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Abstract: Energy sustainability is one of the key questions that drive the debate on cities’ and urban
areas development. In parallel, artificial intelligence and cognitive computing have emerged as
catalysts in the process aimed at designing and optimizing smart services’ supply and utilization in
urban space. The latter are paramount in the domain of energy provision and consumption. This
paper offers an insight into pilot systems and prototypes that showcase in which ways artificial
intelligence can offer critical support in the process of attaining energy sustainability in smart cities.
To this end, this paper examines smart metering and non-intrusive load monitoring (NILM) to make
a case for the latter’s value added in context of profiling electric appliances’ electricity consumption.
By employing the findings in context of smart cities research, the paper then adds to the debate
on energy sustainability in urban space. Existing research tends to be limited by data granularity
(not in high frequency) and consideration of about six kinds of appliances. In this paper, a hybrid
genetic algorithm support vector machine multiple kernel learning approach (GA-SVM-MKL) is
proposed for NILM, with consideration of 20 kinds of appliance. Genetic algorithm helps to solve
the multi-objective optimization problem and design the optimal kernel function based on various
kernel properties. The performance indicators are sensitivity (Se), specificity (Sp) and overall accuracy
(OA) of the classifier. First, the performance evaluation of proposed GA-SVM-MKL achieves Se of
92.1%, Sp of 91.5% and OA of 91.8%. Second, the percentage improvement of performance indicators
using proposed method is more than 21% compared with traditional kernel. Third, results reveal that
by keeping different modes of electric appliance as identical class label, the performance indicators
can increase to about 15%. Forth, tunable modes of GA-SVM-MKL classifier are proposed to further
enhance the performance indicators up to 7%. Overall, this paper is a bold and novel contribution
to the debate on energy utilization and sustainability in urban spaces as it integrates insights from
artificial intelligence, IoT, and big data analytics and queries them in a context defined by energy
sustainability in smart cities.

Keywords: artificial intelligence; demand response; energy; policy making; genetic algorithm;
multiple kernel learning; non-intrusive load monitoring; smart grid; smart metering; support vector
machine; smart cities; smart villages

1. Introduction

Cities are the major consumers of electricity today. Considering the correlation that exists between
energy consumption, the environmental footprint it leaves, and the implications for and of global
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warming [1,2], energy sustainability emerges as one of the key questions that beholds the stakeholders,
including the industry, decision-makers and the society. Consensus has emerged that replacing old
electrical infrastructure by smart grid might be the most effective way of addressing the challenge
worldwide. Microgrid applications like transactive energy framework [3,4], energy management [5–7]
and advanced retail electricity market [8], play an important role in context of smart grid development.
Microgrids are typically supported by generators or renewable wind and solar energy resources and
are often used to provide backup power or to supplement the main power grid during periods of heavy
demand. A microgrid strategy that integrates local wind or solar resources can provide redundancy
for essential services and make the main grid less susceptible to localized disaster. Smart metering
is one of the key features that conditions the functioning of a smart grid [9]. By 2020, worldwide,
the estimated number of smart meters will exceed 800 million, while the penetration rate will be
50% [10,11]. The question is to what extent and how smart metering may contribute to attaining
greater efficiency of a smart grid, e.g., by optimizing it. To address this question, this paper employs
advances in artificial intelligence and big data analytics to query in which ways their integrated use
in context of smart metering and smart grid optimization may yield positive results in the form of
decreased energy consumption and greater energy sustainability. Inserting the discussion in context of
smart cities, adds an additional twist to this discussion. The argument is structured as follows. In the
first section, a review of load monitoring methods is discussed briefly to highlight the value added
of non-intrusive load monitoring. Next, the research methodology is outlined, which is followed by
overview of empirical testing and analysis. Section 5 evaluates the performance of proposed method
and its comparison with related work. Finally a conclusion is drawn.

2. Related Works—Non-Intrusive Load Monitoring (NILM) and Its Value Added

The evolution of modern advanced computational forecasting methods provides new tools
for electricity forecasting and pattern recognition. According to individual smart data and smart
metering techniques will have a great impact in the efficiency of smart energy solutions. In addition,
artificial intelligence techniques and smart grid approaches can set up sophisticated services for
the optimization of energy consumption. Toward this direction advanced demand modelling using
machine learning algorithms will offer new predicting capabilities. Furthermore, Big Data context
increases the complexity of the problem and also requires novel mining techniques based on energy
time series for behavioral analytics. Therefore, user behavior and analysis is directly linked, as is
integrated behavioral analytics and smart energy modelling, metering and solutions.

Recent research focused on intrusive load monitoring (ILM) and non-intrusive load monitoring
(NILM). A study concluded that load monitoring can reduce 20% electricity consumption [12]. In
contrast, ILM is distributed sensing, whereas NILM is single-point sensing. ILM uses more than one
smart meter per apartment (could be one smart meter per power outlet), but NILM uses only one
smart meter in the apartment. Theoretically, more smart meters can yield higher accuracy for the
detection of appliance consumption, because the number of appliances that need to be disaggregated is
lower [13]. However, disadvantages exist. These include: High cost, complex smart metering network
configuration, and management. This paper focuses specifically on NILM and its value added.

Figure 1 shows the general architecture of NILM for electricity suppliers, companies and users.
The NILM benefits to electricity suppliers, manufacturers and users. Electricity suppliers can achieve a
more accurate demand response by understanding the electricity consumption profile of each electric
appliance. Therefore, a better energy demand prediction model can be achieved using the usage
pattern. Furthermore, it tries to lower the gap between total electricity supply and demand, in other
words, the electricity wastage attributable to unused electricity decreases (it is worth mentioning
that the energy supply is always larger than energy demand to ensure it can still fulfill the demand
requirement if abrupt increase in demand occurs). For manufacturers, they would be able to develop
a better understanding of the relationship between appliances and their usage patterns. One may
focus on increasing the energy efficiency of frequently used and power hungry appliances. Last, the
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electricity consumption pattern of each appliance may correct the misunderstanding of end users
whom normally have no idea on electricity consumption. They can formulate a direction to reduce the
electricity bill, especially in power hungry appliance.
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Figure 1. Non-intrusive load monitoring (NILM)—general architecture: Electricity suppliers,
companies and end users.

Various approaches for NILM have been proposed. For instance, decision tree [14,15], graph
signal processing [16], hidden Markov model [17,18], k-nearest neighbor [19], clustering [20] and
cepstrum-smoothing [21]. It can be seen that the detection interval for some works is not real-time,
8 s in [15] and 1 min in [16–18,20]. This is often impractical because the actual operation time for an
electric appliance is usually not a divider of 1-min or 8 s. When it comes to NILM, unsupervised or
supervised classification is required. It is invalid to define the class label when the operation time is
not a divider of the detection interval. Thus, a real-time detection interval 50 Hz or 60 Hz is required,
which depends on the line voltage standard of the district. The works in [16,20,21] adopt detection
interval of 60 Hz, 50 Hz and 0.5 s respectively. However, these works focused on NILM of 4 or 6
electric appliances, which are far from adequate in the practical situation. The details of [16–21], as
well as comparison between proposed work and these works will be discussed in Section 5.5.

In this paper, a hybrid generic algorithm support vector machine multiple kernel learning
(GA-SVM-MKL) approach has been proposed for NILM of 20 electric appliances. Genetic algorithm
helps to solve the multi-objective optimization problem and design the optimal kernel function based
on various kernel properties. SVM is adopted owning to the fact that it takes key advantages in (i)
avoid over-fitting; (ii) kernel trick; (iii) convex optimization problem; and (iv) good out-of-sample
generalization. The contribution is as follows (i) GA-SVM-MKL is capable of analyzing and
disaggregating the energy profile of single point into list of 20 common types of operating electric
appliances, which is far more than that in existing works; (ii); GA-SVM-MKL achieves Sensitivity (Se)
of 92.1–98.4%, Specificity (Sp) of 91.5–98.8% and overall accuracy (OA) of 91.8–98.6% and (iii) Tunable
modes of GA-SVM-MKL is introduced to enhance the classification performance by 7% because we
can reduce the number of types of appliances in certain period in order to reduce the complexity of
model and thus increase the performance of classification model.

