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Abstract: Globally, an estimated 1.3 billion tons of food are wasted each year, according to a report
from the Food and Agriculture Organization of the United Nations. A variety of waste streams
constantly generate large amounts of food waste that end up in landfills. As food waste is left to
naturally decay in landfills, it emits greenhouse gases that pollute the environment and induce climate
change. However, most types of food waste contain valuable components that can be extracted to
manufacture industrial products. Therefore, instead of abandoning food waste to decay and harm
the environment, there is an alternative to upcycle it as a new raw materials supply source. This
review provides a comprehensive update on how environmental sustainability can be improved
using diverse types of food waste as sources to generate biomaterials for fabricating medical products,
including lignin, cellulose, chitosan, pectin, collagen, hydroxyapatite, and biodegradable polymers.
The review also highlights biochemical technologies applied for extracting useful components from
food waste and details the current advances for developing medical products, including wound
dressings and nanoparticles for tissue engineering and drug delivery.
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1. Introduction

Food waste (FW) is food that is not used for a specific purpose and is, hence, disposed
of. FW generated from various waste streams has become an increasingly severe issue.
There is an estimated 1.3 billion tons per year of FW across the globe, with the main
contributors being industrial, consumer, and retail waste streams [1]. These FWs end
up in landfills with no practical uses. According to the U.S. Environmental Protection
Agency (EPA), the U.S. discards nearly 60 million tons of FW every year, making up
22% of municipal solid waste in landfills. FW deterioration in landfills then emits the
greenhouse gases methane and carbon dioxide, which are known to cause environmental
pollution, global climate changes, and extreme weather (Figure 1A). They also disrupt the
surrounding soil ecosystem via resource depletion [2,3]. In fact, 58% of fugitive methane
emissions at landfills come from wasted food, according to an updated report from the U.S.
EPA [4].

One strategy to reduce the impact is for retailers in the food supply chain to improve
efficiency and reduce FW while allowing for increased savings, employment, and competi-
tion [3]. A second strategy is to upcycle FW. This has been a trending topic across many
fields, trying to repurpose the waste into useable products. For instance, FW can be used in
energy production to create biodiesel, bioethanol, biobutanol, biogas, etc. [5,6]. Similarly,
ways are being explored to produce biomaterials by extracting a variety of biopolymers
and fabricating bioplastics from FW [7]. This review provides a comprehensive update
on how diverse types of FW can be transformed into biomaterials for fabricating medi-
cal products, including lignin, cellulose, chitosan, pectin, collagen, hydroxyapatite, and
biodegradable polymers. This review also highlights biochemical technologies applied for
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extracting useful components from FW and details the utilities of FW-derived materials
for developing medical products, including wound dressings and nanoparticles for tissue
engineering and drug delivery.
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Figure 1. (A) The decay of landfilled food waste causes the emissions of greenhouse gases, including
warming power gases methane and carbon dioxide in the atmosphere, which is responsible for climate
change. (B) Valuable components can be extracted from a variety of food waste for developing medical
products. (C) Food waste bioconversion into ecofriendly polymers that have great utilities in making
medical products.

2. Food Waste as a Source for Making Valuable Biomaterials

Various materials can be extracted from FW as vital biomaterials. Materials such
as lipids, lignin, hemicellulose, cellulose, pectin, etc., can be generated from plant FW.
Through pretreatments and hydrolysis, these FWs are converted to sugars that can be used
to produce bioplastics, bioethanol, and other high-value materials. Animal-derived FW, on
the other hand, is often an excellent source of collagen, chitosan, hydroxyapatite, enzymes,
nutrients, and other molecules. Some FW-derived materials are more abundant and have
good qualities, such as strength and a hydrophilic nature, that make them ideal candidates
for developing medical products. The materials that can be generated from FWs, including
lignin, cellulose, chitosan, collagen, pectin, hydroxyapatite, and biodegradable plastics, are
discussed in detail herein.

2.1. Lignin Extraction from Food Waste

Lignin is a polyphenolic polymer and one of the main components in the plant cell
wall known for providing strength and rigidity to materials. It is formed by the repetition of
three main units in a varied sequence [8]. The main building blocks that form the primary
structure are p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, with varying end
groups (Figure 2).

Currently, lignin’s industrial value is growing. It can be used for automotive brake
pads, wood panel products, polyurethane foams, and epoxy resins for printed circuit
boards [9–12]. Recently, it has also become a material of interest for producing medical
products, as lignin is highly non-toxic, has good cytocompatibility, and is biodegrad-
able [13,14]. Additionally, its phenylpropane structures have a strong antioxidant property
(Figure 2) [15].
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Figure 2. The structural formulae of the biomaterials that can be extracted from food waste or
produced from microorganisms.

There are a variety of studies on how to extract lignin. Athinarayan et al. extracted
lignin and silica from rice husk using a hydrochloric acid pretreatment, followed by a
sodium hydroxide solution, and then an alkaline solution to solubilize the products [13]. In
another study, lignin was extracted from wheat straw using an adopted alkali extraction
method in which the grounded wheat straw was pretreatment with a toluene and ethanol
mixture and then a sodium hydroxide solution, after which precipitated lignin was sep-
arated using repeated precipitation and collected [14]. Lignin can also be extracted from
wheat straw using a hydrothermal pretreatment and enzymatic hydrolysis, followed by
drying to be used in an aerogel formulation [16]. Furthermore, Xu et al. extracted lignin
from coconut husks using a mixture of ethanol, deionized water, and sulfuric acid [15]. The
resultant mixture was heated and stirred at 70 ◦C for 4 days, leading to the production
of highly pure lignin [15]. Jackfruit pulp and peels, too, have been recycled for lignin
extraction through physical pretreatment of ball milling, sulfuric acid treatment, and mi-
crowave irradiation [17]. The researcher then used the resultant lignin to make a wound
dressing [17]. Moreover, lignin could be extracted from corn cobs using a hydrothermal
treatment followed by an alkaline treatment [18]. The alkali lignin was able to self-assemble
to form nanospheres that carry bioactive molecule resveratrol for efficient drug deliv-
ery [18]. As of today, the most common and effective methods of extracting lignin from
plant-based FW include a physical, chemical, or enzymatic pretreatment to breakdown the
substrate, followed by removing unwanted portions, such as cellulose and hemicellulose,
via separation through filtration or precipitation.

