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Abstract: Fire is a significant security threat that can lead to casualties, property damage, and
environmental damage. Despite the availability of object-detection algorithms, challenges persist in
detecting fires, smoke, and humans. These challenges include poor performance in detecting small
fires and smoke, as well as a high computational cost, which limits deployments. In this paper, we
propose an end-to-end object detector for fire, smoke, and human detection based on Deformable
DETR (DEtection TRansformer) called FSH-DETR. To effectively process multi-scale fire and smoke
features, we propose a novel Mixed Encoder, which integrates SSFI (Separate Single-scale Feature
Interaction Module) and CCFM (CNN-based Cross-scale Feature Fusion Module) for multi-scale fire,
smoke, and human feature fusion. Furthermore, we enhance the convergence speed of FSH-DETR by
incorporating a bounding box loss function called PIoUv2 (Powerful Intersection of Union), which
improves the precision of fire, smoke, and human detection. Extensive experiments on the public
dataset demonstrate that the proposed method surpasses state-of-the-art methods in terms of the
mAP (mean Average Precision), with mAP and mAP50 reaching 66.7% and 84.2%, respectively.

Keywords: fire smoke and human detection; Deformable-DETR; Mixed Encoder; PIoUV2; ConvNeXt

1. Introduction

Accidental fires in our daily lives can cause harm to personal and property safety.
According to the National Fire Protection Association, in 2022, the US fire department re-
sponded to an estimated 1.5 million fires, which resulted in 3790 civilian deaths, 13,250 civil-
ian injuries, and an estimated $18 billion in property damage [1]. At the same time, the
damage caused by fires to the natural environment cannot be ignored. In 2023, the total
area burned by wildfires in Canada exceeded 156,000 square kilometers, exceeding the
benchmark established in 1995. The record-breaking fire released airborne pollutants and
greenhouse gases, contributing significantly to climate alteration [2]. In the event of a fire,
it is of the utmost importance to act promptly. The timely detection of a fire and its victims
can effectively reduce the harm. Traditional fire alarm systems, such as photoionization
smoke detectors, infrared thermal imagers, flame gas sensors, and smoke gas sensors,
have inherent limitations, including delayed response times and restricted sensor densities.
Especially in open spaces, airflow and other conditions may impede accurate detection [3].

Early visualization-based systems for detecting fire, smoke, and humans involve tech-
niques, such as color detection, moving-object detection, and motion and flicker analysis
using Fourier and wavelet transforms, among others [4]. Dalal et al. introduced a texture-
based method that counted the occurrences of the gradient orientation in localized ports of
an image, computed on a dense grid of uniformly spaced cells and used overlapping local
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contrast normalization for human detection [5]. P. V. Koerich Borgesf et al. achieved fire
detection by evaluating the inter-frame variations of features, such as color, area size, and
texture, in potential fire zones and combining Bayesian classifiers [6]. Yusuf Hakan Habi-
boğlu et al. proposed a flame-detection system that employs a spatiotemporal covariance
matrix of video data, which effectively captures the flickering and irregular characteristics
of flames by dividing the video into spatiotemporal blocks and calculating the covariance
features extracted from these blocks [7]. Although numerous physical and mathematical
methods have been used to extract features, such as the color, texture, and flicker frequency
contour of fire, smoke, and humans, these early methods have been constrained by their
limited feature representation capability due to their manually designed feature extrac-
tors. Furthermore, they have demonstrated poor adaptability to complex scene changes,
dynamic backgrounds, and lighting modifications, resulting in elevated missed detection
rates and weak generalization ability [8].

The rapid development and increasing maturity of neural networks have led to the
emergence of Convolutional Neural Networks (CNNs). As a dominant force in the field
of computer vision, CNNs have demonstrated a remarkable capacity for extracting rich
and discriminative features from extensive data [8–10], a capability that has attracted the
attention of a vast number of researchers. Object-detection algorithms based on CNNs are
increasingly applied for fire, smoke, and human detection [3,8–11]. According to different
processing procedures and structures, they can be broadly classified into two categories:
one-stage algorithms and two-stage algorithms. One-stage methods directly estimate the
object location and category from input images, thereby eliminating the need for detecting
potential target regions beforehand. These algorithms operate by dividing the image
into grids, generating diverse bounding boxes based on anchor points in each grid, and
employing non-maximum suppression (NMS) [12] to eliminate redundant and overlapped
bounding boxes. The representative of one-stage algorithms is the You Only Look Once
(YOLO) series [13–18]. Two-stage algorithms complete object-detection tasks through two
main stages: candidate box generation and object detection. Initially, a component called
candidate box generators, such as Selective Search [19] or Region Proposal Network [20],
is employed to generate potential target-containing candidate boxes that are produced
in the input image. Subsequently, these candidate boxes undergo filtering and feature
extraction using NMS, followed by classification and regression within classification and
regression heads. Algorithms, such as Fast R-CNN [21], Faster R-CNN [20], Cascade R-
CNN [22], and Sparse R-CNN [23], exemplify this category. Although two-stage algorithms
exhibit superior precision relative to one-stage methods, they often have higher hardware
requirements due to their high computational complexity and are challenging to meet
real-time requirements [24].