The rest of the paper is organized as follows. The methodology and formulation of the proposed
algorithm is presented in Section 2. Section 3 carries out performance evaluation of the proposed
algorithm and comparison is made with existing methods. Finally, a conclusion is drawn in Section 4.
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3. Research Methodology and Research Problem Formulation

This paper examines to what extent and how smart metering may contribute to attaining greater
efficiency of smart grid, for example by optimizing it by deploying advances from the fields of artificial
intelligence and big data analytics. To address this question, several hypotheses have been made, as
well as corresponding research, including literature review and primary research. Figure 2 depicts
the methodology and the workflow. In brief, the research presented here draws from insights from
three converging fields of scientific inquiry to rethink the question of smart grid optimization. These
insights include:

• Insights from artificial intelligence (AI) and cognitive computing and the value added they bring
into the process of designing, managing and utilizing smart energy systems

• Insights from smart cities and smart villages research, as well as considerations specific to the
debate on sustainability, including the SDGs, and their value added consistent with an emphasis
on wellbeing and inclusive socio-economic growth and development

• Insights from the broad field pertinent to energy supply and demand and related questions the
value added if ICT-driven coherent and effective policymaking

It is at the intersection of these three broad domains that our research question is located.
Accordingly, the more specific research questions that this paper will address include: In which
ways novel ICT-enhanced solutions, including algorithms and data integration, can contribute to
efficient and sustainable consumption of resources, like energy.

“What is the optimal design of classification model for NILM application”. The multiple objectives
optimization problem will be solved by multi-objective genetic algorithm.

“Can we reduce the number of types of appliances in certain period in order to reduce the
complexity of model and thus increase the performance of classification model”. This will be addressed
in Section 5.4.

Energies 2018, 11, x FOR PEER REVIEW  4 of 20 

 

proposed algorithm and comparison is made with existing methods. Finally, a conclusion is drawn 

in Section 4. 

3. Research Methodology and Research Problem Formulation 

This paper examines to what extent and how smart metering may contribute to attaining 

greater efficiency of smart grid, for example by optimizing it by deploying advances from the fields 

of artificial intelligence and big data analytics. To address this question, several hypotheses have 

been made, as well as corresponding research, including literature review and primary research. 

Figure 2 depicts the methodology and the workflow. In brief, the research presented here draws 

from insights from three converging fields of scientific inquiry to rethink the question of smart grid 

optimization. These insights include: 

 Insights from artificial intelligence (AI) and cognitive computing and the value added they bring 

into the process of designing, managing and utilizing smart energy systems  

 Insights from smart cities and smart villages research, as well as considerations specific to the 

debate on sustainability, including the SDGs, and their value added consistent with an emphasis 

on wellbeing and inclusive socio-economic growth and development  

 Insights from the broad field pertinent to energy supply and demand and related questions the 

value added if ICT-driven coherent and effective policymaking 

It is at the intersection of these three broad domains that our research question is located. 

Accordingly, the more specific research questions that this paper will address include: In which 

ways novel ICT-enhanced solutions, including algorithms and data integration, can contribute to 

efficient and sustainable consumption of resources, like energy. 

“What is the optimal design of classification model for NILM application”. The multiple 

objectives optimization problem will be solved by multi-objective genetic algorithm. 

“Can we reduce the number of types of appliances in certain period in order to reduce the 

complexity of model and thus increase the performance of classification model”. This will be 

addressed in Section 5.4. 

 

Figure 2. Flow chart of research methodology. AI, artificial intelligence; GA-SVM, generic algorithm 

support vector machine. 

4. Overview of Empirical Testing and Analysis 

The general flow of GA-SVM-MKL classifier for NILM is given in Figure 3. The smart meter 

will measure the current and voltage waveform of the apartment continuously. Both waveforms are 

carried out signal preprocessing includes dc offset elimination, interval segmentation. In this paper, 

Figure 2. Flow chart of research methodology. AI, artificial intelligence; GA-SVM, generic algorithm
support vector machine.

4. Overview of Empirical Testing and Analysis

The general flow of GA-SVM-MKL classifier for NILM is given in Figure 3. The smart meter will
measure the current and voltage waveform of the apartment continuously. Both waveforms are carried
out signal preprocessing includes dc offset elimination, interval segmentation. In this paper, 0.2 s
interval is selected as of the line voltage standards in Hong Kong, 220 V/50 Hz. Features of each interval
segment are then computed. The features act as input for the embedded and trained GA-SVM-MKL
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classifier. The training of classifier includes signal preprocessing and features extraction. Then,
formulation of different multi-objective SVM classifiers is carried out by various combinations of typical
kernels. The multi-objective optimization problems are solved by genetic algorithm. The optimal
designs of classifier under different combinations of typical kernels can be concluded. It is worth
mentioning that a well-known 10-fold cross-validation is adopted for the training of classifier [22–24].
The outputs of the classifier are types of operating electric appliances and electricity consumption of
operating electric appliances. Based on the outputs of the classifier, three major applications, billing,
demand response and appliance usage pattern can be obtained. Electricity suppliers may utilize all
applications whereas companies and end users may only utilize the appliance usage pattern.
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learning (GA-SVM-MKL) classifier for NILM.

This section comprises of three subsections. First, the measurement and preparation of datasets
for training and validation of GA-SVM-MKL classifier are discussed. Second, possible features for
constructing the GA-SVM-MKL classifier are presented. At last, the formulation of optimal design of
GA-SVM-MKL classifier is explained.

4.1. Datasets of Electric Appliances

Figure 4 shows the measurement set up for obtaining the voltage and current waveforms of all
electric appliances. The voltage of 220 Vrms is measured with differential probe using cathode ray
oscilloscope (CRO) with sampling frequency Fs = 10 kHz. A current transformer with ratio 50/5 is
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utilized for measuring the current waveform. The resistor R1 is chosen to be large value (10 MΩ),
which because it has negligible effect to the circuit. The resistor R2 of 10 MΩ is connected in series
with the secondary winding of current transformer to avoid open circuit.
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CRO, cathode ray oscilloscope.

The datasets consist of 20 electric appliances that are commonly used in typical households. The
measurement allows multiple operation of electric appliances, in other words, the current waveforms
may be superimposed by multiple electric appliances. Table 1 summarizes the electric appliances along
with their type of activity, modes and number of brands being considered. The electric appliances can
be divided into six activities, lighting, cooking, home living, computing, renovating and audio and
video. There is limitation that the measurement cannot cover all brands of each electric appliance, each
electric appliance has at least two brands for consideration. Likewise, there is a maximum number
for each electric appliance operating at any instant in a typical household. For every combination of
electric appliances, the corresponding voltage and current waveforms are recorded for 30 s (equivalent
to 30 × 50 = 1500 samples). Each combination is assigned with a unique class label. It is noted that in
Section 5.1, different modes of electric appliances will be assumed as identical class label and that in
Section 5.2 will be assumed as different class labels.

Table 1. List of electric appliances that have been analyzed.

Type of
Activity

Electric
Appliance Modes No. of

Brands

Maximum No.
of Appliances
at One Time

Type of
Activity

Electric
Appliance Modes No. of

Brands

Maximum No.
of Appliances
at One Time

Cooking

Electric
stove 2 3 2

Lighting

Fluorescent
light 1 2 3

microwave
oven 3 2 1 Light bulb 1 2 3

cooker 3 2 1 LED tube 1 3 3

Home
living

Ironbrush 4 2 1 LED light
bulb 1 2 3

Vacuum
cleaner 1 2 1

Computing

Notebook 1 6 3

Fan 3 3 2 desktop 1 3 3

Hair dryer 2 3 2
All in one

printer and
scanner

1 2 1

Electric
heater 2 2 1 Mobile

charger 1 5 3

Renovation

Electric
drill 1 2 1

Audio and
video

Radio 1 2 1

Electric
sander 1 2 1 Television 1 2 1
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After measuring the voltage and current waveforms of electric appliances, the waveforms perform
dc offset elimination, whichIndividual samples can be obtained by segmentation of signals with interval
of 0.2 s.

