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Abstract: In medical imaging, detecting tissue anomalies is vital for accurate diagnosis and effective
treatment. Electrical impedance tomography (EIT) is a non-invasive technique that monitors the
changes in electrical conductivity within tissues in real time. However, the current challenge lies
in simply and accurately reconstructing multi-conductivity distributions. This paper introduces a
layered fusion framework for EIT to enhance imaging in multi-conductivity scenarios. The method
begins with pre-imaging and extracts the main object from the fuzzy image to form one layer. Then,
the voltage difference in the other layer, where the local anomaly is located, is estimated. Finally, the
corresponding conductivity distribution is established, and multiple layers are fused to reconstruct
the multi-conductivity distribution. The simulation and experimental results demonstrate that
compared to traditional methods, the proposed method significantly improves multi-conductivity
separation, precise anomaly localization, and robustness without adding uncertain parameters.
Notably, the proposed method has demonstrated exceptional accuracy in local anomaly detection,
with positional errors as low as 1% and size errors as low as 33%, which significantly outperforms the
traditional method with respective minimum errors of 9% and 228%. This method ensures a balance
between the simplicity and accuracy of the algorithm. At the same time, it breaks the constraints of
traditional linear methods, struggling to identify multi-conductivity distributions, thereby providing
new perspectives for clinical EIT.

Keywords: layered fusion; electrical impedance tomography (EIT); multi-conductivity distribution;
local anomaly detection

1. Introduction

Electrical impedance tomography (EIT) is a functional imaging technique that mea-
surements boundary voltages to continuously reconstruct and visualize the conductivity
distribution within an observed object [1,2]. This technique has several advantages, in-
cluding safety, absence of radiation, rapid response, portability, and cost-effectiveness,
rendering it a compelling choice for a variety of applications [3]. Consequently, EIT has
attracted attention and has been widely employed across numerous fields. In particular,
EIT is recognized for its utility in industrial measurements and biomedical detection. It is
especially suitable for applications such as multi-phase flow visualization [4,5], in addition
to lung perfusion monitoring [6,7], tactile perception [8], and gesture recognition [9,10].

The primary focus of EIT research in the medical field has been on the application of
lung tomography as a biosensor [11,12]. This is due to the valuable diagnostic information
that can be observed when biological tissues and organs exhibit significant changes in
conductivity, corresponding with changes in physiological conditions such as respiration
and blood flow [13]. A variety of lung lesions, including lung collapse, pneumothorax,
pulmonary edema, and lung tumors, serve as clear indicators of abnormal air or fluid
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content within the lungs [14]. For instance, the pleural effusion model in EIT is characterized
by regions of high conductivity (1.5 S/m at 100 kHz, approximately 7 times higher than
the normal lung conductivity), resulting from the accumulation of fluid in the pleural
space [13,15,16]. Similarly, tumor tissue has been observed to possess a significantly higher
conductivity compared to normal lung tissue [17].

Mathematically, image reconstruction in EIT involves solving a highly nonlinear and
ill-posed inverse problem from noisy voltage data [18]. This inherent limitation often
results in low resolution and instability of reconstructed images, as well as high sensitivity
to minor perturbations induced by noise and modeling errors. Consequently, while the
capacity of EIT to reconstruct two-phase distributions, such as monitoring lung respiration,
is deemed acceptable, it struggles when multiple field change media are present, such as
when local lesions occur [17,19]. In such scenarios, minor local changes within a large target
tend to be mixed by this large target, making it challenging to capture local anomalies
within the lungs.

Nonlinear methods are directly applicable to nonlinear EIT problems. In recent
years, deep learning has been widely investigated in the EIT domain owing to its profi-
ciency in solving nonlinear problems, which broadly falls into three categories [20–22].
The first uses an approximation from voltage of conductivity for image mapping [23,24].
The second pre-reconstructs low-resolution images, then uses neural networks for high-res
post-processing [25]. The third formulates the problem in an optimization framework,
e.g., with neural networks as regularizers [15]. These methods provide precise and re-
silient reconstructions of lungs with local anomalies, as validated in both simulated and
experimental environments. Given ample data, it is possible for learning-based methods to
effectively reconstruct complex lung images in the clinic. However, these methods often
face high time costs during the both training phase and the inference phase, lack physical
interpretability, and struggle with objects significantly different from the training data.