A novel object-detection method, DEtection TRansformer (DETR), has recently
emerged for object detection, achieving excellent results comparable to the mature Faster
R-CNN on the COCO dataset [25]. Inspired by the transformer architecture, which was
initially adopted in fields like natural language processing and speech recognition, DETR
showcases substantial advancements. DETR firstly enables end-to-end object detection,
meaning it directly predicts the bounding box coordinates and class labels without relying
on anchor boxes or region proposal techniques. This simplifies the object-detection pipeline
and eliminates the need for complex components, like NMS, anchor generation, and anchor
matching. The end-to-end nature of DETR makes it more efficient and easier to implement
compared to traditional algorithms. Zhu, X. et al. have made improvements to DETR and
proposed a new model called Deformable DETR. Compared with DETR, Deformable DETR
has better detection performance, lower computational complexity, and faster convergence.
It is worth noting that Deformable DETR performs exceptionally well in detecting small
target objects [26]. In the early stages of a fire, smoke and fire tend to be concentrated in a
small area [27]. The advantage of Deformable DETR in detecting small objects is helpful in
the timely detection of small flames and smoke, which can prevent the fire from spreading.
Additionally, Deformable DETR introduces the concept of Deformable Convolution [28],
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which selects only a few points near the reference point as k in self-attention calculation.
This approach not only speeds up the convergence of the model but also improves its
computational efficiency, allowing it to detect irregular flames and smoke more effectively.
In the past, fire detection often overlooked the detection of humans. Adding people as
detection objects in fire and smoke detection tasks is of great significance for firefighters to
promptly rescue victims.

Nevertheless, the utilization of Deformable DETR for object detection continues to
be confronted with considerable obstacles. Although Deformable DETR shows excellent
prediction precision based on the COCO dataset, it is not satisfied with real-time tasks in
terms of the computational cost and inference speed. To address these issues, we have
made several improvements. First, the original ResNet [29] is replaced by an advanced
ConvNeXt, which enhances the network’s capacity to extract complex features related
to fire, smoke, and humans. Secondly, the high computational cost of the encoder part
of Deformable DETR renders it unsuitable for deployment on resource-constrained de-
tection devices. To simplify its structure and enhance the detection precision, we have
implemented modifications to the encoder part. Third, the GIoU (Generalized Intersection
over Union) [30] in the Deformable DETR limits the convergence speed and detection
precision, and therefore, Powerful IoU (PIoU) v2 is introduced as a new loss function. Our
contributions can be summarized as follows:

(1) We propose FSH-DETR for the precise and rapid detection of fire, smoke, and humans.
In response to complex and dynamic fire environments, we introduce ConvNeXt to
enhance the algorithm’s ability to extract features of varying scales.

(2) To improve detection precision and significantly reduce computational costs, we
propose the Mixed Encoder, which integrates SSFI (Separate Single-scale Feature
Interaction Module) and CCFM (CNN-based Cross-scale Feature Fusion Module) [31].

(3) To solve the issue of slow convergence and improve the model’s stability in complex
fire scenarios, we introduce PIoU v2 as the loss function.

(4) Extensive experiments on the public dataset have demonstrated that our model
achieves superior detection precision with less computational cost compared to
the baseline.

This paper is structured as follows. In Section 2, we review related works and discuss
their strengths and limitations. Section 3 details the overall architecture and improvement
methods of our proposed model. Section 4 introduces the experimental setup, including the
dataset, evaluation methods, and experimental environment. In Section 5, to demonstrate
the detection performance and characteristics of our model, visual examples, qualitative
analysis, and comparisons with other methods are provided. Section 6 summarizes the
entire study and provides prospects for future work.

2. Related Works

One-stage algorithms: Given the fast inference speed and low hardware requirements
of one-stage algorithms, most fire and human detection tasks prefer this type of algorithm.
Nguyen et al. achieved real-time human detection by adjusting the input size, output
size, and residual blocks of YOLOV2 and adding Spatial Pyramid Pooling blocks [32].
Valikhujaev et al. proposed a new model for fire and smoke detection based on dilated
convolution to overcome limitations, such as unusual camera angles and seasonal varia-
tions [33]. Mukhiddinov et al. implemented an improved YOLOv5 drone image detection
system for wildfire smoke. They improved the backbone of the network using a spatial
pyramid pooling fast plus layer and applied a bidirectional feature pyramid network for
easier access and faster multi-scale feature fusion [34]. Saydirasulovich et al. used Wise IoU
v3 for bounding box regression, Ghost Shuffle Convolution for parameter reduction, and
the BiFormer attention mechanism to capture the characteristics of forest fire smoke. The
model they proposed solved the problems of poor detection precision and the difficulty in
distinguishing small-scale smoke sources in wildfire smoke detection [35]. Ergasheva et al.
enhanced the dataset using histogram equalization technology and successfully developed
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an effective early detection model for ship fires based on YOLOV8 [36]. Although one-stage
algorithms are simple and fast and can achieve real-time object detection, their detection
precision is still not as good as some two-stage algorithms [37]. Meanwhile, the YOLO se-
ries is not ideal for detecting small target objects [38], making it naturally disadvantageous
in detecting early fire characteristics.

Two-stage algorithms: In contrast to one-stage detectors that focus on speed, two-
stage detectors focus on precision. To address the crowding occlusion problem, Kevin
Zhang et al. proposed Double Anchor R-CNN, which utilized Double Anchor RPN and
a proposal crossover strategy to generate and effectively aggregate proposals. Finally, a
Joint NMS is introduced to improve the stability of post-processing [39]. P Barmpoutis
et al. introduced a fire-detection approach integrating deep learning networks and linear
dynamic systems. Initially, the Faster R-CNN network detected potential fire regions
within the image. Then, the regions were projected onto the Grassmannian space. Finally, a
vector of indigenous aggregated descriptors was used to group Grassmannian points. [40].
Chaoxia et al. advanced the anchor formulation strategy of Faster R-CNN using the
color-guided anchoring strategy, while simultaneously constructing a Global Information
Network (GIN) to obtain global image information, enhancing the efficiency and precision
of flame detection [41]. Pan J et al. used a knowledge distillation process to make Faster
R-CNN lightweight and proposed a weakly supervised fine-segmentation method for
detection and classification. A fuzzy system was introduced to construct a fire and smoke
rating framework [37]. Nevertheless, mainstream two-staged methods show poor precision
in small-object detection [38]. More critically, anchor-based methods, like Faster R-CNN,
face challenges in locating objects with diverse shapes [42], which is a drawback for
detecting amorphous fire and smoke.

