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Abstract: Integrated energy systems (IESs) seek to minimize power generating costs in future power
grids through the coupling of different energy technologies. To accommodate fluctuations in load
demand due to the penetration of renewable energy sources, flexible operation capabilities must be
fully exploited, and even power plants that are traditionally considered as base-load units need to be
operated according to unconventional paradigms. Thermomechanical loads induced by frequent
power adjustments can accelerate the wear and tear. If a unit is flexibly operated without respecting
limits on materials, the risk of failures of expensive components will eventually increase, nullifying
the additional profits ensured by flexible operation. In addition to the bounds on power variations
(explicit constraints),the solution of the unit dispatch problem needs to meet the limits on the variation
of key process variables, including temperature, pressure and flow rate (implicit constraints).The
FARM (Feasible Actuator Range Modifier) module was developed to enable existing optimization
algorithms to identify solutions to the unit dispatch problem that are both economically favorable
and technologically sustainable. Thanks to the iterative dispatcher–validator scheme, FARM permits
addressing all the imposed constraints without excessively increasing the computational costs. In
this work, the algorithms constituting the module are described, and the performance was assessed
by solving the unit dispatch problem for an IES composed of three units, i.e., balance of plant, gas
turbine, and high-temperature steam electrolysis. Finally, the FARM module provides dedicated tools
for visualizing the response of the constrained variables of interest during operational transients
and a tool aiding the operator at making decisions. These techniques might represent the first step
towards the deployment of an ecological interface design (EID) for IES units.

Keywords: unit dispatch problem; integrated energy system; command governor; ecological
interface design

1. Introduction

Along with the benefits of reducing the carbon footprint and lessening the dependence
on fossil fuels, the increasing penetration of renewable energy sources (RESs) constitutes
an issue for the stability of power grids. As a result of the limited dispatchability of solar
power plants and wind farms, significant fluctuations in the net demand might lead to
blackouts and interruption of service [1,2]. The deployment of RESs, combined with the
low cost and accessibility of natural gas, has led to a decrease in electricity prices, even
resulting in negative values in some regions during periods of high RES production and low
demand. Since the energy storage systems are not mature for grid-scale deployment [3], the
only available approach is to enhance the operational flexibility of other generating units
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connected to the grid. Even traditional base-load units, e.g., nuclear power plants [4], need
to be operated according to unconventional paradigms. The concept of integrated energy
systems (IESs) aligns with this perspective. IESs are cooperatively controlled systems that
dynamically apportion thermal and/or electrical energy to provide responsive generation
to the power grid while also supporting the production of other energy products. Research
activities are currently carried on world wide to develop the IES technology [5,6]. An
IES unit combines conventional power plants with different characteristics in synergistic
ways. For most units, electricity is considered the primary output, ensuring that grid
demand is reliably met within the analysis region. Once electricity demand is met, the IES
is designed to dynamically apportion any surplus primary energy to energy storage or to
the production of industrial products. In some cases, the industrial product may be an
intermediate energy carrier, such as hydrogen, or an intermediate chemical feedstock, such
as methanol.

The problem of evaluating the mixed outputs of the units that minimize the generation
costs or maximize the revenue is called unit dispatch. With regard to IES units, the goal of
the unit dispatch problem consists of evaluating the power outputs and the heat flows that
maximize the profitability of the whole system over the specified time horizon (days, weeks).
It is a constrained optimization problem since limits on the minimum and the maximum
power output along with the maximum ramp rate are imposed on all the power plants
that constitute the IES unit. In this work, these limits are referred to as explicit constraints.
Traditionally, unit dispatch problems are solved by adopting Dynamic Programming (DP)
algorithms [7] or Mixed-Integer Linear Programming (MILP) algorithms [8]. These methods
are effective for power plants that adopt current operational paradigms. The adoption
of new operational paradigms requires dynamic coupling between the power plants that
constitute an IES unit. Thermomechanical loads caused by frequent power adjustments
can accelerate the performance degradation and the wear and tear of components. If a unit
is flexibly operated without respecting operational limits, the risk of expensive component
failures will eventually increase, along with the frequency of maintenance interventions,
nullifying the additional profits ensured by flexible operation. Let us consider the case
of a nuclear unit. In Pressurized Water Reactors (PWRs), the condenser is the second
most expensive component of the entire plant after the reactor vessel [9]. To modulate the
power output and effectively dispose of the heat produced in the core, the control actions
governing the steam generator and steam turbine must be coordinated. Along with the
constraints on reactor power and turbine power, limits on the variations in pressure and
moisture content in the turbine-discharged steam flow rate need to be imposed as well.
Otherwise, the stress on the turbine blades and the condenser pipes will exceed design-
basis conditions, thus causing damage to the components. These limits are referred to as
implicit constraints. Available tools need to be enhanced to formally account for implicit
constraints. While necessary, adding numerous constraints on temperatures, pressures
and flow rates increases the size of the optimization problem. In this work, an innovative
approach for solving the unit dispatch problem for any set of generating units with key
variables that need to be constrained during operation (such as temperature, pressure, flow
rate, etc.) is presented and demonstrated. The key premise of the proposed approach is that
solving the optimization problem by simultaneously considering both explicit and implicit
constraints leads to prohibitive computational costs. A more efficient approach consists of
addressing the optimization problem as a two-phase process. Similar to a Kalman filter [10],
the proposed scheme has a prediction phase and an update phase. For the prediction phase,
a traditional unit dispatcher finds a tentative solution that meets the explicit constraints on
the power outputs. Such a tentative solution is then assessed by a sanity-check downstream
of the unit dispatcher called a “validator” (update phase). Its task consists of determining
whether the tentative set-point trajectories are compliant with the implicit constraints on
temperatures, pressures and flow rates. The embedded algorithm is the command governor
(CG) [11,12]. It is a discrete-time device that is used in the field of feedback control of
dynamic systems. Although a CG is typically used as a supervisory control algorithm,
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this work proposes an innovative application, i.e., aiding the solution of the unit dispatch
problem for complex mixed-generation plants. Thanks to a model of the studied system,
the unit response to demanded power transients can be evaluated, and possible violations
of the imposed limits are identified and returned to the unit dispatcher. The algorithm is
recursive, i.e., the solution of the optimization problem will be approved only when all the
constraints are met.

Widely used to describe the safe operation of a power plant, turbomachinery or any
engineering systems, the Normal Operation Region (NOR) is defined as the ensemble
of operating points at which the system can function without exceeding design-basis
conditions of its components [13]. Having identified p process variables whose evolution
needs to be limited to preserve the integrity of system components, the NOR can be
mathematically defined as a p-dimensional polytope in the phase space [14]. The validator’s
task then consists of ensuring that the power demanded for the plants constituting the
IES unit does not lead any of these p variables to violate the NOR bounds. In Figure 1, a
qualitative representation is shown. The dashed green trajectory describes an acceptable
unit response during a power transient, i.e., the entire trajectory lies within the NOR bounds
(blue region). In case operating conditions exceed the NOR bounds, the components will
experience excessive thermomechanical loads, thus increasing the risk of failure over time
(orange region). Ultimately, if a transient pushes the system even further, the safety variable
limits (solid black line) will be breached, potentially leading to a severe accident. The
proposed scheme provides a quantitative estimate of the NOR, i.e., the constraints on these
p variables are “translated” into limits on the power set-point trajectories. As a major
outcome, it provides a tool that conveys the major information about the plant conditions
in a simple and straightforward fashion.

Final
State

Safety 
thresholds

Initial 
State

Normal Operation
Region (NOR)

Unit response 
during a power 
transient

Current 
State

Operating limits 
(NOR bounds)

Figure 1. Qualitative illustration of the NOR. The recommended operating conditions are represented
by the blue region.

The paper is organized as follows. In Section 2, the new approach to the solution of the
unit dispatch problem for IES units and the role of the validator are presented. In Section 3,
the modeling framework implementing the proposed scheme is described. In Section 4,
the algorithms embedded into the FARM for predicting the system response and detecting
the constraint violations and corrective actions are described. In Section 5, the IES unit
selected as a test case is described, and the constraints enforced during operation are listed.
In Section 6, the steps that lead to the solution of the unit dispatch problem for the studied
system are defined, and the obtained results and the associated computational costs are
discussed. In Section 7, visualization techniques for displaying the IES unit response during
power transients are presented, and a possible role of the FARM as an aid to unit operators
is proposed. Finally, the main conclusions are drawn and future steps are discussed.
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2. Description of a New Approach to the Solution of Unit Dispatch Problems

As mentioned in the Introduction, when solving the unit dispatch problem for an
IES unit, there are two sets of limits that need to be respected, i.e., explicit constraints and
implicit constraints. Any solution of the unit dispatch problem that meets both these two
sets of constraints is defined as a feasible solution.

• Explicit constraints: the electrical power output can assume any value within a char-
acteristic window, i.e., Pmin ≤ P(t) ≤ Pmax (power output limits). Electrical power
variations cannot be too steep either, i.e., | dP

dt | ≤
dP
dt |max (power ramp-rate limits).

Explicit constraints are also defined as low-resolution physics constraints because they
represent fewer physics details.

• Implicit constraints: to prevent thermomechanical loads from surpassing the design
limits, constraints on temperature, pressure, and flow rate must be taken into account,
i.e., Tmin ≤ T(t) ≤ Tmax, pmin ≤ p(t) ≤ pmax, and wmin ≤ w(t) ≤ wmax. Implicit
constraints are also defined as high-resolution physics constraints since they account
for a large number of aspects that govern the processes.

Ideally, all these constraints should be addressed by the unit dispatcher (Figure 2a).
Unfortunately, the size of the ensuing optimization problem would entail a large compu-
tational burden. The problem could be addressed by splitting the two sets of constraints.
Specifically, the unit dispatcher will address the explicit constraints for each unit, and the
corresponding control systems will address the implicit constraints by imposing saturation
limits on the PID controllers (Figure 2b). By adopting this method, the set-points issued
by the unit dispatcher will never cause the violation of implicit constraints of the IES unit
components, and the size of the optimization problem will be manageable since the unit
dispatcher only addresses the explicit constraints. However, the resulting power transients
will be sub-optimal and there is the possibility that the load demand will not be met.