Linearization methods for EIT are time-efficient, stable, and simple, making them
prevalent in clinical practice [26–29]. Recent studies have demonstrated that the recon-
struction accuracy of two-phase distributions, based on regularization algorithms, can
be significantly enhanced through simple post-processing or a few iterative steps [30,31].
However, for the distribution of three or more phases, specifically in detecting local lung
anomalies, it is still difficult for these methods to reconstruct conductivity distributions effi-
ciently. It has been verified that incorporating prior information can enhance the detection
of local lung anomalies [17,32]. Effective reconstruction of multi-conductivity distributions
can also be accomplished by employing multi-modal fusion techniques, e.g., the fusion of
frequency-difference and time-difference reconstructions [33]. However, these methods rely
on either sufficient prior information or additional measuring procedures. Although EIT is
designed to be fast, robust, versatile, and precise, current nonlinearization methods struggle
with interpretability, time costs, and robustness, whereas linearization methods are unable
to satisfy both the necessary simplicity and accuracy requirements simultaneously.

This work aims to improve the imaging capability of the linearization method in
multi-conductivity EIT, maintaining its speed and simplicity. The EIT images reconstructed
by the linearization method have the features of a fuzzy boundary, similar boundaries for
different objects, and local unrecognizability. Based on these fuzzy features and the internal
relationship of the EIT reconstruction process, a layered fusion reconstruction method is
proposed, which adopts the strategy of difference decomposition and fusion. The proposed
method strikes a balance between the simplicity and accuracy of EIT reconstruction, while
simultaneously digging deeper into the potential of linearization methods through the
inherent relationships and features of EIT.

The remainder of this paper is structured as follows. Section 2 describes the math-
ematical model of EIT, detailing its principles and equations. Section 3 introduces the
proposed method of layered fusion based on EIT features. This section describes the
fuzzy features, definition of EIT layers, reconstruction anomalies, and the layered fusion
algorithm. Section 4 analyzes the performance and implications of the simulation and
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experimental results. Section 5 discusses the results. Finally, Section 6 draws conclusions
from the study.

2. Mathematical Model of EIT

An EIT measurement system is designed to reconstruct the conductivity distribution
within a domain Ω. The electrodes, as shown in Figure 1, are evenly distributed around an
observed object. The data acquisition strategy of adjacent current excitation and adjacent
voltage measurements is typically adopted.

Figure 1. Principle of detection in EIT.

The process begins with the application of current excitation to one adjacent electrode
pair as the initial excitation electrode, with 1 and 2 being selected as the first pair of the
excitation current source in this example. Subsequently, two adjacent electrodes are selected
successively to measure voltages as the measurement electrode, such as 3–4, 4–5, . . . , 14–15,
15–16. This process successively uses 16 pairs of adjacent electrodes as excitation electrodes.

Upon completion of a full measurement cycle, a boundary voltage vector is derived
from nE electrodes, comprising N = nE(nE − 3), with the understanding that only half of
these elements are independent. For instance, a total of 208 measurements can ultimately
be collected from 16 electrodes. Collectively, these measurements can be used to describe
one frame of a cross-section, providing a detailed description of the electrical properties of
the subject. For the human body, these measurements reflect the underlying conductivity
distribution, indicating physiological properties.

Given a known conductivity distribution and a specified excitation pattern, the for-
ward problem is tasked with computing the electric potential and the boundary voltages.
The observation model incorporates an additive Gaussian model to account for measure-
ment errors. Partitioning the observation domain into M discrete pixels, the forward model
is formulated as

U = F(σ(Ω), I) + e (1)

where F(·) represents an operator mapping the inner conductivity distribution σ(Ω) ∈ RM×1

and excitation current I ∈ RN×1 into a boundary voltage vector U ∈ RN×1 and e ∈ RN×1

represents the additive noise. This question is typically solved using the finite element
method (FEM) or the boundary element method (BEM).
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With the reference conductivity σ0, Equation (1) can be expanded using the first-order
Taylor series as

U = U0 + S(σ0)(σ − σ0) + O(σ) (2)

where S(σ0) =
∂[U0]i
∂[σ0]j

∣∣
σ=σ0

is the Jacobin matrix, representing the differential of the bound-

ary voltage to the conductivity.
After discrete approximation, the mathematical model of the EIT inverse problem can

be linearly expressed as
∆U ≈ S∆σ + e (3)

where ∆U = U − U0, representing the difference between the boundary voltage data in
measured state and reference state, and ∆σ = σ − σ0, representing the difference between
the measured state and reference state.