4.2. Features Extraction

F The individual samples I(n) and V(n) are transformed to feature vector. The proposed
GA-SVM-MKL adopts seven features: Maximum current (Imax), root-mean-square current (Irms),
average current (Iavg), active power (Pact), apparent power (Papp), reactive power (Prea) and power
factor (PF). The features can be computed by:

Imax = max{I(n)}, (1)

Irms =
√
[I2(1) + I2(2) + . . . + I2(Fs/50)]/(Fs/50), (2)

Iavg =
1

Fs/50

a=Fs/50

∑
a=1

I(a), (3)

Pact =
1

Fs/50

a=Fs/50

∑
a=1

I(a)V(a), (4)

Papp =
√
[V2(1) + . . . + V2(Fs/50)]/(Fs/50)

×
√
[I2(1) + . . . + I2(Fs/50)]/(Fs/50)

, (5)

Prea =
√

Papp2 − Pact2, (6)

PF = Pact/Papp. (7)

It is worth mentioning that dimensionality reduction (e.g., in [11]) is not adopted because all of
these features are essential for distinguishing between electric appliances in nature. The focus will be
devoted on the optimal design of kernel function for building SVM classifier.

4.3. Optimal Design of GA-SVM-MKL Classifier

Denote electric appliances samples by Xij(n) with current Iij(n) and Vij(n) for class i = 1, . . . , Nc

and j = 1, . . . , Ni where Ni = 1500 is the total number of samples in class i. Let feature vector be fij =
{Imax,ij, Irms,ij, Iavg,ij, Pact,ij, Papp,ij, Prea,ij, PFij} corresponds to Xij(n).

When it comes to the selection of kernels, there are five typical kernels k(x1, x2) with inner product
〈x1,x2〉. They are linear kernel, qth degree polynomial kernel, complete polynomial kernel, radial basis
function (RBF) kernel and sigmoid kernel. The expressions of these kernels can be summarized as
follows:

Linear kernel : k1(x1, x2) = 〈x1, x2〉. (8)

qth degree polynomial kernel : k2(x1, x2) = (〈x1, x2〉)q. (9)

Complete polynomial kernel : k3(x1, x2) = (〈x1, x2〉+ c)q. (10)

RBF kernel : k4(x1, x2) = exp(||x1 − x2||2/2σ). (11)

Sigmoid kernel : k5(x1, x2) = tanh(〈x1, x2〉+ c), (12)

where c, σ ∈ <, q ∈ N+.
Different kernels possess different characteristics where there is no single kernel that works well in

all applications. In this paper, the proposed GA-SVM-MKL classifier adopts the idea that by combining
multiple kernels (namely multiple kernel learning), the classifier can achieve better performance for
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NILM after taking the advantages from each kernel. In order to combine kernels to form a new one,
the kernel should obey Mercer’s Theorem. According to [25], there are four properties (P):

P1 : k(x1, x2) = ki(x1, x2) + k j(x1, x2). (13)

P2 : k(x1, x2) = c·ki(x1, x2), ∀c ∈ <+. (14)

P3 : k(x1, x2) = ki(x1, x2) + c, ∀c ∈ <+. (15)

P4 : k(x1, x2) = ki(x1, x2)·k j(x1, x2), (16)

where ki : χ× χ→ < and k j : χ× χ→ < are any two Mercer kernels. It is noted that properties 1
and 4 can be further extended to infinite number of Mercer kernels.

The optimal design of classifier for NILM is formulated as a multi-objective optimization problem
and solved by genetic algorithm. Multi-objective optimization is an integral part of optimization
activities and has tremendous practical importance, since almost all real-world optimization
problems are ideally suited to be modeled using multiple conflicting objectives [26]. Compared
with single objective optimizations, which usually scalarizing multiple-objectives into one single
objective, multi-objective optimization can give trade-off optimal solutions more accurately. Besides,
the multi-objective optimization has multiple cardinalities of the optimal set, multiple objectives and
different search spaces [27]. The objective functions constitute a multidimensional space, which is
known as objective spaces [28]. The optimal solutions presented in objective spaces are referred to as
Pareto optimal solutions and the set of such solutions are called Pareto Front.

As the objectives conflict with each other, it is usually impossible to obtain one single optimal
objective. Therefore, for obtaining the optimal solutions in multi-objective optimizations, the most
used concept is domination. Assuming for an M-objective minimization problem, candidate solution u
is dominated by another candidate solution v if and only if function values of u is partially less than v,
which is formulated as [26]: {

fm(u) ≥ fm(v)
fm(u) > fm(v)

∀m = 1, 2, . . . , M
∃n = 1, 2, . . . , M

. (17)

Based on the concept of domination, what we prefer are the non-dominated solutions, which
compose the Pareto Front. In this paper, in order to give the optimal design of classifier for NILM,
multi-objective optimization genetic algorithm (MOGA) [27] for solving the multiple kernels is
designed. The flow of the MOGA for the optimal design of kernel functions is shown in Figure 5.
The procedures are as follows: (i) The population size and values of objective function are initialized;
(ii) the values of objective function of individuals in the population are computed using the values
of objective function defined in (i); (iii) ranking the individuals according to the values of objective
function; (iv) the population convergence is dependent on small group of pareto optimal solutions, but
not all optimal solutions attributable to the nature of the stochastic selection errors, given a limited
population size; (v) niche count is introduced to enhance the population diversity by lengthening the
distance between two optimal solutions along the axis of objective functions. The convergence to small
group solutions will be avoided; (vi) a new offspring is generated and the values of objective functions
are evaluated; (vii) ranks assignment and niche count calculation are carried out repeatedly in the new
offspring; and (viii) the algorithm is terminated if it attains the maximum number of generations or if
the output reaches the pareto front. It is noted that there exist other stopping criteria in literature for
stochastic optimization algorithm and can be referred to [29–31].
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The multi-objective optimization problem for NILM can be formulated as:

Max Se
Max Sp

Max
∼
D

, (18)

s.t. αj ≥ 0,
N

∑
j=1

αjyj = 0, i = 1, . . . , N, (19)

where Se is the sensitivity of the classifier, Sp is the specificity of the classifier,
∼
D is a margin equals to

distance of closest samples from the hyperplane, αj is the Lagrange multiplier and yj ∈ {−1,+1} is

the output of the classifier. The three objective functions Se, Sp and
∼
D are defined as:

Se = TP/Np, (20)

Sp = TN/Nn, (21)

∼
D =

N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjkNILM(xi, xj), (22)

where TP is the number of true positive samples, TN is the number of true negative samples, Np is
the total number of positive samples, Nn is the total number of negative samples. The customized
and optimized kernel for NILM, kNILM varies by different combination of typical kernels in (8)–(12)
using Properties 1–4 in (13)–(16). These scenarios are summarized in Appendix A Table A1, which
have been studied and analyzed. It is noted that due to there are infinite scenarios settings, only
property combinations of property (P), P1, P2, P3, P4, P1P2, P1P3, P1P4, P1P5, P2P3, P2P4, P2P5, P3P4,
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P3P5, P4P5 are illustrated and analyzed. These 285 scenario settings cover adequate analysis for taking
the advantages from individual kernel to form a multiple kernel for kNILM.

The proof of combinations of property P1P2, P1P3, P1P4, P1P5, P2P3, P2P4, P2P5, P3P4, P3P5, P4P5

is shown below:
For all r ∈ N and all sequences (x1, . . . , xr) ∈ Xr let K1, K2, K3, K4, KP1P2, KP1P3, KP1P4, KP2P3,

KP2P4 and KP2P3 be the r × r matrices whose i, j-th element is given by k1(xi, xj), k2(xi, xj), k3(xi, xj),
k4(xi, xj), c1k1(xi, xj) + c2k2(xi, xj), k1(xi, xj) + k2(xi, xj) + c, (k1(xi, xj) + k2(xi, xj))(k3(xi, xj)k4(xi, xj)),
c1k1(xi, xj) + c2, ck1(xi, xj)k2(xi, xj) and (k1(xi, xj) + c)k2(xi, xj) respectively. It is required to show that
KP1P2, KP1P3, KP1P4, KP2P3, KP2P4 and KP2P3 are positive semidefinite using only that K1, K2, K3 and K4

are positive semidefinite, i.e., for all r ∈ <r, α′K1α ≥ 0, α′K2α ≥ 0, α′K3α ≥ 0 and α′K4α ≥ 0.