2.2. Cellulose Extraction from Food Waste

Cellulose can be used in making paper, building wood, clothing, and food indus-
tries [19–22]. It is a polymer chain consisting of beta acetal-linked glucose units with
a formula of C6H10O5 [23]. Cellulose is one of the components in medicine for wound
healing and pain relief. To assess the feasibility of upcycling, Piccinno et al. used carrots as
a substitute to model industrial-sized vegetable waste streams. They fitted the life cycle
assessment, where carrot waste was depolymerized using an enzyme blend to remove the
cellulose [24]. Alternate options have been explored with the durian fruit, which is a good
candidate because less than half of the entire fruit is edible, leaving parts such as the rind
and seeds to accumulate as FW [25]. To deal with the accumulated waste, Cui et al. adopted
a method for extracting cellulose from durian rind to construct an organohydrogel. Durian
rind was collected, freeze dried, and ground up using a ball milling technique to create a
fine powder. The resultant powder was then treated with pectinase, a 5% NaOH, followed



Sustainability 2024, 16, 4473 4 of 19

by a 2% surfactant, and lastly 1% bleach. The final suspension was washed and freeze-dried
to produce durian rind cellulose powder (Figure 1B) [25]. In another study, Sommano
et al. extracted cellulose from coffee pulp using a pretreatment of dichloromethane and
ethanol to remove fat-soluble components [26]. Then, fiber was removed using ammonium
oxalate, followed by a purification step using hydrogen peroxide and sodium borohydride
to remove lignin, resulting in cellulose substrate. The cellulose, together with pectin and
alginate, was fabricated into hydrogels that are non-toxic to a human keratinocyte cells
HaCaT [26], suggesting the medical utility of the FW-derived materials.

2.3. Chitosan Extraction from Food Waste

Chitin is a cellulose-like biopolymer that is present in the exoskeletons of crustaceans
and insects and the cell walls of fungi and yeast [27]. It is a polymer composed mainly of (1-
4)-linked 2-acetamido-2-deoxy-β-d-glucose monomers. Chitosan is the deacetylated deriva-
tive of chitin and is composed of (1-4)-linked 2-amino-2-deoxy-β-D-glucose monomers [27].
Chitosan has extensive utilities in medicine, pharmaceuticals, food, cosmetics, agriculture,
and paper, as well as the energy industry [28–31]. In particular, chitin and chitosan can
be applied in drug delivery, tissue engineering, wound dressings, etc. [32]. Boric et al.
evaluated a dielectric barrier discharge method as a pretreatment for shrimp shells to allow
for better chitin isolation (Figure 1B) [33]. This method offers thermally non-equilibrium
plasmas with a much higher electron temperature [34]. It demonstrated an efficient and fast
degradation of proteins from shrimp shell waste, resulting in the extraction of α-chitin [33].
Chakravarty et al. utilized lobster shell waste to extract chitin through either a chemical
treatment or biological treatment. The chemical treatment compared two different methods:
(1) deproteinization with sodium hydroxide followed by demineralization with hydrochlo-
ric acid, and (2) demineralization with sodium hydroxide followed by deproteinization
with hydrochloric acid [35]. A biological treatment was carried out by inoculating a cocul-
ture of either Bacillus megaterium or Serratia marcescens with Lactobacillus plantarum. They
obtained a final chitin yield of 82.56% from the lobster shell biomass [35]. Mohammed et al.
used sodium hydroxide and hydrochloric acid for deproteination and demineralization,
followed by decolorization using acetone for collecting chitin from prawn shells [36]. The
authors also performed deacetylation of the chitin using sodium hydroxide and found
that about 25% of the original waste can be converted to chitosan [36]. Arafat et al. used
shrimp shell waste to obtain chitosan through demineralization of the shells with HCl,
then deproteinization with NaOH, and lastly deacetylation with sodium hydroxide [37].
They obtained 19% of chitosan indicating that shrimp shell is a good source of chitosan.
Ghorbani et al. utilized chitosan derived from shrimp shells or pectin derived from citrus
peels together with cellulose nanocrystals to fabricate hydrogels. The hydrogels showed
enhanced mechanical strengths and were injectable. Furthermore, the authors noted that
an increased cellulose content made the hydrogel more resistant to degradation and re-
sulted in increased chondrocyte proliferation, showing that the hydrogel can support cell
growth [38]. These studies suggested that the use of bacterium as a biological treatment
can isolate chitosan from FW with a high yield.

