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Abstract: Vehicle–infrastructure cooperative perception is becoming increasingly crucial for au-
tonomous driving systems and involves leveraging infrastructure’s broader spatial perspective and
computational resources. This paper introduces CoFormerNet, which is a novel framework for
improving cooperative perception. CoFormerNet employs a consistent structure for both vehicle
and infrastructure branches, integrating the temporal aggregation module and spatial-modulated
cross-attention to fuse intermediate features at two distinct stages. This design effectively handles
communication delays and spatial misalignment. Experimental results using the DAIR-V2X and
V2XSet datasets demonstrated that CoFormerNet significantly outperformed the existing methods,
achieving state-of-the-art performance in 3D object detection.

Keywords: V2X; cooperative perception; 3D LiDAR object detection

1. Introduction

In autonomous driving systems, establishing an accurate representation of the driving
environment is crucial. This not only concerns the safe operation of vehicles but also
the safety of passengers and the surrounding environment [1]. Autonomous vehicles
mainly rely on onboard LiDAR sensors to capture dense point clouds of the surround-
ing environment and perform object detection. The system must be capable of promptly
detecting and classifying all significant objects on the path, including blind spots, ob-
structions, and distant objects. Failure of the perception system could result in serious
accidents, as demonstrated by incidents involving autonomous vehicles from Tesla [2,3]
and Uber [4]. In these accidents, factors such as blind spots, obstructions, and long-distance
perception played significant roles [5]. To address these challenges, researchers proposed
the concept of cooperative perception [6], which involves integrating information from
infrastructure-side sensors to mitigate these limitations. Due to the elevated installation
height of infrastructure-side sensors, autonomous vehicles can achieve a global perspective
and long-distance perception by receiving information from infrastructure-side sensors,
significantly enhancing their perception capabilities. This approach is more reliable and
cost-effective compared with single-point perception. A report [7] indicates that vehicle–
infrastructure cooperative perception greatly improves the safety of autonomous driving,
reducing takeover events by 62% and lowering single-vehicle costs by 30%.

In traffic scenarios, particularly at intersections and T-junctions, blind spots, obstruc-
tions, and distant obstacles that are missed can create numerous potential safety issues.
Sensors mounted on elevated infrastructure can effectively address these problems. In terms
of obstacle detection, LiDAR is widely used for 3D object detection; estimating the size, 3D
posture, and category of objects in the environment; and assigning them to 3D bounding
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boxes. As shown in Figure 1, the LiDAR point cloud from both the vehicle and infrastruc-
ture sides at the same moment reveals partial misdetections caused by blind spots and
obstructions. Additionally, the greater distance results in fewer point clouds, leading to
significant misdetections and false detections. The goal of detecting objects outside the
field of view or that are obscured is to enhance the perception capabilities of the vehi-
cle’s autonomous driving system in vehicle–infrastructure cooperative scenarios, thereby
improving traffic safety through better planning of its future trajectory.

Figure 1. Perception conditions under vehicle–infrastructure cooperation in typical intersection
traffic scenarios. The red box indicates the detected objects.

Three-dimensional object detection is a key function in vehicle–infrastructure coopera-
tive perception systems, with LiDARs and cameras extensively used for this task. The ad-
vantages and disadvantages of each were widely compared in many studies [6,8–10]. In
vehicle–infrastructure systems, both the vehicle and infrastructure are typically equipped
with both LiDARs and cameras. However, multimodal fusion often occurs on a single side,
as in these studies focused on multimodal sensor fusion for individual vehicles, with the same
algorithms applicable to the infrastructure side. The fusion of sensors at both the vehicle and
infrastructure ends generally happens at a single-sensor-type level, and LiDAR-based fusion
tends to perform significantly better than camera-based fusion. Therefore, continuing the
research direction of previous studies, this article focuses mainly on LiDAR-based fusion for
3D detection in vehicle–infrastructure cooperation.

In the realm of fusion work, the primary methods include early fusion, late fusion,
and middle fusion. Early fusion involves transmitting raw data directly, late fusion involves
merging information at the object level, and middle fusion involves integrating intermediate
features for feature fusion. In practical applications, due to computational delays and the
transmission channel bandwidth, the data received at the vehicle end, regardless of the
fusion method employed, represents information from a past and uncertain time point.
In recent years, a considerable number of algorithms have neglected the impact of these
delays, focusing instead on designing superior fusion techniques, which is impractical
for real-world applications. Recently, some research has started to address and attempt
to resolve issues related to these delays, though there is still limited focus on fusion
methods themselves. In this study, we took both aspects into account and proposed a
novel cooperative detection framework called CoFormerNet. Instead of attempting to
reduce these delays or predict features to match the vehicle end’s timestamp, we shifted
the focus to more effectively utilizing and integrating historical features to enhance the
precision of vehicle-end perception. First, we used a fundamentally consistent network
architecture on the vehicle and infrastructure sides, and simultaneously fused intermediate
features at two different stages. The first stage of intermediate feature fusion occurs after
extracting the bird’s eye view (BEV) features. The infrastructure-side uses the temporal
aggregation module (TAM) to aggregate the historical BEV features. Due to the inevitability
of the communication delay, the vehicle-side TAM treats the BEV features aggregated by
the infrastructure-side as historical features for fusion, effectively avoiding the problems
brought about by the communication delay. The second stage of intermediate fusion is
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in the decoding layer. To alleviate the vehicle–infrastructure sensor calibration problem
caused by the hard association strategy, we used a cross-attention mechanism to construct
a soft association between the vehicle and the infrastructure LiDAR. The vehicle-side uses
spatial-modulated cross-attention (SMCA) to softly link the already fused BEV features of
the vehicle side with the object queries obtained by the infrastructure side, enabling the
network to adaptively determine where and what information should be taken from the
fused BEV features of the vehicle side.