(i) α′KP1P2α = α′(c1K1 + c2K2)α ≥ 0, (23)

(ii) α′KP1P3α = α′(K1 + K2 + c11′)α, (24)

= α′K1α + α′K2α + c
∣∣∣∣1′α∣∣∣∣2 ≥ 0. (25)

(iii) The r2 × r2 matrix H = K1 ⊗ (K3K4) and G = K2 ⊗ (K3K4) are positive semidefinite, that is, for all
a ∈ <r2

, a′Ha ≥ 0 and a′a ≥ 0. Given any α ∈ <r, consider a = (α1e1
′, . . . , αrer

′) ∈ <r2
. Then

a′Ha =
r2

∑
i=1

r2

∑
j=1

aiaj Hij =
r

∑
i=1

r

∑
j=1

αiαjHi+(i−1)r,j+(j−1)r, (26)

=
r

∑
i=1

r

∑
j=1

αiαjk1(xi, xj)k3(xi, xj)k4(xi, xj). (27)

Similarly, it can be derived that

a′a =
r2

∑
i=1

r2

∑
j=1

aiajGij =
r

∑
i=1

r

∑
j=1

αiαjGi+(i−1)r,j+(j−1)r. (28)

=
r

∑
i=1

r

∑
j=1

αiαjk2(xi, xj)k3(xi, xj)k4(xi, xj). (29)

Thus, a′Ha + a′a

=
r

∑
i=1

r

∑
j=1

αiαj(k1(xi, xj) + k2(xi, xj))(k3(xi, xj)k4(xi, xj)), (30)

= α′KP1P4α ≥ 0. (31)

(iv) α′KP2P3α = α′(c1K1 + c211′)α, (32)

= c1α′K1α + c2
∣∣∣∣1′α∣∣∣∣2 ≥ 0. (33)

(v) α′KP2P4α = α′(cK1K2)α, (34)

= cα′K1K2α ≥ 0. (35)

(vi) α′KP3P4α = α′(K1 + K2 + c11′)α, (36)

= α′K1α + α′K2α + c
∣∣∣∣1′α∣∣∣∣2. (37)

A 10-fold cross validation is used for the for performance evaluation of the kernels [22–24]. The
classifiers are deduced using 1-against-1 multi-class SVM. This is because 1-against-1 multi-class SVM
approach was generally performed better than 1-against-all multi-class SVM [25–28].
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5. Performance Evaluation and Comparisons

This section is divided into five subsections. Section 5.1 discusses the performance of the proposed
GA-SVM-MKL classifiers. In Section 5.2, in order to show the effectiveness of kNILM using multiple
kernels, the performance of classifier using kNILM is compared with either single kernel is used. The
feasibility study of breaking down electric appliances into different modes is discussed in Section 5.3.
Intuitively, some activities like cooking and renovating are carried out in certain period. Thus, the
number of classes for classifier can be reduced when these electric appliances are not in-use and the
classifier is then retrained. Results in Section 5.4 support this hypothesis. Finally, comparison between
proposed GA-SVM-MKL classifier and related works is carried out in Section 5.5.

5.1. Performance Evaluation of GA-SVM-MKL Classifier

285 scenarios for kNILM using P1, P2, P3, P4, P1P2, P1P3, P1P4, P2P3, P2P4 and P3P4, with typical
kernels k1, k2, k3, k4 and k5 are optimally designed. The Se, Sp and overall accuracy (OA) of the
GA-SVM-MKL in each scenario are recorded as shown in Appendix A Table A2. OA is defined as
the average of Se and Sp given that the identical sample size in each class of the classifier. Probability
distribution of the OAs for 285 scenarios is shown in Appendix A, as in Figure A1. The skewness and
kurtosis of the OA for all scenarios are −0.0902 (left skewed) and 1.547 (heavy-tailed) respectively.

OA = (Se + Sp)/2. (38)

All results are obtained using 10-fold cross-validation. Scenario 178 using P1P2 achieves the
best performance with Se of 92.1%, Sp of 91.5% and OA of 91.8%. The average OA using different
properties can be ranked by OAP2P3 > OAP3P4 > OAP2P4 > OAP1P2 > OAP1P3 > OAP1P4 > OAP2> OAP1

> OAP3 > OAP4 with accuracies 87.3%, 86.7%, 85.8%, 83.4%, 76.7%, 76.6%, 75.8%, 75.6%, 75.3%, and
74.7% respectively.

Results reveal that merging kernel properties and adopting multiple kernel learning can achieve
better performance than using single property.

5.2. Comparisons to Single Kernel Based SVM Classifier

The performance of proposed GA-SVM-MKL classifier is compared to traditional SVM classifier
using single kernel k1, k2, k3, k4 and k5. It is noted that this SVM classifier deals with single objective

maximization problem, which maximizes the margin
∼
D which has been defined in (22). The comparison

is shown in Table 2. The proposed GA-SVM-MKL classifier increases the Se, Sp and OA by 21.3–28.6%,
21.5–26.7% and 21.4–27.7% respectively. Among five scenarios using traditional SVM with k1–k5, the
best performance is using k4, which follows by k5, k3, k2 and k1. The better performance of proposed
GA-SVM-MKL can be explained by two reasons. First, GA-SVM-MKL adopts optimal kernel using
multiple kernel learning with kernel properties in which it takes the advantages from each individual
kernel for customization to NILM. Second, traditional SVM aims at single objective optimization,
which maximizes the margin, but not Se and Sp.

Table 2. Comparisons between Proposed and Traditional SVM Classifier.

Method Se (%) Sp (%) OA (%)

GA-SVM-MKL 92.1 91.5 91.8
SVM using k1 71.6 72.2 71.9
SVM using k2 72.3 72.8 72.6
SVM using k3 73.5 74.2 73.9
SVM using k4 75.9 75.3 75.6
SVM using k5 74.9 75.1 75
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5.3. Feasibility Study of Assignment a Class Label for Different Modes of Electric Appliance

Among 20 electric appliances in this study, seven electric appliances, electric stove, microwave
oven, cooker, ironbrush, fan, hair dryer and electric heater have more than one mode. These are
activities of cooking and home living. In Section 5.1, it is assumed that different modes of the same
electric appliances are of the same class. In this section, analysis has been made to assign different
modes of the same electric appliances to be different classes. Thus, the 20 electric appliances can be
extended to 32 electric appliances. Table 3 shows four scenarios S1, S2, S3 and S4 for the performance
comparisons of GA-SVM-MKL classifier between before and after the assignment of new classes.

Compared between S1 and S2, the assignment of new class label for different modes of electric
appliances decreases the Se, Sp and OA by 15.7%, 14.4% and 15.0% respectively. Scenarios S3 and S4
reveal that the decrease in Se, Sp and OA are mainly due to the introduction of new class labels for
activities of cooking and home living. Therefore, the original assumption that different modes of same
electric appliances should be considered as identical electric appliance is verified.

Table 3. Performance evaluation of assignment a class label for different modes in electric appliances.

Scenario (S1 to S4) Se (%) Sp (%) OA (%)

S1: 20 appliances (Different modes, same class) 92.1 91.5 91.8
S2: 32 appliances (Different modes, different classes) 79.6 80.0 79.8

S3: 32 appliances (only cooking related combinations) 77.4 77.1 77.3
S4: 32 appliances (only home living related combinations) 75.3 76.6 76.0

5.4. Tunable Mode for GA-SVM-MKL Classifier

Aforementioned, the 20 electric appliances for study can be divided into six activities, lighting,
cooking, home living, computing, renovating and audio and video. All activities except renovating
are daily used. For cooking, it is periodic activities in which users turn on the electric appliances in
breakfast, lunch or dinner. Thus, it is proposed that GA-SVM-MKL classifier can be tuned for different
electric appliances detection with five tunable modes (TMs).

(i) TM 1 assumes a full range classifier, in which all 20 electric appliances in six activities can
be detected.

(ii) TM 2 can be selected when it is breakfast, lunch or dinner so that electric appliances of cooking
should be detected by the classifier. Provided that there is no renovating, five activities, lighting,
cooking, home living, computing and audio and video can be detected.

(iii) TM 3 is a non-eating period where electric appliances of cooking are not necessary. However,
there is small-scale renovating activity, which allows normal activities inside the house. Five activities,
including lighting, home living, computing, renovating, and audio and video, can be detected.

(iv) TM 4 assumes electric appliances related to cooking and renovating activities will not be
operated. Only four activities, lighting, home living, computing and audio and video will be operated
and detected.

(v) TM 5 assumes a large-scale renovating, in which only electric appliances of renovating (1
activity) are detected.

