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Abstract: Recent advances in the leisure boat industry have spurred demand for improved materials
for propeller manufacturing, particularly high-strength aluminum alloys. While traditional Al-Si
alloys like A356 are commonly used due to their excellent castability, they have limited mechani-
cal properties. In contrast, 7xxx series alloys (Al−Zn−Mg−Cu based) offer superior mechanical
characteristics but present significant casting challenges, including hot-tearing susceptibility (HTS).
This study investigates the optimization of 7xxx series aluminum alloys for low-pressure die-casting
(LPDC) processes to enhance propeller performance and durability. Using a constrained rod-casting
(CRC) method and finite element simulations, we evaluated the HTS of various alloy compositions.
The results indicate that increasing Zn and Cu contents generally increase HTS, while a sufficient
Mg content of 2 wt.% mitigates this effect. Two optimized quaternary Al−Zn−Mg−Cu alloys with
relatively low HTS were selected for LPDC propeller production. Simulation and experimental results
demonstrated the effectiveness of the proposed alloy compositions, highlighting the need for further
process optimization to prevent hot tearing in high Mg and Cu content alloys.

Keywords: Al−Zn−Mg−Cu alloy; low-pressure die casting; simulation; propeller; hot tearing

1. Introduction

Recent advances in the leisure boat industry have led to rapid growth in the market for
related components and materials [1–5]. Particularly, there has been a surge in demand for
small propellers used in boat propulsion [2–6]. Currently, most propellers for leisure boats
are manufactured using stainless-steel or aluminum alloys (Al-Si alloys) for casting [7,8].
Stainless-steel propellers are widely utilized in boats requiring high performance due to
their excellent corrosion resistance and mechanical properties [8]. However, their high
melting point makes casting challenging, resulting in significantly higher product costs
compared to aluminum propellers [9]. On the other hand, propellers made from Al-Si
alloys offer the advantage of lightweight design and approximately one-third lower product
costs compared to stainless-steel products [9,10]. Nonetheless, they exhibit limitations in
mechanical properties, impacting boat performance and durability. To address these
limitations, there is a demand for the development of new metallic materials, such as
high-strength aluminum alloys, for propeller manufacturing [9].

Traditional Al-Si alloys like A356 exhibit excellent castability but have limitations in
improving mechanical properties. In contrast, 7xxx series alloys (Al−Zn−Mg−Cu-based
alloys) represent high-strength aluminum alloys with outstanding mechanical characteris-
tics [11]. These alloys demonstrate superior mechanical properties not only in the as-cast
state but also offer significant potential for strength enhancement through proper alloy
design and heat treatment processes [11]. Therefore, applying 7xxx series alloys makes it
feasible to develop products surpassing the mechanical properties of conventional stainless-
steel products, making them viable alternatives. However, one crucial consideration is the
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issue of corrosion resistance in 7xxx series alloys [12,13]. Fortunately, for leisure boat pro-
pellers, which are consumables, it is presumed that this issue can be somewhat mitigated
through surface treatments such as anodizing when moving away from Al-Si alloys [14,15].
With this premise in mind, research and development efforts are aimed at overcoming this
challenge.

Conventional 7xxx series aluminum alloys were originally developed for wrought
applications, posing challenges for their utilization as casting materials. The wide tempera-
ture range in solidification and higher shrinkage during cooling compared to Al-Si alloys
necessitate higher casting complexity [16]. Furthermore, the relatively low eutectic liquid
fraction at the final solidification region exacerbates sensitivity to shrinkage porosity and
hot tearing during casting [17]. Therefore, for the development of casting materials, it is
imperative to modify and optimize alloy compositions to enhance castability rather than
directly applying commercially available high-strength alloys [18]. Another fortunate as-
pect in this regard is that the minor alloying elements such as Mg and Cu can vary without
significantly compromising the superior mechanical properties compared to conventional
Al-Si alloys. Therefore, there is less concern about the burden of extensive compositional
changes. Consequently, alloy modifications focusing primarily on castability are feasible as
a primary consideration.