2.4. Pectin Extraction from Food Waste

Pectin is another type of polymer that can be naturally found in plant cell walls [39]. It is
a heteropolysaccharide important in food, pharmaceutical, and cosmetic industries, [40,41],
and is also contained in jams, jellies, and candy. It possesses antidiabetic, antioxidant,
anti-inflammatory, antibacterial, and blood cholesterol-regulating properties [42]. Pectin
consists of a linear chain of α-(1→4)-linked d-galacturonic acid units [43]. To study for up-
cycling, Grassino et al. examined several methods of extracting pectin from tomato waste,
including conventional extraction with ammonium oxalate/oxalic acid and ultrasound-
assisted extraction (UAE) [44]. They concluded that the highest yield of pectin was obtained
from conventional extraction at 60 ◦C while the best quality was yielded using UAE with
15 min of sonification [44]. Shivamathi et al. utilized pineapple peel waste to extract pectin
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through UAE and obtained a maximum pectin yield of 16.2% at a 15.2 mL/g liquid-to-solid
ratio [45]. Yu et al. used Akebia trifoliata var. australis fruit (akebia quinata) to extract
pectin using a citric acid solution that was stirred with the peel powder and filtered [46].
The purified pectin was combined with silver nitrate to form silver nanoparticles, which
exhibited strong antibacterial activity with excellent biocompatibility. The authors also
used the pectin to make cylindrical porous sponges, called CEPAG1.5. Using E. coli and
S. aureus the authors noticed a clear bacterial inhibition using the CEPAG1.5 sponge. Fur-
thermore, the sponge showed good biocompatibility with human fibroblast skin cells [46].
An in vivo study with rats was carried out on infected wounds using the sponge. Rats
with the CEPAG1.5 sponge showed a completely clean and healthy wound healing 6 days
after treatment compared to the animals in the control group [46]. Petkowicz and Williams
extracted pectin from watermelon rinds by creating alcohol-insoluble residue by boiling
the chopped or milled rinds in ethanol, followed by centrifugation [47]. Asgari et al. used
the green husks from walnuts to extract pectin by UAE [48]. Demir et al. used lemon peels
to extract pectin through acid hydrolysis, which was made into a cryogel with chitosan by
dissolving the polymers in acetic acid, which were then cryogelated and freeze-dried for
use [49]. Testing of the pectin gel in a glioblastoma cell culture showed that it was non-toxic
and supported cell attachment and survival [49]. Saurabh et al. used the UAE method to
improve the quality of pectin extracted from jackfruit peel waste [50]. The researchers found
that higher quality pectin and yield were obtained using UAE [50]. Lin et al. used chitosan,
pectin, and polyvinyl alcohol (PVA) to fabricate electrospun nanofibers that can be used
for drug delivery and cell growth [51]. It was discovered that the chitosan–pectin scaffold
had a decreased swelling ratio and released the drug more quickly [51]. Additionally, the
authors seeded fibroblast cells into the scaffold and observed normal cell morphology,
cell proliferation, and similar levels of deposited extracellular type 1 collagen for both
scaffolds [51]. Mendez and Lopez extracted pectin from banana peels using hydrochloric
and organic citric acids. They noticed a 20% yield with the citric acid compared to the
hydrochloric acid, which only had a yield of 7%. In addition, the researchers made polyelec-
trolyte nanoparticles using the extracted pectin and amphiphilic chitosan and found a good
encapsulation efficiency [52]. Pectin can be extracted from waste orange peels with different
methods as described elsewhere [53]. For example, highly methoxylated pectin from apple
and 5-hydroxytryptophan were conjugated and underwent electron beam irradiation to
construct hydrogels that were loaded with tetracycline hydrochloride [54]. The hydrogels
showed good biocompatibility and antibacterial properties with different release rates from
the porous and nonporous hydrogel. Therefore, the hydrogels would be a good candidate
for wound dressing [54]. Frietas et al. detail the different methods for extracting pectin
from passion fruit peel, including acid, enzymatic, pressurized, ultrasound-assisted, high
hydrostatic pressure, and microwave oven treatments [55]. Govindaraj et al. extracted
pectin from jackfruit peels using a toluene and ethanol mixture [56]. Harshith et al. isolated
pectin from lemon citrus peels by treatment with hydrochloric acid. The researchers then
made a pectin/PVA nanofiber by electrospinning to create a wound dressing in tissue
engineering application [57]. One of the more common methods for pectin extraction is
UAE, due partly to its environmentally friendly fashion and efficiency [58]. The use of
acid and/or ethanol for extraction resulted in a similar yield for pectin extraction. Millian-
Linares et al. summarized the extractions of pectin from various wastes with different
methods and focused on olives as a potential fuel for pectin extraction [59]. Furthermore,
olive pomace is comprised of 35% pectin, similar to other FW such as lemon peel or sugar
beet peel, indicating that olive pomace is a good source as well for pectin extraction [59].

2.5. Collagen Extraction from Food Waste

Collagen has numerous industrial values. It is a component in cosmetics, dental
composites, and scaffolds for human tissue repair and regeneration [60–65]. It has also
been extensively used in biomedical research and clinical applications, including biomanu-
facturing [66]. Various biomedical applications of collagen have been well summarized



Sustainability 2024, 16, 4473 6 of 19

elsewhere [67]. Studies have explored the extraction of collagen from fish waste. Milan et al.
used collagen extracted from fresh tilapia skins and mangosteen extract to construct miner-
alized scaffolds. The collagen was extracted by first removing the fat content, submerging
the skin and stabilizing it in a base solution, followed by collagen extraction in acetic
acid [68]. Oslan et al. upcycled wasted snapper skin to extract collagens by using various
types of acid, such as pepsin, lactic acid, acetic acid, and citric acid [69]. The results showed
that the collagen yield was 6.65% using pepsin, followed by 5.79% with acetic acid, 4.15%
using citric acid, and 3.19% with lactic acid [69]. Carolo et al. extracted collagen from purple
sea urchin waste collected from a restaurant by decellularization of the membrane, and
then made a 3D scaffold for wound healing [70]. Hazeen et al. utilized wasted cuttlefish
skin to extract collagen and showed a maximum collagen yield of 8.79% under optimal
extraction conditions [71]. Abbas et al. pretreated catfish skin with NaOH and then treated
it with either acetic acid or pepsin to purify collagen. The authors obtained 86.93% high
recovery through the pepsin-soluble collagen method [72]. Martins et al. extracted collagen
from the skins of Greenland halibut by using ethanol to remove fat followed by using
sodium hydroxide to remove non-collagenous proteins with NaCl and Tris-HCl solution
for extraction. However, the maximum yield of type 1 collagen was only 3.8% [73]. Rajbi-
mashhadi et al. highlighted collagen extraction methods from fish industrial wastes and
applications of collagen in tissue engineering and wound healing [74]. Since collagen is
often extracted from marine life skin, defatting and deproteinization are necessary steps
to enhance the quantity and yield of collagen. Decellularization can be an alternative
approach for collagen-rich substrates that are non-fatty to produce collagen [75].