The main contributions of this work are as follows:

• CoFormerNet uses the TAM to fuse the historical temporal information of the infras-
tructure sensors, which not only fully utilizes the computational capabilities of the
infrastructure but also fully exploits the advantage that the long-distance global per-
spective of the infrastructure can extend the perception field of the vehicle in space and
time. At the same time, intermediate feature fusion at two different stages, fully utiliz-
ing infrastructure perception information, solves the impact of time-asynchronous un-
certainty due to communication delay and the calibration bias of vehicle–infrastructure
sensors on feature fusion.

• The design of CoFormerNet allows for end-to-end training, thereby fully integrating
vehicle–infrastructure perception information. This design requires only one model
to cover all possible communication delays, greatly reducing the complexity of the
model. This end-to-end training method can better optimize the model’s performance,
improving its application effects in real environments.

• CoFormerNet achieved a new state-of-the-art level using the DAIR validation set.
On the DAIR validation set, CoFormerNet’s performance showed a significant im-
provement over the previous best results. This indicates that the design and methods
of CoFormerNet have significant advantages in enhancing the perception capabilities
of autonomous driving systems and are expected to promote the further development
of autonomous driving technology.

The design goal of CoFormerNet is to address the aforementioned problems in a
simple and unified manner. Through this approach, we hope to enhance the perception
capabilities of autonomous driving systems, thereby improving their safety and perfor-
mance in complex traffic environments. The implementation of this method may have a
profound impact on the future of autonomous driving, propelling it toward higher safety
and efficiency.

2. Related Work
2.1. Egocentric Perception

The field of 3D object detection using LiDAR point cloud data can be categorized
into point-based, grid-based, and transformer-based methods. Point-based methods
operate directly on the sparse and unordered set of points in the LiDAR point cloud
to predict 3D bounding boxes. These methods aggregate point features through mul-
tiscale/multiresolution grouping and set abstraction techniques. Examples of point-
based methods include PointRCNN [11], PVRCNN [12], and Frustum-PointNet [13]. Al-
though these methods can achieve large receptive fields, they tend to be computationally
expensive. Grid-based methods address the sparsity and unordered nature of LiDAR point
clouds by projecting the points onto regular grids, such as voxels [14,15], BEV pillars [16],
or range projection [17,18]. They use 3D convolutional neural networks (CNNs) to extract
voxel-wise features. PIXOR [19] and PointPillars [16] are examples of grid-based methods.
These methods are less computationally expensive compared with point-based methods
but may result in a loss of 3D information. Transformer-based methods have also been
explored in 3D object detection. DETR [20] is a transformer architecture that formulates
the 2D detection problem as direct set prediction, removing the need for non-maximum
suppression (NMS). Some methods use transformers for the feature extraction network,
such as Voxel Transformer [21], Pointformer [22], and CWT [23]. 3DETR [24] is the first
end-to-end transformer model used for 3D object detection. This model can directly predict
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the category, position, and size of 3D objects from point cloud data. VISTA [25] enhances
3D object detection by fusing multiview features from different perspectives using a dual
cross-view spatial attention mechanism. BoxR [26] introduced a novel attention mechanism
called Box-Attention, which is used in 2D and 3D transformer models. Box-Attention
enables the transformer model to better learn spatial information, thereby improving its
performance in various visual tasks. Li3DeTr [27] can directly predict the category, position,
and size of 3D objects from the LiDAR point cloud data. This work is the first to apply the
deformable attention architecture to LiDAR-based 3D object detection models.

The high cost of using LiDAR systems has made them unsuitable for large-scale deploy-
ment. An alternative solution emphasizes cost-effectiveness, attempting to use more eco-
nomical sensors, such as relying solely on cameras for real-time 3D object detection [28–31].
However, in most cases, 3D detection using only cameras significantly underperforms
compared with LiDAR-based detection [10]. Therefore, using cameras for 3D detection is
significantly less reliable in terms of safety compared with LiDAR-based systems. Some
approaches combine LiDAR with cameras for 3D detection, where the camera primarily
serves a supportive role. Yet, this integration increases the computational demands due to
the addition of more data sources. At the same time, as the usage of LiDAR increases, its
cost is rapidly decreasing, reaching a stage where it can be economically scaled up.