(a) (b)

Figure 2. Tentative solutions to account for both explicit and implicit constraints into the optimization
algorithm. (a) Addressing all the constraints by using the unit dispatcher; (b) Addressing the implicit
constraints by imposing saturation limits on the PID controllers.

The approach proposed in this work consists of solving the constrained optimiza-
tion problem by placing a sanity-check downstream of the unit dispatcher to ensure the
feasibility of the found solutions. The CG was identified as a suitable algorithm to fulfill
this task. It is an add-on scheme that enforces pointwise-in-time constraints by modifying
the set-point signals fed to a closed-loop, dynamic system. The problem of designing the
control system is then addressed as a two-step process. The primal regulators are tasked to
stabilize the system and provide tracking properties in the absence of constraints. They can
be traditional feedback regulators, e.g., PID controllers. The constraint enforcement task is
left to the CG, i.e., a nonlinear device which is added to the primal compensated nonlinear
system. Whenever necessary, the CG modifies the reference set-point signals supplied to
the primal regulators to enforce the fulfillment of the constraints [15]. Originally conceived
as a layer of control system architectures, the CG is used in this work to speed up the
constrained optimization process. As mentioned in the Introduction, the CG “translates”
the implicit constraints into explicit constraints, thereby imposing more restrictive limits
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on the set-point trajectories. Updated limits aid the dispatcher in identifying an optimal
solution that conforms to both sets of constraints.

The proposed approach is composed of the following five steps:

1. The capacities of the IES unit subsystems (i.e., maximum power output/consumption)
are defined by the user;

2. Given the subsystem capacities, the HERON unit dispatcher (see Section 3) solves
the constrained optimization problem by approximating the optimal power out-
put/consumption for each subsystem. These trajectories (⃗r(k)) satisfy the explicit
constraints (Figure 3);

3. The CG determines whether the trajectories calculated by the HERON unit dispatcher
satisfy the implicit constraints too. If not, the CG will provide trajectories complying
with both explicit and implicit constraints (⃗v(k)) and return them to the unit dispatcher
for re-optimization;

4. From v⃗(k) trajectories, the HERON unit dispatcher derives a feedback to adjust the
values of the explicit constraints;

5. Steps (2) through (4) are repeated until v⃗(k) and r⃗(k) are identical; i.e., the optimal
trajectories satisfying heat and electrical power demands are also compliant with both
explicit and implicit constraints. The “approved” set-points are then issued to the PID
controllers that calculate the control actions (u⃗(k)) to simulate the prescribed power
transients.

Figure 3. Proposed scheme for efficiently addressing both explicit and implicit constraints.

In Figure 4, a detailed view of the feedback provided by the validator to the unit
dispatcher is shown. For simplicity, the optimization of a single power set-point is depicted.
Once the system’s evolution in response to r(k) has been simulated, the margins with
respect to the lower and upper bounds on the implicitly constrained variables are evaluated,
“translated” into margins on the bounds of production variables (i.e., electrical power, in
this case) and returned to the unit dispatcher. In Figure 4, they are outlined in red as
[(δPmin)Imp, (δPmax)Imp]. These contributions will be added to the explicit constraints
((Pmin)Exp and (Pmax)Exp). In this way, a more comprehensive characterization of the
feasible system capabilities is obtained. The final constraints (Pmin and Pmax) will include
both the inherent limits on standalone subsystem performance (expressed by the explicit
constraints) and the additional, more restrictive limits resulting from the interactions with
other interconnected subsystems typical of the IES unit configuration (expressed by the
translated margins). The unit dispatch problem being addressed is the traditional one. The
inclusion of the validator provides dynamic corrections to the constraints on the optimized
variables as function of their sensitivity to changes in the monitored process variables
as temperatures, pressures, and flow rates. Specifically, it reduces the space of feasible
solutions in which to search for the optimal one.
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Figure 4. Graphical representation of the feedback system formed by the unit dispatcher and the
validator. The limits on implicitly constrained variables are translated into constraints on production
variables and returned to the unit dispatcher.

3. Description of the Modeling Framework for Solving the Unit Dispatch Problem for
IES Units

In this work, the scheme outlined in Section 2 was implemented to address the unit
dispatch challenge for an IES. The IES units are constituted by thermally coupled power
plants designed to operate in synergistic ways. Due to their complex configuration and the
necessity for component coordination, IES units incur higher initial and operational costs
compared to standard energy systems. Assessing the financial viability of such investments
involves analyzing the economic performance over their operational lifespan, which spans
several decades. Such analysis requires an unprecedented modeling and simulation effort
to ensure the proposed operational paradigm will not cause damage to components or
materials. To achieve this goal, a research program was started in 2015 [16], focusing on
integrated modeling, simulation and experimental facility development. Consequently, a
comprehensive framework named FORCE (Framework for Optimization of Resources and
Economics) was established [17], integrating and enhancing tools from various software to
cater to the specific requirements mentioned.

• RAVEN (Risk Analysis Virtual Environment) [18] is a multipurpose uncertainty quan-
tification (UQ), regression analysis, data analysis and optimization framework [19].
RAVEN is the central engine for the deployment of all the analysis needs, providing
the tools for the construction of the analysis workflows. RAVEN is charged with
deploying the optimization methodology and algorithms that are used for the capacity
optimization. In addition, the framework delivers the techniques for the generation of
synthetic scenarios starting from available datasets via its time series generators [20].
Thanks to this capability, hypothetical scenarios characterized by a larger penetration
of renewable energy sources or higher level of variability in the demand profile can
be investigated.

• HYBRID software [21] is a collection of component models developed primarily using
the Modelica language and deployed using the Dymola 2020x software suite [22]. An
IES unit is constituted by traditional power plants whose dynamics are characterized
by very different time constants; i.e., along with a nuclear power plant, there are
gas turbines that can be started up from cold shutdown conditions in 20 min. To
obtain a realistic description of the system performance, the capability of accurately
simulating the dynamic response of the IES components over different time scales
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is crucial. HYBRID contains low-fidelity and high-fidelity models for all the energy
systems and components that have been selected as part of the IES framework.

• HERON (Holistic Energy Resource Optimization Network) [23] is a plug-in that
allows performing stochastic full-system techno-economic analysis of grid energy-
resource systems with economic drivers [24]. The development targets analysis of
electricity and secondary product generation and consumption in regional balancing
areas, including flexibility to include arbitrary resources, as well as arbitrary resource
consumers and producers. HERON is the tool for the construction of the overall
IES/FORCE workflow, providing tools for deploying systems’ dispatching strategies
and capacity optimization.

• TEAL (Tool for Economic AnaLysis) [25] is a discounted cash flow analysis plug-in
that allows for a generic definition of cash flows, with drivers provided by RAVEN.
It includes flexible options to deal with taxes, inflation, discounting and offers capa-
bilities to compute a combined cash flow for components with different component
lives [26]. TEAL is tasked with deployment of the economic analysis within the IES
methodological framework.

In Figure 5, the graphical representation of the FORCE workflow is shown. At the top,
the HERON module is represented. The result of the techno-economic analysis includes
the dispatching strategy, i.e., the set of power output and the heat flux set-points for the
energy systems that constitute the unit. At the bottom of Figure 5, the HYBRID module is
represented. The embedded Dymola model of the IES unit is used to simulate the power
transients that are prescribed by the set-point trajectories provided by the HERON. In
addition, the Dymola model can be run off-line to generate datasets characterizing the
dynamics of the IES unit. Between these two modules is the validator assessing the tentative
dispatching strategies. The developed validator module is named FARM (Feasible Actuator
Range Modifier) [27], which bridges the high-fidelity (HYBRID) and low-fidelity (HERON)
modeling of the IES unit dynamics. In Figure 6, a graphical representation is shown.

Figure 5. Workflow of the Framework for Optimization of ResourCes and Economics ecosystem
(FORCE) [17]. The FARM serves as the bridge between high-fidelity and low-fidelity description of
the IES unit.

To detect possible violations of implicit constraints, every time a power or heat flux
set-point changes, the response of the IES unit components needs to be estimated by
adopting a reduced order model of the unit and the corresponding control system. For this
application, linear time-invariant (LTI) state-space models are often adopted. In LTI models,
the evolution of system state variables x⃗ and system output variables y⃗ with respect to the
system input vector v⃗ in the discrete time domain is shown in Equations (1) and (2).
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x⃗(k + 1) = Ax⃗(k) + Bv⃗(k) (1)

y⃗(k) = Cx⃗(k) + Dv⃗(k) (2)

Figure 6. Detailed view of the FARM-based workflow.

In this work, the unit response to tentative set-points is estimated using a linear
parameter-varying (LPV) model [28]. An LPV model is constituted by a set of LTI models
obtained by linearizing the set of Differential-Algebraic Equations (DAEs) [29] describing
the dynamics of the studied system around anchor points in the scheduling space called
scheduling parameters (Equations (3) and (4)). In the current implementation, the set of ma-
trices corresponding to the LTI models are indexed by the corresponding production level.

x⃗(k + 1) = A(p)x⃗(k) + B(p)⃗v(k) (3)

y⃗(k) = C(p)x⃗(k) + D(p)⃗v(k) (4)

where A(p), B(p), C(p) and D(p) are the state-space matrices parameterized by the
scheduling parameter vector (p).

