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Abstract: Due to their excellent mechanical strength, corrosion resistance, and ease of processing,
carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields,
including aerospace, industry, and automobiles. This research explores the feasibility of integrating
carbon fiber solutions into the rotors of 85-kilowatt electric vehicle interior permanent magnet
synchronous motors. Two novel configurations are proposed: a carbon fiber wire-wound rotor and
a carbon fiber injection-molded rotor. A finite element analysis compares the performance of these
models against a basic designed rotor, considering factors like no-load back electromotive force, no-
load voltage harmonics, cogging torque, load torque, torque ripple, efficiency, and manufacturing cost.
Additionally, a comprehensive analysis of system efficiency and energy loss based on hypothetical
electric vehicle parameters is presented. Finally, mechanical strength simulations assess the feasibility
of the proposed carbon fiber composite rotor designs.

Keywords: injection-molded carbon-fiber-reinforced plastics; carbon-fiber sleeve; electric vehicle
traction motor; rotor strength analysis; finite element method

1. Introduction

With the development of the electric power industry, electric motors are increasingly
finding use in electric vehicles (EVs). Tighter emission regulations are driving the demand
for high-speed electric vehicle motors. These motors offer a compelling combination of
high power density, high efficiency, small size, and lightweight design, thanks to the devel-
opment of permanent magnet (PM) and power conversion control technology. The demand
for these technologies continues to grow, and their application fields are rapidly diversi-
fying [1–5]. In the high-speed range, the internal permanent magnet synchronous motor
(IPMSM) receives a local maximum stress at the edge of the magnet pocket as the rotor
rotates, and the critical speed is limited by the mechanical stress [6,7]. This raises crucial
mechanical challenges, demanding significant improvements in rotor strength and stiff-
ness. To address these challenges, researchers have investigated motors like synchronous
reluctance motors (SRMs) and wound field synchronous motors (WFSMs) as potential solu-
tions [8–10]. These motors offer benefits such as a simple rotor structure without permanent
magnets, making them suitable for high-speed operation. However, limitations in material
properties currently hinder their torque density, posing a barrier to their adoption in electric
vehicle drive motors. One solution lies in employing high-strength non-magnetic metal
sheaths like titanium alloy or stainless steel as the motor rotor sleeve [11–14]. However, this
may carry the penalty of increased weight and potential eddy current losses due to their
conductivity. Meanwhile, eddy current loss affects efficiency reduction, and heat loss occurs
due to heat [15]. Therefore, the new carbon fibers and carbon-fiber-reinforced plastics, with
their excellent mechanical strength, corrosion resistance, low electrical conductivity, and
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ease of processing, offer a promising improvement solution. Recently, Tesla launched an
electric motor that boasts a maximum speed of 20,000 r/min, using carbon-fiber-reinforced
plastic rotor sleeves [16,17]. This is a method in which a carbon fiber tow impregnated with
liquid resin is wound around a mandrel, and then heat-cured. There are two versions of this
method: (1) winding the carbon fiber while it is soaking in a resin bath; and (2) winding the
tow prepreg, which is impregnated with resin. When using this type of molding method,
the topology shows that the rotor rib and bridge structures can be omitted. Due to the
removal of the rib and bridge structures, the PM can reduce more leakage magnetic flux.
Structurally, the retaining sleeve increases the strength of the rotor, but electromagnetically,
it has an effect similar to an air gap, reducing the output [13,18]. In order to validate the
developed construction stress and deformation analyses, rotor and sleeve strength analyses
are indispensable [19]. In this paper, a new carbon fiber injection-molded structure is
introduced. This is a molding method in which the raw material, a pellet of thermoplastic
resin (e.g., nylon, polycarbonate) reinforced with carbon fiber is heated until it melts, and
then injected into the cavity (void) of a mold. Although the mechanical properties are not
as good, this molding method is suitable for molding complex shapes with short cycle
times [20,21]. Meanwhile, compared with the Tesla motor’s topology, the design is intended
to maintain the mechanical strength of the rotor without increasing the air-gap thickness.
Figure 1b shows the process diagram and finished product of injection-molded carbon
fiber. First, based on the detailed electromagnetic analysis, the parameters of the three
IPMSM comparison models are determined. Subsequently, the models’ no-load and load
capabilities are compared, in Section 2, including the no-load electromotive force, cogging
torque, load speed and torque capability, efficiency, and drive cycle energy consumption
comparison. Furthermore, the analysis of the rotor strength is conducted. Through the
above finite element method (FEM)-aided analysis, it can be concluded that the mechanical
construction is feasible and reliable. Finally, conclusions are given in Section 6.
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Figure 1. Carbon fiber molding manufacturing process and finished product, (a) Filament-winding
Molding (b) Injection Molding.