2.2. Vehicle–Infrastructure Cooperative Perception

The objective of V2X perception is to detect objects in traffic environments using
sensors on vehicles and other devices, which involves the problem of multi-agent sensor
fusion. Depending on the fusion stage, V2X perception can be categorized into early,
intermediate, and late fusion types [6].

Early fusion directly transforms and merges raw data, forming comprehensive per-
ception. For example, in [32], the authors propose combining point clouds from different
perception points to enhance 3D object detection. This involves transmitting each point
cloud to a central fusion system, then connecting them into a single point cloud and in-
putting it into the detection model. Another study [33] converted point cloud data into
depth information at the pixel level, and then connected it to RGB images. This method
can effectively handle data from different sensors and improve the accuracy of object
detection. Ref. [34] applied sparse convolution to support detection in low-density point
cloud data. This method can effectively handle large amounts of sensor data and improve
the perception efficiency.

Late fusion is a practical technique used in the cooperative perception of V2X, where
perception results from different agents are combined. For example, [35,36] discussed how
to merge separate sensor outputs at the decision level to create the final perception. This
method can effectively handle data from different sensors and improve the accuracy of
object detection. In [37], the authors propose a multi-sensor fusion method for handling
data from different sensors. They used a deep learning model to fuse data from radar,
LiDAR, and cameras to enhance the object detection accuracy. The advantages of late fusion
include the ability to integrate information from different models without the need for
additional training and providing the flexibility to integrate the results from different data
modalities. However, late fusion can also be challenging due to the need for the precise
alignment of each output, and the complexity of the result fusion process may increase.
Additionally, late fusion has the disadvantage of error accumulation.

Intermediate fusion is the main scheme in cooperative perception model design, where
the perception model of the self-driving vehicle integrates its own intermediate features
with the intermediate features of other cooperative agent models, achieving cooperative
perception. For example, in [38], the authors propose a deep fusion scheme to merge
regional features from multiple views. This allows for interaction between the intermediate
layers of different paths. This method can effectively handle data from different sensors and
improve the accuracy of the object detection. Ref. [39] proposes a spatial perception infor-
mation transmission mechanism for joint inference detection and prediction. This method



Sensors 2024, 24, 4101 5 of 17

can better understand the objects in the environment and their motion by transmitting
information in space. Ref. [40] proposes a communication framework to avoid unnecessary
transmission between connected vehicles, thereby reducing the communication bandwidth.
This method can effectively handle large amounts of sensor data and improve the percep-
tion efficiency. In [41], the authors considered the impact of the information transmission
delay on perception. They proposed a method that can effectively perform data fusion
under a limited communication bandwidth and transmission delay. A novel flow-based
intermediate feature fusion module is proposed in FFNet [42], which effectively combines
features from vehicles and infrastructure, introducing a more accurate motion modeling
approach to capture the dynamic changes of objects. These examples highlight the efficacy
of intermediate fusion in handling multi-sensor data and its potential to enhance the object
detection accuracy.

3. Method

In this work, we propose a new transformer-based framework to address the problem
of vehicle–infrastructure cooperative 3D object detection. As shown in Figure 2, CoFormer-
Net uses a fundamentally consistent architecture in both the vehicle and the infrastructure
branches. The structure of each branch is similar to that of the LiDAR branch in [8]. Af-
ter BEV feature extraction on the infrastructure side, we used the temporal aggregation
module to fuse historical BEV features. At the same time, we fused the intermediate fea-
tures of the vehicle and infrastructure sides in terms of temporal and spatial features at two
stages within this process. In Section 3.1, we explain how the temporal aggregation module
is used in the fusion of infrastructure-side historical BEV features and the fusion with
vehicle-side BEV features. In Section 3.2, we discuss how the spatial information on both
the vehicle and infrastructure sides is fused, addressing the impact on the final accuracy
due to calibration bias. In Section 3.3, we briefly describe the affine transformation of
infrastructure features and their processing and compression during transmission. Finally,
in Section 3.4, we explain the CoFormerNet training method, including a description of the
end-to-end learning framework.

Figure 2. CoFormerNet overview.

3.1. Temporal Features Fusion Stage

Temporal information is crucial for perception systems to understand their surround-
ings. Without temporal clues, inferring the speed of moving objects from static images or
detecting highly occluded objects is a challenging task. On the other hand, due to the broad
field of view on the infrastructure side, infrastructure features that have integrated histori-
cal temporal information can greatly enhance the perception capabilities of the vehicle side.