To build the LPV model, a data-driven method was implemented in FARM. As a
first step, a dataset containing the IES unit responses during multiple power transients
must be generated. These data may be either measurements collected from the actual
unit or simulation data generated by running a high-fidelity model of the unit. These
latter solutions can be significantly facilitated by the use of the FMI/FMU standard [30].
The Functional Mock-up Interface (FMI) defines a standardized interface to be used in
simulations that simplifies the creation, storage, exchange, and (re-)use of dynamic system
models. With such an interface implemented, the Dymola model can be exported as an
executable called an FMU (Functional Mock-up Unit), which can be imported into other
supported environments for simulation. An FMU may either encapsulate its own solvers
(FMU for Co-Simulation) or require the simulation environment to perform numerical
integration (FMU for Model Exchange) [22,31]. The high-fidelity model used in this work
to generate the simulation data was developed in Dymola simulation environment. After
building the model of the studied IES unit by assembling the components models from the
HYBRID library, it was exported into a Co-Simulation FMU and used within the FARM
(Figure 6). The FMU receives set-point trajectories and returns the responses of all the
available process variables from the simulation. The simulation results were then collected
in a database and used to derive the LPV model.

To help solve the unit dispatch problem, the FARM operates in two consecutive phases.
The described procedure for deriving the LPV model is performed during an off-line phase
called self-learning. After generating the LPV model, the unit dispatch problem is solved
during the on-line phase called dispatch. HERON first issues power set-point trajectories
meeting the explicit constraints, which represents low-resolution physics. The FARM
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simulates these power transients using the LPV model and evaluates the margins of the
implicitly constrained variables relative to the corresponding implicit constraints, which
represents high-resolution physics. These margins are then “translated” into margins
on the explicit constraints (δ⃗r(k)) and returned to the HERON (Figure 6). In this way,
the information on constraint enforcement can be used during the next iteration of the
dispatch optimization process. These iterations between the HERON and the FARM during
the dispatch phase are necessary to find a solution that meets both explicit and implicit
constraints. In this scheme, the task of the LPV model consists of predicting the response
of the studied system during transients and notifying possible constraint violations. In
addition, the procedure implemented in the FARM module enables the LPV model to
“learn” during the unit dispatch problem-solving process. In case the FMU is coupled with
the HERON-FARM optimization scheme, real-time data are collected during the dispatch
phase, and new matrices are derived and added to the LPV model developed during
the self-learning phase. In this way, the latest, most accurate mathematical description
of the system dynamics is available. Inevitably, this procedure results in anadditional
computational burden. In this work, this capability was not utilized, i.e., no FMU was
integrated with the HERON-FARM optimization scheme during the dispatch phase, and
the LPV model developed during the self-learning phase was not improved thereafter.
Finally, when demonstrating the capabilities of the scheme by solving a unit dispatch
problem (Section 6), the response of the IES unit is simulated by using the LPV model.

4. Description of the Algorithms Embedded in the FARM

In this section, a brief overview of the algorithms embedded into the FARM module
is provided. For a more complete description of of these tools, the reader is referred to
dedicated references.

• Command Governor: it performs a multi-dimensional optimization of set-point trajec-
tories fed by the unit dispatcher (Section 4.1).

• Convex Hull: it removes the redundant constraints (Section 4.2).
• Dynamic Mode Decomposition with Control: it derives the matrices that constitute

the state-space model (Section 4.3).
• Recursive Feature Elimination with DMDc: it provides the list of state variables of the

derive state-space model (Section 4.4).

4.1. Command Governor (CG) for Enforcing Implicit Constraints

The CG algorithm adjusts the vector reference signal (⃗r) to produce a feasible set-point
signal (⃗v) to be fed to the feedback regulators. The goal is deriving set-point trajectories that
will start power transients meeting the imposed constraints. In this section, a description
of this algorithm is provided. For further information, the reader may refer to [32,33].
The CG is based on an iterative, finite-horizon optimization scheme. At time t = k, the
current state of the system is sampled and a feasible set-point value is calculated for a
relatively short time horizon t ∈ [k, k + g], where g is a positive integer representing the
number of time-steps that constitute the time horizon. An online calculation is used to
explore state trajectories from the current state (t = k) to the end of time horizon (t = k + g).
After the first step of the optimized set-point trajectory is fed to the PI controllers, the
state is sampled again and the calculation is repeated, yielding a new value. The key
concept behind the CG algorithm is the definition of an admissible region for the adjusted
set-point values at time t = k. Any vector lying within this region can be imposed as system
set-point at time t = k and remain constant over the time horizon, without causing the
implicitly constrained variables to violate the imposed limits over the same time horizon.
The CG algorithm shares several similarities with the Model Predictive Control (MPC) [34].
Although both algorithms optimize the actions governing the dynamic system over a
finite time horizon that shifts forward at every time-step, they operate at different levels.
The MPC replaces traditional PID controllers by optimizing the actions executed by the
actuators to meet desired specifications, e.g., tracking capabilities, asymptotic stability, and
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constraint enforcement; the CG “collaborates” with the PID controllers, i.e., it optimizes
the set-point trajectories to ensure constraint enforcement, whereas the PID controllers
guarantee good tracking capabilities and asymptotic stability. It is a two-step approach that
does not alter the traditional control system architecture.

Let us consider a system characterized by p output variables (⃗y = [y1, y2, . . . , yp]T) and
assume that the lower and the upper limits on these variables can be represented by a set
of linear inequalities, i.e., yj ≥ yj

min and yj ≤ yj
max, j ∈ [1, p] (Equation (5)).



+1 0 · · · 0
−1 0 · · · 0
0 +1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · +1
0 0 · · · −1


·


y1
y2
...

yp

 ≤



+ymax
1

−ymin
1

+ymax
2

−ymin
2
...

+ymax
p

−ymin
p


⇒ S · y⃗ ≤ s⃗ (5)

First, let us impose that the constraints are not violated at the current time-step (t = k).
Equations (4) and (5) can be written as Equation (6).

S · y⃗(k) = SCd x⃗(k) + SDdv⃗(k) ≤ s⃗ (6)

Then, the feasibility of the set-point trajectory v⃗(k) needs to be assessed for the fol-
lowing time-steps t = k + 1, k + 2, ..., k + g as well. Once Kx and Kr matrices are defined
(Equation (7)), the linear inequalities can be re-written as shown in Equation (8).

Kx = SCd, Kr = SDd (7)

Kx · x⃗(k + m) + Kr · v⃗(k) ≤ s⃗, m = 1, 2, . . . , g (8)

The admissible region is defined by all the g+1 linear inequalities in Equations (6) and (8).
Equation (3) is adopted to express Equation (8) in terms of the current state variables
(Equation (9)).

SCd · x⃗(k + m) + SDd · v⃗(k) ≤ s⃗

SCd(A · x⃗(k + m − 1) + Bd · v⃗(k)) + SDd · v⃗(k) ≤ s⃗

Kx A · x⃗(k + m − 1) + (Lim − Kx AT) · v⃗(k) ≤ s⃗

(9)

where
Lim = S · (Cd · (I − Ad)−1 · Bd + Dd), T = (I − Ad)−1 · Bd (10)

Equation (8) can be expressed in terms of the current state variables values (⃗x(k)) by
iteratively performing the same derivation (Equation (11)).

Kx Am · x⃗(k) + (Lim − Kx AmT) · v⃗(k) ≤ s⃗, m = 1, 2, . . . , g (11)

In Equation (12), the constraints expressed in Equation (5) evaluated between t = k
and t = k + g are assembled. They constitute the MOAS (Maximal Output Admissible
Set), i.e., the admissible region for the vector of adjusted set-points at time t = k. The
corresponding matrix equation is reported in Equation (13).


Kx Kr

Kx A Lim − Kx AT
Kx A2 Lim − Kx A2T

...
...

Kx Ag Lim − Kx AgT

 ·
[

x⃗(k)
v⃗(k)

]
≤


s⃗
s⃗
s⃗
...
s⃗

 (12)

Hv · v⃗(k) ≤ h⃗v(k) (13)
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Geometrically, the MOAS defines an m-dimensional convex polytope. Each vector
laying within this polytope is a feasible solution to the constraints enforcement problem
(Equation (5)) [35]. In the Introduction, the concept of the NOR was presented. The NOR
was defined as a p-dimensional polytope defined by the set of constraints imposed on
the identified p variables. Given the meaning of the MOAS, the relationship with the
NOR can be immediately identified. The NOR is the feasible region for the constrained
process variables of the system, and it is defined in a p-dimensional phase space. The
MOAS is the admissible region for the adjusted set-points that do not lead to forbidden
responses of the output variables, and it is defined in an m-dimensional space. The CG
translates the constraints on the implicitly constrained variables into limits on the set-point
trajectories. The NOR defined in the p-dimensional space is replaced by a region in the m-
dimensional space. With respect to the description of the system dynamics, the two regions
are equivalent. As a major outcome, the CG allows deriving a procedural definition of the
NOR that can be implemented into an algorithm for optimizing the operation of a unit such
as a power plant. To find the optimal solution, the CG solves a Quadratic Programming
(QP) optimization problem [36]. As shown in Equation (14), the goal consists of calculating
an adjusted set-point trajectory that is as close as possible to the reference one.

v⃗(k) = argmin
v⃗(k)

[⃗v(k)− r⃗(k)]2 (14)

With regard to the application of the FARM to the solution of the unit dispatch problem,
in the current formulation, the power and heat flux set-points are adjusted on an hourly
basis. The length of the prediction horizon should then cover the whole hour. The time
constants governing the dynamics of the power plants that constitute the IES unit are
not so long, i.e., the operational transients initiated by set-point variations are considered
completed before the end of the hour. Still, the prediction horizon is imposed equal to one
hour to be conservative. The CG will adjust the set-points to enforce constraints throughout
the entire hour.

4.2. Convex Hull Method for Removing Redundant Constraints

When defining the unit dispatch problem, implicit constraints are imposed to limit
the thermomechanical loads. Since the components that constitute the IES unit of interest
are thermally coupled, the constraints on the process variables of one component might
affect the operation of another component. As a result, some constraints defining the
MOAS might be redundant. If they are not removed, they will increase the computational
burden and cause the QP solver to return a sub-optimal solution. To address this issue,
a procedure borrowing the “convex hull” concept from geometry [37] was implemented
in the FARM module. As a starting point, the MOAS for m-dimensional actuator signal
with q constraints (Equation (13)) is normalized by dividing each element of Hv matrix and
h⃗v vector by the Euclidean norm of the corresponding row in Hv matrix. This normalized
MOAS is reported in Equation (15).