2. Configuration and Specification

The target three-phase traction IPMSM is rated at 85 kW, with a base speed of
3000 r/min and a rated torque of 220 Nm. To analyze the characteristics of IPM mo-
tors as a function of rotor shape, the outer diameter of each rotor was fixed to ensure the
same conditions and to minimize the number of variables. The typical EV traction motor
designs are selected in this comparison. The structure of the basic model rotor, which



World Electr. Veh. J. 2024, 15, 283 3 of 13

uses a “single V-shape” PM arrangement to increase the torque at start-up [22], is shown
in Figure 2. The basic motor is designed as 48-slot-eight-pole with a hair-pin winding to
increase torque density. The rotor lamination and pole piece lamination of model 2 are
in a separate state and need to be wrapped with carbon-fiber-reinforced plastic (CFRP)
sleeves. The rotor laminations of model 3 are the same as those of model 2, without ribs and
bridge structures, but most importantly, this design uses a filled injection-molded CFRP
material, which is fixed through the unsaturated positions (inside q-axis and inside the pole
piece) in the rotor laminations. As shown in Figure 2c. Such a structure requires the rotor
laminations to be completely superimposed and then fixed by injection molding. Therefore,
it cannot be made into a skewed rotor structure. Meanwhile, the injection-molded CFRP
materials on the upper and lower sides of the rotor lamination after injection molding are
used as the rotor end-plate for fixing and rotor balancing process.
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Figure 2. Cross-sections of the IPMSM rotor (1/8 model) and stator (full model). (a) Basic model.
(b) Model 2: CFRP-wrapped rotor (c) Model 3: rotor with injection-molded CFRP. (d) Forty-eight
parallel slots, hair-pin stator.

Table 1 presents the specifications of the models used in this study. In the design of
an IPMSM for EV applications, such as efficiency at the driver cycle, total weight, cost,
rotor strength analysis and torque-ripple requirements, the analysis conditions for the
comparison are as follows.

(1) All three models share the same stator specifications, graded PMs, and iron materials.
(2) The copper winding is carefully chosen to achieve a similar stator copper weight across

the three models. Additionally, the fill factor remains constant, and flat winding is
used for all three.

(3) To compare the performances accurately, a 2D FEM analysis is conducted for all
models. Considering different core saturations, the current angle at the maximum
torque per ampere (MTPA) point is determined [23]. It is worth noting that models
with hairpin windings require welding points, resulting in longer end-windings both
axially and circumferentially. The phase resistance of each model is calculated using
ANSYS RMxprt.
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Table 1. Permanent magnet motor performance Requirements.