Most conventional leisure boat propellers are manufactured using traditional gravity-
casting processes [19]. While cost-effective, these gravity-casting processes have limitations
in controlling casting defects such as internal shrinkage voids or gas porosity [20]. Particu-
larly for the propeller products, the coexistence of thick hub sections and thin blade areas
can lead to casting defects such as incomplete melt filling (i.e., misrun) or hot tearing due
to abrupt thickness variations in the casting and sharp angle changes between the hub and
blades. Low-pressure die-casting (LPDC) processes typically involve supplying molten
metal from below, minimizing turbulence in the molten metal flow, and are widely used
for high-quality casting production [21]. By applying this process, a stable molten metal
supply and improved cooling rates can effectively control internal casting defects.

Figure 1 shows an example of casting defects occurring during the production of
propeller products using 7xxx series alloys in a mass-production line of the LPDC process.
Various casting defects, including misrun and cracks in the blade area, were observed in
the initial casting tests of the 7xxx series alloy. Particularly noteworthy were the hot tears
occurring at the connection points between the hub and blades, which were not easily
remedied through on-site process improvements. This indicates that both alloy and process
optimization are necessary from the perspective of controlling hot tearing to produce 7xxx
series alloy products.
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most effective approach is the application of numerical simulation technology. As shown 

Figure 1. Examples of casting defects in the LPDC 7xxx series aluminum alloy propellers: (a) misrun;
(b) crack; (c) hot tearing.

To optimize the alloy for propeller products by applying a completely new alloy
rather than just adjusting minor alloying elements in conventional commercial alloys,
extensive alloy composition testing and process optimization are required. In this case,
the most effective approach is the application of numerical simulation technology. As
shown in previous studies, predicting hot cracking susceptibility (HTS) using simulation
models has shown to be quite effective [22–26]. This study aims to evaluate the HTS of
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various commercially available 7xxx series aluminum alloys and develop a simulation
model for predicting HTS based on these results. From a practical perspective, simulations
are conducted using widely validated commercial software [22]. Utilizing the simulation
model, this study investigates the effect of compositional changes in each component in
Al−Zn−Mg−Cu alloys on HTS and conducts optimization to secure castability.

2. Materials and Methods
2.1. Casting Process for Evaluating Hot Tearing in Commercial Aluminum Alloys

To evaluate the HTS of Al−Zn−Mg−Cu alloys and optimize the simulation model,
casting was conducted for various commercial alloys. The alloys and their compositions
used in the casting process are summarized in Table 1. The chemical composition of
each alloy was analyzed using the ICP-OES (inductively coupled plasma optical emission
spectrometry) analysis method. Casting was performed using the constrained rod-casting
(CRC) process to assess the HTS of each alloy. Figure 2 illustrates the appearance of the
mold used for CRC. H13 steel was utilized as the mold material, consisting of two fully
symmetrical pieces joined together. The mold features four types of rod cavities with
varying lengths. The lengths of the rods are, in ascending order, 51 mm, 89 mm, 127 mm,
and 165 mm, respectively, while the diameter of the rod cavities remains consistent at
95 mm. The castings were carried out under identical initial melt temperature conditions
with a melt superheat of 100 ◦C, considering the liquidus temperature of each alloy. The
initial mold temperature was set to 150 ◦C.

Table 1. Chemical compositions of the alloys fabricated via constrained rod casting (wt.%).

Alloy Zn Mg Cu Zr Cr Si Fe Ti Al

AA7075
Nominal 5.5 2.5 1.5 - 0.2 - - - Bal.

ICP 5.43 2.37 1.42 - 0.21 0.06 0.17 0.006 Bal.

AA7068
Nominal 8.0 2.5 2.0 0.1 - - - - Bal.

ICP 7.66 2.63 1.96 0.11 - 0.03 0.11 0.004 Bal.

AA7055
Nominal 8.0 2.0 2.5 0.1 - - - - Bal.

ICP 7.95 1.91 2.50 0.10 - 0.03 0.10 0.005 Bal.
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Figure 2. Appearance of mold for constrained rod casting.

Based on the CRC results, the HTS was evaluated. The severity of hot tearing can be
categorized into four levels: short hairline, full hairline, crack, and half-broken rod. Based
on visual inspection of these four cases, the HTS can be calculated using the following
equation [26]:

HTS = ∑ fcrack flength flocation (1)

where fcrack is the factor for the crack severity, flength is the factor for the rod length, and
flocation is the factor for the crack location. The values of each factor are summarized in
Table 2.
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Table 2. Factors for the hot-tearing index.