DETR-based algorithms: One-stage and two-stage algorithms are mostly anchor-
based methods. According to recent research, the detection performance of anchor-based
algorithms depends to some extent on the initial value of the set number of anchors [43].
Both too many and too few anchors lead to poor results, and excessive anchors also increase
computational complexity. Unfortunately, these algorithms use NMS during the detection
process, rather than all edge devices supporting NMS (such as edge computing devices that
only support integer operations) [44]. In order to solve the above problems and abandon
manual intervention and the application of prior knowledge, researchers have begun
to turn their attention to transformer-based DETR. Matthieu Lin et al. proposed a new
decoder DQRF and a faster bipartite matching algorithm, successfully applying DETR to
pedestrian detection [45]. Li, Y. et al. applied lightweight DETR in fire and smoke detection,
reducing the number of encoder layers and incorporating a multi-scale deformable attention
mechanism. They also used ResNeXt50 as the backbone and added the normalization-based
attention module (NAM) to improve the model’s feature-extraction ability [46]. Mardani,
K. et al. simplified DETR by removing unnecessary components, such as binary matching
and bounding box heads, and added masked or linear layers composed of Multi-head
attention layers to complete different tasks, achieving optimal precision performance based
on specified datasets [47]. Huang, J. et al. used Deformable DETR as the baseline and
combined a Multi-scale Context Controlled Local Feature Module (MCCL) and Dense
Pyramid Pooling Module (DPPM) to improve the ability of small smoke detection [10].

Recent improvements to DETR have mainly focused on improving the decoder section.
For instance, Conditional DETR decouples the cross-attention function of the DETR decoder
and proposes conditional spatial embedding, which accelerates the model’s convergence
speed [48]. Dynamic Anchor Box DETR (DAB-DETR) uses dynamically updated box coor-
dinates as queries in the decoder, achieving the goal of improving the model precision and
convergence speed [49]. New research indicates that low-scale features account for 75% of
all tokens in the encoder, but they make a small contribution to the overall detection preci-
sion [50]. Therefore, we focus on improving the rarely studied encoder block in this article.
Compared with the baseline (Deformable DETR), we reduce the number of encoder layers
from six to two, decreasing the computational cost. Simultaneously, Separate Self-Attention
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and CCFM are employed to substitute for the Multi-scale Deformable Attention [26] in
the encoder block. Finally, we replaced the backbone with ConvNeXt, a more advanced
architecture with stronger feature extraction capabilities than the traditional ResNet.

3. Methodology
3.1. Overall Architecture of FSH-DETR

FSH-DETR (Fire Smoke and Human detection based on Deformable DETR) is a
transformer-based object detection algorithm for detecting fire, smoke, and humans. As
shown in Figure 1, FSH-DETR shares a similar network structure with DETR, comprising
three main components: a backbone for feature extraction, an encoder-decoder transformer
for locating objects, and a feed-forward network (FFN) for predicting results. Upon entering
the model, the image undergoes initial feature extraction via the backbone, followed by
advanced feature extraction via our proposed Mixed Encoder. The Mixed Encoder module
consists of a Separate Single-scale Feature Interaction Module (SSFI) and a CNN-based
Cross-scale Feature Fusion Module (CCFM). It is designed to progressively extract and
encode feature information through stacked encoder layers, capturing semantic informa-
tion across various scales and levels while reducing computational cost. The encoded
features are then fed into the decoder layers, where they are iteratively extracted by two
attention mechanisms: Multi-head attention [51] and Multi-scale deformable attention.
These mechanisms enable the extraction of contextually relevant information related to the
object position and category. The FFN outputs a set of predicted boxes and corresponding
category probabilities. In the following sections, a detailed introduction to the structure of
FSH-DETR is provided.

Sensors 2024, 24, 4077 5 of 19 
 

 

convergence speed [48]. Dynamic Anchor Box DETR (DAB-DETR) uses dynamically up-
dated box coordinates as queries in the decoder, achieving the goal of improving the 
model precision and convergence speed [49]. New research indicates that low-scale fea-
tures account for 75% of all tokens in the encoder, but they make a small contribution to 
the overall detection precision [50]. Therefore, we focus on improving the rarely studied 
encoder block in this article. Compared with the baseline (Deformable DETR), we reduce 
the number of encoder layers from six to two, decreasing the computational cost. Simul-
taneously, Separate Self-Attention and CCFM are employed to substitute for the Multi-
scale Deformable Attention [26] in the encoder block. Finally, we replaced the backbone 
with ConvNeXt, a more advanced architecture with stronger feature extraction capabili-
ties than the traditional ResNet. 

3. Methodology 
3.1. Overall Architecture of FSH-DETR 

FSH-DETR (Fire Smoke and Human detection based on Deformable DETR) is a trans-
former-based object detection algorithm for detecting fire, smoke, and humans. As shown 
in Figure 1, FSH-DETR shares a similar network structure with DETR, comprising three 
main components: a backbone for feature extraction, an encoder-decoder transformer for 
locating objects, and a feed-forward network (FFN) for predicting results. Upon entering 
the model, the image undergoes initial feature extraction via the backbone, followed by 
advanced feature extraction via our proposed Mixed Encoder. The Mixed Encoder mod-
ule consists of a Separate Single-scale Feature Interaction Module (SSFI) and a CNN-based 
Cross-scale Feature Fusion Module (CCFM). It is designed to progressively extract and 
encode feature information through stacked encoder layers, capturing semantic infor-
mation across various scales and levels while reducing computational cost. The encoded 
features are then fed into the decoder layers, where they are iteratively extracted by two 
attention mechanisms: Multi-head attention [51] and Multi-scale deformable attention. 
These mechanisms enable the extraction of contextually relevant information related to 
the object position and category. The FFN outputs a set of predicted boxes and corre-
sponding category probabilities. In the following sections, a detailed introduction to the 
structure of FSH-DETR is provided. 