Item Unit Basic Model Model 2 Model 3

Stator out dia. mm 180
Turns per slot - 6

Slot size (length/width) mm 14.5/3.8
Coil size (length/width) mm 2.8/1.68
Phase resistance at 20C mΩ 19.45

Rotor out dia. mm 118.6
Stack length mm 150

Air-gap thickness mm 0.8
PM size (length/width) mm 16.2/5

PM grade - G45UH
Parallel branches - 2
Steel lamination - 27PNX1300

CFRP application - None CFRP sleeve
0.5 mm

Molded
CFRP

3. Open-Circuit Analysis of IPMSM

The phase-no-load back electromotive force (B-EMF) characteristics of the three models
are shown in Figure 3a. These values were calculated using Equation (1).

e =
KeωmNΦp

πa
(1)

where Ke is the B-EMF constant, ωm is the rotor angular velocity, N is the number of winding
turns, ΦP is the effective magnet flux passing through the coil, and a is the number of
parallel circuits. Compared to the IPMSM basic model, model 2 with CFRP sleeve reduces
the air-gap magnetic flux ΦP due to the increase in effective air-gap thickness, but the
leakage flux reduces more from the PM to the q-axis without the ribs and bridge structures.
Therefore, the value of B-EMF increased. In addition, model 3 uses injection-molded CFRP
materials, which reduce leakage flux while maintaining the same air-gap thickness as the
basic model and model 2. This results in the highest B-EMF. To evaluate the sinusoidal
quality of the no-load B-EMF, fast Fourier transform (FFT) analysis was used. As shown
in Figure 3b, model 3 showed the largest fundamental component of the no-load B-EMF.
In model 3, the dominant no-load B-EMF harmonics of the 11th order were high. The
harmonic distortions of the B-EMF for the basic model and models 2–3 were 3.94%, 4.16%,
and 12.52%, respectively. These values were calculated using the following equation:

THD =

√
E2

2 + E2
3 + E2

4 + . . .

E1
· 100% (2)

where E1 is the fundamental component of the B-EMF, and E2, E3, and E4 are the second,
third, and fourth harmonics of the B-EMF, respectively. Figure 4 shows the comparison of
the cogging torque among the three models. The cogging torque is the torque generated to
minimize the reluctance between the rotor PM and the stator lamination. The value of the
cogging torque is proportional to the amount of magnetic flux and inversely proportional
to the air-gap thickness. The cogging torque can be calculated using the following equation:

Tcogging = −1
2

Φ2
g

dR
dθ

(3)

where Φg is the air-gap magnetic flux, and R is the reluctance. Based on the same principle,
compared to the basic model, the absence of rib and bridge structures in model 2 leads to
significant changes in reluctance, while the absence of a skew structure in model 3 further
increases the cogging torque.
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Figure 3. (a) Line B-EMF of the three models. (b) FFT analysis of the three models.
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Figure 4. Cogging torque for the three models.

The proposed basic model exhibited the lowest peak-to-peak (pk2pk) cogging torque
value, of 1.43 Nm, and the cogging torque was relatively small for model 2. The simulation
results indicate the following trends. Compared to the base model, model 3, without a
skew structure, will concentrate the magnetic flux in the air gap, resulting in an increase
in cogging torque of 2.85 Nm. This is because the skew structure helps to reduce the
magnetic field harmonics that cause cogging torque. The increase in cogging torque can
cause vibration and noise, which can be a problem for some applications. Therefore, it is
important to optimize the design of the motor to minimize the cogging torque.

4. Load-Operation Analysis of IPMSM
4.1. Comparison of Performance

The electromagnetic torque of the three models was evaluated using ideal sinusoidal
current excitation. To compare the models’ performances, we need to determine the current
angle at the MTPA point, considering different core saturations. The MTPA point data at a
base speed of 3000 r/min are listed in Table 2. Figure 5 illustrates the electromagnetic torque
for the three models, while Figure 6 shows the load-operation magnetic-field distribution.
It is important to note that not only is the rotor lamination significantly different, but
the stator core saturation of the IPMSM also varies under load operation (as shown in
Figure 6). Consequently, the MTPA point does not occur at the same angle for all the
models. Additionally, the torque-ripple factor, defined as the ratio of the pk2pk torque
to the average torque, was used to calculate the torque ripple. The expression for the
torque-ripple factor is:

KT =
Tmax − Tmin

TATG
(4)
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Table 2. 2D fem analysis results.