This process is inherently ill posed and ill conditioned, which often results in unreliable
and unstable solutions. The inverse problem is typically solved using the least squares error
method. However, to prevent overfitting in the least squares problem, regularization-based
algorithms are commonly employed. The objective function of the regularization can be
formulated as

∆σ = arg min∆σ∈RM×1{||S∆σ − ∆U||22 + R(∆σ)} (4)

where the regularization term R(σ) commonly uses the L2-norm as

∆σ = arg min∆σ∈RM×1{||S∆σ − ∆U||22 + λ||∆σ||22} (5)

where λ denotes the regularization parameter. Tikhonov-type regularization is a commonly
used method and employs an analytic expression to obtained the estimation as

∆σ̃ = (STS + λLTL)−1ST∆U (6)

where L represents the regularization matrix, which is typically configured as a unit matrix.
Regularization methods are usually fast and relatively accurate. However, in the

reconstruction process of multiple conductivity domains, there is a complex intermingling
of both normal and abnormal objects. These objects lack clear demarcations under most
typically used reconstruction methods. For practical applications, it becomes imperative to
segregate these local anomalies. This segregation allows for a more accurate interpretation
and analysis.

3. Layered Fusion Based on EIT Features
3.1. Fuzzy Features of Multi-Conductivity Distributions

With traditional reconstruction, as well as further operations such as iteration or
filtering, it is possible to accurately reconstruct domains with binary conductivity us-
ing EIT. However, linearization methods generally lack the ability to reconstruct multi-
conductivity distributions.

In Figure 2a, there is an EIT observed cross-section with two main objects, and the
right object in Figure 2b features a local anomaly area. The background, the objects and
the anomaly area (e.g., a lesion in the lung) have different conductivities. It is assumed
that there is no prior information on the internal distribution. The goal is to reconstruct the
abstract distribution ∆σ = σ − σre f , where σre f is the uniform conductivity distribution
with background conductivity σb.

Typical L2-norm regularization in Equation (6) is adopted to directly reconstruct
the conductivity distribution. Intuitively, from the reconstructed result ∆σ̃ in Figure 2b,
the main observed objects are not recognizable. Specifically, when comparing the
two imaging results, it can be observed that the direct imaging results of the multi-
conductivity distribution have the following features:

• A fuzzy boundary: In multi-conductivity distribution results, the boundaries exhibit
significant ambiguity. This is observed both at object–background and lesion–object
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interfaces. The indistinct boundaries complicate element differentiation and add
complexity to image interpretation.

• Similar boundaries for different objects: Consider two main objects in the multi-
conductivity result. One is uniformly distributed, while the other exhibits local anoma-
lies. Despite these differences, both objects share a common trait: their boundaries are
similar. In other words, the presence of local anomalies does not significantly alter the
main boundary.

• Local unrecognizability: The local conductivity variations within the object are merged
into changes in the overall object conductivity. Despite processing, it is difficult to
recognize the local changes in size and position.

Figure 2. Layers in observed domains with binary and multiple conductivity distributions. (a) Binary
conductivity distribution decomposed into a two-layer domain. (b) Multi-conductivity distribution
decomposed into a three-layer domain.

Any multi-conductivity distribution can be regarded as a series of multiple binary con-
ductivity distribution layers. In Figure 2a, the observed domain with binary conductivity
can be divided into two layers. These correspond to the uniformly distributed reference
and the imaging goal, which is represented as a change in conductivity. In Figure 2b,
the observed domain with three conductivity values can be divided into three layers. Each
of these layers contains only one main conductivity value. Layer 0 corresponds to the
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reference σre f . According to Equation (3) and ignoring the noise effect, the linearized model
of Layer 1 can be expressed as

∆U1 ≈ S∆σ(Ω1) (7)

where ∆σ(Ω1) is the conductivity distribution of Layer 1, and its normalized reconstructed
approximation is ∆σ̃1.

The linearized model of Layer 2 is

∆U2 ≈ S∆σ(Ω2) (8)

where ∆σ(Ω2) is the conductivity distribution of Layer 2, and its normalized reconstructed
approximation is ∆σ̃2.

The combination of Layer 1 and Layer 2 corresponds to the abstract distribution as

∆σ = ∆σ(Ω1) + ∆σ(Ω2) (9)

Once the conductivity distribution for each layer has been obtained, an approximation
of the total conductivity distribution can then be calculated by summing up the layers.
To determine the distribution of the layers, voltage changes need to be calculated first.