 
Figure 1. The overall architecture of FSH-DETR. 

3.2. ConvNeXt Backbone 
ResNet has been widely used as the backbone for various vision models due to its 

remarkable performance. Recently, Liu et al. have introduced an improved version of Res-
Net, called ConvNeXt [52], following an in-depth analysis of the Swin Transformer [53] 
architecture. The replacement of the original ResNet50 with ConvNeXt-tiny has been 
demonstrated to achieve enhanced precision and reduced computational cost, while 
maintaining a comparable number of parameters. The modifications made to ConvNeXt 
can be divided into two levels: macro and micro. 
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3.2. ConvNeXt Backbone

ResNet has been widely used as the backbone for various vision models due to its
remarkable performance. Recently, Liu et al. have introduced an improved version of
ResNet, called ConvNeXt [52], following an in-depth analysis of the Swin Transformer [53]
architecture. The replacement of the original ResNet50 with ConvNeXt-tiny has been
demonstrated to achieve enhanced precision and reduced computational cost, while main-
taining a comparable number of parameters. The modifications made to ConvNeXt can be
divided into two levels: macro and micro.

In terms of macro design, ConvNeXt modifies the stacking ratio of blocks in each
stage. The first, second, third, and fourth backbone stages contain, respectively, 3, 3, 9, and
3 blocks. Furthermore, the stem cells in ResNet are replaced with the same patchy layer as
Swin Transformer. Additionally, ConvNeXt introduces the concept of group convolution.
By dividing the input feature map into multiple subgroups and performing independent
convolution operations on each subgroup, the features of different subgroups are fused.
This strategy allows the backbone to capture features of different scales. ConvNeXt also
adopts the Inverted Bottleneck module to effectively avoid information loss. Finally, a
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larger convolution kernel is selected to obtain a wider receptive field, thereby improving
the ability to perceive global and larger-scale features.

In terms of micro design, ConvNeXt changes the activation functions ReLU and Batch
Normalization (BN) to GELU and Layer Normalization (LN), while reducing the number
of activation functions and normalization layers. Moreover, ConvNeXt incorporates an
LN before and after downsampling to maintain model stability. The aforementioned
enhancements ensure that ConvNeXt retains its simplicity while offering faster inference
speeds and superior performance compared to the Swin Transformer. Fire and smoke are
diverse, with varied flame colors resulting from different fire sources. The size of a fire
affects the transparency of smoke, while scene variances, such as interference, concealment,
and lighting conditions, can heighten recognition. Most network structures overlook this
point. ConvNeXt increases the base channel count from 64 to 96, enabling it to better extract
features of fire, smoke, and humans. The aforementioned enhancements confer a natural
advantage to ConvNeXt in the domains of fire, smoke, and human detection.

3.3. Mixed Encoder

The encoder of Deformable DETR has two functions: implementing deformable
attention and feature fusion. These functions have inherently inadequate performance for
both tasks. Our solution is the Mixed Encoder, which decouples the original encoder into
two modules: Separate Single-scale Feature Interaction (SSFI) and CNN-based Cross-scale
Feature Fusion Module (CCFM). The two modules perform self-attention and multi-scale
feature fusion respectively.

3.3.1. Separable Single-Scale Feature Interaction

In order to prevent feature fusion from occurring in the encoder, we develop an
enhanced module called SSFI. The structures of the original encoder and SSFI are shown in
Figure 2a,b, respectively. Although the SSFI architecture appears more complex, resulting
in a higher computational cost, it is important to note that this is offset by the reduction in
the number of encoder layers. The time complexity of deformable attention and separate
self-attention is both O(k). However, in the original encoder, there are 6 encoder layers,
while our Mixed Encoder only contains 2 encoder layers. Furthermore, independently
performing self-attention on the outputs of different stages of the backbone also plays
an important role in reducing the computational cost, as the self-attention operation is
performed on smaller feature maps. Therefore, our Mixed Encoder exhibits a reduced
computational cost.

As shown in Figure 2a, the original Deformable DETR flattens and concatenates
features from various scales before the encoder to form a long token. Subsequently, it
collaborates with Multi-Scale Deformable Attention to standardize the reference points
of disparate scale features, thereby enabling their fusion. To avoid this type of feature
integration during the encoder stage, we flatten the features at different scales and feed
them directly into the encoder without concatenation. This approach results in three dif-
ferent short tokens, which are more readily recoverable. The three short tokens will be
independently performed operations, such as separate self-attention and layer normaliza-
tion, as shown in Figure 2b. Then, the result will be transformed into the state before being
flattened at the end of SSFI. Additionally, given that fire, smoke, and human detection
models are usually deployed on hardware with limited resources, a streamlined method is
specifically adapted for feature interaction at the same scale. In order to replace Multi-scale
Deformable Attention in Deformable DETR, we have employed separate self-attention [54].
As an efficient variant of the self-attention mechanism, separate self-attention has the
characteristics of low time complexity and latency compared to Multi-head attention in
DETR, making it an ideal candidate for deployment on resource-limited hardware. We will
provide a more detailed introduction to separable self-attention within SSFI.
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The specific pipeline of separate self-attention is shown in Figure 3. When the feature
X ∈ Rk×d is fed into the module, it is directed to three different branches: input I, key
K, value V. To convert the k d-dimensional tokens into k scalars, a linear layer is used in
the branch I, which essentially multiplies the input X by a weighted matrix WI ∈ Rd×1

and adds the corresponding bias. The weight WI serves as a latent node L and will be
used in subsequent processes. Afterward, scalars are used to form an intermediate variable
called context scores through the softmax function. It is worth noting that in the Multi-head
attention of the transformer, each input query will calculate a self-attention score with the
key, while in the separable self-attention, the key will only calculate the context score with
the corresponding latent node L. This crucial operation results in the time complexity of
O(k) for separate self-attention, accompanied by a slight decrease in detection precision
and a significant decrease in latency [54]. Next, the context score is a broadcasted element-
wise multiplication with k d-dimensional vectors that pass through the branch K with a
weight of WK ∈ Rd×d, followed by summation to obtain a d-dimensional vector termed the
context vector.