H11 H12 · · · H1m
H21 H22 · · · H2m

...
...

. . .
...

Hq1 Hq2 · · · Hqm

 ·


v1
v2
...

vm

 ≤


h1
h2
...

hq

 (15)

As a result of normalization, all the rows of H matrix in Equation (15) share the same
Euclidean norm (Equation (16)).√

Hi1
2 + Hi2

2 + · · ·+ Him
2 = 1, (i = 1, 2, · · · , q) (16)
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Equation (15) defines an m-dimensional convex polytope. Once an inner point (⃗c) is
found meeting all the q constraints, a translatory motion is performed to include the origin
point (Equation (17)).

H11 H12 · · · H1m
H21 H22 · · · H2m

...
...

. . .
...

Hq1 Hq2 · · · Hqm

 ·


vc,1
vc,2

...
vc,m

 ≤


h1
h2
...

hq

−


H11 H12 · · · H1m
H21 H22 · · · H2m

...
...

. . .
...

Hq1 Hq2 · · · Hqm

 ·


c1
c2
...

cm

 (17)

where vc,j = vj − cj (j = 1, 2, . . . , m).
Equation (17) can then be simplified as shown in Equation (18).

H11 H12 · · · H1m
H21 H22 · · · H2m

...
...

. . .
...

Hq1 Hq2 · · · Hqm

 ·


vc,1
vc,2

...
vc,m

 ≤


hc,1
hc,2

...
hc,q

 (18)

where hc,i = hi − ∑m
j=1 Hij · cj (i = 1, 2, . . . , q).

It is worth stressing that the origin point (0 ∈ Rm) is within the m-dimensional
polytope defined by Equation (18), i.e., hc,i ≥ 0. A new matrix M is defined as the element-
wise division between Hij and hc,i (Equation (19)),

M =


H11
hc,1

H12
hc,1

· · · H1m
hc,1

H21
hc,2

H22
hc,2

· · · H2m
hc,2

...
...

. . .
...

Hq1
hc,q

Hq2
hc,q

· · · Hqm
hc,q

 (19)

The ith row of M matrix is an m-dimensional vector. Its direction follows the m-dimensional
normalized vector composed by the numerators (Equation (20)). Its magnitude is inversely
proportional to the value of hc,i.

H⃗i,Direction =
[
Hi1, Hi2, · · · , Him

]
(20)

The convex hull is built by using all the q rows of m-dimensional vectors. Among all
the m-dimensional vectors that share the same direction, the one with largest magnitude
(smallest values of hc,i) corresponds to the tightest constraint. This property can be used to
define a ranking criterion. The convex hull is the smallest convex set that contains all the
provided points, i.e., the points on the vertices of such convex polytope correspond to the
tightest constraints in the MOAS. For visualization purposes, the convex hull corresponding
to a two-input test case was built. In this test case, a constant flow rate of high-temperature
nitrogen was distributed between A 30 kWe Nitrogen Turbine (NT) unit for electricity
production and a heat exchanger to store the surplus thermal energy in a 200 kWthh
Thermal Energy Storage (TES) unit. The TES can discharge to supply electricity under
high demand period. The unit dispatch problem consists of optimizing the corresponding
power set-points at the beginning of each hour to meet the load demand for electrical
power. In a discrete-time domain (10 s time-steps are adopted), the MOAS is built by
imposing upper and lower bounds on the five monitored variables (including the flow
rate of NT and charging level of TES) for each of the 361 time-steps that constitute the
prediction horizon. It is an impressively high number of constraints, and most of them
add no value. Overall, the M matrix has 3610 rows of twp-dimensional vectors (blue
points in Figure 7). The 14 blue points on the vertices of the convex polygon correspond
to the 14 tightest constraints in the MOAS, whereas all the other 3596 blue points inside
the polygon correspond to constraints that can be neglected. The ConvexHull function
is available from the scipy python package [38]. It allows constructing a convex hull
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from a given M matrix and returning the indexes of the points on the vertices which
correspond to the non-redundant constraints. The final set of constraints determines the
same MOAS as the initial set. Consider the results reported in Figure 8. The original
3610 constraints and the reduced 14 non-redundant constraints define the same region of
multi-dimensional actuators. Besides the reduced computational costs, the convergence to
the optimal solution has improved. When too many redundant constraints are provided,
the QP solver is challenged, and a sub-optimal solution is occasionally returned (black
square in Figure 8a). Thanks to the convex hull method, the solution is within the feasible
region and has a minimized distance from the original actuator (black square in Figure 8b).

Figure 7. Graphical representation of the convex hull containing 3610 points.

(a) (b)

Figure 8. Illustration of the role of the convex hull in the optimization process. The original MOAS
(green region) defined by 3610 constraints and the sub-optimal solution (a) and the final MOAS
(green region) defined by 14 non-redundant constraints calculated by the convex hull method and
the optimal solution (b) are shown.

4.3. Dynamic Mode Decomposition with Control for Deriving the State-Space Matrices

As mentioned in Section 3, FARM needs a state-space model to predict the IES unit
response during operational transients and to avoid recommending dispatch variations
that could compromise the integrity of components. Models based on the solution of
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first-principle equations are preferred as they can accurately describe a wide range of
operating conditions without any training datasets. However, when a power plant is
operated, physical parameters (e.g., thermal resistances, friction factors, etc.) evolve in time
because of inevitable degradation phenomena. As a result, the dynamics of the system
is impacted, leading the model to become outdated over time. The effectiveness of the
constraint enforcement algorithm, which depends on the accuracy of model predictions,
will consequently decline. In the process of developing tools to aid the solution of the
unit dispatch problem in real-world scenarios, the latest, most accurate description of
the system conditions and dynamics, i.e., an actual Digital Twin (DT) that mimics the
system behavior in response to performed control actions, is necessary. FARM uses a
system identification method that allows deriving the state-space model of the studied
system from the measurements of the main process variables. In particular, the state
matrix (Ãd) and the input matrix (B̃d) of the state-space model in the discrete-time domain
(Equations (1) and (2)) are calculated by adopting the Dynamic Mode Decomposition with
Control (DMDc) [39]. The matrices are constructed by collecting temporal snapshots of the
system inputs (⃗v(k)) and state variables (⃗x(k)) over discrete time-steps (k ∈ [1, l]), as shown
in Equation (21).

X′ =

 | | |
x⃗(2) x⃗(3) · · · x⃗(l)
| | |


X =

 | | |
x⃗(1) x⃗(2) · · · x⃗(l − 1)
| | |


V =

 | | |
v⃗(1) v⃗(2) · · · v⃗(l − 1)
| | |


(21)

Since the derived matrices represent the best-fit solution for the data contained in the
training dataset, the relationship in Equation (1) does not exactly hold. It can be rewritten
in a matrix form to include the new data matrices.

X′ ≈ ÃdX + B̃dV (22)

To calculate Ãd and B̃d, Equation (22) is rewritten as:

X′ ≈ GΩ (23)

where G = [Ãd, B̃d] and Ω = [X, V]. The operator G ∈ Rn×(n+m) can be calculated as:

G = X′Ω† (24)

To solve Equation (24), the Singular Value Decomposition (SVD) is applied to the
augmented data matrix Ω (Equation (25).

Ω = UΣW∗ ≈ ŨΣ̃W̃∗ (25)

where Ũ ∈ R(n+m)×q, Σ̃ ∈ Rq×q and W̃ ∈ R(l−1)×q are the truncated SVD components. The
truncation value q is the number of non-zero elements in Σ. In this work, the truncation
value q is set to limit the condition number of Σ matrix to below 109. Equation (26) provides
an approximation of G.

G ≈ X′W̃Σ̃−1Ũ∗ (26)

By breaking the linear operator Ũ into two components according to the dimensions
of x⃗(k) and v⃗(k), the estimates of Ãd and B̃d matrices can be found (Equation (27)).
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[Ãd, B̃d] ≈ [X′W̃Σ̃−1Ũ∗
1 , X′W̃Σ̃−1Ũ∗

2 ] (27)

where Ũ1 ∈ Rn×q and Ũ2 ∈ Rm×q.
To complete the state-space model, Cd and Dd matrices need to be derived. Given the

nature of the studied systems, the input vector has no direct impact to the system output
(Dd matrix is zero). To find the best-fit solution of the Cd matrix using the system state
vectors x⃗(k) and system output vectors y⃗(k) in the training dataset, the matrix of temporal
snapshot of system output vector is built (Equation (28)).

Y =

 | | |
y⃗(1) y⃗(2) · · · y⃗(l − 1)
| | |

 (28)

Equation (2) can be rewritten in a matrix form by inserting the snapshots correspond-
ing to state and output variables (X and Y) (Equation (29)). C̃d matrix can be calculated by
using the Moore-Penrose pseudo-inverse algorithm [40], as shown in Equation (30).

Y = CdX + DdY ≈ C̃dX (29)

C̃d ≈ YX−1 (30)

4.4. Recursive Feature Elimination for Selecting the State Variables

To derive the matrices that constitute the state-space model, the DMDc tracks the re-
sponses of the state variables during operational transients. The state variables of a dynamic
system are defined as the minimum set of process variables that allows predicting its future
behavior in response to any given set of inputs. If an analytical model is not available, identify-
ing the state variables from the pool of process variables is not trivial. Many commonly used
algorithms for deriving state-space models only reconstruct the relationship between input
and output variables (regression models). The main limit of these methods is that the state
variables of the derived models have no physical meaning, i.e., their number is determined by
the quality of the curve-fitting on the training dataset [41]. To address this issue, Recursive
Feature Elimination (RFE) was adopted to identify a single, exhaustive set of process variables
for a system constituted by multiple subsystems interacting with each other. This automated
procedure for state variable selection was implemented into FARM. As shown in Figure 6, the
optimal set of process variables is identified and their evolution is tracked to derive the LPV
state-space model. In this section, a brief overview of the scheme is reported.