Crack Severity fcrack Length (rod) flength Location flocation

Short hairline 1 51 mm 4 At sprue 1
Full hairline 2 89 mm 8 At ball 2

Crack 3 127 mm 16 Middle of rod 3
Half broken 4 165 mm 32

2.2. Numerical Simulation Models
2.2.1. Simulation Model for Predicting Hot Tearing

A finite element simulation was conducted to predict the HTS of the casting process.
For the simulation, the commercial software ProCAST 2021 was utilized to perform coupled
thermal–fluid–stress analysis. ProCAST software provides a hot-tearing indicator (HTI)
module based on Gurson’s constitutive model, specifically designed for predicting hot
tearing in the casting process. This HTI is a strain-driven model that utilizes the total strain
accumulated during solidification. It is defined by accumulated plastic strain in the mushy
zone that corresponds to the void nucleation described in the Gurson Model [22]:

HTI =
∫ t

tc

√
2
3

.
ε

P :
.
ε

Pdτ, tC ≤ t ≤ tS (2)

where
.
ε

P is the effective plastic strain rate, tC is the time at the coherency temperature,
and tS is the time at the solidus temperature. To evaluate the HTS values for each load
based on the CRC results used in this study, HTSsimul. values were derived using the
criteria from Table 2. For HTSsimul. calculations, the HTI values obtained from simulations
were employed instead of the fcrack values from Table 2. As for the flocation calculations for
HTSsimul., only cases where flocation = 1 and 2 were used, considering the accumulated strain
occurring at the sprue and ball regions in the simulation.

2.2.2. Model Geometry and Mesh

Figure 3 depicts the simulation model and mesh for the constrained rod mold and the
LPDC process for propellers. In the CRC model (Figure 3a), the geometry was modeled to
match the actual mold size, and the mesh was configured differentially, considering the
importance of the analysis part and calculation time. The mesh size was set to 1 mm for
the casting area and 5 mm for the mold. The LPDC model was constructed to reflect the
actual in-plant process from the stoke part in the melt container to the cooling mold part,
maintaining the same external dimensions as the actual caster. The mesh was differentially
configured, and for the propeller section where solidification occurs, a finer mesh of
approximately 2 mm average size was employed.
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2.2.3. Material and Casting Parameters for Simulation

Figure 4 illustrates the thermo-physical properties of aluminum alloys and components
in the LPDC process employed in the numerical simulation. The material properties were
obtained using the database of PanAl2021 software, which is widely used in ProCAST to
acquire material properties for simulation models [22]. The composition of the aluminum
alloy for simulation was calculated using the nominal composition from Table 1. The
properties of the alloy were calculated using the back diffusion cooling condition [27].
When calculating the properties of an alloy considering back diffusion, the cooling rate is
an essential factor. It plays a crucial role in determining the solidification temperature range
(STR) and the volume fraction of the eutectic phase, feutectic, in the alloy. As summarized in
Table 3, the experimentally obtained feutectic from various references [28,29] were compared
with simulation results under different cooling rates to derive appropriate cooling rate
conditions. The comparative analysis reveals a clear finding: for all alloys, the Scheil
cooling condition significantly overestimated the actual volume fraction of the eutectic
phase. This indicates that applying back diffusion is more effective for obtaining a more
accurate volume fraction of the eutectic phase. Under back diffusion conditions, the
calculation results showed that as the total alloy composition increased, the lower cooling
rate conditions more closely resembled the experimental data. In this study, considering
the current range of alloy compositions, calculations were conducted at a cooling rate of
20 K/s.

Table 3. The volume fractions of the eutectic phase, feutectic, obtained through experiments and
calculations (in %).