Similarly, after passing through branch V, the input X is immediately followed by
a ReLU activation function to obtain an intermediate variable XV ∈ Rk×d. The XV then
performs broadcasted element-wise multiplication with the context vector and is further
processed by a linear layer with a weighted matrix WO ∈ Rd×d to obtain the final result
y ∈ Rk×d. The entire process of separable self-attention can be expressed mathematically as
Equation (1):
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y =

∑

 cs∈Rk×1︷ ︸︸ ︷
σ(XWI) ∗ XWK


︸ ︷︷ ︸

cv∈R1×d

∗ ReLU(XWV)


WO (1)

where σ represents the softmax function and ∗ represents the broadcasted element-wise
multiplication operation. The calculation of cv can be expressed as Equation (2):

cv =
k

∑
i=1

cs(i)XK(i) (2)

where k represents the number of tokens, cs represents context score, and XK represents the
output feature of branch K. Equation (2) implements the function of encoding information
from all tokens in the input X.
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3.3.2. CNN-Based Cross-Scale Feature-Fusion Module

Inspired by Real-Time DETR (RT-DETR) [31], we introduce the CCFM to facilitate
feature fusion across different scales. The specific structure of this module is illustrated
in Figure 4. The CCFM comprises several fusion modules, each comprising multiple
convolutional layers and RepBlocks. These fusion modules facilitate the integration of
features across different scales. Low-scale features tend to emphasize global structure and
semantic information, whereas high-scale features are more inclined to capture local details
and texture information. By enabling the fusion of contextual information, the precision of
fire, smoke, and human detection can be enhanced.

The output r2, r3, and r4 of SSFI will serve as the input of CCFM. r4 initially passes
through the Conv1×1 Block shown in Figure 4 and undergoes an upsampling operation.
The calculation process of the Conv1×1 Block is expressed as Equation (3):

Conv1×1Block = SiLU(BatchNorm(Conv1×1( fin))) (3)
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where SiLU is the Sigmoid Gated Linear Unit activation function, BatchNorm represents
the batch normalization operation, Conv1×1 represents the convolution layer with 1 × 1
kernels, and fin represents the input features.

Subsequently, the output enters the fusion module with r3. The fused result undergoes
and is sent to upsampling and performs feature fusion with r2. Similarly, we replace the
Conv1×1 Block and upsampling operation with the Conv3×3 Block and downsampling
operation, repeating the above operation from bottom to top. In the end, the results of
feature fusion are concatenated to obtain the final feature. Equations (4) and (5) represent
the calculation process of the fusion module and Conv3×3 Block, respectively.

Conv3×3Block = SiLU(BatchNorm(Conv3×3( fin))) (4)

Fusion = Flatten(Conv1×1(cat( fin1, fin2)) + RepBlocks(Conv1×1(cat( fin1, fin2)))) (5)

where Conv3×3 represents using 3 × 3 convolutions to extract features, Flatten represents
the flattening operation, cat represents the concatenation operation, RepBlocks indicates
RepBlocks, and fin1 and fin2 represent different input features.
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3.4. IoU-Based Loss Function

IoU-based loss functions are commonly employed in object detection, quantifying
the degree of overlap between predicted and ground truth boxes. Fire and smoke exhibit
intricate texture and color attributes, as well as distinctive shapes with unpredictable
transformations. Fierce flames and strong smoke can readily obstruct the human body,
presenting a significant challenge in detection. Moreover, flaming and smoking from
different combustible materials display varying hues and shapes within the same scene,
making it difficult for the model to learn complex features and slowing down model
convergence. Consequently, the selection of an appropriate IoU-based loss function is of
paramount importance. A superior IoU-based loss function facilitates the alignment of the
predicted box with the ground truth box in a timely manner, thereby accelerating model
convergence. Typically, IoU-based loss functions can be defined as follows:

L = 1 − IoU +R(A, B) (6)

IoU =
|A ∩ B|
|A ∪ B| (7)
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where A and B represent the predicted box and ground-truth box, respectively. R(·) repre-
sents the penalty function. A ∩ B means the area of intersection between the predicted and
ground truth boxes, while A ∪ B means the area of union between the two bounding boxes.

Powerful IoU

Recently, studies by Liu, C. et al. indicated that anchor boxes are prone to expand
during the regression process, which seriously affects the convergence speed of the model.
Therefore, they proposed PIoU [55]. The formula for RPIoU is as follows:

P =

(
dw1

wgt
+

dw2

wgt
+

dh1

hgt
+

dh2

hgt

)
/4, (8)

f (x) = 1 − e−x2
, (9)

RPIoU = f (P) (10)

where wgt and hgt represent the width and length of ground truth box, respectively. The
distance between the predicted box and the ground truth box is measured by dw1, dw2, dh1,
and dh2, and their specific meanings are shown in Figure 5. During the training process, the
penalty term P remains constant even if the anchor box expands. This prevents excessive
anchor box expansions during regression. Furthermore, the penalty function selected
generates an appropriate gradient based on the quality of predicted boxes. When the
penalty factor P is greater than 2, signifying a substantial difference between the predicted
box and ground-truth box, f ′(P) diminishes, thereby mitigating detrimental gradients
from low-quality anchor boxes. When P is approximately 1, it indicates proximity between
the predicted box and ground-truth box. The f ′(P) becomes higher and leads to quicker
regression. As P approaches 0, it signifies the predicted box nearing the ground-truth box.
f ′(P) gradually decreases as the anchor box’s quality improves, enabling stable optimization
towards complete alignment.