Sensors 2024, 24, 4101 6 of 17

For the infrastructure branch, the sensors are fixed and the viewpoint does not change;
therefore, the historical features and current features are always aligned. The challenge we
need to address is how to accurately associate the same objects between BEV features at
different times.

CoFormerNet adopts a temporal aggregation module (TAM) to fuse historical BEV
features. Specifically, in a recurrent way, we first used a spatial attention layer similar to the
convolutional block attention module (CBAM) [43] to calculate pixel-level attention based
on current BEV features. We then connected the current BEV features and the previously
weighted BEV features. Next, the system adaptively learned the receptive field through
a deformable attention mechanism, enabling it to effectively capture significant features
in the aligned BEV features. Finally, we obtained temporally fused BEV features through
additional convolutional layers.

Figure 3 illustrates the detailed structure of our temporal aggregation module (TAM).
Let us denote the BEV features at times t and t − 1 on the infrastructure side as Bt

inf and
Bt−1

inf , respectively. Then, the feature Bt−1,t
inf , which is the result of the infrastructure fusing

historical BEV features, can be represented as

Bt−1,t
inf = TAM(Bt−1

inf , Bt
inf)

= Conv(DeformAttn(B̃inft−1,t, Binft)),
(1)

where TAM represents the temporal aggregation module fusion process, Conv represents a
convolution operation, the deformable attention mechanism is calculated by DeformAttn,
and B̃t−1,t

inf is the result after fusion through the CBAM. The process can be formulated
as follows:

B̃t−1,t
inf = Concat(Bt

inf, Mul(F(Bt
inf), Bt−1

inf )), (2)

where the function F can be formulated as follows:

F(Bt
inf) = σ(Conv([AvgPool(Bt

inf), MaxPool(Bt
inf)])), (3)

where σ denotes the sigmoid function.

Figure 3. Temporal aggregation module.

Before the fusion of the vehicle–infrastructure BEV features, due to the differences in
geographical location and direction between vehicle and infrastructure sensors, the BEV
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feature map fused on the infrastructure side needs to be transformed into the vehicle’s
coordinate system for feature fusion. Moreover, to reduce the amount of transmission,
the features need to be further compressed. The specific process is explained in detail in
Section 3.2. Here, we use B̂t−1,t

in f to represent the historical fusion features of the infrastruc-
ture side of the BEV after undergoing a transformation.

At the same time, there is an unavoidable communication delay between the vehicle
and the infrastructure. This delay is usually random and uncertain. Directly combining
vehicle-side BEV features with time-fused infrastructure-side BEV features can lead to
serious feature mismatch problems. Following the same mechanism, we treated time-fused
infrastructure-side BEV features as historical features, transforming the communication
delay problem into a historical time information fusion problem. We used the same
temporal aggregation module to model this temporal connection between the vehicle–
infrastructure BEV features. This process can be formulated as follows:

B f used
veh = TAM(B̂t−1,t

in f , Bt
veh) (4)

where B f used
veh denotes the final vehicle-side fused BEV features. The subsequent process is

similar to the above mentioned infrastructure-side fusion. Since our history fusion model
only needs the final BEV feature of the previous frame, it can easily be deployed for online
prediction by saving BEV features in a memory bank.

3.2. Feature Transformation, Compression, and Decompression

Due to the geographical location and orientation differences between the vehicle and
infrastructure sides, the feature map fused by the infrastructure side needs to be trans-
formed into the vehicle’s coordinate system for feature fusion. Affine transformation [44]
can be used for this purpose. The affine transformation is a specific category of projection
transformation that does not move any object from affine space to the plane at infinity and
vice versa. To achieve this, the infrastructure sends the fused feature map B̂in f containing
historical information and pose information to the vehicle side. The pose information
represents the position and direction, represented as (x, y, z, roll, yaw, pitch). Due to the
absence of height information, the transformation relationship of the position is reduced
from six degrees of freedom to three degrees of freedom (x, y, yaw). The final rotation
matrix R and the translation matrix T can be represented as follows:

R =

[
cos(θy) − sin(θy)
sin(θy) cos(θy)

]
T =

[
tx
ty

]
(5)

These matrices are used to transform the coordinates from the infrastructure feature to
the vehicle feature. The rotation matrix is used to rotate the coordinates, and the translation
matrix is used to shift the coordinates.

In a manner similar to FFNet [42], we employed a compressor on the historical fusion
features of the infrastructure Bt−1,t

in f to mitigate the latency induced by communication
transmission, eliminate superfluous information, and reduce transmission expenses. This
compressor, which is composed of three Conv-Bn-ReLU blocks, reduces the feature size
from [384, 288, 288] to a more manageable [12, 36, 36]. The compressed fused feature, along
with its corresponding timestamps and calibration files, is then broadcast to the vehicle side.
Upon receipt, the vehicle utilizes a decompressor, which is built from three Deconv-Bn-
ReLU blocks, to restore the compressed fused features to their original size of [384, 288, 288].