Alloy Experiment
Back Diffusion

Scheil
10 K/s 20 K/s 30 K/s 50 K/s

AA7075 2.9, (Ref. [29]) 2.62 2.96 3.06 3.25 5.30
Al-7.5Zn-2.4Mg-1.6Cu 3.4, (Ref. [29]) 3.74 4.06 4.21 4.39 6.24

Al-6Zn-2Mg-2Cu 3.9 (Ref. [28]) 3.27 3.54 3.68 3.86 5.63
Al-9Zn-2Mg-2Cu 4.2 (Ref. [28]) 4.62 4.88 5.02 5.20 6.78

The simulation for the CRC process was conducted under the same conditions as the
actual casting conditions mentioned above. The LPDC process simulation was carried out
to reflect production conditions in the mass-production line, and the initial and boundary
conditions are summarized in Table 4.

Table 4. The initial and boundary conditions for LPDC.

Condition Value

Mold/stalk materials H13/Al2O3
Melt supply temperature 720 ◦C

Initial mold/stalk temperature 350 ◦C/350 ◦C
Ambient temperature 20 ◦C

Inlet pressure
Pressurization: 0→0.3 bar for 8 s

Holding: 0.3 bar for 30 s
Melt drain: 38 s

Mold/casting heat transfer coefficient 2000 W/m2K (Ref. [21])
Mold/air heat transfer coefficient 20 W/m2K (Ref. [21])
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Figure 4. Thermo-physical properties of aluminum alloys used in the simulation: (a) conductivity;
(b) density; (c) enthalpy; (d) viscosity; (e) thermal expansion; (f) Young’s modulus; (g) yield stress;
(h) Poisson’s ratio; (i) plastic modulus.

3. Results and Discussion
3.1. Hot-Tearing Susceptibility of Commercial 7xxx Alloys in Constrained Rod Castings

Figure 5 shows the results of constrained rod casting for AA7075, AA7068, and AA7055
alloys. To calculate the experimental hot-tearing susceptibility (HTSexp.) values, careful
evaluation was conducted with the molds left inserted to prevent the widening of cracks
upon separation of the casting material from the mold. Cracks were primarily observed at
the sprue and ball, with some occurring at the midpoint of certain rods. The severity of
cracks increased with the length of rods in each alloy, and the total HTSexp. values were
observed to be 328, 376, and 384 for the AA7075, AA7068, and AA7055 alloys, respectively.
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To identify the factors influencing the trend of HTSexp. in CRC alloys, the variation in
solid fraction with temperature for each alloy was calculated. Various factors potentially
affecting hot tearing were summarized in Table 5 based on the calculation, considering
back diffusion cooling conditions. These factors include the total solidification temperature
range from liquidus to solidus (∆Ttotal), the solidification temperature range within the
condition of 0.9 < fs < 0.98 (∆T0.9−0.98), and ∆T0.9−0.98/∆T0.4−0.9 according to the Clyne
and Davies’ model [30], the volume fraction of the eutectic phase at the final solidification
region ( feut.) and the solidification temperature range of the eutectic phase (∆Teut.). The
results of comparing the experimental HTSexp. values with the factors in Table 5 revealed a
tendency for the HTSexp. values to increase as both ∆Ttotal and ∆Teut. increased. However,
the other factors did not exhibit a discernible trend.

Table 5. Factors influencing the hot-tearing susceptibility.

Alloy ∆Ttotal (◦C) ∆T0.9−0.98 (◦C) ∆T0.9−0.98
∆T0.4−0.9

∆Teut. (◦C) feut. (%) HTSexp.