The cost function accounting for the accuracy of both state variable and output variable
predictions is defined as follows. Let us consider n candidate state variables and p output
variables. The known values of the candidate state variables (xi(k ≥ 1)) and the output
variables (yj(k ≥ 1)) are contained in the training dataset. The predicted values of the
candidate state variables (x̂i(k ≥ 1)) and output variables (ŷj(k ≥ 1)) are calculated by
using the trained matrices (Ãd, B̃d and C̃d), the input variable trajectory (⃗v(k ≥ 0)), and
the initial values of the candidate state variables (xi(k = 0)). σ(xi) and σ(yj) represent the
standard deviations of the ith dimension of the known state variables and the jth dimension
of the known output variables, and they are used for normalization purposes. The cost
function is obtained by summing the weighted mean square error (MSE) between the
predicted values and the known values of the candidate state variables and the weighted
MSE between the predicted values and the known values of the output variables calculated
over l time-steps (Equation (31)).

CostFunction =
1

n · l

n

∑
i=1

l

∑
k=1

(
x̂i(k)− xi(k)

σ(xi)

)2

+
1

p · l

p

∑
j=1

l

∑
k=1

(
ŷj(k)− yj(k)

σ(yj)

)2

(31)
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The RFE is a well-known tool that has been extensively adopted to develop feature-
ranking methodologies for dimensionality reduction applications [42]. The procedure adopted
in the FARM for selecting the state variables is iterative, and it consists of the following steps:

1. Construct an evaluation model trained on a complete feature space dataset.
2. Rank the features by using one of the following methods:

(a) Sensitivity ranking method (ranking of the features based on their sensitivity
coefficients);

(b) Correlation ranking approach (ranking of the features based on their correla-
tion coefficients);

(c) A model-based importance ranking method exploiting the mathematical for-
mulation of the evaluation model (e.g., linear model coefficients and others).

3. Remove the features with the lowest scores calculated by the selected ranking criterion.
4. Repeat the process until the user-defined number of variables is selected.

The RFE method is an instance of backward feature elimination. To reduce the compu-
tational time, multiple features are removed during each iteration. The method produces
a feature subset ranking, as opposed to a feature ranking. Feature subsets are nested
F1 ⊂ F2 ⊂ F3 ⊂ ... ⊂ F. To achieve the higher efficiency while avoiding the fitting
issues caused by the collinearity between candidate variables, a hierarchical clustering
pre-filtering [43] was then deployed. The development of an automated approach to state
variable selection based on RFE was driven by the observation that the C̃d matrix is a
transfer operator from the state space to the output space of the evaluation model. Once
normalized by using a min-max scaling approach, the C̃d ≈ YX−1 matrix is used to as-
sess the importance of the candidate state variables (features) with respect to the output
variable(s). The importance matrix is defined as follows:

I(i, j) =
C(i, j)− min(C(i, :))

max(C(i, :))− min(C(i, :))
(32)

where:

• C(i, j) is the original value of the element in the ith row and jth column of C̃d;
• C(i, :) is the ith row of C̃d;
• min(C(i, :)) and max(C(i, :)) are the minimum and maximum values in the ith row of

C̃d, respectively.

Once importance matrix is evaluated, a “score” for each state variable is derived by
calculating the expected value of the importance matrix along each column (Equation (33)).
The candidate state variables are then ranked by this score; i.e., the variables with the
lowest scores are eliminated. The importance matrix and the scores are updated at each
iteration of the feature elimination process, until the desired number of variables is reached.

I(j) =
p

∑
i=1

I(i, j)
p

(33)

Let us consider a dynamic system constituted by two subsystems, A and B (Figure 9)
and assume that N process variables (⃗zA) are recorded for subsystem A, and M process
variables (⃗zB) are recorded for subsystem B. The goal is to select the state variables of the
coupled system, i.e., the minimum set of (n + m) process variables describing its dynamics
(⃗z opt ≡ x⃗ System), where n < N and m < M.
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Figure 9. Simplified representation of interacting subsystems. The process variables for subsystems
A and B as well as the state variables of the coupled system are outlined.

Initially, the RFE-based scheme was applied to the entire set of process variables,
without discriminating between the subsystems. The results were not satisfactory, i.e.,
most of the selected variables belonged to a single, high-impact subsystem. To ensure an
unbiased selection, an alternative importance-ranking methodology was proposed. The
main steps are described below.

• Step I
The RFE selection is performed on each subsystem, i.e., A and B are independently
studied. At the end of this stage, the two sets of candidate state variables for subsys-
tems A and B are selected (⃗xA and x⃗B).

• Step II
The two sets of recorded process variables are analyzed with a cross-correlation
technique. This step is crucial even when the subsystems are not interacting since
the process variables of a subsystem can be “privileged”, being characterized by
higher scores through the importance metrics (Equation (33)). The influence that
z⃗A variables perform on the candidate state variables (⃗xB) and the output variables
(⃗yB) of B is evaluated and vice versa. It is worth stressing that the impact on both
the candidate state variables and the output variables needs to be accounted for
(Equations (34) and (35)). As a result, two new sets of candidate state variables are
obtained (⃗xA→B and x⃗B→A).

x⃗A→B := z⃗A → [⃗xB, y⃗B] (34)

x⃗B→A := z⃗B → [⃗xA, y⃗A] (35)

• Step III
A cross-system set of candidate state variables is generated ([⃗xA, x⃗B, x⃗A→B, x⃗B→A]).
The optimal set (⃗zopt ≡ x⃗ System) is evaluated by maximizing the accuracy of the
model in reconstructing the state variable and the output variables spaces. A parallel
searching is then performed over all the combinations of the cross-system set of
candidate state variables by minimizing the cost function (Equation (31)).

5. Description of the Test-Case System and Operational Constraints

To demonstrate the capabilities of FARM module, an IES comprising three subsystems
was adopted as a test case. As shown in Figure 10, a constant superheated steam flow rate
(wSteam) is generated by a nuclear reactor and shared between a balance of plant (BOP)
and a high-temperature steam electrolysis (HTSE) process through the energy manifold
(EM). The primary purpose of this flow rate is to generate electricity in the BOP (PBOP). A
significant portion of the steam flow rate (wBOP) is then channeled towards the BOP to be
expanded in the steam turbine. After meeting the load demand (D(t)), any excess steam
(wHTSE) and any excess power (PHTSE) are used to feed the hydrogen production process
in the HTSE. The rate value of the steam flow rate (67.53 kg/s) is not sufficient for operating
both the BOP and the HTSE at full capacity simultaneously, i.e., the steam distribution
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between the two thermally coupled subsystems needs to be properly coordinated. To avoid
abrupt pressure variations, a single directional steam sink with prescribed pressure (not
represented in Figure 10) is connected to the EM (wSink). In addition, a gas turbine (GT)
is used to supply the grid with electricity during high demand scenarios (PGT). In the
graphical representation of the studied system, the blue and the red arrows represent the
steam pipes and electricity lines, respectively, where the steam mass flow rate balance and
the electrical power balance are satisfied (Equations (36) and (37)).

wSteam = wBOP(t) + wHTSE(t) + wSink(t) (36)

D(t) = PBOP(t) + PHTSE(t) + PGT(t) (37)

Details and reference operating conditions of the three subsystem models are provided
in Sections 5.1–5.3.

Figure 10. A graphical representation of the IES unit selected as a test case. The thermal coupling
between subsystems is outlined [44].

5.1. Gas Turbine (GT)

The GT is a 52-MWe natural gas-burning turbine. A detailed view of the component in
the Dymola graphical user interface is shown in Figure 11. Two dedicated system buses, i.e.,
the “sensorBus” and the “actuatorBus”, are implemented. The former collects the process
variables to be monitored (red dashed trajectories), while the latter collects the signals that
are sent to the system actuators (green dashed trajectories). The control system is represented
by the block labeled as “control system” at the top. It is constituted by a PID controller
that generates a signal adjusting the gas flow rate in response to the desired power output
variations. The thermo-mechanical constraints to be met during GT operation are (1) the
bounds on electrical power output to avoid cold start and (2) the bounds on the gas turbine
firing temperature to avoid inefficient combustion or turbine structural damage (Table 1).

Table 1. List of input and constrained output variables for each subsystem. The adopted values for
the upper and lower bounds are reported.

Subsystem Input (v) Outputs (⃗y) Lower Upper
Bounds Bounds

GT Power set- Electrical power output (y1) 20.0 MW 50.0 MW
point (v1) Firing temperature (y2) 1100 K 1500 K

BOP Power set- Electrical power output (y3) 25.0 MW 45.0 MW
point (v2) Turbine inlet pressure (y4) 21.0 bar 31.0 bar

HTSE Power set- Electrical power consumption (y5) 0.2 MW 1.2 MW
point (v3) Hydrogen production rate (y6) 2.0 g/s 10.0 g/s
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Figure 11. Graphical user interface of the Dymola GT model [22].

5.2. Balance of Plant (BOP)

The BOP is a 47 MWe Rankine energy conversion cycle. A detailed view of the com-
ponent in the Dymola graphical user interface is shown in Figure 12. Similar to the GT
model, the process variables to be monitored (i.e., inlet steam pressure, steam tempera-
ture, generated electric power, feed water temperature and mass flow rate) are returned
to the PID controllers through the “sensorBus”, and the actuation signals controlling
the opening of turbine control valve “TCV”, bypass valve “InternalBypass”, feedwater
valve “SHS_charge_control” and feedwater pump are fed into the system through the
“actuatorBus”. As shown in Figure 12, a portion of the steam flow rate is first fed into
the high pressure turbine (HPT), then into the low pressure turbine (LPT) for electric
power generation, and finally discharged to the condenser. The steam left is used to heat
up the condensed water and the auxiliary feed water that exits through “port_b”. The
thermo-mechanical constraints to be met during BOP operation are (1) the bounds on the
electrical power output to avoid cold start and (2) the upper bound on the steam turbine
inlet pressure variations to avoid excessive loads on the turbine blades (Table 1).

Figure 12. Graphical user interface of the Dymola BOP model [22].