According to the feature analysis of a multi-conductivity distribution, the boundaries
of the main objects are similar in the reconstruction results, regardless of the presence of
anomalies. Therefore, based on the object recognition threshold [26], the main objects can
be filtered from the reconstructed result. Consequently, Layer 1 can then be obtained as

[∆σ̃1]i =

{
1, if[∆σ̃]i ≥ 1

4 max([∆σ̃]i)
0, otherwise.

(10)

where ∆σ̃1 contains all pixels [∆σ̃]i greater than 1
4 of the maximum amplitude.

∆σ̃1 is the normalized result, and the real conductivity is unknown without prior
information, so the actual distribution implies a known scale factor set to a. According to
Equation (7), the voltage change of Layer 1 ∆Ũ1 can be approximated by

∆Ũ1 ≈ S(a∆σ̃1) = a(S∆σ̃1) (11)

In the linearized EIT model, the voltage change of Layer 2 ∆Ũ2 can be obtained by the
difference between the total change and the change of Layer 1 as

∆Ũ2 ≈ ∆U − ∆Ũ1 (12)

The current problem is that the scale factor a related to the voltage change set is
still unknown.

3.2. Features of Measurement Changes

According to the definition of sensitivity, the sensitivity of measurements is influenced
by changes in conductivity. Figure 3 illustrates the variations in measurements resulting
from a unit change in conductivity. In the linearized EIT model, the sensitive responses
from larger areas of local conductivity changes are additive. Among these variations,
there always exists a portion with very low changes in measurements, termed as low-
sensitivity ranges.

The threshold is set to ± 1
2 |∆U|, where |∆U| is the average of the absolute values

of the measurement set. When conductivity distribution changes are small and local
abnormal, as in Figure 2, the voltage measurements in these low-sensitivity ranges remain
almost constant. This implies that the scale of the low-sensitivity range is nearly invariant.
To quantify this scale, a low-sensitivity range set is defined as

UL = {[∆Ub]i

∣∣∣∣|[∆Ua]i| <
1
2
|∆Ua|} (13)
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where UL represents the set of observed voltage changes [∆Ub]i that correspond to the
low-sensitivity range, where the absolute values of the initial measurement changes [∆Ua]i
are less than half the average absolute change |∆Ua|.

Furthermore, to calculate the scale of the low-sensitivity range of ∆Ub at the initial
measurement change ∆Ua, the scale feature is expressed as an operator L(·, ·) as

L(∆Ub, ∆Ua) =
1
l

l

∑
j=1

|[UL]j| (14)

where l represents the total number of elements within the low-sensitivity range and [UL]j
represents the jth element in the observed voltage change set ∆Ub that corresponds to
measurements in ∆Ua falling within the low-sensitivity range.

Figure 3. Sensitivity analysis of measurement variations influenced by local conductivity changes,
with the low-sensitivity range indicated.

Taking into account the size ratio of the tumor to the chest and referring to the
conductivity of each tissue at a frequency of 100 kHz, the overall difference in conductivity
between Layer 1 and the whole is about 0.1 S/m [13]. Compared to the overall conductivity
of the chest (approximately 2 S/m), such a conductivity difference makes the corresponding
voltage changes approximately the same. Setting the overall measurement set ∆U as the
initial change, the proportional coefficient a can be expressed as

a · L(
1
a

∆Ũ1, ∆U) = L(∆U, ∆U) (15)

Combining Equations (11) and (15), ∆Ũ1 can be computed by

∆Ũ1 ≈ L(∆U, ∆U)

L(S∆σ̃1, ∆U)
S∆σ̃1 (16)

The voltage change of Layer 2 can be obtained from Equations (12) and (16). Then, the
local anomalies on Layer 2 can be reconstructed by Equation (6). For the purpose of clearer
boundaries, the reconstruction can be filtered by

f ([∆σ̃2]i) =

{
[∆σ̃2]i, if [∆σ̃2]i ≥ 1

4 max(∆σ̃2)
0, otherwise.

(17)

If an approximate proportion of anomaly area p is known, the conductivity change in
Layer 2 can be calculated more accurately. The first step is to sort ∆σ̃2 in order from largest
to smallest as ∆σ̃′

2. Then, the the conductivity change can be rebuilt as

[∆σ̃′′
2 ]i =

{
[∆σ̃2]i, if [∆σ̃2]i ≥ [∆σ̃′

2]t
0, otherwise.

(18)

where t = ⌊p × M⌋ represents the number of elements in the anomaly area.
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3.3. Layered Fusion Algorithm

The conductivity change for each layer has been reconstructed and normalized. If the
real conductivity of each area is known, it can be directly superimposed in proportion
through the relationship of conductivity values across layers. However, in practice, the real
conductivity is difficult to ascertain accurately. One approach is to roughly assign propor-
tions based on a prior range, while another is to estimate the conductivity range based on
the scale of voltage changes.