3.3. Spatial Features Fusion Stage

In the CoFormerNet architecture, the transformer decoder layer on the infrastructure
side follows the same structure as the LiDAR branch in the TransFusion [8] method. The de-
tails of this layer are not further elaborated on in this paper. The pre-detection boxes on the
infrastructure side are transformed using the rotation and translation matrices described
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in Section 3.2. However, the hard association between the pre-detection boxes on the
infrastructure-side and vehicle-side LiDARs can be affected by errors in sensor calibration
and spatial mismatch caused by the continuous movement of the vehicle. To address
this, CoFormerNet introduces a multi-head cross-attention mechanism to establish a soft
association between the infrastructure-side LiDAR and the vehicle-side LiDAR. This allows
the network to adaptively determine where and what information to obtain from the fused
vehicle-side BEV features.

CoFormerNet tackles a fundamental hurdle in LiDAR-based object detection for
cooperative perception: the spatial discrepancy between LiDAR data originating from
the vehicle and infrastructure. This mismatch can mislead the network during the crucial
cross-attention step, causing it to focus on irrelevant areas within the BEV feature map.
This ultimately leads to inaccurate bounding box predictions and necessitates extended
training times.

CoFormerNet addresses this issue in three ways. The detailed workings of this part are
illustrated in Figure 4. First, instead of directly inputting the vehicle-side query features, we
element-wise added the query features obtained from the infrastructure-side. This serves
as useful auxiliary information when modeling the object context spatial relationship in the
cross-attention module. Furthermore, during the prediction process, the infrastructure side,
with its broader field of view, can provide valuable prior knowledge about objects, which
is beneficial to target detection.

Second, traditionally, positional encodings for vehicle and infrastructure LiDAR data
are generated independently, with different detection branches using their own positional
encodings. Due to the different coordinate systems used by the infrastructure and ve-
hicles, positional encoding is essential for feature-level fusion, ensuring consistency in
feature representations from multiple sources. Since the input LiDAR BEV features al-
ready integrate historical infrastructure-side BEV features, we similarly transformed and
integrated the infrastructure-side’s positional encodings. Borrowing from TransIFF [45],
CoFormerNet transforms the infrastructure-side encoding to align with the vehicle’s coor-
dinate system, enabling a unified encoding that allows for seamless information fusion and
alignment across disparate spatial domains. This unified approach significantly enhances
the network’s overall performance.

Finally, similar to Transfusion, we introduce the spatial-modulated cross-attention
(SMCA) module [8]. Unlike Transfusion [8], which aims to reduce spatial feature fu-
sion issues between different modalities using a cross-attention mechanism to bridge
heterogeneity, in our scenario, the cross-attention inputs all come from LiDAR, address-
ing only spatial mismatches. SMCA uses 2D Gaussian masks centered on each object
query within BEV features. These masks, similar to spotlights, guide the cross-attention
process to prioritize relevant areas around the object, even if the sensor calibration is im-
perfect. The 2D Gaussian weight mask M is generated similarly to [46], using the formula

Mij = exp
(
− (i−cx)2+(j−cy)2

σr2

)
, where (i, j) is the 2D center calculated by projecting the

query prediction onto the image plane, r is the radius of the minimum circumscribed
circle of the 3D bounding box projection angle, and σ is a hyper-parameter that adjusts the
Gaussian distribution’s bandwidth. This weight map is then element-wise multiplied with
the cross-attention maps of all attention heads. In this way, each object query focuses only
on the relevant areas around the projected 2D box, enabling the network to better and more
quickly learn the positions of image features based on the input LiDAR features.

By incorporating these innovative techniques, CoFormerNet effectively addresses the
challenge of spatial inconsistency in LiDAR object detection. This not only improves the
accuracy of the bounding box predictions but also reduces the training times, paving the
way for more efficient and robust autonomous driving systems. After the SMCA module,
another feed-forward network (FFN) is used to produce the final bounding box predictions
using the object queries that contain both vehicle and infrastructure LiDAR information.
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Figure 4. Architecture of the transformer decoder layer for vehicle-side fusion.

3.4. End-to-End Training

Previous methods often need to first train a certain branch for various reasons, and then
retrain the entire network. This approach not only fails to fully utilize the data from both
sides but also makes training more difficult and complex, making it impractical for real-
world use. In FFNet [42], the 3D feature extraction backbone is first trained through vehicle–
infrastructure data with zero latency, and then the feature flow is trained. The training
objectives of the two training stages are not consistent, resulting in the first stage of training
not being able to effectively improve the second stage. In the framework we designed,
there is no need for this step-by-step training process. Instead, we can train the model in
an end-to-end manner. This means that the entire model, from input to output, is trained
all at once. This approach simplifies the training process and can often lead to better
performance. In our case, end-to-end training allows the model to learn how to best fuse
the data from different side sensors, handle communication delays, and learn how to make
accurate object detection predictions. This holistic approach can lead to a more robust and
accurate perception system for V2X perception.