2.6. Hydroxyapatite Extraction from Food Waste

Hydroxyapatite is one of the main components of bone tissue. It is composed of
calcium, phosphate, and hydroxyl groups to form a lattice structure (Figure 2). It often has
a complex crystalline structure of phosphate, hydroxyl, and calcium ions [76]. This material
is used in a variety of applications, such as tissue engineering, regenerative medicine, bone
substitutes, and drug delivery. Bee et al. explored extracting hydroxyapatite from various
types of biowaste [76,77]. These wastes include eggshells, bones, and seafood shells [78].
Borciani et al. focused on marine wastes as a source for extracting hydroxyapatite and made
scaffolds for potential in vivo bone tissue engineering applications [79]. Teoh et al. derived
hydroxyapatite from waste chicken bones by boiling them in water, deproteinization in
acetone and then calcination in a furnace at 1000 ◦C for 2 h to obtain pure phase hydrox-
yapatite [80]. Very recently, Boudreau et al. isolated hydroxyapatite from the bones of
Atlantic salmon processing waste. They used an enzyme cocktail consisting of two enzymes
known as Neutrase and Lipozyme CALB L. The best yield was with 15 µL g−1 Neutrase
and 7.5 µL g−1 Lipozyme CALB L at 40 ◦C for 6 h of enzymatic hydrolysis [81]. Addi-
tionally, nano-sized hydroxyapatite could be isolated from egg shells [82]. The structural
formulae of lignin, cellulose, chitosan, pectin, collagen, and hydroxyapatite are exhibited in
Figure 2 [8,23,43,83–86].

3. Conversion of Food Waste into Carbon Sources for the Production of
Biodegradable Plastics
3.1. Polyhydroxyalkanoate Production from a Variety of Food Waste Using Natural
PHA-Accumulating Microorganisms

There are several types of gram-negative and gram-positive bacteria capable of pro-
ducing biodegradable polymers called polyhydroxyalkanoate (PHA) (Figure 2). PHA
polymers have extensive utilities in not only food packaging but also medical products and
treatments due to their biocompatibility to human tissues, biodegradability, and physio-
chemical properties. Hence, PHA is a material commonly used in regenerative medicine,
tissue engineering, and various medical devices [87]. Particularly, a short-chain length
PHA, polyhydroxybutyrate (PHB), is readily accumulated by several types of bacteria.
Curpriavidus necator (C. necator) H16, also known as Ralstonia eutropha, Alcaligenes eutrophus,
Hydrogenomonas eutropha, and Wautersia eutropha in the literature, is often used for PHA
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production. Various types of FW, including but not limited to spent coffee grounds, rice
straw, rice husks, and waste cooking oil, have been studied for their potential use as raw
materials for PHA production (Figure 1C). Table 1 summarizes diverse types of FW used
for biodegradable polymer production by means of PHA-accumulating microorganisms.
Spent coffee grounds contain 11~20 wt% of coffee oil that can be extracted using solvent
n-hexane [88]. Researchers have utilized the coffee oil extracted as a carbon source at
30 g/L to culture C. necator H16 in a synthetic medium containing mineral salts, resulting
in a high production of 55.4 g dry cell weight (DCW)/L, 89.1% PHB content in biomass,
and 1.33 g/L/h volumetric productivity (Table 1) [89]. In another study, oil extracted from
spent coffee grounds through supercritical extraction was used for producing PHA in C.
necator [90]. The culture obtained 16.7 g DCW/L with a polymer content of 78.4% [90].
Researchers also examined the potential to use rice straw hydrolysates as a carbon source
to produce PHA with C. necator. They optimized the ratio of carbon to nitrogen sources
(C/N ratio) and found that PHA accumulation increased under higher degrees of nitrogen
deficient conditions of 0.01 g/L of NH4Cl and a C/N ratio of 160:1 had a PHA content
of 21% [91]. Furthermore, rice husks were pretreated using potassium hydroxide and
enzymatic hydrolysis to obtain sugars from the waste. The pretreatment was able to con-
vert the rice husks to approximately 20 g/L total sugars [92]. Using the sugar-containing
hydrolysate as the carbon source in PHA bacterial cultures, it was found that B. cepacia con-
sumed rice husks-derived sugars more efficiently than C. necator, resulting in 7.8 g DCW/L
and 50% PHA content [92].

Several other types of oil wastes have been studied for biodegradable polymer pro-
duction via C. necator fermentation. Wastewater generated from palm oil milling called
palm oil mill effluent (POME) was treated by an anion exchange resin separation column
to enrich acetic acid concentration from the waste [93]. The concentrated acetic acid was
used as a sole carbon source in the fed-batch production of PHA by Alcaligenes eutrophus.
Within 17 h of the culture, the overall volumetric productivity of PHA was approximately
0.09 g PHA/L/h and PHA content of 45% [93]. In another study, Kamilah et al. collected
palm oil-derived cooking oil waste from households and eateries and utilized the oil waste
as a carbon source for the cultivation of PHB-accumulating bacteria. It was noted that there
is a higher PHB yield using leftover cooking oil compared to fresh cooking oil [94]. As cook-
ing oil is rich in fatty acids, when cooking oil waste was supplemented in a mineral medium
at 20 g/L for C. necator DSM 428 culture, 10.4 g DCW/L and PHB concentration of 3.8 g/L
were achieved, resulting in 37% PHB content [95]. Similarly, using sunflower oil waste
collected from households as a sole carbon source, the same bacteria grew to 11.4 g DCW/L
and a PHB concentration of 5.8 g/L, increasing PHB content to 57% (Table 1) [95]. Sandhya
and Kanmani utilized paddy straw mushrooms as the carbon source for producing PHA
using C. necator and achieved 37.6% PHA accumulation at 19.2 g DCW/L [96]. Obruca
et al. studied wasted rapeseed oil to produce PHA in C. necator fermentation. By adding
propanol at 1% (v/v) during the fed-batch culture, they obtained 138 g biomass/L and
105 g/L PHA, demonstrating an effective PHA production using propanol as a precursor
of polymer biosynthesis together with waste rapeseed oil [97].