Sensors 2024, 24, 4077 10 of 19 
 

 

𝐼𝑜𝑈 |𝐴 ∩ 𝐵||𝐴 ∪ 𝐵| (7)

where 𝐴  and 𝐵  represent the predicted box and ground-truth box, respectively. ℛ ∙  
represents the penalty function. 𝐴 ∩ 𝐵 means the area of intersection between the pre-
dicted and ground truth boxes, while 𝐴 ∪ 𝐵 means the area of union between the two 
bounding boxes. 

Powerful IoU 
Recently, studies by Liu, C. et al. indicated that anchor boxes are prone to expand 

during the regression process, which seriously affects the convergence speed of the model. 
Therefore, they proposed PIoU [55]. The formula for 𝑅  is as follows: 𝑃 𝑑𝑤𝑤 𝑑𝑤𝑤 𝑑ℎℎ 𝑑ℎℎ /4, (8)

𝑓 𝑥 1 e , (9)𝑅 𝑓 𝑃  (10)

where 𝑤   and ℎ   represent the width and length of ground truth box, respectively. 
The distance between the predicted box and the ground truth box is measured by 𝑑𝑤 , 𝑑𝑤 , 𝑑ℎ , and 𝑑ℎ , and their specific meanings are shown in Figure 5. During the training 
process, the penalty term 𝑃 remains constant even if the anchor box expands. This pre-
vents excessive anchor box expansions during regression. Furthermore, the penalty func-
tion selected generates an appropriate gradient based on the quality of predicted boxes. 
When the penalty factor 𝑃 is greater than 2, signifying a substantial difference between 
the predicted box and ground-truth box, 𝑓’ 𝑃   diminishes, thereby mitigating detri-
mental gradients from low-quality anchor boxes. When 𝑃 is approximately 1, it indicates 
proximity between the predicted box and ground-truth box. The 𝑓’ 𝑃  becomes higher 
and leads to quicker regression. As 𝑃 approaches 0, it signifies the predicted box nearing 
the ground-truth box. 𝑓’(𝑃) gradually decreases as the anchor box’s quality improves, en-
abling stable optimization towards complete alignment. 

 
Figure 5. Schematic of loss function parameters. 

PIoU v2 is an extension of PIoU v1, incorporating a non-monotonic attention layer 
that is controlled by a single hyperparameter. The mathematical formulae are as follows: 𝑞 𝑒 , 𝑞 ∈ 0,1 , (11)𝑢 𝑥 3𝑥𝑒 , (12)𝐿 _ 1 𝐼𝑜𝑈 𝑅 , (13)𝐿 _ 𝑢 𝜆𝑞 𝐿 _  (14)

Figure 5. Schematic of loss function parameters.

PIoU v2 is an extension of PIoU v1, incorporating a non-monotonic attention layer
that is controlled by a single hyperparameter. The mathematical formulae are as follows:

q = e−P, q ∈ (0, 1], (11)

u(x) = 3xe−x2
, (12)

LPIoU_v1 = 1 − IoU + RPIoU , (13)

LPIoU_v2 = u(λq)LPIoU_v1 (14)

where u(λq) is an attention function. λ is a hyperparameter, and P is the penalty term in
PIoU v1. The original penalty term P is replaced by q in PIoU v2. As P increases from
0, q gradually decreases from 1, and u(λq) will undergo a process of initially increasing
and then decreasing. u(λq) reaches its maximum when encountering a medium-quality
anchor box. This newly introduced attention mechanism helps the model focus more on
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medium-quality anchor boxes, reducing the negative impact of low-quality anchor boxes on
gradients. A comparison of multiple IoU loss functions reveals that PIoU v2 is the optimal
choice, as the traditional IoU loss function treats all anchor boxes equally regardless of their
quality. This can lead to suboptimal learning of bounding boxes with varying qualities.
PIoU V2 represents a novel approach that combines the strengths of EioU [56], SioU [57],
and WioU [58]. It generates a small but increasing gradient for low-quality anchor boxes,
allowing them to gradually improve during the regression process. For medium-quality
anchor boxes, a large gradient is generated, enabling them to rapidly become high-quality
anchor boxes. Medium-quality bounding boxes frequently exhibit overlap with the target
but are not perfectly aligned. By directing greater attention to these bounding boxes, PIoU
v2 facilitates the model better, learning the position shift and shape transformation of the
target. This improves the precision of object localization, resulting in detection boxes that
are more closely aligned with the true position of the object. Moreover, PIoU v2 not only
reduces the number of hyperparameters but also solves the problem of box expanding
during the regression process, which helps to enhance the performance and robustness of
the model.

4. Experiment Settings
4.1. Image Dataset

Our dataset is collected through the internet, including images captured from various
sources. It encompasses images captured from a variety of shooting angles, as well as
images of different fire morphologies, smoke patterns, and environmental settings. Some
of the images in the dataset are shown in Figure 6. During training, all images are resized
to 640 × 640 and then subjected to a series of data augmentations, including horizontal and
vertical flips, 90-degree rotations, and Salt and Pepper noise. As a result, over 25,000 images
are obtained for this experiment. The details of the dataset are provided in Table 1.
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Table 1. Fire smoke and human dataset and its specification.

Dataset Number of Images Fire Objects Smoke Objects Human Objects

Train 20,016 21,809 14,896 11,568
Evaluation 5004 8135 4000 2175

Total 25,020 29,944 18,896 13,743

4.2. Evaluation Metrics

To evaluate the detection performance of different models, we employ Accuracy and
AP (Average Precision) as the evaluation metrics. Accuracy is calculated by counting the
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true positives, and AP is the enclosed area of the PR curve. Specifically, the precision and
recall can be computed by the following:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

where TP, FP, and FN represent the True Positive, False Positive, and False Negative,
respectively. We also use APs, APM, and APl to represent the AP of small, medium, and
large objects, respectively, whereas AP50 stands for the AP in the case of IoU = 0.5. mAP
represent the mean AP of all classes.