Table 4 summarizes the modes and the activities of GA-SVM-MKL classifier. For each mode,
a GA-SVM-MKL classifier is trained using 10-fold cross-validation. Practically, end users can enter
the period for breakfast, lunch and dinner during weekday and weekend so that GA-SVM-MKL
classifier can detect electric appliances of cooking in specific time interval. Also, the ability to detect
electric appliances of renovating is turned off until end users specify there is a renovation activity in
their apartment.
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Table 4. Various Modes in GA-SVM-MKL classifier.

Activity
Mode of Classifier

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Lighting � � � � X
Cooking � � X X X

Home living � � � � X
Computing � � � � X
Renovating � X � X �

Audio and video � � � � X

The Se, Sp and OA for the classifier in TM 1 to 5 have been recorded in Table 5. A finding
is observed, the Se, Sp and OA of the classifier increase when the number of activities (or classes)
decreases. This may be explained by fewer classes, the classification problem is less complex. Thus, it
is shown that the proposed mode tunable GA-SVM-MKL classifier can help improving the Se, Sp and
OA for NILM. Compared between TM1 and TM2-TM5, the percentage improvement using tunable
mode is ranged (1.85%, 6.84%), (2.84%, 7.98%), (2.51%, 7.41%) for Se, Sp and OA respectively.

Table 5. Performance Evaluation of GA-SVM-MKL classifier in each tunable modes (TM).

Se | Sp and OA (%) of GA-SVM-MKL Classifier

TM 1 TM 2 TM 3 TM 4 TM 5

Se Sp Se Sp Se Sp Se Sp Se Sp
92.1 91.5 93.8 94.3 94.6 94.1 96.6 96.1 98.4 98.8
OA 91.8 OA 94.1 OA 94.4 OA 96.4 OA 98.6

5.5. Comparisons to Related Works

Related works for NILM include different methods like decision tree [14,15], graph signal
processing [16], hidden Markov model [17,18], k-nearest neighbor [19], clustering [20] and
cepstrum-smoothing [21]. The features, datasets, cross-validation, detection interval, and OA of
each method have been summarized in Table 6. It should be noted that related work in [18] focused
on building a probabilistic appliance model which has been generalized to match previously unseen
households; thus, it did not involve any classifier for NILM.

Table 6. Performance comparisons between GA-SVM-MKL and related works.

Work Features Dataset Cross-
Validation

Detection
Interval OA

Decision tree and
wavelet

transform [14]

approximation level and
detail level

Four electric appliances—battery
charger, compact fluorescent lamp,

personal computer and incandescent
light bulb (total 864 samples)

No 0.0167 s
(60 Hz) 96.65%

Decision tree
method [15]

the first increasing edge
at the start of the event
and the last decreasing
edge at the end of the

event

Ten Activities—cooking, washing,
laundering, cleaning, watching TV,

listening to radio, games, computing,
hobbies and socializing (unknown

sample size)

N/A 8 s 59%

Graph signal
processing [16] Active power edges

Nine electric appliances—416
microwave oven, 311 washer dryer, 61
oven, 330 lighting, 2228 refrigerator, 264
dishwasher, 138 stove, 62 heater and 54

air conditioner

No 1 min 77.2%

Factorial Hidden
Markov Model

[17]
Factorial main factors

Five electric appliances—90 microwave
oven, 121 electric stove, 883 refrigerator,

58 dishwasher and 189 lighting
N/A 1 min 70.84%
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Table 6. Cont.

Work Features Dataset Cross-
Validation

Detection
Interval OA

Hidden Markov
model [18] log-odds score

Four electric appliances—2228
refrigerator, 416 microwave oven, 311
washing machine and 264 dishwasher

50-fold 1 min N/A

k-nearest
neighbor and

artificial neural
network [19]

maximum, average and
root mean square of the
current wave in transient

stage

Four electric appliances—27 Fan, 30
Fluorescent light, 19 radio and 18

microwave oven
No 0.02 s (50

Hz) 97.87%

Clustering [20]
real power, reactive

power, apparent power
and voltage features

Seven electric appliances—800 oven, 56
refrigerator, 452 dishwasher, 65 lighting,
154 washer, 443 microwave oven, 236

dryer

No 1 min 77.6%

Cepstrum-
smoothing [21]

Frequency and
amplitude of the

dominant peaks in the
smoothed cepstrum

Six electric appliances—television,
computer, monitor, refrigerator, washer
and vacuum cleaner (unknown sample

size)

N/A 0.5 s 96.37%

Proposed
GA-SVM-MKL

Imax, Irms, Iavg, Pact, Papp,
Prea and PF

20 electric appliances—Fluorescent
light, light bulb, LED tube, LED light
bulb, electric stove, microwave oven,

cooker, ironbrush, vacuum cleaner, fan,
hair dryer, electric heater, notebook,

desktop, all in one printer and scanner,
mobile charger, electric drill, electric
sander, radio and television (each of

1500 samples)

10-fold 0.02 s (50
Hz)

91.8%,
94.1%,
94.4%,
96.4%,

98.6% for
TM1 to

TM5

It can be seen that the existing works [15–17,20] using detection interval of 8 s or 1-min interval,
which is far from using real-time data. There are two concerns for using these detection intervals.
First, the operation time of electric appliances is generally not a divider of 8 s or 1-min. It is difficult
to define the class label. On the other hand, it increases the difficulty for the classification, because
(i) detection interval of 8 s, researchers are expected to find out whether the actual operation time
of electric appliance is 1 s, 2 s, . . . or 8 s. (ii) detection interval of 1-min, likewise, the determination
of operation time of electric appliance equals 1 s, 2 s, . . . or 60 s is required. Thus, related works
in [15–17,20] achieve Se, Sp and OA less than 80%.

The detection intervals in [14,19,21] are 60 Hz, 0.5 s and 50 Hz respectively. For OA, these works
achieve 96.65% [14], 94.87% [19] and 96.37% [21]. However, these works only consider the NILM of 4 or
6 electric appliances, which is much less than that in this paper (20 electric appliances). Also, previous
works are lack of or without mentioned one of the most important part in the performance evaluation,
cross-validation. One can pick up a bias training dataset to train the classifier so that the results are not
convincing and reliable. In aforementioned related works, Se and Sp are not given, which is believed to
be important criteria to evaluate both the accuracies in determining the true positive and true negative
samples. It is noted that when Se and Sp are far from each other, the chance of having bias in some
classifiers (toward specific classes) is high.

By comparing the GA-SVM-MKL TM 1-TM5 with [14,19,21] their OAs are similar. Thus, it can
be concluded that the proposed method achieves good performance in NILM when the number of
electric appliances is extended to 20.

We have to comment on the adoption of this method in the real world. Smart metering on real
time basis is quite complicated research problem. The evolution of machine learning techniques along
with real time sensors and big data capabilities will increase our capacity to model, meter and analyze
behavioral patterns over energy consumption. This will help us a lot to understand the linkages
between behavior and energy consumption. From a decision support point of view, irrelevant of the
programing and development environments, e.g., smart grid, the key challenge is to be capable of
aggregating smart energy data for advanced computational processing. Within this context some of
the most challenging future research directions can be:

• Standardization of Smart Energy data sets;
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• Interoperability in the Energy Smart Grid;
• Adoption of machine learning techniques for the provision and measurement of

Behavioral analytics;
• Integration of Smart Grid approaches in Energy Sector with a new era of Key Performance

Indicators (KPIs) and Energy Analytics;
• Large scale experimentation with millions of electrical devices for pattern analysis;
• Optimization of electricity consumption on real time basis based on smart energy data;
• Ontological Engineering and Semantic Annotation of smart energy data.