5.3. High-Temperature Steam Electrolysis (HTSE)

The HTSE is a hydrogen production plant. The nominal electricity consumption rate
is 1.3-MWe. A detailed view of the component in the Dymola graphical user interface is
shown in Figure 13 [45]. The main component is a Solid Oxide Electrolysis Cell (SOEC),
which uses electrical energy as the driving force to split a water/steam mixture to produce
oxygen and hydrogen on anode and cathode, respectively. The produced hydrogen exits
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the SOEC with the remaining steam and is purified by a mixed-gas condenser that separates
hydrogen from steam, while the produced oxygen is removed by a sweep gas flow rate. The
external steam from “SteamIn_Port” is regulated to have a maximum flow rate of (0.37 kg/s)
by the “SteamValve”. The electrical power determines the hydrogen production to keep
the steam utilization rate below 24%. The maximum value of the hydrogen production
rate is determined by the external steam supply. As a quick summary, the electrical power
consumption is limited to avoid depletion or breakdown of SOEC, and the hydrogen
production rate is limited to avoid the HTSE from cold start or overload (Table 1).

Figure 13. Graphical user interface of the Dymola HTSE model [22].

6. Solution of the Unit Dispatch Problem for the Studied IES Unit

In this section, the derivation of the state-space model for predicting the system re-
sponse is described (Section 6.1), and the solution of the unit dispatch problem are presented.
In practical applications, the boundary conditions that drive the electricity and hydrogen
markets are continuously changing. To demonstrate the capability of the HERON-FARM in
managing these fluctuations at reasonable computational costs, the results corresponding to
two different scenarios are shown. The former scenario is characterized by a time-varying
electrical power demand trajectory and time-varying generation costs (Section 6.2); the
latter scenario is characterized by fluctuating hydrogen market prices (Section 6.3).

6.1. Derivation of the LPV State-Space Model

As discussed in Sections 4.3 and 4.4, the selection of state variables and the derivation
of state-space models are conducted using data-driven techniques that utilize the simulated
responses of the IES unit process variables during multiple operational transients as inputs.
Data can be either manually collected through an external simulator or automatically
generated if an FMU is provided to FARM (Figure 6) during the self-learning phase. Since
the subsystems that constitute the IES unit can be addressed as closed-loop systems with a
single input (i.e., the power set-point), a square-wave-shaped trajectory is issued to each of
them. Trajectories issued to the GT, the BOP and the HTSE include 5, 4 and 3 power levels,
respectively (Table 2). For each of the obtained 60 power scenarios, 6-h-long transients
were simulated, with the values of process variables sampled every 10 s. In this process, a
numerical issue was observed. When synchronized square-wave-shaped trajectories are
applied to multiple input variables at the same time, collinearity occurs among the rows of
the V matrix (Equation (21)). Because the resulting data matrix Ω is singular (Equation (25)),
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the DMDc algorithm fails to converge when performing the SVD. To address this issue,
the trajectories for different set-points were slightly shifted relative to one another. Prior
knowledge of the IES characteristic time constants is required to determine the length of
the set-point shift. In this work, a shift equivalent to two sampling periods was applied
(Figure 14). The objective is to ensure that no new step-wise transients are imposed on the
next input variable until the previous subsystem has settled into a steady-state condition.
It is worth noting that the shift on set-points is required when deriving the LPV model,
such as during the self-learning phase, or the dispatch phase in case the LPV update is
demanded (Section 3). In the simulated unit dispatch problems, the LPV model is not
expected to be updated during the dispatch phase, and then the set-points are not shifted.

Figure 14. Representation of the shifted, square-wave-shaped set-point trajectories supplied to BOP,
GT and HTSE.

Table 2. Starting and ending values of the power set-point trajectories supplied to BOP, GT and HTSE.

Subsystem Starting Power Level (MWe) Ending Power Level (MWe)

GT

19.0 26.0
26.0 33.0
33.0 40.0
40.0 47.0
47.0 19.0

BOP

27.0 33.0
33.0 39.0
39.0 45.0
45.0 27.0

HTSE
−0.1 1 −0.7 1

−0.7 1 −1.3 1

−1.3 1 −0.1 1

1 Negative values indicate power consumption.

The RFE-DMDc algorithm selects the state variables by minimizing the summation of
the cost function over the 60 simulated power transients (Equation (31)). In Table 3, the
selected variables are reported. In Figure 15, the responses of output and state variables
and the corresponding LPV model predictions for one of the identified power transients
are shown.

As a result, an LPV model containing 60 sets of state-space matrices is built. A k-
nearest neighbor classifier is trained to index the matrices using the ending power level
of the three subsystems as the scheduling parameter (Table 2). In Figure 16, the use of the
LPV model and the k-nearest neighbor classifier when solving the unit dispatch problem is
shown. When the HERON dispatcher provides the tentative set-points (⃗r(k) in Figure 3),
the classifier selects the set of matrices from the LPV model that best approximates the
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system dynamics at the current power level. These matrices are then used by the CG to
predict the system response and assess the tentative set-points.

Table 3. List of the state variables selected by the RFE-DMDc algorithm.

State Variable Name and Physical Meaning

x1
BOP.sensor_T1.port_a.p

(Steam pressure at high-pressure turbine inlet (Pa))

x2
GT.GTunit.combChamber.E

(Total gas energy within the combustion chamber (J))

x3
HTSE.AirHX.volume_2[4].medium.T_degC

(Air temperature at node 4 of air heater exchanger hot side volume (°C))

Figure 15. Validation of the state variable selection. The comparison between the predicted and
the expected responses of output variables (top two rows) and selected state variables (bottom row)
is shown.

Figure 16. Graphical representation of using an LPV model to solve the unit dispatch problem. In
this simplified illustration, a scalar scheduling parameter is used.
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6.2. Unit Dispatch Problem 1: Time-Varying Power Generation Cost for GT

Usually, MILP algorithms for solving the unit dispatch problem assume the com-
modity prices and operational costs of the committed generating units are constant. On
the other hand, in real applications, the commodity prices (electricity and hydrogen) and
the trajectory of the net electricity demand are updated by the market on an hourly-basis
or even at smaller timescales. The power generation costs are time-varying as well. For
example, consider the power generation cost of a gas turbine. This parameter is mainly
determined by the price of natural gas that is adjusted on an hourly basis. In this work, we
assume the IES unit is operated in a market that is continuously evolving. The first unit
dispatch problem is characterized by two time-varying boundary conditions, i.e., the load
demand trajectory and the GT power generation costs. The former was obtained by scaling
the values retrieved from the New York Independent System Operator—Load Data [46].
The adopted trajectory ranges between 51.9 MWe and 88.9 MWe over the 24 h dispatch
period (purple line in Figure 17). As for the latter, a time-varying curve was obtained
by scaling a 24 h Henry Hub natural gas price history [47] to mimic a representative day.
The calculated trajectory ranges between USD 177.9/MWh and USD 191.4/MWh (blue
triangles in Figure 18), where the average cost matches the Levelized Cost of Electricity
(LCOE) of gas peaking units (USD 183.0/MWh) [48]. The other parameters, including
the BOP generation cost, the electricity sales price, and the hydrogen sales price, are kept
constant throughout the dispatch period (Table 4).

Figure 17. Solution of Unit Dispatch Problem 1 (time-varying GT generation cost) calculated by
HERON-FARM scheme.

In Figure 17, the solution of the unit dispatch problem calculated by the HERON-
FARM scheme is shown. The positive power outputs of BOP and GT and the negative
power consumption of HTSE are plotted as stacked bars above and below the time axis,
respectively. An explanation of the obtained results is provided here below:

1. Due to higher sales price, selling electricity is more profitable than selling hydrogen.
Thus, the primary focus is the electrical power generation. Because of the insufficient
electricity supply, the hydrogen production is interrupted at t = 0 h.
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2. Since the sales price of hydrogen could cover the generation cost of the consumed
electricity, HTSE tends to generate hydrogen at maximum rate given the steam and
electrical power surplus.

3. During the hours when GT power generation costs are lower than those of BOP
(10 h ≤ t ≤ 13 h, and t = 15 h, 17 h, 20 h, as marked by the green arrows), it is more
profitable to generate electricity using GT, which results in the BOP producing at its
minimum rate.

Figure 18. Trajectories for BOP and GT power generation costs throughout the unit dispatch period.

In Figure 19, the responses of output variables over the 24 h dispatch period are
shown. Thanks to the adoption of FARM, the calculated solution is also feasible, and all the
imposed constraints on output variables listed in Table 1 are met.

Figure 19. Responses of output variables for Unit Dispatch Problem 1.

The proposed scheme solves the unit dispatch problem through multiple iterations
between FARM and HERON, as shown in Figure 20. In the first iteration, HERON provided
FARM with the explicit constraint-compliant trajectories over the entire 24 h dispatch
period (blue circles), and FARM returned to HERON the implicit constraint-compliant
trajectories over the 24 h period (orange triangles) and the margins with respect to the
bounds. In the second iteration, HERON re-optimized the explicit constraint-compliant
trajectories based on FARM feedback. These trajectories were accepted as they matched the
implicit constraint-compliant trajectories provided by FARM.
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Table 4. Adopted economic parameters in two unit dispatch problems.

Parameter Dispatch Problem 1 Dispatch Problem 2

BOP Generation Cost USD 180.0/MWh USD 180.0/MWh

GT Generation Cost Time-varying Constant
USD 177.9–USD 191.4/MWh USD 200.0/MWh

Hydrogen Sales Price

Constant Time-varying
USD 14.0/kg USD 13.0–USD 14.2/kg

(USD 216.0/MWh of (USD 186.9–USD 221.2/MWh
of

consumed electricity) consumed electricity)

Electricity Sales Price USD 400.0/MWh USD 400.0/MWh

Figure 20. Iterative feedback between FARM and HERON for Unit Dispatch Problem 1.