In terms of model complexity, we use Giga Floating-point Operations (GFLOPs) to
evaluate the computational cost of the model. In addition, the parameter quantity (Params)
is used to measure the computational complexity. The larger GFLOPs and Params, the
higher the hardware requirements.

To evaluate the inference (prediction) speed of the model, the Frame Per Second (FPS)
is employed. A larger FPS means that the model can process more frames per second,
which indicates better efficiency of the model.

4.3. Experimental Environment

All experiments are conducted on a computer equipped with 4 RTX 3090 GPUs, the
CUDA version is 11.7, and the Python version is 3.8. We implement our model using the
Pytorch 1.11 [59] and MMDetection [60] framework.

4.4. Optimization Method and Other Details

The specific parameter configurations are presented in Table 2. The batch size per
GPU is 4 and the total batch size is 16. Besides, the AdamW optimizer [61] is adopted with
a base learning rate of 0.0002 and weight decay of 0.0001.

Table 2. Parameter configurations in the experiment.

Parameter Name Parameter Value

epoch 100
batch size 16
optimizer AdamW

learning rate 0.0002
weight decay 0.0001

5. Result Analysis
5.1. Effectiveness of Backbone

To demonstrate the effectiveness of the backbone, we take several mainstream back-
bone architectures to compare with our ConvNeXt-tiny, including ResNet, EfficientNet [62],
and ConvNextv2 [63], to extract features from the input images. We train and evaluate
our model with different backbone architectures while keeping other hyperparameters
and training procedures consistent. The detection results of the baseline under different
backbones are shown in Table 3. The results demonstrate that the choice of backbone can
impact the detection precision of the model. Furthermore, implementing ConvNeXt-tiny as
the backbone not only reduces the parameters and computation cost but also significantly
enhances the detection precision. Although ConvNeXtv2-A performs well on the COCO
dataset, it results in differences on our dataset. This discrepancy may be attributed to
differences in the data.
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Table 3. The performance of Deformable DETR under different backbones. The best results are
highlighted in bold.

Backbone mAP mAP50 mAP75 mAPs mAPm mAPl GFLOPs Params (M) FPS

ResNet-50 65.5 84.0 63.7 45.1 53.7 70.6 126.0 41.1 25.1
EfficientNet-b0 64.9 81.6 63.3 35.6 53.4 69.8 71.3 16.4 18.9
ConvNeXtv2-A 60.2 74.4 60.1 27.2 49.4 65.2 74.4 41.9 19.6
ConvNeXt-tiny 66.1 84.3 65.2 53.6 53.1 71.6 70.8 40.8 29.8

5.2. Effectiveness of PIoU v2

In this subsection, we conduct experiments to verify the effectiveness of PIoU v2
by comparing it with other IoU-based loss functions, including GIoU, DIoU (Distance
IoU) [64], CIoU (Complete IoU) [64], and SIoU. The experimental results are presented
in Table 4. It can be observed from these results that PIoU v2 can improve the detection
precision.

Table 4. The performance of the baseline under different IoU-based loss functions. The best results
are highlighted in bold.

IoU Loss Function mAP mAP50 mAP75 mAPs mAPm mAPl Total Training Time (h)

GIoU 65.5 84.0 63.7 45.1 53.7 70.6 23.2
DIoU 65.4 82.8 63.8 39.1 52.4 70.6 19.2
CIoU 65.6 83.8 64.4 43.2 54.3 70.8 18.0
SIoU 65.5 83.6 64.6 41.1 53.1 70.6 19.2

PIoUv1 65.2 83.3 64.5 48.7 51.7 70.5 18.9
PIoUv2 65.6 83.6 64.8 48.2 52.8 70.7 19.5

5.3. Comparison with Other Models

To demonstrate the overall performance of our method, we compare it with existing
representative object-detection algorithms, including YOLO v3 [15], YOLO v5, YOLO
v7 [18], YOLO v8, RTMDet [65], DETR, Deformable DETR, Conditional DETR [48], DAB-
DETR [49], and Group-DETR [66]. By benchmarking our results against these approaches,
we gain insights into the advancements achieved by our proposed method. All the ex-
periments are performed on the dataset that is introduced in Section 4.1. The results are
presented in Table 5, with the best results highlighted in bold. According to the results,
FSH-DETR achieved the highest mAP among all algorithms. Moreover, other indicators
of our method also exceed other DETR-series algorithms. In small-scale object detection,
our method delivers impressive results that are only second to RTMDet. Furthermore, in
large-scale object detection, its mAPl reaches 71.6%, outperforming all other algorithms.

Table 5. Comparison results between FSH-DETR and other models. The best results are highlighted
in bold.

Model Backbone mAP mAP50 mAP75 mAPs mAPm mAPl FPS

YOLOv3 DarkNet-53 57.2 78.3 59.4 36.7 47.0 62.3 68.5
YOLOv5 YOLOv5-n 63.9 79.5 63.1 24.5 52.7 68.8 92.5
YOLOv7 YOLOv7-tiny 65.2 81.3 63.2 33.8 54.8 69.6 93.9
YOLOv8 YOLOv8-n 64.9 79.0 63.2 33.5 55.3 69.0 64.6
RTMDet RTMDet-tiny 65.2 79.8 64.1 59.8 55.1 69.3 42.2

DETR R-50 62.6 81.9 62.6 17.3 46.8 68.7 34.1
Deformable DETR R-50 65.5 84.0 63.7 45.1 53.7 70.6 25.1
Conditional DETR R-50 64.2 82.6 63.7 27.7 50.2 70.2 30.8
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Table 5. Cont.