When the conductivity change is known, the final conductivity change result can be
directly calculated by adding the proportional layers as

∆σ̃′ = δσ1∆σ̃1 + δσ2∆σ̃′′
2 (19)

Prior information is usually lacking; thus, δσ1 and δσ2 are unknown. In this case, it
is necessary to estimate the ratio between the conductivity change of the different layers.
The conductivity distribution of Layer 1 and Layer 2 changes uniformly within observed
objects. Such a conductivity change set can be expressed as

∆σ̃ = α · [0, 0, . . . , 1, 1, . . . , 0, 0, . . . ]T (20)

where α represents the real conductivity change value. This means ∆σ̃ can be regarded
as a number times a binary matrix. Then, the indices of all working elements can be
represented as

I = {i|[∆σ̃]i = α, i ∈ {1, 2, . . . , M}} (21)

It can be deduced that the measurement change is actually the superposition of the
effective columns of the sensitivity matrix, which can be expressed according to Equation (3),
ignoring the noise effect, as

∆U = α · (s[I]1 + s[I]2 + · · ·+ s[I]n) (22)

where n is the number of working elements and s[I]1 , s[I]2 , . . . , s[I]n represent the working
columns of the matrix S.

Since the sum of each column of the normalized sensitivity matrix is 1, the mean of
the voltage change set can be calculated by

mean(∆U) =
1
N

N

∑
i=1

[∆U]i =
1
N

· α · n (23)

In the layered model, Equation (23) can be rewritten as

mean(∆Ũ1) =
1
N

· δσ1 · n1 (24)

mean(∆Ũ2) =
1
N

· δσ2 · n2 (25)

where n1 and n2 represent the number of pixels in working areas of Layer 1 and Layer
2, respectively. Specifically, n1 is the total number of pixels at an estimated state of 1 on
Layer 1, calculated by Equation (10), and n2 can be estimated by the sum of the normalized
distribution of Layer 2. In this way, the fusion weights δσ1 and δσ2 can be obtained,
and Layer 1 and Layer 2 can then be fused by Equation (19).

Algorithm 1 describes the pseudo-code implementation of the proposed layered fusion
(LF) reconstruction. Figure 4 illustrates the overall process of the layered fusion recon-
struction approach, in which step numbers are marked in the corresponding processing.
During the initialization period, the regularization parameter λ can be obtained in advance
through the L-curve method, GCV, unsupervised evaluation optimization or other methods,
and then calculated using unified parameters. The proportion of the abnormal area p is an
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optional input. The proposed method avoids any tedious parameter adjustment. The final
result is obtained through layered processing and then fusion based on EIT internal features
and fuzzy features. Details on the comparison and evaluation will be further discussed in
the subsequent section.

Algorithm 1 Algorithm flow of LF reconstruction.

Input: Voltage measurement: ∆U; Sensitivity matrix: S; Regularization parameter: λ;
Proportion of anomaly area p.
Output: Conductivity Set: ∆σ̃.
Begin

Step 1: Reconstruct the initial ∆σ̃ using Equation (6);
Step 2: Estimate the binary distribution of Layer 1 ∆σ̃1 by Equation (10);
Step 3: Estimate the voltage change in Layer 1 ∆Ũ1 by Equations (13), (14) and (16);
Step 4: Calculate the voltage change in Layer 2 ∆Ũ2 by Equation (12);
Step 5: Reconstruct the conductivity distribution of Layer 2 ∆σ̃2 by Equation (6),

and sharpen ∆σ̃2 according to existing conditions:
if p is known then

Filter the distribution by Equation (18)
else

Filter the distribution by Equation (17)
end if

Step 6: Fusion multiple layers ∆σ̃1 and ∆σ̃′′
2 by Equations (19), (24) and (25).

End

Figure 4. Visualized workflow of the layered fusion framework for multi-conductivity EIT.

4. Experiments and Results

To investigate the reconstruction performance of the proposed layered fusion (LF)
method, a set of simulation and experiment related to lung monitoring with anomaly area
were performed.