Item Unit Basic Model Model 2 Model 3

Maximum speed r/min 12,000
Phase current (Ia) Arms 250

Open-Circuit Analysis @ 1000 r/min
No-load B-EMF Vrms 45.8 54.7 60.5

THD of-EMF % 3.94 4.16 12.52
Cogging torque Nm 1.43 3.16 4.28

Load-Operation Analysis @3000 r/min
Current angle (β) deg 38 28 34

Torque Nm 225.5 239.0 261.6
Torque ripple % 6.9 9.8 28.3

Efficiency % 93.4 93.8 94.2
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Figure 5. (a) FEM torque values at different current angles (phase current Ia: 250 Arms). (b) FEM
torque waveform at rated operating point (current angle basic model, β: 38◦ model 2, β: 28◦ and
model 3, β: 34◦).

Because the air-gap fields contain harmonics from the rotor without ribs, the open-
ing and shoes are derived from the high-magnetomotive-force-space harmonic content.
Consequently, a large torque ripple is generated. These harmonics induce parasitic pertur-
bations in the Maxwell stress, leading to a significant torque ripple in the CFRP-application
model 2 and model 3 in comparison with basic model [24]. Despite this, both model 2 and
model 3 exhibit higher maximum electromagnetic torque due to their increased air-gap
magnetic density. The resulting tangential stress distribution on the rotor surface for the
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field harmonics (denoted as “v”) at a specific time instant around the air-gap periphery can
be expressed as:

σθ(θ) =
1

µ0

∞

∑
v=1

Bθ0v(θ)Brv(θ) cos(φdv) (5)

where Bθv and Brv are the harmonic field magnitudes and φdv is the angle between the two
components.
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Figure 7a compares the torque characteristics according to speed. The analysis shows
that model 3 had the highest base torque (261.6 Nm) due to the absence of ribs and bridges
on each pole. Compared to model 2, model 3 also had the highest torque density due
to the elimination of the CFRP sleeve on the pole pieces. However, in the high-speed
field weakening and the maximum torque per voltage (MTPV) control range, model 3
exhibited a rapid torque drop at high speeds (7000–12,000 r/min). This was attributed to a
decrease in the actual magnetic leakage under the voltage limit. Figure 7b compares the
efficiency characteristics according to speed. Due to the minimized flux leakage, model 3
exhibits the largest torque density and the highest efficiency in the MTPA range. However,
a larger field-weakening current is required in the field-weakening and MTPV ranges,
which reduces efficiency.
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Figure 7. (a) Comparison of torques according to speed. (b) Comparison of efficiencies according to
speed.

4.2. Comparison of Costs

The manufacturing cost is mostly influenced by the shape and volume of the PM. As
discussed above, this study was designed to increase the manufacturing efficiency and
torque density by using CFRP materials. To achieve an MTPA with higher electromagnetic
torque, model 3 significantly increased its torque density and decreased its copper loss.
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Compared to the basic model and model 2, model 3 increased the electromagnetic torque by
9.4% and 16.0%, respectively. This is equivalent to reducing the active parts’ stack lengths
by 24 mm and 14 mm for a model with a lamination length of 150 mm.

However, these performance improvements featured trade-offs. Model 3 required
increased amounts of injection-molded CFRP materials and additional consumables for the
injection process, which lead to potentially higher material costs. Specialized manufacturing
techniques might also be needed for processing these materials. While the strength-to-
weight ratio of CFRP makes its weight impact minimal, the overall cost increase might
hinder its adoption in some applications. Therefore, a careful consideration of performance
gains versus cost implications is crucial when selecting this design.