6. Conclusions

Considering the energy sustainability challenge cities/urban areas are exposed to today, the
objective of this paper was to examine ways of optimizing the use of electricity consumption and
suggest ways of employing these solutions in cities’/urban areas’ context. Specifically, the research
presented in this paper focused on the question of to what extent and how smart metering may
contribute to attaining greater efficiency of smart grid. The hypothesis underlying the research
was that an integrated approach consistent with engaging insights from (i) artificial intelligence,
cognitive computing and big data analytics, (ii) smart cities and smart villages research, and (iii) energy
sustainability debate, may yield novel findings. In fact, having employed a complex methodology,
as a result of research discussed in this paper a genetic algorithm support vector machine multiple
kernel learning (GA-SVM-MKL) approach has been proposed for NILM. A customized kernel has been
designed using typical kernel functions with kernel properties. This approach is customized to specific
problem, which is NILM for energy disaggregation. Applying kernel properties in various types of
kernels can increase the performance of the classifier. Three objective functions have been solved for
the optimal design of the classifier to detect 20 common household electric appliances with five tunable
modes. The effectiveness of GA-SVM-MKL has been demonstrated. To this end, (i) 20 common types
of of electric appliances have been considered, which is far more than that in existing works (at most 10
as in Table 6); (ii) it achieves Se of 92.1–98.4%, Sp of 91.5–98.8% and OA of 91.8–98.6%; and (iii) tunable
modes of GA-SVM-MKL is introduced to enhance the classification performance by 7%.

The authors are aware of the limitations of this research. The consideration of the number of
types of appliance, the number of modes and brands, as well as the maximum number of appliance is
limited. The coverage of the dataset could be extended when it comes to large-scale study. In addition,
investigation of the feature extraction could be one of the solutions to further improve the accuracy of
the classifier.

The contribution of this paper to the research agenda outlined in the Special Issue titled Artificial
Intelligence for Smart Grid is multifold:

First, from a technical point of view it demonstrates the capacity of AI techniques to model
complex problems and to simulate optimized solutions. Furthermore, it proves the new era of
computational problems where the creation and consumption of big data requires efficient and
coherent approaches integrating IoT, big data analytics and AI algorithms:

• Insights from artificial intelligence (AI) and cognitive computing and the value added they bring
into the process of smart systems [32]

• Insights from smart cities as well as considerations specific to the debate on sustainability,
including the SDGs, and their value added consistent with an emphasis on wellbeing and inclusive
socio-economic growth and development [33,34]

• Insights from the broad field pertinent to energy supply and demand and related questions the
value added if ICT-driven coherent and effective policymaking [35–37].

Second, from a strategic management and sustainability point of view, this paper heralds the onset
of a new era of energy-focused data-driven decision-making. This new era defined by the imperative of
energy sustainability requires dynamic real time distributed infrastructure and techniques to manage
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and utilize data flows from millions of devices (IoT), It also requires high speed networks that can bring
together all stakeholders, including energy produces, providers, businesses, end-users, decisionmakers.
This suggests that new research is needed that would focus on the question of how blockchain
technology may effectively serve this role [37]. Indeed, this is subject of our research in-progress.

Additionally, the decision-making point of view, the arguments outlined in this paper suggest that
more attention needs to be devoted to the work in progress undertaken by key stakeholders involved
in efforts geared toward optimizing electricity consumption. This includes the key electric appliances
producers, as well as key actors involved in devising regulatory frameworks, incl. the Organization
for Economic Cooperation and Development (OECD) and the European Union (EU). Arguably, several
of actions undertaken by these actors would benefit from the findings discussed in this paper.

In the direction of future research, several interesting new research areas promote the
interdisciplinary nature of sustainable smart energies research: Based on [38,39] the evolution of
individual smart data and smart metering techniques together with advanced Artificial Intelligence and
Machine Learning approaches will set up new challenges for intelligent energy agents. Sophisticated
and complicated modelling of energy consumption will also allow new analytical processing and
predicting capabilities [38]. The evolution of Data Mining, multidimensional data based and distributed
DataWarehouses, together with Cloud Services will promote the vision of Enengies’ Software, Platform
and Infrastructure as a Service [39,40]. In this direction, user behavior and a behavioral analysis
is directly linked, as is integrated behavioral analytics and smart energy modelling, metering and
solutions [41]. We plan very shortly to present a global survey on the social impact of Big Data for
Sustainable Energy.
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Appendix A

Table A1. Scenario setting for kNILM using properties 1–4 with typical kernels.

No. P kNILM No. P kNILM No. P kNILM No. P kNILM No. P kNILM

1 1 k1 + k1 2 1 k1 + k2 3 1 k1 + k3 4 1 k1 + k4 5 1 k1 + k5
6 1 k2 + k2 7 1 k2 + k3 8 1 k2 + k4 9 1 k2 + k5 10 1 k3 + k3

11 1 k3 + k4 12 1 k3 + k5 13 1 k4 + k4 14 1 k4 + k5 15 1 k5 + k5
16 2 ck1 17 2 ck2 18 2 ck3 19 2 ck4 20 2 ck5
21 3 k1 + c 22 3 k2 + c 23 3 k3 + c 24 3 k4 + c 25 3 k5 + c
26 4 k1k1 27 4 k1k2 28 4 k1k3 29 4 k1k4 30 4 k1k5
31 4 k2k2 32 4 k2k3 33 4 k2k4 34 4 k2k5 35 4 k3k3
36 4 k3k4 37 4 k3k5 38 4 k4k4 39 4 k4k5 40 4 k5k5
41 1.2 c1k1 + c2k2 42 1.2 ck1 + k2 43 1.2 k1 + ck2 44 1.2 c1k1 + c2k3 45 1.2 ck1 + k3
46 1.2 k1 + ck3 47 1.2 c1k1 + c2k4 48 1.2 ck1 + k4 49 1.2 k1 + ck4 50 1.2 c1k1 + c2k5
51 1.2 ck1 + k5 52 1.2 k1 + ck5 53 1.2 c1k2 + c2k3 54 1.2 ck2 + k3 55 1.2 k2 + ck3
56 1.2 c1k2 + c2k4 57 1.2 ck2 + k4 58 1.2 k2 + ck4 59 1.2 c1k2 + c2k5 60 1.2 ck2 + k5
61 1.2 k2 + ck5 62 1.2 c1k3 + c2k4 63 1.2 ck3 + k4 64 1.2 k3 + ck4 65 1.2 c1k3 + c2k5
66 1.2 ck3 + k5 67 1.2 k3 + ck5 68 1.2 c1k4 + c2k5 69 1.2 ck4 + k5 70 1.2 k4 + ck5
71 1.3 k1 + k1 + c 72 1.3 k1 + k2 + c 73 1.3 k1 + k3 + c 74 1.3 k1 + k4 + c 75 1.3 k1 + k5 + c
76 1.3 k2 + k2 + c 77 1.3 k2 + k3 + c 78 1.3 k2 + k4 + c 79 1.3 k2 + k5 + c 80 1.3 k3 + k3 + c
81 1.3 k3 + k4 + c 82 1.3 k3 + k5 + c 83 1.3 k4 + k4 + c 84 1.3 k4 + k5 + c 85 1.3 k5 + k5 + c
86 1.4 k1k1 + k1 87 1.4 k1k1 + k2 88 1.4 k1k1 + k3 89 1.4 k1k1 + k4 90 1.4 k1k1 + k5
91 1.4 k1k2 + k1 92 1.4 k1k2 + k2 93 1.4 k1k2 + k3 94 1.4 k1k2 + k4 95 1.4 k1k2 + k5
96 1.4 k1k3 + k1 97 1.4 k1k3 + k2 98 1.4 k1k3 + k3 99 1.4 k1k3 + k4 100 1.4 k1k3 + k5

101 1.4 k1k4 + k1 102 1.4 k1k4 + k2 103 1.4 k1k4 + k3 104 1.4 k1k4 + k4 105 1.4 k1k4 + k5
106 1.4 k1k5 + k1 107 1.4 k1k5 + k2 108 1.4 k1k5 + k3 109 1.4 k1k5 + k4 110 1.4 k1k5 + k5
111 1.4 k2k2 + k1 112 1.4 k2k2 + k2 113 1.4 k2k2 + k3 114 1.4 k2k2 + k4 115 1.4 k2k2 + k5
116 1.4 k2k3 + k1 117 1.4 k2k3 + k2 118 1.4 k2k3 + k3 119 1.4 k2k3 + k4 120 1.4 k2k3 + k5
121 1.4 k2k4 + k1 122 1.4 k2k4 + k2 123 1.4 k2k4 + k3 124 1.4 k2k4 + k4 125 1.4 k2k4 + k5
126 1.4 k2k5 + k1 127 1.4 k2k5 + k2 128 1.4 k2k5 + k3 129 1.4 k2k5 + k4 130 1.4 k2k5 + k5
131 1.4 k3k3 + k1 132 1.4 k3k3 + k2 133 1.4 k3k3 + k3 134 1.4 k3k3 + k4 135 1.4 k3k3 + k5
136 1.4 k3k4 + k1 137 1.4 k3k4 + k2 138 1.4 k3k4 + k3 139 1.4 k3k4 + k4 140 1.4 k3k4 + k5
141 1.4 k3k5 + k1 142 1.4 k3k5 + k2 143 1.4 k3k5 + k3 144 1.4 k3k5 + k4 145 1.4 k3k5 + k5
146 1.4 k4k4 + k1 147 1.4 k4k4 + k2 148 1.4 k4k4 + k3 149 1.4 k4k4 + k4 150 1.4 k4k4 + k5
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Table A1. Cont.