4.1. Simulation Configuration

In simulations, a simplified thoracic sensor with N = 16 electrodes was built in COM-
SOL Multiphysics; the radius of the circular domain was 20 cm and the width of each
electrode was 1 cm. An adjacent sensing strategy, as shown in Figure 1, was adopted.
Each data frame consists of N(N − 3) = 208 measured values. Each EIT image contains
32 × 32 pixels. Six simplified lung-like phantoms in simulations are shown in the first
column of Figure 5, which includes the tissues of lung and inner anomaly areas as lesions
with various sizes or positions. The frequency and amplitude of the injected current were
set as 100 kHz and 5 mA, respectively. Under this frequency, the conductivity of the lung
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was assigned as 0.27 S/m as a deflated state, and that of the anomaly was set as 0.6 S/m,
based on findings that lung cancer tissue is 1.6 to 3.3 times more conductive than normal
lung tissue [13,17].

Figure 5. Comparative reconstruction results of simulation cases between methods of Tikhonov-type
regularization (TK), filter-based layered fusion (FLF), and proportional-based layered fusion (PLF).

The uniform distribution was set as a reference frame, and the abnormal lungs were
directly adopted as imaging frames. To investigate the robustness of the proposed algo-
rithm, signal-independent zero-mean additive white Gaussian noise was added to the
voltage change set. To evaluate the effectiveness and robustness of the proposed algorithm,
noise-free EIT data and data with a signal-to-noise (SNR) ratio of SNR = 30, 40, 50, 60, 70,
80 dB were collected. The SNR is expressed as

SNR = 10 lg(
Pu

Pnoise
) (26)
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where Pu represents the power of a frame of measurement data and Pnoise represents the
power of the corresponding Gaussian noise.

For the purpose of assessing the effectiveness of the proposed method, typical Tikhonov
regularization (TK) was adopted for a visual comparison. In order to simulate the actual sit-
uation, the proportion parameter p of each phantom was collected. Considering two rather
extreme cases, without any prior information and with prior known p and conductivity
ratio, direct filtering LF (FLF) based on Equation (17) and proportional LF (PLF) based
on Equation (18) were performed to reconstruct phantoms respectively. To compare and
analyze the accuracy of the reconstructed results, the following three quantitative metrics
were adopted: image relative error (RE), size error (SE), and position error (PE). The RE
assesses the error of the whole reconstructed image, expressed as

RE =
∥∆σ̃ − ∆σ∥

∥∆σ∥ (27)

where ∆σ̃ and ∆σ are the reconstructed conductivity variation and the realistic conductivity
variation, respectively. The smaller the value of RE, the better the image quality.

A 1
4 -amplitude set, ∆σ̃o, was calculated to extract observed anomaly objects, same as

the process in Equation (10). The SE measures the extent to which reconstructed images
represent the size of the object, expressed as

SE =
|m′

o − mo|
mo

(28)

where m′
o and mo are the numbers of anomaly object pixels of the reconstructed image and

the ground truth, respectively. SE is desired to be low, for the aim of reliable interpretation
of lung anomaly measurements.

PE measures the extent to which reconstructed images faithfully represent the position
of the anomaly object, defined as

PE = ∥r′o − ro∥ (29)

where r′o and ro represent the center of gravity of ∆σ̃o and ∆σ. PE should be low and ideally
0, which directly affects the accuracy of abnormal location diagnosis.

4.2. Image Reconstruction Using Simulated Noise-Free Data

The simulated imaging results (Case 1–6) are illustrated in Figure 5. Specifically,
the first column exhibits the true conductivity distribution corresponding to different
anomaly states, while the remaining columns exhibit the reconstruction results using
different methods.

As shown in Figure 5, TK fails to detect local anomalies within the main objects. Using
the proposed LF method, local anomalies can be reconstructed, and these anomalies in all
cases are identifiable. However, without any prior conditions, FLF tends to over-reconstruct
anomalies, resulting in ring artifacts around the objects that are hard to remove using the
linearization algorithm. Moreover, there are fake anomalies in the form of artifacts, which
might be caused by estimation errors in Layer 1.

As for the detection of small anomalies, narrower filters can be used to eliminate arti-
facts to improve the reconstruction accuracy. Additionally, if the lung contours are known,
this can be used to directly build Layer 1, thereby promoting the reconstruction accuracy of
Layer 2. It can be seen from the results of PLF that when some prior information is input to
the algorithm, the new algorithm can almost completely restore the true distribution.

Figure 6 illustrates the quantitative metrics of all reconstructed images in Figure 5,
with the optimal method in each case marked in red. It can be concluded from RE that the
overall accuracy can be significantly improved using the proposed methods of FLF and
PLF. Using the PLF method based on prior information can achieve the best accuracy in
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most cases, while FLF is slightly worse than PLF in terms of metrics but exhibits significant
improvements compared to TK, reducing the RE of TK by half.