4.3. Comparison of the Efficiency Maps and WLTP Class 3 Driving Cycle

The motoring efficiency maps for the three models are shown in Figure 8. It should
be noted that both model 2 and model 3 reduced the active part stack length to achieve
the same maximum torque as the basic model, facilitating a direct comparison of their
performances. The peak efficiency for model 1 is 96.8%, with a large 96% efficiency contour
from 3000~6000 r/min; the high-efficiency region is well placed at low-to-medium torque
levels and corresponds well to the typical drive cycle residency plot. Compared to model
1, model 3 exhibits a 0.5% decrease in maximum efficiency, reaching 96.3%. While its
high-efficiency range also decreases, this aligns with the expected trade-off for reducing the
active part length by 24 mm. Therefore, this reduction is considered acceptable. Notably,
model 2′s efficiency level falls between those of the basic model and model 3.
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Figure 8. Efficiency map of three models. (a) Basic model, active part stack length 150 mm; (b) model
2, active part stack length 136 mm (9.4% reduction); (c) model 3, active part stack length 126 mm
(16% reduction).

The three motors are compared in terms of energy consumption, with reference to
the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) class 3, which is a
specific category within the global WLTP testing program designed for high-performance
light-duty vehicles, particularly EVs with top speeds exceeding 130 km/h [25–27]. The
motor speed, absolute load torque, and power over the WLTP are shown in Figure 9. The
vehicle data are reported in the Appendix A. The EV propulsion motor specifications for
temporary (peak) torque versus speed are shown in Figure 10a. From Figure 10a, it can be
seen that all the operating points that can possibly occur for the WLTP class 3 driving cycle
fall within the specified torque–speed envelopes of the motor. Therefore, provided that the
continuous and temporary overload torque–speed curves are satisfied, the whole WLTP
class 3 driving cycle operating points are achievable.

The results, in watts per hour, are shown in Figure 10b and refer to regenerative
braking conditions. Only motor loss is considered here: The other loss components of the
power train, which are those of the battery and the power converters, are outside of this
comparison.
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Figure 9. (a) Motor speed, (b) absolute load torque, and (c) power over the WLTP class 3 driving
cycle.
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Figure 10. (a) EV-propulsion motor specification for peak torque versus speed characteristics (basic
model); (b) energy loss over the WLTP class 3 for the three models, basic model (stack length 150 mm),
model 2 (stack length 136 mm), and model 3 (stack length 126 mm).

The three models exhibit similar performance levels during the initial cycle segment,
representing urban driving conditions (low and medium WLTP ranges). Interestingly,
despite having significantly shorter stack lengths, the modified models 2 and 3 achieve
greater torque density thanks to the reduced magnetic flux leakage. This translates to
lower copper losses compared to the base model in this urban driving condition. However,
during simulated suburban and high-speed driving (from 1300 s onwards), the performance
of the modified models 2 and 3 suffers. As previously mentioned, these models have
greater linkage flux, requiring a larger field-weakening current to maintain high speeds.
Consequently, their energy consumption rapidly increases within the high and extra-high
WLTP ranges. The energy loss in each range is confirmed in Table 3.
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Table 3. Energy loss over the wltp class 3 for the three models.

Item Unit Basic Model Model 2 Model 3

WLTP low-range loss

Wh

36.2 34.2 34.2
WLTP medium-range loss 39.4 39 39.3

WLTP high-range loss 61.4 63.3 64.5
WLTP extra-high-range loss 63.2 89.4 92.2

5. Stress Analysis of IPMSM

Finally, in order to verify the correctness of the analytical method, the strength of the
three models’ rotor is analyzed and verified by FEM. The safety factor can be calculated as

ksafe =
σYield

σE
(6)

σE =

√(
σx − σy

)2
+

(
σy − σz

)2
+ (σz − σx)

2 + 6
(
σ2

xy + σ2
yz + σ2

zx
)

√
2

(7)

where σYield is the yield strength, σE is the equivalent stress, and σx, σy, σz, σxy, σyz, and
σzx are the direct stress components. Equivalent stress is used in design work because it
allows any arbitrary three-dimensional stress state to be represented as a single positive
stress value. Equivalent stress is part of the maximum equivalent stress failure theory used
to predict yielding in ductile materials. Figure 11 shows the stress analysis results of the
three models.
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(c) model 3.