No. P kNILM No. P kNILM No. P kNILM No. P kNILM No. P kNILM

151 1.4 k4k5 + k1 15yh72 1.4 k4k5 + k2 153 1.4 k4k5 + k3 154 1.4 k4k5 + k4 155 1.4 k4k5 + k5
156 1.4 k5k5 + k1 157 1.4 k5k5 + k2 158 1.4 k5k5 + k3 159 1.4 k5k5 + k4 160 1.4 k5k5 + k5
161 2.3 c1k1(k1 + c2) 162 2.3 c1k1(k2 + c2) 163 2.3 c1k1(k3 + c2) 164 2.3 c1k1(k4 + c2) 165 2.3 c1k1(k5 + c2)
166 2.3 c1k2(k1 + c2) 167 2.3 c1k2(k2 + c2) 168 2.3 c1k2(k3 + c2) 169 2.3 c1k2(k4 + c2) 170 2.3 c1k2(k5 + c2)
171 2.3 c1k3(k1 + c2) 172 2.3 c1k3(k2 + c2) 173 2.3 c1k3(k3 + c2) 174 2.3 c1k3(k4 + c2) 175 2.3 c1k3(k5 + c2)
176 2.3 c1k4(k1 + c2) 177 2.3 c1k4(k2 + c2) 178 2.3 c1k4(k3 + c2) 179 2.3 c1k4(k4 + c2) 180 2.3 c1k4(k5 + c2)
181 2.3 c1k5(k1 + c2) 182 2.3 c1k5(k2 + c2) 183 2.3 c1k5(k3 + c2) 184 2.3 c1k5(k4 + c2) 185 2.3 c1k5(k5 + c2)
186 2.4 ck1(k1k2) 187 2.4 ck1(k1k3) 188 2.4 ck1(k1k4) 189 2.4 ck1(k1k5) 190 2.4 ck1(k2k3)
191 2.4 ck1(k2k4) 192 2.4 ck1(k2k5) 193 2.4 ck1(k3k4) 194 2.4 ck1(k3k5) 195 2.4 ck1(k4k5)
196 2.4 ck2(k1k2) 197 2.4 ck2(k1k3) 198 2.4 ck2(k1k4) 199 2.4 ck2(k1k5) 200 2.4 ck2(k2k3)
201 2.4 ck2(k2k4) 202 2.4 ck2(k2k5) 203 2.4 ck2(k3k4) 204 2.4 ck2(k3k5) 205 2.4 ck2(k4k5)
206 2.4 ck3(k1k2) 207 2.4 ck3(k1k3) 208 2.4 ck3(k1k4) 209 2.4 ck3(k1k5) 210 2.4 ck3(k2k3)
211 2.4 ck3(k2k4) 212 2.4 ck3(k2k5) 213 2.4 ck3(k3k4) 214 2.4 ck3(k3k5) 215 2.4 ck3(k4k5)
216 2.4 ck4(k1k2) 217 2.4 ck4(k1k3) 218 2.4 ck4(k1k4) 219 2.4 ck4(k1k5) 220 2.4 ck4(k2k3)
221 2.4 ck4(k2k4) 222 2.4 ck4(k2k5) 223 2.4 ck4(k3k4) 224 2.4 ck4(k3k5) 225 2.4 ck4(k4k5)
226 2.4 ck5(k1k2) 227 2.4 ck5(k1k3) 228 2.4 ck5(k1k4) 229 2.4 ck5(k1k5) 230 2.4 ck5(k2k3)
231 2.4 ck5(k2k4) 232 2.4 ck5(k2k5) 233 2.4 ck5(k3k4) 234 2.4 ck5(k3k5) 235 2.4 ck5(k4k5)
236 3.4 (k1 + c)k1k2 237 3.4 (k1 + c)k1k3 238 3.4 (k1 + c)k1k4 239 3.4 (k1 + c)k1k5 240 3.4 (k1 + c)k2k3
241 3.4 (k1 + c)k2k4 242 3.4 (k1 + c)k2k5 243 3.4 (k1 + c)k3k4 244 3.4 (k1 + c)k3k5 245 3.4 (k1 + c)k4k5
246 3.4 (k2 + c)k1k2 247 3.4 (k2 + c)k1k3 248 3.4 (k2 + c)k1k4 249 3.4 (k2 + c)k1k5 250 3.4 (k2 + c)k2k3
251 3.4 (k2 + c)k2k4 252 3.4 (k2 + c)k2k5 253 3.4 (k2 + c)k3k4 254 3.4 (k2 + c)k3k5 255 3.4 (k2 + c)k4k5
256 3.4 (k3 + c)k1k2 257 3.4 (k3 + c)k1k3 258 3.4 (k3 + c)k1k4 259 3.4 (k3 + c)k1k5 260 3.4 (k3 + c)k2k3
261 3.4 (k3 + c)k2k4 262 3.4 (k3 + c)k2k5 263 3.4 (k3 + c)k3k4 264 3.4 (k3 + c)k3k5 265 3.4 (k3 + c)k4k5
266 3.4 (k4 + c)k1k2 267 3.4 (k4 + c)k1k3 268 3.4 (k4 + c)k1k4 269 3.4 (k4 + c)k1k5 270 3.4 (k4 + c)k2k3
271 3.4 (k4 + c)k2k4 272 3.4 (k4 + c)k2k5 273 3.4 (k4 + c)k3k4 274 3.4 (k4 + c)k3k5 275 3.4 (k4 + c)k4k5
276 3.4 (k5 + c)k1k2 277 3.4 (k5 + c)k1k3 278 3.4 (k5 + c)k1k4 279 3.4 (k5 + c)k1k5 280 3.4 (k5 + c)k2k3
281 3.4 (k5 + c)k2k4 282 3.4 (k5 + c)k2k5 283 3.4 (k5 + c)k3k4 284 3.4 (k5 + c)k3k5 285 3.4 (k5 + c)k4k5

Table A2. Optimal Design of GA-SVM-MKL Classifier in 285 Scenario using Various Kernel and
Kernel Properties.

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

Se Sp OA Se Sp OA Se Sp OA Se Sp OA Se Sp OA

1 71.8 72.3 72.1 2 73.1 72.7 72.9 3 75.3 76.3 75.8 4 76.4 75.9 76.2 5 72.9 73.6 73.3
6 72.4 72.7 72.6 7 75.7 76.4 76.1 8 78.5 78.8 78.7 9 75.7 76.1 75.9 10 74.8 75.4 75.1