6.3. Unit Dispatch Problem 2: Time-Varying Hydrogen Sales Price

The second unit dispatch problem differs from the first one in one of the time-varying
boundary conditions; i.e., the sales price of hydrogen is characterized by a 24 h trajectory.
Due to the lack of hydrogen prices on an hourly basis, this trajectory is obtained by scaling
a random consecutive 24 h NYISO electricity price [49] to mimic a representative day.
The final trajectory covers the range from USD 13.0/kg to USD 14.2/kg, as shown in
Figure 21 (blue triangles). This range matches the hydrogen sales price (USD 13.0–USD
16.0/kg) suggested by the U.S. Department of Energy [50]. The other economic parameters,
including the BOP and the GT power generation costs and electricity sales price are kept
constant over the 24 h dispatch period (Table 4). The same electricity demand trajectory
used in Unit Dispatch Problem 1 (Section 6.2) is adopted.

To compare the profit from selling hydrogen with the cost of electricity used in hydro-
gen production, GT and BOP power generation costs are also converted into equivalent
hydrogen sales price as shown by the red and yellow circles in Figure 21. For instance,
when the hydrogen sales price exceeds the threshold of USD 13.44/kg (equivalent to the GT
generation cost of USD 200.0/MWh) during the periods of 0 h ≤ t ≤ h, 11 h ≤ t ≤ 13 h, and
22 h ≤ t ≤ 23 h, using the electricity generated by GT to supply the HTSE for hydrogen
production is economically favorable, as the revenue from hydrogen sales surpasses the
expenses in generating the consumed electricity via GT.
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Figure 21. Hydrogen sales price trajectory throughout the unit dispatch period.

In Figure 22, the solution of the unit dispatch problem calculated by the HERON-
FARM scheme is shown (the meaning of the color bars is consistent with Section 6.2). An
explanation of the obtained results is provided here below:

1. When the revenue from hydrogen sales surpasses the expenses incurred in electri-
cal power production by the GT and BOP (0 h ≤ t ≤ 5 h, 11 h ≤ t ≤ 13 h, and
22 h ≤ t ≤ 23 h, as marked by the green arrows), it is preferable to produce as much
hydrogen as possible using the excess steam and electricity once grid demand has
been met. As stressed in Section 6.2, generating electricity has higher priority due
to the higher sales price, which suppressed the hydrogen production at t = 0 h. BOP
tends to generate at its maximum rate due to its lower generation cost than GT.

2. When the income from hydrogen sales does not exceed the costs associated with GT
power generation:

(a) During high demand periods (t = 6 h, 8 h ≤ t ≤ 11 h, and 14 h ≤ t ≤ 15 h, as
marked by the orange arrows), the BOP output is maximized to supply to the
grid, GT addresses the demand fluctuations, and HTSE operates at minimum
rate to avoid further loss.

(b) During low demand periods (t = 7 h, and 16 h ≤ t ≤ 21 h, as marked by the blue
arrows), the GT output is minimized, the BOP addresses demand fluctuations,
and the HTSE operates at maximum rate to maximize the profit.

Figure 22. Solution of the Unit Dispatch Problem 2 (time-varying hydrogen sales price) calculated by
HERON-FARM scheme.
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6.4. Computational Efficiency of the Proposed Scheme for Solving the Unit Dispatch Problem

Having the FARM validator downstream of the unit dispatcher to assess the solu-
tion found inevitably complicates the optimization scheme’s structure and increases the
associated computational costs. It is the price paid to ensure feasible power trajectories
that do not compromise the integrity of the components. It should be noted that the com-
putational costs significantly depend on the load demand scenario under consideration.
Specifically, the larger the expected power variations from the committed power plants, the
more frequent the interventions by the FARM validator and the more iterations required
to reach convergence. In many occasions, meeting the limits on production outputs and
the corresponding rates of variation (i.e., explicit constraints) is enough to secure a feasible
solution, i.e., accounting for the limits on other process variables is not strictly necessary. In
these cases, FARM does not suggest any adjustments and simply approves the tentative
set-point trajectories from the unit dispatcher.

In this section, the performance of the HERON-FARM scheme in terms of computa-
tional efficiency is evaluated by solving as a representative test case (the Unit Dispatch
Problem 1 described in Section 6.2). The HERON dispatcher enforces three explicit con-
straints (y1, y3 and y5 in Table 1) in addition to meeting market demand; the FARM validator
enforces three implicit constraints (y2, y4 and y6 in Table 1). The problem was solved mul-
tiple times using different configurations of the optimization algorithm. In particular, a
sensitivity analysis on the sample time (Ts) adopted by the FARM validator is performed.
The choice of the appropriate value for this parameter depends on the time constants that
govern the dynamics of the studied system. For an IES unit with fast dynamics, smaller
values should be used to ensure all dynamics are captured accurately. The risk of adopting
larger values is that transients may occur between two consecutive samplings, leading
to potential overshoots in process variables that go undetected. For these reasons, an
exhaustive characterization of the system dynamics is recommended before solving the
unit dispatch problem.

The computational cost is determined by the costs associated with completing the
three tasks outlined below:

• Data-driven procedure for deriving the LPV model from simulation data during self-
learning phase (“LPV Derivation” task)
The computational time associated with this task is affected by the complexity of the
FMU or other high-fidelity model of the studied system used to generate the training
data, i.e., the time for running simulations and collecting data may significantly differ.
In this analysis, the computational time to complete this task was measured from
loading the simulation data from hard drive to generating the database of state-space
representation matrices.

• Solution to the unit dispatch problem by HERON, addressing only the explicit con-
straints during the dispatch phase (“HERON dispatcher” task)
The evaluation of the computational time to perform the tasks during the dispatch
phase is more complicated. Since the HERON dispatcher and the FARM validator
constitute a feedback loop (Figure 6), it is challenging to distinguish the individual
computational time from the overall time of the dispatch phase. To this end, the
computational time for the HERON dispatcher was estimated by solving the unit
dispatch problem without using the FARM validator. The measured value serves as
a baseline.

• Validation of the HERON-provided solution by the FARM validator during the dis-
patch phase (“FARM validator” task)
The computational time for the FARM validator was calculated by subtracting the
HERON dispatcher contribution from the overall computational time for the dispatch
phase. The values reported below include the set-point validation using the FARM
validator and the prediction of the system response using the LPV model. The compu-
tational time may significantly increase if the capability to update the LPV model via
FMU simulation is utilized during the dispatch phase (Section 3).
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Simulations were run on a 2.7 GHz Intel Xeon Platinum 8168 CPU. The results of
the analysis are reported in Table 5 and graphically represented in Figure 23a. It can be
observed that the use of smaller sample times by FARM increases the computational costs.
This trend can be easily explained. As mentioned above, smaller values for the sample
time are used when the system dynamics is characterized by short time constants. To
prevent undetected dangerous oscillations in the response of process variables, the FARM
validator evaluates the system response over a greater number of discrete steps, causing
the dimensions of the associated MOAS (Equation (12)) to grow proportionally.

Table 5. Computational costs for solving Unit Dispatch Problem 1 using different configurations of
HERON-FARM scheme. All the reported values for the task duration are expressed in seconds.

Sample Time LPV Derivation HERON Dispatcher FARM Validator

30.0 18.7 ± 0.2 8.0 ± 0.2 9.2 ± 0.5

60.0 11.0 ± 0.4 8.0 ± 0.2 3.6 ± 0.2

100.0 7.6 ± 0.2 8.0 ± 0.2 1.9 ± 0.2

150.0 6.4 ± 0.2 8.0 ± 0.2 1.4 ± 0.2

225.0 5.2 ± 0.1 8.0 ± 0.2 1.2 ± 0.2

300.0 4.7 ± 0.2 8.0 ± 0.2 1.0 ± 0.2

In Figure 23b, the contributions to the computational time for a representative case
(Ts = 60.0 s) is shown. Solving the entire 24 h unit dispatch problem using the HERON-
FARM scheme took approximately 23 s. This duration includes both the off-line com-
putational time for characterizing the system dynamics (“LPV derivation” task) and the
on-line computational time for solving the optimization problem (“HERON dispatcher”
and “FARM validator” tasks). The efficiency of the HERON-FARM optimization scheme is
determined solely by the online computational time. In this regard, the validator’s presence
downstream of the unit dispatcher only increases the online computational time by less
than 50%. Specifically, an additional 3.6 ± 0.2 s is required on top of the 8.0 ± 0.2 s taken by
the standalone HERON dispatcher.

(a) (b)

Figure 23. Efficiency of the HERON-FARM optimization scheme. The computational costs associated
with different scheme configurations (with and without FARM validator and for various sample
times) (a) and the contributions for a specific case (Ts = 60.0 s) (b) are shown.
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7. Visualization Techniques for Displaying the Solution of the Unit Dispatch Problem

In addition to the algorithms aiding the solution of the unit dispatch problem, the
FARM module provides tools for visualizing the response of monitored variables during
transients. In the context of actual plant operations, “monitored variables” refer to relevant
process variables that are either measured by dedicated sensors or predicted by appropriate
models. Although this sophisticated framework is applicable to any type of generating
units, its benefits are particularly evident when managing multi-asset systems like IES
units. With the current techniques available, human operators may find it challenging to
handle the large volumes of real-time data from the plant and power grid and to identify a
solution minimizing the power generation costs and respecting all the limits on materials
and components. These techniques can be used for both monitoring the evolution of
process variables and assessing component conditions (Section 7.1) and to support the
operator at adjusting the set-points to be fed to the controllers (Section 7.2).

7.1. Graphical Representation of the Normal Operation Region for Process Variables

In this section, two novel techniques for visualizing the responses of process variables
are presented. Thanks to the capability of estimating in real-time the margins with respect
to the operation limits, these tools might represent the first step towards the deployment
of an Ecological Interface Design (EID) for IES units. An EID is a framework for creating
human–machine interfaces for complex systems [51]. EIDs can be extremely beneficial
in aiding operators by improving the situational awareness and supporting the decision-
making process, especially in unfamiliar and unanticipated complicated situations. First,
an EID provides a systematic view of the whole process instead of simple representation of
individual process parameters and supports knowledge-based behavior of the operator.
The second feature is a special kind of graphics that transfer simple mental operations to
the level of perception. Implementation of such graphical patterns provides “visualization”
of mental calculations and reduces cognitive workload [52]. A recent study demonstrated
that EID interfaces ensure better control task performance and greater control stability [53].
As for the application to the nuclear industry, the U.S. Nuclear Regulatory Commission
(U.S. NRC) hesitated to adopt the EID display for the nuclear power industry because of
technical and research issues [54]. The tools proposed in this work will help addressing
some of these issues, e.g., (1) inconsideration on the task and temporal-based displays,
(2) information volume and density, (3) compatibility of user mental models and (4) training
and qualification implication.