Additional FWs have been investigated for converting to PHA and some types of FW
have demonstrated a promising conversion efficacy. For instance, Haas et al. saccharified
waste potato starch through thermal and enzymatic processes to obtain highly concentrated
glucose. The saccharified solution was used as a carbon source in Ralstonia eutropha NCIMB
11599 fed-batch culture. The authors achieved 179 g/L biomass, 94 g/L PHB with 52.5%
PHB content, and a productivity of 1.47 g/L/h (Table 1) [98]. Salgaonkar and Braganca
studied four halophilic archeal isolates to utilize sugarcane bagasse as a carbon source for
the biosynthesis of PHA. The authors reported the maximum PHA content of 50.4% from
Halogeomatricum borinquense E3 at a 4.15 g DCW/L [99]. Cesario et al. utilized Burkholderia
saccharum in fed-batch cultures with wheat straw hydrolysates. A productivity of 0.7 g/L/h
poly(3-hydroxybutyrate-co-4-hydroxybutyrate) P(3HB-co-4HB) was obtained [100]. Cheese
whey is a liquid byproduct from the manufacture of cheese. Colombo et al. compared
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the PHA production using two different fermented cheese whey in a preselected mixed
microbial culture. They found that a high PHA production was from the whey that had
added propionic and valeric acids in the culture medium, leading to the production of 70 g
PHA per kg of cheese whey. As propionic and valeric acids were part of the substrates in
the culture, the polymer accumulated composed of 40% of 3-hydroxyvalerate (HV) and
60% of HB 3-hydroxybutyrate (HB) [101].

FW conversion into biodegradable polymers through fermentation of different bacte-
rial stains has also been widely investigated. Interestingly, Follonier et al. used a two-step
fermentation with the hydrolyzed fruit pomace as a bacterial culture substrate and waste
frying oil as a PHA precursor in Pseudomonas resinovorans fermentation. They investigated
nine different types of FW, including apricots, cherries, grapes, and waste frying oil, for
their utility in producing PHA [102]. A maximum production of 21.3 g PHA per liter of
pomace was observed with the cherry pomace [102]. Kourmentza et al. investigated the
use of sunflower-derived cooking oil as a substrate for PHA production with Burkholderia
thailandensis E264 strain. They cultured the stain in a nutrient medium containing pep-
tone and meat extract and obtained 12.2 g DCW/L and a PHA concentration of 7.5 g/L
(Table 1) [103]. In another study, spent coffee grounds were thermal and enzymatically
treated to break up cellulose for releasing saccharides in the waste. The resultant solution,
called hydrolysate of SCG (SCGH), was rich in sugar, containing approximately 50 g/L
of total sugars, 23.6 g/L of mannose, 17.3 g/L of galactose, 3.9 g/L of glucose, 2.8 g/L
of arabinose, and 2.7 g/L of cellobiose [104]. Using the SCGH as the carbon source in
Burkholderia cepacia culture, a maximum of 4.9 g DCW/L and 54.8% of PHA content were
obtained [104]. Kachrimanidou et al. used sunflower seed with C. necator to produce poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Uniquely, the fungal strain Aspergillus
oryzae was used to lyse C. necator to recover PHB [105]. The optimum temperature and
an uncontrolled pH resulted in a recovery of 98% and 96.7% of PHBV and P(3HB-co-12
mol% 3HV), respectively [105]. Sawant et al. utilized corn to accumulate PHA in Paracoccus
sp. LL1 culture. The corn was first hydrolyzed with a cellulase cocktail and then fed to
the bacteria. The authors reported that there was a 13.41 g DCW/L and PHA content
of 72.4% [106]. Sindhu et al. utilized three different bacterial strains, i.e., B. firmus NII
0830, Bacillus sphaericus NII 0838, and Paracoccus denitrificans, to compare their efficiency
in producing PHB using rice straw-derived pentose sugar hydrolysate as a carbon source.
They noted that the Bacillus firmus NII0830 showed a maximum 1.9 g DCW/L and PHB
concentration at 1.7 g/L, leading to a PHB cell content of 89% [107].

Other bacterial stains have been studied for PHA production from a variety of FW
types. Cesario et al. prepared lignocellulosic hydrolysates from wheat straw and used as
a carbon source to culture Burkholderia sacchari. The work observed 70% PHB content per
DCW with a PHB concentration of 3.8 g/L [108]. Kulpreecha et al. utilized a newly isolated
Bacillus megaterium strain to make PHB using sugarcane molasses and urea as a carbon and
nitrogen source, respectively. Under optimized conditions, the authors obtained a PHB
content of 42% per DCW and 1.27 g/L/h PHB productivity [109]. In another study, liquid
bean curd waste together with sucrose were used as carbon sources for producing PHA in
Alcaligenes latus and received 2.48 g/L of PHA with 66.6% content (Table 1) [110]. Lopes
et al. reused hydrolyzed sugarcane bagasse to feed Burkholderia sp. F24 and produced
25.04 g DCW/L with a PHB content of 49% [111]. Pais et al. recycled cheese whey as the
substrate to produce HBHV in Haloferax mediterranei culture. They reported a polymer
content of 53% and productivity of 4.04 g/L/day [112]. Patel et al. added a hydrolyzed pea
shell slurry to a defined culture medium and examined several bacterial strains, including B.
cereus EGU3, EGU43, EGU44 strains and B. thuringiensis EGU45 for the PHA accumulating
capacity. However, the best batch culture led to a PHB production of only 1.69 g/L in
Bacillus cereus EGU44 [113].
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Table 1. Summary of different types of food waste used for biodegradable polymer production by
means of PHA-accumulating microorganisms.