The SE of TK results is very large in all six cases, which is consistent with the recon-
struction result, indicating that TK cannot identify local anomalies. As discussed in the
reconstruction result, adopting additional filters can enhance the accuracy of the recon-
structed size. However, this also poses a risk of excessive size reductions, which may lead
to a higher rather than a lower SE.

Compared with the overall RE and SE, the PE calculated through the center of gravity
indicates that TK performs better in PE than in SE. This suggests that TK can detect local
anomalies, but its one-step imaging capability is insufficient and cannot resolve the contours
of local anomalies. After layered fusion, FLF can enhance both local anomaly detection and
the location accuracy in most cases. However, PLF may not have the best position accuracy,
despite its almost flawless image results.

Figure 6. Relative error (RE), size error (SE), and position error (PE) across six different cases (Case
1 to Case 6) using three reconstruction methods: TK, FLF, and PLF. Those marked in red are with
best performance.

4.3. Image Reconstruction Using Simulated Noisy Data

Figure 7 illustrates the average quantitative metrics of the reconstructed results for
Cases 1–6, using data with a varying SNR. The results clearly indicate that both layered
fusion methods (FLF and PLF) consistently outperform TK across all metrics. TK exhibits
a high sensitivity to SNR variations, and the PE of TK does not positively correlate with
changes in SNR. The proposed methods FLF and PLF are robust and stable under SNR
changes, with PLF achieving the best RE.



Sensors 2024, 24, 3380 13 of 17

Figure 7. Average evaluation results under different SNR values and using different algorithms: TK,
FLF, and PLF. Quantitative metrics are RE, SE and PE.

4.4. Results of Experiments

A set of static tank experiments were carried out in previous work [17]. Data were
collected using a TJU-EIT system using the adjacent measurement strategy, with an injection
current of 5 mA and a frequency of 100 kHz. The system consists of a PC, an FPGA-based
digital hardware system, and a tank equipped with a 16-electrode sensor system.

Figure 8 presents the configuration of the experiment, where (a) is the reference
scenario where the tank was filled with chopped meat. Figure 8b illustrates the observed
domain, where chopped meat was evenly placed on the outermost ring in the cylindrical
tank to serve as the main background. Saline filled the inner area, serving as the primary
imaging object. Kidneys were placed inside the saline to represent two anomaly areas.
The conductivity values of the three media are related via σmeat < σsaline < σkedney. Figure 8c
is the ground truth extracted by image processing on Figure 8b. Figure 8d is the ground
truth directly exported on the simulation platform for reconstruction evaluation.

Figure 8. Experimental configuration and ground truth extraction for algorithm verification.
(a) Reference scenario where tank was filled with chopped meat. (b) Observed domain that contains
chopped meat, saline, and kidneys with varied conductivities. (c) Ground truth extracted from
image processing. (d) Pixelated ground truth for reconstruction evaluation.
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Figure 9 presents the reconstruction results obtained using the TK, FLF, and PLF
algorithms. The corresponding quantitative metrics, RE, SE, and PE, of the experiment are
also provided, offering a comprehensive evaluation of the performance of each algorithm.

Figure 9. Visual reconstruction results and corresponding quantitative metrics in the experimental
domain using TK, FLF, and PLF methods. Data marked in red are with best performance.

As illustrated in Figure 9, the experiment yields similar results to the simulation in that
TK struggles to accurately identify the object edge amidst the multi-conductivity distribu-
tion. This leads to significant discrepancies in the position of the anomaly. The application
of FLF and PLF enhances differentiation of areas with varying conductivity values. It can
be observed that the dimensions and locations of abnormal regions were determined with
greater precision using FLF and PLF. All methods used for image reconstruction exhibit
an abnormal protrusion in the upper direction on the left kidney. This anomaly could
potentially be an error induced by the inherent non-uniformity of the meat ring. Judging by
the quantitative metrics, FLF outperforms in terms of overall performance. While PLF uses
a priori information to produce clear edges, it falls short in achieving an optimal positional
accuracy, as shown in the PE.

In a comprehensive view, the use of prior information mainly impacts the visualization
outcome. From the results, the performances of both FLF and PLF are largely analogous.
Consequently, if there is a lack of sufficient prior conditions, the filter-based layered fu-
sion method, FLF, can be directly implemented. It is worth noting that all computations
incorporated in this method are fundamentally rooted in the principles of EIT and do not
require any additional parameter adjustment procedures. Therefore, it stands as a robust,
uncomplicated, and relatively accurate reconstruction method.

