r p-Value

Duration of pain (years) −0.41 <0.001
Pain intensity in the area of vibrotactile pod placement 0.12 0.22

BPI (Severity) −0.09 0.39
BPI (Interference) −0.08 0.4

WPI −0.02 0.8

4. Discussion

The present study is one of the first to determine the test–retest reliability of an SSTD
test and the first to investigate the reliability of such a test conducted on the most painful
body parts in people with FMS. To our knowledge, this is the only test that does not involve
electrical stimuli. The test is original in its use of a distractor stimulus that tests inhibition
capacity. The results showed good test–retest reliability of the SSTD score, particularly
in the asymptomatic group. The results of the asymptomatic and SFM groups differed
significantly, indicating the test’s discriminative ability. The only variable associated with
SSTD performance in the FMS group was pain duration.

In a preliminary study by our group (unpublished data), we observed a learning effect
of the test. Therefore, we included a familiarisation phase, which appeared to eliminate the
learning effect since no significant differences were found between the test and the retest
sessions. Furthermore, test–retest reliability was excellent for the asymptomatic group and
good for the FMS group (0.75 < ICC < 0.9). This is higher than the test–retest reliability
found over three test sessions in a group of healthy adults using electrical stimulation, in
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which the ICC values showed moderate to good reliability [31]. The SEM of 3.6 for the
asymptomatic group and 5.4 for the FMS group in our study suggest that the minimal
detectable [32] change is 10 and 15 in these groups, respectively.

The SSTD score of the participants with FMS was significantly lower than that of the
asymptomatic participants, demonstrating the discriminative ability of the SSTD test. One
participant in the asymptomatic group had a particularly low score (test = 48.8, retest = 47.8)
for unknown reasons. Without this participant, the between-group difference would have
been even larger. These results are in line with the current literature, confirming the
impairment of SSD in people with chronic pain [5,6,11,17,19]. The only other study that
compared the SSTD threshold between people with FMS and healthy individuals also
found a difference between people with and without FMS; however, they only tested the
hand and used an electrical stimulus [11]. The alteration in SSTD ability in people with
FMS might result from changes in the primary somatosensory cortex and a reduction in
inhibitory processes [14]. Nevertheless, five of the twenty-one participants with FMS had
mean scores that were above the median score of the asymptomatic participants, indicating
that not all individuals with FMS have impaired SSTD. Furthermore, two participants (both
professionally active) with FMS achieved 100% scores. These findings suggest that SSTD
capacity should be assessed prior to proposing a re-training programme to ensure that
such a program is relevant for the individual. It might also be relevant to increase the
difficulty of the test to enable changes to be evaluated in people with good initial scores if
such training is relevant for them.

A significant negative correlation was found between the duration of pain symptoms
and the SSTD score. The influence of pain duration on cortical representations is well
known. Grey matter in the areas of the cortex involved in central sensitisation reduces in
the case of chronic pain, and the magnitude of the reduction is related to pain duration
and intensity [33]. Therefore, SSTD may be an indicator of cortical reorganisation over
time, although this needs to be confirmed. However, in contrast with a study that included
only 15 individuals with FMS [11], we found no correlations between performance on
the SSTD test and pain and disability scores. The different SSTD assessment method and
pain/disability outcomes used in that study, and the younger age (mean 33 years) and
shorter duration of symptoms (6.8 years) of participants, limit comparison. Further studies
should be conducted to investigate such links.

The plasticity that underlies pain-related changes in the brain suggests that these
changes may be sensitive to targeted treatments [5]. SSD training induces cortical re-
organisation, improved tactile acuity, and reduced pain in people with chronic pain or
phantom pain [8,19,34–36]. Attentional modulation, which involves the descending and
ascending pain pathways, is thought to be altered in people with chronic pain [3,37].
Therefore, various therapeutic techniques use attentional focus to reduce pain, such as
cognitive-behavioural therapy, yoga, meditation, hypnosis, and relaxation [37]. Besides the
assessment mode, the tool investigated here provides a new means of pain modulation
through attentional processes by focusing on non-painful stimuli during SSTD training [23].

Assessing SSD in people with chronic pain with this new, original tool that enables
remote assessment, administered independently by the individual, is therefore relevant
and useful from both clinical and research points of view. Although the spatial form of
SSD is most often assessed using the two-point discrimination test [10], this new approach
may be more representative of central neurological phenomena [13,16] and thereby more
relevant for the assessment of people with central sensitisation. Another special feature
of this new SSTD testing system is the inclusion of a distractor stimulus that must be
ignored. This forces the person to shift their attention in space (from one side of the body
to the other), thus enabling exploration of attentional processes. These processes, also
trained during mindfulness meditation [21], might be beneficial for people with chronic
pain. Furthermore, this new system can be used by the individuals themselves, without a
healthcare professional, thus the test can be performed by telehealth.
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Although the above elements highlight the relevance of the present study, it has several
limitations. As only female participants were included, our results cannot be generalized to
males. Some demographic characteristics (e.g., marital status and BMI) were not recorded,
preventing us from fully verifying the similarities of the groups.

Further studies should now investigate if SSTD training with this new system improves
SSTD capacity and if these improvements are related to improvements in pain, disability,
and/or quality of life of people with FMS, particularly those with low SSTD capacity. It
would also be relevant to test the validity of this new system by investigating if SSTD
performance correlates with other SDT tests.

5. Conclusions

This study found good to excellent test–retest reliability of the SSTD test in both people
with FMS and asymptomatic participants and confirmed its ability to discriminate between
these two groups. Only the duration of pain correlated with SSTD performance. SSTD
performance was heterogeneous across participants; therefore, this test might be used to
identify individuals with reduced SSTD who may benefit from an intervention. The next
step is to determine the sensitivity to change in the SSTD test to ensure it can be used to
evaluate the effectiveness of training programs.
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