Food Waste Bacterium DCW * (g/L) PHA/PHB ** Content (%) Reference

Spent coffee grounds Curpriavidus necator 55.4 89.1 [89]

Spent coffee grounds Cupriavidus necator DSM 428 16.7 78.4 [90]

Saccharified spent coffee grounds Burkholderia cepacia CCM 2656
(ATCC 17759) 4.9 54.8 [104]

Rice straw Bacillus firmus NII 0830 1.9 89 [107]

Rice husk B. cepacia USM (JCM 15050) 7.8 50 [92]

Waste cooking oil Cupriavidus necator H16 15.5 70 [94]

Used cooking oil Cupriavidus necator DSM 428 10.4 37 [95]

Used sunflower oil Cupriavidus necator DSM 428 11.4 57 [95]

Waste rapeseed oil with 1%
of propanol Cupriavidus necator H16 138 75 [97]

Sunflower-derived cooking oil Burkholderia thailandensis E264 12.2 61 [103]

Paddy straw mushrooms Ralstonia eutropha MTCC 1472 19.2 37.6 [96]

Sugarcane bagasse Halogeometricum borinquense E3 4.15 50.4 [99]

Sugarcane bagasse Burkholderia sp. F24 25.04 49 [111]

Saccharified waste potato starch Ralstonia eutropha NCIMB 11599 179.0 52.5 [98]

Cheese whey H. mediterranei (ATCC 33500) 16.01 53 [112]

Corn stover Paracoccus sp. LL1 13.41 72.4 [106]

Sugarcane molasses Bacillus megaterium BA-019 72.6 42 [109]

Liquid bean curd with initial sucrose
at 25 g/L Alcaligenus latus 3.73 66.56 [110]

* DCW: dry cell weight. ** PHA/PHB: polyhydroxyalkanoate/polyhydroxybutyrate.

3.2. Polyhydroxyalkanoate Production from Food Waste Using Recombinant Strains

With modern DNA cloning technology and metabolic flux network analysis, re-
searchers continue to optimize conditions for PHA production by means of genetic mod-
ification of the fast-growing bacterium, but naturally cannot accumulate polymers. Re-
combinant E. coli strains with added genes and/or pathways for PHA production have
been constructed. Table 2 summarizes FW as substrates for biodegradable polymer pro-
duction by means of recombinant bacterial strains. Hong et al. examined the recycling
use of soy waste for PHB accumulation in a recombinant E. coli strain, where a phb operon
was carried by a plasmid DNA. The authors reported a PHB content of 27.8% with the
recombinant E. coli [114]. Furthermore, the authors reported that the lac promoter was the
most efficient among the three promoters investigated (lac promoter, T7 promoter, and
the normal σ70 promoter) [114]. Law et al. utilized E. coli and a plasmid to introduce
PHA-producing genes into the cells and to produce PHA from malt and soy wastes. They
found that the E. coli HMS174 strain showed the highest yield in the production of PHBV
with 10.27 g DCW/L and a PHA content of 43% [115]. An E. coli strain harboring the genes
from C. necator for PHA production with whey as a carbon source was able to produce PHB
at a concentration of 5.2 g/L with 81% PHB content [116]. In another study, a recombinant
E. coli strain CML3-1 harboring C. necator PHB-synthesis genes, phbC, phbA and phbB was
constructed [117]. There was a PHB concentration of 7.83 g/L with a PHB content of 21.73%
by this strain when cheese whey was used as a carbon source, although the E. coli reached
36 g DCW/L [117]. Another recombinant E. coli CGSC 4401 harboring Alcaligenes latus PHA
biosynthesis genes was created. When the strain was cultured in a flask, the biomass and
PHB concentrations were 6.6 g/L and 5.0 g/L, respectively [118]. An engineered strain of
C. necator overexpressing (R)-specific enoyl coenzyme-A hydratase (phaJ) and PHA syn-
thetase (phaC2) with deletion of acetoacetyl Co-A reductases (phaB1, phaB2, and phaB3)
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has been employed for producing PHA using extracted oil from coffee waste oil as a carbon
source. The study produced a polymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
(P(HB-co-HHx)) at PHA content of 69%. However, the biomass concentration was only
0.89 g/L [119]. These studies demonstrated the values of distinct FW types for the pro-
duction of biodegradable plastics. Reuse of FW rather than FW landfill possesses great
potential not only to significantly reduce the emissions of greenhouse gases from landfilled
FW but also to reduce the cost of current PHA production in industry, where expensive
refined sugars such as glucose and fructose are used.

Table 2. Summary of food waste as substrates for biodegradable polymer production by means of
recombinant bacterial strains.

Bacterium Inserted Genes Food Waste DCW * (g/L) PHA/PHB ** Content (%) Reference

E. coli phb operon Soy waste 3.03 27.83 [114]

E. coli phaC, phaA, and phaB Malt waste 10.27 43 [115]

E. coli
Alcaligenes eutrophus

polyhydroxyalkanoate (PHA)
biosynthesis genes

Whey 6.42 81 [116]

E. coli C. necator
phbC, phbA and phbB genes Cheese Whey 36 21.73 [117]

E. coli A. latus PHA
biosynthesis genes Whey 6.6 76 [118]

E. coli Amp, phaC1 gene from P. aeruginosa
and PHA operon from R. eutropha

Corn starch and
soybean Oil 0.92 5.9 [120]

Cupriavidus necator
Overexpressing phaJ and PHA

synthetase (phaC2) with deletion of
phaB1, phaB2, and phaB3

Coffee waste oil 0.89 69 [119]

* DCW: dry cell weight. ** PHA/PHB: polyhydroxyalkanoate/polyhydroxybutyrate.