4. Experiments
4.1. Experimental Settings

Our experimental verification was conducted on two datasets: DAIR-V2X [47] and
V2XSet [48]. V2XSet was collected using simulations of CARLA [49] and OpenCDA [50],
taking time delays into account. Before the release of the DAIR-V2X dataset, most algo-
rithms were validated using simulated data, making it difficult to assess how these methods
perform in real-world scenarios. However, the DAIR-V2X dataset was derived from the
Beijing High-Level Autonomous Driving Demonstration Area, which covers 10 km of real
urban roads, 10 km of highways, and 28 intersections. It includes 71,254 frames of image
data and 71,254 frames of point cloud data from vehicle-mounted and roadside cameras,
as well as vehicle-mounted and roadside LiDAR sensors. The dataset covers a wide range
of conditions, including sunny, rainy, and foggy weather, as well as daytime and nighttime
in urban and highway environments. Validation in the DAIR dataset better reflects the
performance of the algorithms in real-world scenarios. Of course, we also provide a simple
comparison with state-of-the-art algorithms on the V2XSet for reference.

During the feature extraction stage, we used the same structure for both the vehicle
and infrastructure detection branches, employing VoxelNet [15] as the LiDAR backbone.
To ensure fair comparisons between CoFormerNet and other methods, we used the same
training and validation splits for all compared methods on both the DAIR-V2X and V2XSet
datasets. All methods were evaluated using the same metrics [51], specifically BEV mAP
and 3D mAP at IoU thresholds of 0.5 and 0.7. We reimplemented several baseline methods
(e.g., VoxelNet [15], FFNet [42], TransIFF [45]) using the official codebases or provided
implementations where available, ensuring consistent training and evaluation protocols.
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To simulate real-world scenarios, we introduced artificial latency during the evaluation
phase and ensured that all methods were subjected to the same latency conditions for a fair
comparison. All experiments were conducted on the same hardware setup (NVIDIA RTX
4090) to avoid discrepancies caused by different computational resources. We focused our
evaluation on the car category, which also encompassed bus, truck, and van sub-classes.
Finally, we limited the detection range for 3D objects to [0, −39.12, 100, 39.12], following
the common practice in the field.

4.2. Results and Analysis

On the DAIR-V2X dataset, we compared CoFormerNet with four types of fusion
methods: non-fusion (PointPillar [16] and VoxelNet [15]); and early fusion, late fusion, and
intermediate fusion (FFNet [42] and TransIFF [45]). Additionally, we provided a camera-
based fusion algorithm EMIFF [52] to compare the accuracy differences in 3D detection
across different modalities.

Consistent with the FFNet [42] strategy, we tested the detection accuracy of various
models with latencies of 200 and 300 ms. The comparison focused on two aspects: fusion
methods and latency. For non-fusion, we used VoxelNet [15], which has a higher accuracy
and efficiency compared with PointPillar [16] and AutoAlignV2 [53]. The results for non-
fusion (PointPillars), early fusion, late fusion, and FFNet were obtained from the FFNet
paper, and the results for EMIFF and TransIFF were obtained from their respective papers.
We reimplemented VoxelNet [15] on the DAIR-V2X dataset for comparison purposes.

The results presented in Table 1 provide a comprehensive comparison of various fusion
methods on the DAIR-V2X dataset, highlighting the superior performance of CoFormerNet
over other methods. This analysis includes comparisons under different latency conditions
to emphasize the robustness of CoFormerNet.

Table 1. Comparison of different fusion methods on the DAIR-V2X datset. CoformerNet significantly
outperformed all other fusion methods. * indicates that EMIFF is a camera-based intermediate fusion
method. - indicates that the original paper does not provide the corresponding metrics.

Model Fusion
Type Latency mAP@3D mAP@BEV

IoU = 0.5 IoU = 0.7 IoU = 0.5 IoU = 0.7
EMIFF * Intermediate 0 15.61 - 21.44 -

PointPillars Non-fusion / 48.06 - 52.24 -
VoxelNet Non-fusion / 52.40 34.69 58.08 49.18
FFNet Intermediate 0 55.81 30.23 63.54 54.16
TransIFF Intermediate 0 59.62 46.03 - -

CoFormerNet Intermediate 0 61.03 39.14 69.33
(+11.7) 54.59

Early
Fusion Early 200 54.63 38.23 61.08 50.06

Late Fusion Late 200 52.43 36.54 58.10 49.25
FFNet Intermediate 200 55.37 31.66 63.20 54.69
TransIFF Intermediate 200 53.47 37.21 - -

CoFormerNet Intermediate 200 60.97 38.97 69.13
(+11.5) 54.65

Early
Fusion Early 300 51.37 37.25 58.28 49.81

Late Fusion Late 300 51.35 36.24 56.89 48.79
FFNet Intermediate 300 53.46 30.42 61.20 52.44
TransIFF Intermediate 300 51.02 31.74 - -