Model Backbone mAP mAP50 mAP75 mAPs mAPm mAPl FPS

DAB-DETR R-50 65.1 83.1 65.2 25.1 52.4 70.6 24.9
Group-DETR R-50 65.6 83.2 64.3 43.5 51.9 71.1 19.3

Ours ConvNeXt 66.7 84.2 65.3 50.2 54.0 71.6 28.4

5.4. Ablation Experiments

We aim to comprehensively analyze and evaluate the overall performance of our
proposed model through a series of ablation experiments. Table 6 presents the results of
multiple ablation experiments, where

√
denotes that relevant improvement methods have

been applied to the baseline, while × denotes that no relevant improvement methods have
been applied.

(1) The results of the first and second groups of experiments indicate that ConvNeXt
significantly reduces the number of parameters in comparison to the other models
while improving Accuracy f ire, Accuracysmoke, Accuracyhuman, and mAP.

(2) The results of the first and third groups of experiments indicate that upgrading the
original encoder to the Mixed Encoder reduces the computational cost but increases
the number of parameters and reduces Accuracysmoke and Accuracyhuman slightly.

(3) The results of the sixth and seventh groups of experiments indicate that although the
Mixed Encoder is the main reason for the increase in the model parameter count, it
also ensures the improvement in the model’s precision in detecting fires and humans,
as well as mAP.

(4) The results of the first and fourth experimental groups indicate that using PIoU v2 as
the loss function slightly improves the detection precision of the algorithm but has
almost no effect on the parameter and computational cost.

Table 6. Results of ablation experiments on FSH-DETR.
√

denotes that relevant improvement
methods have been applied to the baseline, while × denotes that no relevant improvement methods
have been applied. The best results are highlighted in bold.

Improved Methods Evaluation Metrics

ConvNeXt Mixed
Encoder

Loss
Function mAP Accuracyfire Accuracysmoke Accuracyhuman GFLOPs Params (M)

× × × 65.5 96.89 73.97 79.88 126.0 41.1√
× × 66.1 97.50 80.48 80.17 70.8 40.8

×
√

× 65.8 98.01 73.27 79.99 75.5 46.3
× ×

√
65.6 97.21 76.91 78.62 123.0 40.1√ √

× 66.6 98.05 78.09 78.89 77.5 50.1√
×

√
66.2 97.62 80.75 79.40 79.8 40.8√ √ √
66.7 98.05 78.78 80.22 77.5 50.8

5.5. Visualization

To better understand the effectiveness of PIoU v2, we visualize the training process
using different IoU loss functions. It is worth noting that the pre-trained model provided
by MMDetection is used for parameter initialization. Therefore, the mAP of the model does
not increase from 0 in the early stages of training. From Figure 7, it is evident that the model
using PIoU v2 as the loss function has a faster convergence speed, while DIoU has the
slowest convergence speed. After 50 epochs, all IoUs tend to converge and have roughly
the same precision. However, PIoU v2 achieves a slightly higher mAP than other models.

To provide a more intuitive demonstration of the superiority of our algorithm, we
selected detection results from various scenarios and presented them in Figure 8. We use
green, yellow, and blue for indicating fire, smoke, and human, respectively. In the dark
scene, our FSH-DETR algorithm performs better than other algorithms by detecting more
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targets and with more accurate boxes. In the bright scene, FSH-DETR also detects more
small-scale targets than other algorithms.
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6. Discussion
6.1. Limitions

The detection of fire, smoke, and humans is a highly challenging task in object detec-
tion. In the actual detection process, the presence of false smoke or fire, such as clouds,
steam, and halogen lamps, can pose significant challenges to the detection task. These
challenges are further compounded in special environments, such as foggy weather and
low-light environments, which further increase the difficulty of detection. Despite the
introduction of the Mixed Encoder, which is a module with enhanced fusion capabili-
ties for fire, smoke, and human features, the aforementioned issues remain unresolved.
Furthermore, although our proposed FSH-DETR has a higher frame per second (FPS)
compared to the baseline, it has not yet met the requirements for real-time monitoring on
edge computing devices.

6.2. Potential Future Work

In future work, we intend to enhance the dataset through the use of generative
adversarial networks (GANs) and diffusion models, which can generate negative samples.
This will improve the model’s ability to detect fake fire and smoke. In addition, we posit
that the attention mechanism can be employed to further extract features of fire and smoke,
thereby assisting detectors in more effectively distinguishing between genuine and spurious
instances of fire and smoke. In light of the fact that DETR is still a novel technology, several
avenues for future work can be developed based on the findings of this study. One avenue
for future work is to extend our approach to real-time video-based fire and smoke detection.
The objective is to enhance the real-time processing capability of the model while reducing
its computational complexity, thereby ensuring its effectiveness. This will facilitate the
development of practical applications.

7. Conclusions

The rapid development of deep learning technology has led to an increased use of
object-detection techniques in fields, such as forest fire surveillance, fire emergency iden-
tification, and industrial safety. Nevertheless, there is still considerable scope for further
improvements in this technology. The proposed model, FSH-DETR, employs the advanced
Deformable DETR as a baseline to accurately identify and localize instances of fire, smoke,
and humans in images. The employment of ConvNeXt, due to its powerful ability and
lightweight design, enables the FSH-DETR to extract richer and more comprehensive fea-
ture information. Subsequently, the Mixed Encoder, comprising SSFI and CCFM modules,
is developed. This approach reduces the computational cost while maintaining high preci-
sion. Finally, we introduce the latest PIoU v2, which not only accelerates the convergence
speed and improves its robustness in complex fire scenarios, but also raises the detection
precision to a new level. Extensive experimentation and evaluation have demonstrated
the effectiveness and potential of our approach. The model ultimately achieves a mAP of
66.7%, outperforming the comparative models.
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