4. Diverse Types of Food Waste-Derived Materials as Essential Components for
Fabricating Medical Products

Materials made from various types of FW described above can be useful in creating
medical products, which are highlighted in Figure 3. Different kinds of hydrogels con-
taining FW-derived components have shown their potential usage in medical treatments.
These products include hydrogels as wound dressings and nanoparticles for drug deliv-
ery. The most promising discoveries are those that have been tested in animal models.
Figure 1B highlighted FW-derived novel biomaterial combinations used to construct func-
tional hydrogels for medical treatments. Pandit et al. created a spongy wound dressing
by combining carboxymethyl tamarind seed polysaccharide, pectin, and glycerin with a
layer of moxifloxican-filled alginate beads in the middle [121]. The formulated wound
dressing showed high wound fluid adsorption, good endurance, and high drug release. In
wounded rats, the dressing showed almost complete closure in 17 days [121]. Interestingly,
pectin has also been investigated in combination with papain to create a spray on topical
gel to help skin wound healing. This material displayed a better healing progression
compared to controls in a rabbit experiment [122]. Lignin extracted from coconut husk
has been incorporated in a hydrogel including polyethylene glycol, polypropylene glycol
(PPG), and polydimethylsiloxane together with 1% vitamin C, (+)-catechin hydrate, and
Trolox [15]. Upon applying it to mice with burned skin, the study demonstrated that the
lignin-containing hydrogel processed strong antioxidant activity and effectively promoted
wound recovery compared to a slower recovery rate in the mice without lignin addition [15].
Florentini et al. used a combination of zein, pectin, and soy lecithin with vitamin C to
construct a microfibrous scaffold to test its potential healing properties. The fibers were
made by electrospinning zein and pectin, which was crosslinked with Ca2+ to create a
hydrogel [123]. In vivo testing on skin UVB-burned models showed reduced inflamma-
tory cytokines in the injured area [123]. In a study by Cui et al,. an organohydrogel as
an antifreeze wound dressing was formulated by using the aforementioned durian rind
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cellulose powder and a LiOH/Urea mixture initially (Figure 1B) [25]. To obtain the final
antifreeze wound dressing, the initial hydrogel was first submerged in glycerol to make
an organohydrogel and then in a yeast phenolic stock solution to obtain its antimicrobial
properties. The durian rind cellulose organohydrogel was applied as a wound dressing on
wounds in pig skin for the experimental group and moist gauze was used as the control
group. Their results suggested low microbial development, which could be resolved by
periodically replacing the dressing. The study indicated that the developed organohydrogel
has the potential to act as a practical wound dressing [25].
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In addition, lignin extracted from wheat straw has been combined with alginate to
create a hydrogel [16]. Mouse fibroblast cells cultured on the hydrogel showed good cell
adhesion with little or no cytotoxicity [16]. Amirian et al. combined amidated pectin and
oxidized chitosan to fabricate crosslinked hydrogels and showed good swelling capacity
and biocompatibility [124]. Furthermore, Kocaaga et al. utilized low-methoxyl pectin and
zeolite to make crosslinked hydrogels that can hold drugs for controlled release during
wound healing. They found the hydrogels are non-cytotoxic, support cell proliferation
and migration with good swelling properties [125]. Carolo et al. made a marine collagen
scaffold by adding the collagen at 2 g/L with 0.01% TritonX-100 to rubber silicon molds,
frozen overnight, and lyophilized overnight [70]. To test the scaffold the researchers made a
wound in adult male rats with a section of the dorsal column cut out and placed the scaffold
to the wound area. Compared to a commercially available brand for dermal regeneration,
the marine collagen scaffold showed similar biocompatibility, stimulated angiogenesis, and
the deposition of mature collagen [70].

Furthermore, FW-derived materials have been explored to fabricate nanoparticles
for drug delivery (Figure 3). Shahzad et al. used chitosan from crab shells and sodium
alginate to fabricate cefazolin-encapsulated chitosan nanoparticles [126]. The resultant
nanoparticles were then loaded onto a film containing sodium alginate and pectin and
crosslinked using calcium chloride. Their experimental results suggested that there was
an equal distribution of the drug cefazolin in all parts or areas of the film. The film
allowed fluid uptake and drug release, no rapid swelling, and was antimicrobial [126]. In
another study, lignin silica nanohybrid particles were created and exposed to human bone
marrow derived mesenchymal stem cells to examine its impact on cell viability and cell
morphology. The novel materials showed good cytocompatibility and successful osteogenic
differentiation from the stem cells [13]. Moreover, lignin extracted from wheat straw was
used to synthesize silver nanoparticles by mixing a lignin solution with a silver nitrate
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solution. The anticancer activity of the nanoparticles was investigated using the SKOV3
cancer cell line. It was confirmed that the lignin-containing nanoparticles are capable of
declining the cell viability in a dose-reliant mode [14]. Dai et al. used alkali lignin extracted
from corn cob through a hydrothermal treatment to fabricate nanoparticles with an organic
solvent solution. The nanoparticles were then assembled with resveratrol and magnetite to
create a nanodrug carrier. The materials exhibited good stability, biocompatibility, and a
relatively high drug loading capacity of over 20% wt. In addition, the materials inhibited
tumor growth and improved experimental animal survival rates [18].