CoFormerNet Intermediate 300 60.63 37.28 68.60
(+10.52) 53.29
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The performance of the camera-based method EMIFF was significantly lower com-
pared with the LiDAR-based methods, illustrating the limitations of using camera-only
data for accurate 3D detection. PointPillars and VoxelNet, which do not employ any fu-
sion techniques, performed better than EMIFF. For example, VoxelNet achieved mAP@3D
values of 52.40 at IoU 0.5 and 34.69 at IoU 0.7, with mAP@BEV values of 58.08 and 49.18.
These LiDAR-based methods outperformed the camera-based EMIFF but still fell short
of CoFormerNet, indicating the benefits of using LiDAR data. At the same time, these
methods were less accurate compared with fusion methods, indicating that integrating
information at the infrastructure level could effectively improve the detection accuracy.

Both early and late fusion methods showed a decline in performance with increased la-
tency. Their results were lower than those of CoFormerNet, demonstrating CoFormerNet’s
superior performance and robustness.

FFNet showed good performance but was affected by time delay. It still did not match
CoFormerNet’s results, which were higher across all metrics. One significant reason why
FFNet did not perform as well as CoFormerNet was that FFNet attempted to learn features
corresponding to the current timestamp. However, due to the uncertainty of time delays,
the features learned by FFNet often contained significant discrepancies. This time delay
uncertainty introduced biases in the learned features, negatively impacting the model’s
overall performance. CoFormerNet, on the other hand, does not directly address the
problem of time delay. Instead, it transforms this challenge into a problem of effectively in-
tegrating historical information. By focusing on how to better fuse past data, CoFormerNet
circumvents the issue of time delay uncertainty. This approach allows CoFormerNet to in-
tegrate both historical and current features more accurately, resulting in a more robust and
reliable model. The emphasis on historical information fusion ensures that CoFormerNet
can maintain high performance, even in the presence of temporal misalignments.

TransIFF performs well but focuses on instance-level feature fusion without consider-
ing the impact of time delay. This approach, while effective in a controlled environment,
becomes impractical in real-world applications where time delays are inevitable. As a result,
TransIFF’s performance significantly declines with increasing time delay, as evidenced by
the experimental results. The lack of consideration for time delay introduces substantial
inaccuracies in feature alignment, leading to lower overall performance compared with
CoFormerNet, especially under latency conditions.

CoFormerNet’s minimal performance decline with increased latency demonstrates
its robustness and reliability, making it suitable for real-world scenarios where latency
is inevitable.

Our model achieved a new state-of-the-art level in the DAIR-V2X validation set, with a
significant improvement over the previous best results. This indicates that our model can
effectively utilize information from infrastructure sensors to improve the performance of
autonomous driving systems.

On the V2XSet dataset, we compared CoFormerNet with two other intermediate
fusion methods: V2X-ViT [48] and FFNet. The detailed results are shown in Table 2. Co-
FormerNet’s superior baseline performance in ideal conditions indicates its robust feature
fusion strategy. The minimal decrease in CoFormerNet’s performance compared with the
significant drops seen in V2X-ViT and FFNet underscores its effectiveness in handling time
delays. CoFormerNet’s ability to maintain high performance even under significant latency
conditions showcases its robustness and reliability in real-world scenarios where temporal
misalignments are common.

4.3. Ablation Studies

To better understand the impact of each component of our model on the performance,
we conducted a series of ablation studies. The results, presented in Table 3, indicate
that each module, i.e., the temporal aggregation module (TAM), spatial-modulated cross-
attention (SMCA), and end-to-end training, played a crucial role in enhancing the overall
performance of our model.
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Table 2. Comparison of different fusion methods on V2XSet datset. CoFormerNet also significantly
outperformed all other fusion methods.

Model Fusion Type Latency mAP@3D

IoU = 0.5 IoU = 0.7

V2X-ViT Intermediate 0 88.23 71.27
FFNet Intermediate 0 89.47 72.66
CoFormerNet Intermediate 0 90.23 72.95

V2X-ViT Intermediate 200 83.61 61.49
FFNet Intermediate 200 85.45 70.23
CoFormerNet Intermediate 200 89.28 71.02

V2X-ViT Intermediate 300 80.71 54.66
FFNet Intermediate 300 83.31 57.93
CoFormerNet Intermediate 300 84.22 59.01

Table 3. The ablation study results of different modules (TAM, SMCA, and End2End). The re-
sults indicate that the combination of all three modules yielded the highest performance across
both metrics.