AA7075 156 52.1 0.60 10.5 2.9 328
AA7068 162 17.7 0.14 23.2 5.1 376
AA7055 172 21.8 0.17 27.7 5.3 384

Upon evaluating the HTS of commercial 7xxx series alloys through CRC, it is evident
that the trends align well with previous research findings: HTS tends to increase with
increasing Zn and Cu contents, while it decreases to some extent with increasing Mg
content [26,28]. This is closely associated with the ability of the residual liquid to effectively
fill the gaps between the grains formed by solidification shrinkage and thermal contraction
during the final solidification stage of the alloy. Clyne and Davies [30] suggested that the
susceptibility to hot cracking increases as the vulnerable period where 0.9 < fs < 0.98 spent
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in the hot cracking region (tv), the total solidification temperature range of the alloy (∆T),
and the grain size increase. Conversely, they proposed that the susceptibility decreases as
the time available for stress relief (tR), where sufficient liquid feeding can take place during
solidification, increases. In multi-component alloys, the hot-tearing mechanism becomes
more complex. J.H. Kim et al. [29] demonstrated that the solidification temperature range,
grain size, and eutectic phase fraction collectively determine the HTS in Al−Zn−Mg−Cu
alloys with various Zn, Mg, and Cu compositions. They observed that, in cases with a
relatively low fraction of eutectic phases, HTS tends to decrease as the STR decreases and
the eutectic phase fraction increases. However, when a sufficient amount of eutectic phase
is formed, sufficient liquid feeding at the final solidification stage can significantly improve
HTS, regardless of the STR. The influence of the STR is more pronounced for Mg and Cu
alloys than for Zn alloys, while the fraction of the eutectic phase shows an increasing trend
with increasing Zn, Mg, and Cu content. In this study, under given casting conditions of
CRC (i.e., a constant cooling rate) and non-grain refined conditions, the STR of the alloy is
ultimately considered a critical factor in determining HTS. The alloys with higher alloying
contents, such as AA7068 and AA7055, exhibited relatively high eutectic phase fractions.
This can facilitate liquid feeding to some extent, which may help reduce the HTS. However,
it is inferred that the increase in STR, particularly due to the increase in the temperature
range in which the eutectic phase solidifies (∆Teut.), led to an increase in HTSexp. values.

3.2. CRC Process Simulation for HTS Evaluation

Figure 6 presents the simulation results predicting the hot-tearing indicator (HTI) in
the CRC process of commercial alloys. Relatively high HTI values were observed near the
sprue and ball for each alloy, and there was a tendency for the maximum HTI value in
each rod to increase as the length of the load increased. When comparing alloys, the HTI
values increased in the order of AA7075 < AA7068 < AA7055 for the same rod position.
By utilizing the maximum HTI values in each part and Table 2 index, the HTSsimul. values
were calculated, resulting in values of 9.7, 11.8, and 12.4 for the AA7075, AA7068, and
AA7055 alloys, respectively.
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Figure 6. Simulation results of the hot-tearing indicator for CRC 7xxx alloys.
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To further compare the simulation results with the CRC experiment results, the HTS
values for each rod (HTS(rod)) were analyzed. Figure 7a exhibits the relationship between
the HTS(rod)simul. and HTS(rod)exp. values for each alloy and rod. The comparison revealed
a well-established linear relationship between the predicted HTS(rod)simul. values and the
experimentally evaluated HTS(rod)exp. values. This suggests that the HTS(rod) values for
each rod are reasonably predictive of the overall HTS, indicating a high level of reliability
in predicting the HTS values. Figure 7b illustrates the comparison between the total
HTS values obtained from the simulation and the experimental results. It demonstrates
a noticeable trend wherein the HTSexp. values increase with an increase in the HTSsimul.
values, thus effectively capturing the overall trend.
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3.3. Optimization of Alloy Compositions Using CRC Simulation

Using the CRC simulation model, HTI simulation was conducted for Al−Zn−Mg−Cu
quaternary alloys. In order to ensure a certain level of mechanical properties, the alloy
composition was varied within the ranges of Zn 6~7 wt.%, Mg 0~2 wt.%, and Cu 0~1.5 wt.%.
The simulated HTI values were applied to derive HTSsimul., and the results are summarized
in Figure 8. The simulation results for various alloy combinations showed that within
the current range of Zn compositions, an increase in Zn content slightly increased the
HTSsimul. value, though the magnitude was small. For the Cu element, it is observed
that the HTSsimul. value increased sharply with the increase in Cu content in the Al-7Zn
and Al-7Zn-1Mg alloy systems. Similarly, the addition of Mg to the Al-Zn alloy showed
an increasing trend in HTSsimul. values. However, an interesting finding was that with
sufficient Mg content (2 wt.%), the increase in HTS was relatively small, even with further
increases in Cu content. Furthermore, in the case of the Al-7Zn-2Mg base alloy, adding
more than 1 wt.% Cu resulted in lower HTS values compared to alloys without Mg or those
with 1 wt.% Mg. From these results, it can be concluded that adding a sufficient amount of
Mg is advantageous for reducing the HTS value.