The former visualization technique is called the Dynamic Spider Chart and represents
an extension of the Spider Chart (or Radar Chart) concept. A Spider Chart is a two-
dimensional plot where three or more variables are represented on equiangular axes,
starting from the same point by spokes [55]. The data on each spoke are scaled such
that the limits are proportional to the length of the spokes. The multivariate data are
represented by an irregular polygon, which is obtained by connecting the tips of adjacent
spokes. These charts are mainly used to identify possible correlations, outliers, trade-offs,
and several other comparative measures. In [56], an application of Spider Charts to the
development of EIDs for nuclear power plant operation can be found. In this work, a
dynamic version of the method for visualizing the IES unit response within the NOR
during transients was developed. As mentioned in the Introduction, the NOR is defined
by the ensemble of values that can be assumed by the process variables of an engineering
system. A Dynamic Spider Chart is essentially an animated two-dimensional plot that can
simultaneously display the evolution of multiple process variables using multiple axes.
Any number of variables can be displayed at the same time as long as the readability of
the chart is not compromised. Additionally, violations of operational constraints can be
easily identified, which makes such a method suitable to make decisions about power
transient planning. For demonstration purposes, the Unit Dispatch Problem 1 described in
Section 6.2 was solved again but without coupling the FARM Validator. In Figure 24, the
problem solution at time t = 9 h is displayed. Two concentric hexagons are drawn in black
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color to represent the upper and the lower bounds of all variables, whereas the grey-shaded
ring in between represents the NOR. As long as the constraints are met and the plant is
operated in a safe and efficient manner, the blue-shaded, irregular polygon representing
the current operating conditions will lie within the NOR bounds. Finally, the pink and
the green contours represent the maximum and the minimum values ever assumed by the
process variables during the considered transient, respectively. Without the enforcement
of implicit constraints during the dispatch, the process variables can assume any values,
even undesired ones. The Dynamic Spider Chart marks historical violations of either the
upper or lower bounds by highlighting the names of the constrained variables in yellow.
As shown in Figure 24, in the solved problem, the limits on the GT firing temperature
(GT_Firing_Temp) and on the BOP inlet pressure (BOP_Inlet_Pressure ) were exceeded
before time t = 9 h. In case both the bounds were violated, the variable name would be
highlighted in red.

The Dynamic Spider Chart provides an exhaustive overview of all the monitored
process variables, since it allows depicting as many axes as desired. At the same time, track-
ing the evolution of the irregular polygon is not straightforward, i.e., only past constraint
violations can be displayed. To assist the operator in closely monitoring the conditions
of a specific portion of the plant or a specific piece of equipment, a second visualization
technique that tracks the recent history of a subset of three variables was developed. It is
called the Phase Space Diagram. As an extension of classic 3D trace plots, in this represen-
tation, the dynamic response of a IES unit is displayed by a 3D curve, where each point
represents the values of three selected process variables. In Figure 25, the application of this
method to the same transient described for the demonstration of the Dynamic Spider Chart
is shown. The NOR is represented by the grey-colored parallelepiped, which is enclosed
by six planes representing the lower and the upper bounds on the three selected variables.
The thickness and the color of the piece-wise curve that represents the response of the IES
unit indicate the progression of time. Specifically, the line is thin and pale blue at the start
of the transient, and it gradually thickens and darkens to blue as it approaches the current
time. The gold star is a marker indicating the current position in the phase space. Similar
to the Dynamic Spider Chart, the Phase Space Diagram also assists in quickly identifying
constraint violations. In this example, the constraint violations occur in correspondence
of the front and the top faces, and the corresponding segments of the trajectory will be
highlighted in red.

Figure 24. Dynamic Spider Chart displaying the NOR corresponding to Unit Dispatch Problem 1 at
time t = 9 h.
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Figure 25. Phase Space Diagram displaying the NOR corresponding to Unit Dispatch Problem 1 at
time t = 9 h. The evolution history of the system response is shown by the piece-wise curve from
thin to thick, and the current system response is shown by the gold star.

7.2. Graphical Representation of the Admissible Region for the Power Set-Point Trajectories

In addition to methods for visualizing the NOR, the FARM module provides a tool
displaying the Admissible Region, i.e., the set of acceptable values for the power set-points.
This multi-dimensional region (also known as the MOAS) is calculated by the CG algorithm
embedded into FARM (Equation (13)) when validating the tentative set-points. Between the
NOR and the Admissible Region, there is a direct connection as the CG translates the limits
on the process variables (i.e., NOR bounds) into limits on the power set-points (Section 4.1).
From this standpoint, the visualization of the Admissible Region might play an important
role for the safe operation of an IES unit. Basically, these translated limits are suggestions
that an operator can make a direct use of. By displaying both the tentative (⃗r) and the
adjusted (⃗v) set-point trajectories, the operator can identify the gap between the power
transient demanded to the plant and the one recommended by the algorithm, which ensures
that none of the constrained variables exceed the NOR bounds. In Figure 26, the three-
dimensional region rendered in yellow represents the Admissible Region calculated during
the solution of Unit Dispatch Problem 1 (Section 6.2) at time t = 9 h (first iteration). It is
worth stressing that the volume representing the Admissible Region is not a parallelepiped
as the NOR shown in Figure 25. As described in Section 4.2, the MOAS is defined by a
much larger number of constraints since its task is to enforce the operational constraints
over the entire prediction horizon. For this reason, the Admissible Region is represented
by a volume in the 3D space demarcated by a large number of planes. In addition, while
the the size and the shape of the NOR remain constant once the bounds on the constrained
variables are established, the size and the shape of the Admissible Region change at every
time step of the unit dispatch problem. In Figure 26, both the tentative (blue dot) and the
adjusted (orange triangle) set-points are displayed, along with the recommended values.
Since this view corresponds to the first iteration of the optimization process and the implicit
constraints are not enforced yet, the blue dot lies outside the region. In these cases, the
orange triangle lies on the border of the region, as it represents the closest power scenario
to the original one that remains within the operational limits. Mathematically, it constitutes
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the closest approximation of the original trajectory that meets all the imposed constraints
(it is calculated by minimizing the distance from r⃗ (Equation (14))).

Figure 26. Representation of the Admissible Region calculated by the CG algorithm during the
solution of Unit Dispatch Problem 1 at time t = 9 h (first iteration).

8. Conclusions

The deployment of advanced energy systems as IES units along with the adoption of
new operational paradigms require dedicated tools. Thermomechanical loads induced by
frequent power adjustments can accelerate the wear and tear of components. If a unit is
flexibly operated without respecting operational limits on materials, the risk of failures of
expensive components will eventually increase along with the frequency of maintenance
interventions, nullifying the additional profits ensured by flexible operation. The FARM
module was developed to enable existing optimization algorithms to identify solutions
to the unit dispatch problem that are both economically favorable and technologically
sustainable. The main capabilities are summarized below:

• Design of a dedicated tool for solving the unit dispatch problem for advanced energy
systems
When solving the unit dispatch problem for an advanced energy system as an IES unit,
it is necessary to consider the operational limits on the power outputs and the main
process variables for all the subsystems that constitute the multi-asset system. The
iterative dispatcher–validator scheme presented in this work permits addressing all
the imposed constraints without excessively increasing the computational costs. The
scheme was tested on IES unit constituted by a BOP, a GT and an HTSE that produce
both electrical power and hydrogen. One of the key reasons for the inherent efficiency
of this scheme is that the validator intervention is not always required. Often, meeting
the limits on power outputs and the corresponding rates of variation is sufficient to
obtain a feasible solution. In these cases, there are no iterations, and the validator
simply approves the trajectories estimated by the dispatcher.

• Computationally-efficient enforcement of constraints on process variables
The central premise of the developed scheme is that attempting to solve the opti-
mization problem by simultaneously addressing both explicit and implicit constraints
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would result in prohibitively high computational costs. A more efficient approach
consists of tackling the problem as a two-phase process. Traditionally used as a control
algorithm, the CG was proposed as a tool to favor the convergence to the feasible solu-
tion maximizing the cost function. Nonetheless, when too many redundant constraints
are provided, the QP solver is challenged, and a sub-optimal solution is occasionally
returned. To address this issue, the CG algorithm was modified by adding the convex
hull method that permits dropping redundant constraints.

• Development of a DT of the studied system
When solving the unit dispatch problem, a DT that mimics the behavior of the studied
system is necessary to avoid power transients that could compromise the integrity of
the components. In this work, a dedicated procedure for building a DT was embedded
into the FARM module. It is constituted by an algorithm for selecting the state
variables, an algorithm for deriving the state-space matrices from tracked variables
and the protocol for updating the model. The tool is quite versatile and can also be
used for other real-time applications. The adopted data-driven approach relies on
sampled data to derive the state-space model of the system. In this work, simulation
data were utilized, but sensor readings from an actual system could also be used.
This capability is crucial to account for the evolution of physical parameters during
operation that might make the model outdated over time. In this way, the latest, most
accurate description of the system dynamics is always available.

• Enhanced monitoring capabilities through innovative visualization techniques
To ensure the desired performance of a complex multi-asset system without damaging
system components, an efficient real-time monitoring tool is necessary. Currently
available techniques need to be improved to handle the mass of real-time data from
the plant and from the power grid and determine a solution minimizing the power
generation costs and respecting all the limits on materials and components. In this
work, two tools for displaying the response of the process variables of interest during
system operation and another tool aiding the operator at making decisions were
developed and tested.
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