5. Discussion

A multi-conductivity EIT layered fusion reconstruction frame, LF, is proposed. LP
can be divided into FLF and PLF according to whether the local proportion is prior or
not. LF is derived based on the internal relation of EIT and fuzzy features in EIT images.
This frame is easy to calculate, does not introduce an uncertainty coefficient, and does
not require iterations. The results show that the current method significantly improves
the accuracy of EIT imaging under different conductivity conditions. The simplicity and
accuracy of the method are critical for the reconstruction of local anomalies in multi-
conductivity distributions in clinical diagnosis and industrial monitoring. The results
show that the current method significantly improves the accuracy of EIT imaging under
multi-conductivity conditions. The simplicity and accuracy of the method are critical for the
reconstruction of local anomalies in multi-conductivity distributions in clinical diagnosis
and industrial monitoring.

It is essential to recognize that LF is primarily limited to cases where a three-phase
distribution is present. It is assumed that there are local anomalies inside the objects, and the
conductivity characteristics of the abnormal region are uniform. For scenarios that extend
beyond this predefined range, alternative considerations are necessary. In cases where the
subject is free from disease or where only two phases of conductivity are present, traditional
EIT reconstruction methods or their advanced patterns are typically sufficient [30].

The proposed method is designed to enhance imaging in more complex situations
where traditional approaches may fall short. While our current method is optimized for
three layers, it can be extended to accommodate more layers, thereby addressing scenarios
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with more than three conductivities. However, the method in its current form does not
inherently determine the number of layers or phases present. Future work could involve
the development of an algorithmic coefficient that can dynamically assess and adapt to the
number of conductive phases, thereby enhancing the versatility of the method. This would
enable our method to be applied in a broader range of scenarios, including those with an
indeterminate number of conductivities. Additionally, the robustness of the method should
be tested across a wider variety of conditions to ensure its reliability and accuracy.

Deep learning has emerged as a promising approach in medical imaging, with numer-
ous models developed for lung detection. However, the majority of deep learning research
in EIT has been concentrated on the study of non-local lesions and the identification of
dispersed multi-conductivity objects [15,34–36]. While these models have demonstrated
the potential to achieve over 90% accuracy in EIT reconstruction for the aforementioned
scenarios, the detection of local anomalies remains a significant challenge. A critical chal-
lenge in leveraging deep learning for local lesion detection is the reliance on the quality
and availability of clinical datasets, which are notoriously difficult to acquire. Furthermore,
the training process for deep learning models is time-consuming and resource-intensive.
Although no definitive solution exists for local anomaly reconstruction, the potential of
deep learning to improve EIT is significant and merits further research and development.

At present, EIT serves as a complementary imaging modality, particularly useful in
cases where a disease has already been identified or is suspected. The value of EIT lies in
its ability to elucidate internal relationships within the context of some prior knowledge.
Therefore, the pursuit of simple yet effective methods that balance ease of use with imaging
accuracy represents a meaningful direction for the advancement of EIT. The development
of such methods could significantly enhance the utility of EIT in clinical settings.

In conclusion, while layered fusion reconstruction represents an advancement for EIT
in multi-conductivity scenarios, it is not without its limitations. The assumptions made
regarding the number and uniformity of conductive phases may restrict its applicability
in certain contexts. Nevertheless, it is optimistic that with further refinement and the
incorporation of adaptive algorithms, the proposed approach can be expanded to meet a
wider array of clinical and industrial needs.

6. Conclusions

A novel layered fusion reconstruction framework for multi-conductivity EIT is pro-
posed in this paper. The proposed approach effectively addresses the challenge of detecting
local anomalies. By initiating with pre-imaging and extracting primary objects from the
blurred image, Layer 1 is established for further analysis. The subsequent estimation of the
remaining voltage differences and the construction of the corresponding conductivity in
Layer 2 further enhance the detection capabilities of local anomalies. The integration of
multiple layers and the exploration of inherent electrical impedance characteristics make
it possible to reconstruct multiple conductivity distributions. Validated through rigorous
simulations and experiments, the proposed method has demonstrated significant improve-
ments in multi-layer separation, precise anomaly localization, and overall robustness when
compared to the traditional regularization method. The proposed method paves the way
for future works aiming to further improve the detection and analysis of local anomalies in
biological tissues in a fast and simple way. In future work, further studies will be conducted
to simulate more complex scenarios, conduct clinical experiments, quantify improvements
over traditional methods, and explore potential clinical applications.
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