11 79.3 80.1 79.7 12 76.9 77.8 77.4 13 76.5 77.1 76.8 14 77.1 76.2 76.7 15 75.4 74.2 74.8
16 73.4 72.9 73.2 17 74.9 75.3 75.1 18 75.9 76.1 76 19 78.2 78.8 78.5 20 76.2 75.8 76
21 71.9 72.6 72.3 22 74.6 75.1 74.9 23 75.3 76.3 75.8 24 76.7 77.3 77 25 76.8 76.0 76.4
26 70.8 71.5 71.2 27 72.6 72.8 72.7 28 73.6 73.4 73.5 29 75.7 76.3 76 30 73.3 72.9 73.1
31 70.3 71.9 71.1 32 75.1 74.5 74.8 33 78.2 77.6 77.9 34 75.3 76.8 76.1 35 72.9 73.7 73.3
36 77.4 78.4 77.9 37 76.4 77.5 77.0 38 76.3 75.6 76.0 39 76.8 75.3 76.1 40 72.8 73.1 73.0
41 80.3 81.4 80.9 42 79.4 78.8 79.1 43 79.5 78.5 79 44 82.7 83.7 83.2 45 79.4 78.6 79
46 80.4 81.1 80.8 47 84.3 85.1 84.7 48 81.8 82.3 82.1 49 82.4 82.9 82.7 50 81.5 82.4 82.0
51 78.6 79.5 79.1 52 80.1 81.4 80.8 53 83.9 82.9 83.4 54 82.7 81.6 82.2 55 83.5 84.2 83.9
56 85.6 84.9 85.3 57 84.5 84.9 84.7 58 85.3 86.2 85.8 59 84.3 83.6 84.0 60 82.5 83.1 82.8
61 83.5 84.0 83.8 62 86.8 87.2 87 63 85.7 86.4 86.1 64 85.3 85.7 85.5 65 85.2 86.3 85.8
66 84.8 84.2 84.5 67 84.3 85.4 84.9 68 87.3 86.9 87.1 69 85.4 86.7 86.1 70 86.1 86.6 86.4
71 73.4 72.5 73.0 72 74.5 73.8 74.2 73 77.1 76.2 76.7 74 77.5 76.9 77.2 75 75.6 74.9 75.3
76 73.8 74.5 74.2 77 76.3 77.1 76.7 78 79.9 78.5 79.2 79 77.3 78.4 77.9 80 76.3 77.6 77.0
81 81.2 80.6 80.9 82 78.5 79.1 78.8 83 76.8 77.7 77.3 84 76.3 77.4 76.9 85 76.4 75.3 75.9
86 72.4 73.4 72.9 87 73.5 74.2 73.9 88 74.8 75.6 75.2 89 75.6 76.2 75.9 90 74.6 75.1 74.9
91 74.2 73.6 73.9 92 74.1 75.9 75 93 74.3 74.9 74.6 94 76.3 77.4 76.9 95 75.2 74.6 74.9
96 74.5 75.6 75.1 97 75.3 76.2 75.8 98 75.6 76.5 76.1 99 77.8 78.2 78 100 77.4 76.3 76.9

101 75.8 76.4 76.1 102 77.4 78.4 77.9 103 77.5 76.3 76.9 104 80.1 79.7 79.9 105 78.4 79.6 79
106 76.1 75.9 76 107 76.7 77.9 77.3 108 75.4 76.6 76 109 75.7 76.1 75.9 110 74.2 75.8 75
111 73.4 74.8 74.1 112 75.1 74.7 74.9 113 75.1 76.3 75.7 114 75.9 76.7 76.3 115 76.8 75.3 76.1
116 74.8 75.6 75.2 117 75.5 76.1 75.8 118 77.5 76.2 76.9 119 78.1 78.9 78.5 120 77.3 78.2 77.8
121 75.1 75.2 75.2 122 77.4 76.7 77.1 123 77.3 78.9 78.1 124 79.5 78.9 79.2 125 76.3 75.8 76.1
126 75.3 74.5 74.9 127 76.4 77.1 76.8 128 76.1 76.4 76.3 129 78.3 77.3 77.8 130 76.8 75.9 76.4
131 75.4 74.6 75 132 75.8 76.8 76.3 133 76.2 77.3 76.8 134 77.3 76.4 76.9 135 76.8 76.4 76.6
136 76.4 76.2 76.3 137 78.4 77.9 78.2 138 78.1 79.3 78.7 139 81.2 80.4 80.8 140 80.9 80.4 80.7
141 76.4 75.3 75.9 142 76.8 77.4 77.1 143 78.4 79.5 79.0 144 79.6 80.1 79.9 145 79.9 78.9 79.4
146 75.6 76.3 76.0 147 76.2 76.1 76.2 148 77.5 78.4 78.0 149 79.4 78.8 79.1 150 77.9 78.4 78.2
151 75.6 74.8 75.2 152 76.4 76.7 76.6 153 75.6 75.3 75.5 154 78.6 79.1 78.9 155 77.5 78.1 77.8
156 74.6 73.5 74.1 157 74.9 75.8 75.4 158 74.3 75.9 75.1 159 77.6 75.9 76.8 160 75.3 76.3 75.8
161 81.9 82.4 82.2 162 81.8 82.3 82.1 163 83.6 84.6 84.1 164 84.1 84.6 84.4 165 83.3 84.1 83.7
166 83.4 82.7 83.1 167 82.3 83.8 83.1 168 83.5 84.1 83.8 169 84.8 85.7 85.3 170 85.1 84.9 85
171 86.1 85.7 85.9 172 86.8 87.2 87 173 88.9 87.5 88.2 174 91.5 90.3 90.9 175 91.2 90.8 91
176 88.9 89.5 89.2 177 88.6 89.8 89.2 178 92.1 91.5 91.8 179 91.2 91.5 91.4 180 90.3 90.1 90.2
181 88.5 89.2 88.9 182 88.8 89.6 89.2 183 88.3 89.2 88.8 184 88.4 89.7 89.1 185 88.5 89.1 88.8
186 83.1 82.5 82.8 187 83.4 84.1 83.8 188 85.6 84.7 85.2 189 83.9 84.2 84.1 190 83.9 84.5 84.2
191 85.3 86.1 85.7 192 83.7 84.1 83.9 193 85.2 84.6 84.9 194 83.8 82.9 83.4 195 84.1 83.7 83.9
196 83.4 82.7 83.1 197 84.3 85.1 84.7 198 86.3 85.8 86.1 199 84.8 85.7 85.3 200 85.5 86.2 85.9
201 85.7 86.3 86 202 84.9 85.1 85 203 86.1 87.3 86.7 204 84.9 85.3 85.1 205 85.2 86.2 85.7
206 84.5 85.1 84.8 207 85.7 86.8 86.3 208 86.2 86.4 86.3 209 85.9 84.8 85.4 210 84.6 84.9 84.8
211 85.2 86.4 85.8 212 85.7 86.5 86.1 213 86.7 87.1 86.9 214 86.3 87.4 86.9 215 86.7 87.2 87.0
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Table A2. Cont.

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

Se Sp OA Se Sp OA Se Sp OA Se Sp OA Se Sp OA

216 85.8 86.7 86.3 217 88.2 87.1 87.7 218 87.8 88.5 88.2 219 86.3 87.2 86.8 220 85.1 86.3 85.7
221 86.6 87.3 87.0 222 87.3 86.4 86.9 223 88.9 88.2 88.6 224 86.7 87.5 87.1 225 87.5 88.2 87.9
226 85.6 86.8 86.2 227 86.3 87.3 86.8 228 86.1 85.9 86 229 85.4 85.8 85.6 230 85.9 84.3 85.1
231 84.6 85.1 84.9 232 86.1 87.4 86.8 233 87.1 86.4 86.8 234 86.3 87.8 87.1 235 85.2 86.3 85.8
236 83.4 84.9 84.2 237 83.3 84.1 83.7 238 84.9 85.6 85.3 239 84.7 85.1 84.9 240 85.8 86.6 86.2
241 86.1 86.7 86.4 242 85.6 84.8 85.2 243 86.7 85.9 86.3 244 85.3 84.1 84.7 245 85.1 85.9 85.5
246 86.1 85.3 85.7 247 86.2 85.6 85.9 248 87.1 86.3 86.7 249 86.2 85.9 86.1 250 86.1 86.8 86.5
251 87.2 86.4 86.8 252 86.7 85.7 86.2 253 87.8 88.3 88.1 254 86.7 86.5 86.6 255 86.3 87.3 86.8
256 86.4 87.3 86.9 257 86.9 85.8 86.4 258 86.3 87.3 86.8 259 87.1 86.3 86.7 260 87.5 88.1 87.8
261 86.9 87.6 87.3 262 87.4 88.1 87.8 263 89.4 88.4 88.9 264 87.4 86.7 87.1 265 87.4 87.9 87.7
266 86.3 87.4 86.9 267 86.9 87.5 87.2 268 88.2 87.1 87.7 269 85.7 86.4 86.1 270 86.7 87.5 87.1
271 87.5 86.7 87.1 272 87.4 88.3 87.9 273 88.4 87.5 88.0 274 88.6 89.2 88.9 275 86.9 87.2 87.1
276 86.7 86.8 86.8 277 87.1 86.5 86.8 278 88.5 87.5 88 279 86.3 87.2 86.8 280 86.5 86.8 86.7
281 86.4 87.1 86.8 282 86.7 87.8 87.3 283 87.5 88.6 88.1 284 87.1 87.5 87.3 285 86.7 87.9 87.3
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