Additionally, the components extracted from varied FW types have been incorporated
into other materials to fabricate film, nanoparticle, and powder for medical treatments
(Figure 3). Koshy et al. constructed a biofilm containing pectin from citrus peels and
hemigraphis alternata extract as a potential anticancer wound care therapy [127]. Kamel et al.
incorporated banana peel powder into a chitosan matrix and showed good antimicrobial
properties against gram negative/gram positive and yeast bacteria [128]. Li et al. used
eggshell membrane powder and chitosan to create a film. The material showed good
wound healing and swelling properties, and antibacterial activity, suggesting its potential
as a wound dressing [129]. Govindaraj et al. combined pectin from jackfruit peel with CaCl2
and then K2HPO4 to yield fine bionanocomposite particles. These nanoparticles showed
good biocompatibility that signifies its potential application as a bone graft material [56].
In another study, researchers have incorporated citrus pectin into a copper-based metal–
organic framework with folic acid. The resultant fibers possessed antibacterial activity and
were biocompatible with good tensile strength [130]. Moreover, FW-derived lignin was
blended with chitosan to make a composite. The antibacterial activity of the composite
was investigated with the zone inhibition method using S. aureus and E. coli and cell
viability was tested in mouse embryonic fibroblast culture [17]. The composite showed
strong antibacterial properties and biocompatibility to the cells, indicating that it can be
successfully used as a wound dressing [17].

Collagen has been an excellent biomaterial in scaffolding to support human cell at-
tachment, proliferation, and differentiation [61,63,131]. Irastorza et al. detailed the use of
collagen and chitosan as materials for tissue engineering, including the preparation tech-
niques, properties, and applications of various materials such as films, sponges, hydrogels,
and fibers [132]. Milan et al. made a mineralized scaffold using collagen derived from
tilapia skin and mangosteen extract. The study indicated the potential of this material to
facilitate the formation of bone tissue, due to the stability of the collagen chains and high
porous structure that allow for calcium phosphate nucleation [68]. Arslan et al. combined
keratin from human hair, collagen from jellyfish, and hydroxyapatite from eggshells to form
a scaffold for bone tissue engineering [82]. After crosslinking and freeze drying the scaffold,
the authors seeded human adipose mesenchymal cells to the scaffold and observed an
osteogenic effect on the cells, as there was a calcified matrix and increased expression levels
of osteoporin and osteonectin [82].

PHAs are extensively used to make biodegradable medical products. Kalia et al.
summarized the different types of biodegradable implants with applications in tissue
engineering, wound dressings, and drug delivery [133]. Bonarstev et al. detailed the various
types of PHA and their usages in commercially available medical products [87]. Najah
et al. created a biocomposite containing calcium phosphate, PHA, and chitosan to enhance
the strength of the composite for bone graft applications [134]. The study showed that
maximum tensile stress and elastic modulus could be achieved at 15 wt% of calcium
phosphate [134]. Injorhor et al. fabricated electrospun fibers from PHA, biodegradable
polylactic acid, and nano-hydroxyapatite from fish scales. The material showed tensile
strength, thermal stability, and is in vitro degradable, which implies its potential use in
bone tissue engineering [135]. Phuegyod et al. made a porous scaffold using polymer
PHBV with 50% HV content biosynthesized from C. necator H16 and tested the polymer’s
utility for periodontal tissue engineering [136]. After seeding human gingival fibroblasts
and periodontal ligament stem cells to the polymer scaffolds, high proliferation rates,



Sustainability 2024, 16, 4473 13 of 19

good cell adhesion, and good morphology were observed, indicating the potential for
periodontal tissue engineering [136]. Ghadirian et al. fabricated a PHB electrospun scaffold
with the addition of halloysite nanotube, a naturally occurring tubular clay material, and
investigated the scaffold application for cartilage tissue engineering [137]. It was found
that the scaffold possessed better mechanical properties, resistance to degradation, and
supported proliferation of chondrocytes on the scaffold [137]. Other types of polymers were
developed to make medical devices. For instance, Song et al. fabricated swellable polymer
with branched L-borneol antibacterial agents. It exhibited similar antibacterial performance
as chitosan and other natural materials [138]. In addition, hyper-crosslinked polymers
have similar properties to those of natural materials, are valuable in drug delivery and
possess antibacterial properties. They are considered a promising new class of materials for
biomedical applications [139].

5. Conclusions

It is estimated that one-third of the world’s food is wasted annually with growing
economic and population growth. FW is one of the major sources attributing to environ-
mental pollution and global climate change due to the emissions of greenhouse gases to the
atmosphere from landfilled FW. Extensive efforts have been made to explore the recycling
use of a variety of FW sources ranging from plant FW to marine waste for improving envi-
ronmental sustainability. Turning FW into functional biomaterials and medical products
enables FW streams to be upcycled for manufacturing value-added products, instead of
contributing to greenhouse gas emissions and environmental pollution. Although con-
verting FW into diverse value-added materials is a promising approach for improving
environmental protection and has been extensively investigated, significant challenges exist.
For instance, most of the studies have focused on isolating a material from a single type
of FW on a small scale. A material’s isolation process may encompass chemical, physical,
biological or a combination of them. Hence, the scale-up study is essential to optimize
extraction efficacy and reduce cost on a large scale to attract the development of a new
industry for the sustainability of FW reuse. The optimization includes development of
green isolation method in case a toxic solvent is used for isolation. Furthermore, knowledge
of the extraction efficacy of the materials from a mixture of varied FW types would offer
insights into the commercialization of FW recycling technologies. This is critical from an
industrial point of view, as many FWs could be constantly collected and transported to
repurposed processes from food processing industries and kitchen wastes in restaurants. To
overcome these bottlenecks, it is necessary to draw attention from governments, industries,
and researchers and for these three parties work jointly for the realization of industrial-scale
manufacturing of products through FW upcycling.
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