TAM SMCA End2End Latency mAP@3D mAP@BEV

IoU = 0.5 IoU = 0.7 IoU = 0.5 IoU = 0.7

× × × 0 55.67 35.12 63.78 54.26
✓ × × 0 58.25 36.27 67.84 54.31
✓ ✓ ✓ 0 60.67 39.12 70.78 55.26

× × × 200 52.40 34.69 58.08 49.48
× ✓ × 200 55.40 34.44 63.14 52.32
✓ × × 200 57.11 35.09 66.93 52.87
✓ ✓ × 200 59.24 36.06 67.53 54.02
✓ ✓ ✓ 200 60.97 38.97 69.13 54.65

The TAM effectively integrated temporal information from infrastructure sensors,
which led to an improved detection accuracy. As shown in Table 3, incorporating the TAM
improved the mAP@BEV (IoU = 0.5) by 8.85% under a latency of 200 ms compared with
not using any module. Similarly, there was a 4.06% improvement with a 100 ms latency,
demonstrating the significant impact of the TAM on performance. Introducing the SMCA at
the spatial feature fusion stage could achieve performance levels comparable to zero-latency
conditions, even under 200 ms latency. This highlights the module’s ability to mitigate
the negative effects of spatial misalignment. End-to-end training allowed for the full
exploitation and utilization of infrastructure data, simplifying and stabilizing the training
process. Unlike FFNet, which requires two-step training, our model benefitted from a
unified training process. This approach improved the performance by 1.6% compared with
the non-end-to-end method, fully demonstrating the effectiveness of this training strategy.
The ablation study clearly showed that the combination of all three modules (TAM, SMCA,
and end-to-end training) produced the highest performance across both the mAP@3D and
mAP@BEV metrics.

The introduction of the TAM significantly increased the integration of temporal infor-
mation, which led to substantial improvements in the detection accuracy. SMCA effectively
addressed the spatial feature fusion, which mitigated the adverse effects of spatial asyn-
chrony. End-to-end training optimized the use of vehicle and infrastructure data, which
enhanced the overall stability and performance of the model. These findings underscore the
importance of each component in our model and their collective contribution to achieving
a state-of-the-art performance in VIC3D object detection tasks.

To validate the practicality of our proposed method in real-world scenarios, we com-
pared the computational costs of several methods. Although the methods are not fully
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real-time yet, advancements in computational hardware are expected to bridge this gap.
The speed tests were conducted on an NVIDIA RTX 4090. Table 4 shows a clear trade-off
between the computational efficiency and detection accuracy among the different models.
CoFormerNet, while having the longest inference time, delivered the highest detection
accuracy. This demonstrates its effectiveness but also highlights the need for further opti-
mization to achieve real-time performance. With advancements in computational hardware,
the gap to real-time performance is expected to close, making CoFormerNet a viable option
for high-accuracy 3D object detection in real-world scenarios.

Table 4. Performance comparison of different models.

Model Time mAP@3D (IoU = 0.5)

PointPillars 31 ms 48.06
VoxelNet 95 ms 52.40
TransIFF 110 ms 59.62

FFNet 101 ms 55.81
CoFormerNet 122 ms 61.03

Finally, to provide a more intuitive understanding of the role our method plays in collabo-
rative perception, Figures 5 and 6 present detection results in two common scenarios. In Figure 5,
the fields of view of the vehicle and infrastructure sensors overlap, while in Figure 6, the fields
of view are directly facing each other. In these scenarios, the blue point clouds represent data
captured from infrastructure sensors, and the green point clouds represent data captured from
vehicle sensors. The red boxes indicate detections from individual vehicles, and the black boxes
highlight additional detections obtained through sensor fusion. The overlapping fields of view
between the vehicle and infrastructure sensors enhance the detection accuracy by providing
complementary perspectives, leading to more comprehensive and accurate object identification.
The detailed detection results in these scenarios underscore the practical benefits of sensor fusion,
highlighting the potential for improved safety and performance in real-world applications.

Figure 5. The detection results, where the blue point clouds represent data from infrastructure
sensors, the green point clouds represent data from vehicle sensors, the red boxes indicate detections
from individual vehicles, and the black boxes highlight additional detections obtained through sensor
fusion. The fields of view of the vehicle and infrastructure sensors overlapped.
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Figure 6. The detection results, where the blue point clouds represent data from infrastructure
sensors, the green point clouds represent data from vehicle sensors, the red boxes indicate detections
from individual vehicles, and the black boxes highlight additional detections obtained through sensor
fusion. The fields of view were directly facing each other.

5. Conclusions

CoFormerNet is a novel cooperative detection framework designed to address the
vehicle–infrastructure cooperative 3D (VIC3D) object detection problem, with the aim of
improving safety and performance in challenging traffic scenarios for autonomous driving
systems. This framework capitalizes on the advantages of infrastructure sensors while
overcoming the temporal asynchrony limitations caused by communication latency in
VIC3D object detection. The key contributions of CoFormerNet include spatio-temporal
cross-domain feature fusion, end-to-end training, and state-of-the-art performance. These
contributions demonstrate that CoFormerNet is an effective and practical VIC3D object
detection framework with broad application prospects.
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