Table 6 summarizes the STRs and feutectic values of representative alloys with relatively
low and high HTSsimul. among various simulated alloys. In binary Al-Zn alloys, the STR is
relatively narrow, resulting in a significantly low HTSsimul.. However, the addition of Mg
and Cu to Al-Zn alloys leads to a marked increase in STR and a corresponding increase
in HTS. For the ternary Al-Zn-Cu alloys, the STR is wide, but the amount of eutectic
liquid, which could fill inter-grain voids caused by solidification shrinkage and thermal
contraction, is minimal, thereby significantly increasing HTS. In quaternary alloys with both
Mg and Cu added, the STR further increases, and an adequate amount of eutectic liquid
forms, which helps to lower the HTS. As the Mg content increases, the STR can increase,
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but the rise in eutectic liquid can reduce HTS. This trend is consistent with previous studies
showing that while HTS increases with STR, the formation of sufficient eutectic phases
can mitigate HTS during the final stages of solidification [26,29]. These findings suggest
that adding sufficient Mg is highly effective in designing Al−Zn−Mg−Cu alloys with
relatively low HTS. Additionally, for the future design of high-strength aluminum casting
alloys based on the Al-Zn system, simplifying the alloy composition, as opposed to the
conventional quaternary-based alloys developed for wrought applications, may provide
valuable insights into developing Al-Zn alloys with sufficiently low HTS.
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Table 6. STR, feutectic, and HTSsimul. values of various simulated alloys.

Alloy ∆Ttotal (◦C) ∆Teut. (◦C) feut. (%) HTSsimul.

Al-7Zn 43.0 0.0 0.0 9.39
Al-6Zn-2Mg-1.5Cu 166.0 16.7 2.7 12.12

Al-7Zn-1.5Cu 127.0 0.0 0.0 13.36
Al-7Zn-1Mg-1.5Cu 177.0 9.6 1.9 14.25

3.4. LPDC for Selected Al−Zn−Mg−Cu Alloys

Among the simulated alloys, two types of quaternary Al−Zn−Mg−Cu alloys with
relatively low HTS values were selected: Al-6Zn-2Mg-0.5Cu alloy, which has the lowest
HTS, and Al-6Zn-2Mg-1.5Cu alloy, which can achieve strength improvement due to its
higher Cu content despite having a relatively low HTS value. Figure 9 illustrates the
simulation results and the actual appearance of prototype propellers manufactured using
an LPDC process. The simulation accurately predicted the locations of hot tearing in the
actual propellers, showing that higher Cu content correlated with higher HTI and effective
plastic strain values. In the actual production process, hot tearing was not observed in the
Al-6Zn-2Mg-0.5Cu alloy propellers, whereas in the Al-6Zn-2Mg-1.5Cu alloy propellers, hot
tearing frequently occurred at the junction between the hub and the blades, as indicated
in Figure 9b. As the amount of Mg and Cu in the alloy increases, it is possible to achieve
higher mechanical properties in the product. However, if alloys with high Mg and Cu
content are to be manufactured, additional process optimization is required. Therefore,
in Part II of this study, the effects of various process variables on the occurrence of hot
tearing during the LPDC process will be investigated using simulation models, and process
optimization will be discussed in detail.
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4. Conclusions

The development of high-strength aluminum alloys for propeller manufacturing in
the leisure boat industry requires a careful balance between mechanical properties and
castability. Traditional Al-Si alloys, while cost-effective and easily cast, lack the mechanical
robustness required for high-performance applications. Conversely, 7xxx series alloys offer
superior mechanical properties but are prone to hot tearing during casting, necessitating
optimized alloy compositions. This study demonstrated that adding sufficient Mg to
Al−Zn−Mg−Cu alloys can significantly reduce hot-tearing susceptibility, making these
alloys suitable for LPDC processes. Through constrained rod casting and finite element
simulations, two optimized alloy compositions, Al-6Zn-2Mg-0.5Cu and Al-6Zn-2Mg-1.5Cu,
were identified. Experimental validation confirmed the feasibility of these alloys for
propeller production, with Al-6Zn-2Mg-0.5Cu showing no hot tearing in prototype castings.
However, higher-Cu-content alloys require further process optimization. The findings
underscore the potential of 7xxx series alloys in revolutionizing propeller manufacturing,
with future research directed toward optimizing casting processes to fully leverage their
mechanical advantages.
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