As the yield strength of the electric steel and CFRP materials used in this study
is shown in Table 4, the safety factor can also be confirmed from Table 4. The results
show that while the safety factors of the basic model (2.8) and model 2 (2.0) are within
an acceptable range, model 3’s factor (6.0) exceeds the target. To optimize the design
and potentially reduce material costs, future studies could explore lowering the injection-
molded CFRP materials’ contents while maintaining structural integrity. Additionally, the
thermal properties of CFRP injection-molded composite materials need to be considered.
The thermal performance of the CFRP composite material is shown in Table 5. Since
composite materials are not good conductors of heat, they are not conducive to the heat
dissipation of PMs. Under high-speed conditions, it is necessary to analyze the temperature
of the motor’s PMs separately. Furthermore, permanent magnets can withstand significant
compressive stress, but they cannot withstand large tensile stress. To ensure that the
permanent magnets do not become loose under high-speed rotor-rotation conditions, the
CFRP-injection-molded composite materials’ injection speed needs to be considered to
avoid cracks and pores during stamping, which would reduce the strength. The thermal
properties of composite materials are significantly higher than the operating temperatures
of PMs, so there is no need to worry about thermal deformation.
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Table 4. Physical properties and 2d stress analysis results.

Item Unit Electrical Steel
(27PNX1300)

CFRP Sleeve
(T300)

CFRP Injection
(PPA-CF40)

Density g/cm3 7.65 1.76 1.33
Elastic modulus GPa 178 230 34.5
Tensile strength MPa 547 3530 490

Stress analysis at 20,000 r/min Basic model Model 2 Model 3

Stress (Von-Mises) MPa max 193.1 1780.6 81.4
Safety factor - 2.8 2.0 6.0

Table 5. Thermal properties of PPA-CF40.

Item Unit Value

Heat deflection Temp. ◦C 287
Melting Temp. ◦C 300

Thermal conductivity W/(mk) 0.45

6. Conclusions

This paper proposes and studies a drive motor that incorporates injection-molded
carbon fiber and conducts a comprehensive comparison with a carbon-fiber wound motor
and a basic model motor. Our findings demonstrate a significant improvement in torque
density for the injection-molded carbon fiber motor. Notably, removing the rotor ribs
and bridges effectively reduces the leakage flux bypassing the air gap, as evidenced by a
higher no-load back electromotive force. This translates to superior performance across the
motor’s MTPA range and at low speeds with high torque. However, these changes also
introduce some drawbacks. For instance, increased torque ripples and greater copper losses
at high speeds lead to reduced efficiency. Addressing these limitations presents promising
avenues for future research, such as:

1. Designing stators with complementary inclined grooves.
2. Developing models for fabricating inclined grooves, considering factors like injection-

molding strength, air bubbles, and non-connection during the process.

Despite the increased torque density achieved by the injection-molded carbon-fiber
motor compared to the basic model, the motor necessitates additional CFRP material and
injection-molding consumables, potentially translating to higher costs. Future studies should
delve deeper into the trade-offs between manufacturing complexity and affordability.
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Appendix A

The vehicle data used for evaluating the WLTP class 3 in Section 2 are reported in
Table A1.



World Electr. Veh. J. 2024, 15, 283 12 of 13

Table A1. Vehicle specification.

Item Unit Value

Vehicle mass kg 1360
Rolling resistance coefficient - 0.0054

Frontal area mm2 1.746
Drag coefficient - 0.26

Gear ratio - 6
Wheel radius m 0.3

Transmission efficiency - 0.97
Max. vehicle speed km/h 180
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