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Abstract: Perchlorate is a highly mobile and persistent toxic contaminant, with the potassium per-
chlorate manufacturing industry being a significant anthropogenic source. This study addresses the
Energy Conservation and Perchlorate Discharge Reduction (ECPDR) challenges in China’s potassium
perchlorate manufacturing industry through a multi-objective optimization model under uncertainty.
The objectives encompass energy conservation, perchlorate discharge reduction, and economic cost
control, with uncertainty parameters simulated via Latin Hypercube Sampling (LHS). The optimiza-
tion was performed using both the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and
the Generalized Differential Evolution 3 (GDE3) algorithm, enabling a comparative analysis. Three
types of decision-maker preferences were then evaluated using the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) to generate optimal decision strategies. Results revealed:
(1) The comprehensive perchlorate discharge intensity in China’s potassium perchlorate industry is
approximately 23.86 kg/t KClO4. (2) Compared to NSGA-II, GDE3 offers a more robust and efficient
approach to finding optimal solutions within a limited number of iterations. (3) Implementing the
optimal solution under PERP can reduce perchlorate discharge intensity to 0.0032 kg/t. (4) Processes
lacking primary electrolysis should be phased out, while those with MVR technology should be
promoted. This study provides critical policy recommendations for controlling perchlorate pollution
and guiding the industry toward cleaner and more sustainable production practices.

Keywords: multi-objective optimization; perchlorate discharge reduction; NSGA-II; GDE3; TOPSIS;
management decision

1. Introduction

Perchlorate, an inorganic pollutant, exhibits high diffusivity and persistence [1] with
exceptionally stable physicochemical properties [2]. It easily migrates into the environment,
entering the human body through exposure routes such as food and drinking water. It
affects thyroid function [3], inhibiting iodine absorption [4] and posing a threat to human
health [5]. Currently, perchlorates have been detected in surface water [6], groundwater [7],
soil, food [8], and drinking water [9] in various locations. Perchlorate originates from
natural [10] and anthropogenic sources [11]. The amount of naturally formed perchlorates
is relatively low. Industrial processes contribute significantly to anthropogenic emissions,
including perchlorate manufacturing and its applications in industries such as rocket
propulsion [12], fireworks [13], military, and aerospace.

It is urgent to reduce perchlorate discharging from the source due to there being nearly
no removal effects by commonly used water treatment. However, China is still in its early
stages in systematic perchlorate pollution control [14]. Currently, apart from setting a
perchlorate concentration limit of 0.07 µg/L in the current standards for drinking water
in China [15], no further control requirements are specified. One important reason for
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this is lacking enough information on perchlorate pollution characteristics in industrial
wastewater and pollution reduction measures, etc. The only information that could be
found was that the United States required zero discharge of perchlorate from perchlorate
manufacturing enterprises, and these enterprises mainly belonged to the military. It
showed realistic meaning to supplement the lack of information and support proposing the
perchlorate discharging control management. The manufacturing of potassium perchlorate
is a major anthropogenic source of perchlorate pollution, accounting for approximately
78.8% of the total perchlorate manufacturing in China, according to internal data of industry
associations. Therefore, this study selected the potassium perchlorate manufacturing
industry as the typical industry.

Currently, potassium perchlorate is mainly produced through electrolysis followed
by double decomposition method [16]. Industrial salt is used as the primary raw mate-
rial and undergoes three key stages: Process 1. Sodium chlorate production by primary
electrolysis; Process 2. Sodium perchlorate production by secondary electrolysis; and
Process 3. Potassium perchlorate production by double decomposition reaction. For details,
see Appendix A. The production system is illustrated in Figure 1. Potassium perchlo-
rate manufacturing requires substantial electricity in its production processes [16], about
7820 kW·h/t KClO4. Intensive energy consumption indirectly leads to large amounts of
CO2 emission and global climate change issues. Thus, the potassium perchlorate manu-
facturing industry should actuate minimal pollution, minimal energy consumption, and
economic feasibility. The intricate interplay and trade-offs between environmental, energy,
and economic objectives contribute to the complexity of industrial management, posing
challenges to achieving multi-objective optimization [17].
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Figure 1. Potassium perchlorate production process system.

Multi-Objective Evolutionary Algorithms (MOEAs) are the main methods for solv-
ing multi-objective optimization problems [18]. The Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [19], proposed by Deb et al. in 2000, stands out as a widely ap-
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plied representative MOEA [20]. NSGA-II incorporates concepts like elitist strategy, fast,
non-dominated sorting, and crowding distance, effectively addressing issues such as low
algorithm performance and high complexity. It has found extensive application in solving
multi-objective optimization problems [17], demonstrating remarkable performance in
practical scenarios. As multi-objective optimization yields a set of solutions known as
Pareto-optimal solutions rather than a single solution, decision-makers need to choose
among these alternative solutions based on their objective preferences. TOPSIS decision-
making is a classical multicriteria decision method [21] first introduced by Hwang and Yoon
in 1981 [22]. This method efficiently utilizes information from the original data, accurately
reflecting the differences between evaluation schemes. It does not impose strict limitations
on data distribution or sample size, and it is computationally straightforward [23].

In summary, the main contribution of this study is to realize a multi-objective optimiza-
tion in Energy Conservation and Perchlorate Discharge Reduction (ECPDR) management
in the potassium perchlorate manufacturing industry. Firstly, the paper analyzes the pro-
cessing system and discharge characteristics of the industry. Subsequently, it proposes a
multi-objective optimization model and employs the NSGA-II algorithm to optimize the
model and obtain a set of Pareto frontier solutions. Finally, the TOPSIS method is employed
to select the optimal solutions under different objective preferences from the Pareto frontier
solutions, and corresponding policy recommendations are proposed based on the research
results. This study provides theoretical support for optimizing pollution reduction and
carbon reduction management in the potassium perchlorate manufacturing industry while
also offering a general analysis framework for energy conservation and discharge reduction
management decisions in other manufacturing industries.

2. Methodology
2.1. Analysis of Potassium Perchlorate Production System

Before constructing the multi-objective optimization model, it is essential to gain in-
depth insights into the production processes of the potassium perchlorate manufacturing
industry. The author conducted a comprehensive investigation of the major pollution
nodes, pollution intensities, and reduction measures of pollution and carbon through a
systematic literature review, on-site research, sampling and testing, and expert interviews.
According to the enterprise survey, it was found that some companies directly purchased
sodium chlorate from external sources as production raw materials and omitted Process
1, which was mentioned in the introduction part. To distinguish clearly, we named the
process using industrial salt as the raw material as “Method A” and the process using
sodium chlorate as the raw material as “Method B.” Each of these production methods
accounts for approximately 50% of the total industrial perchlorate production.

Three categories of pollution reduction and carbon reduction measures applicable to
potassium perchlorate production processes were proposed: (i) Advanced Technologies
and Management Measures (Tm), (ii) By-Product and Waste Recycling Methods (Rm), and
(iii) Terminal Treatment Technologies (Tt), all of which are elaborated upon in Table 1. Both
Tm8 and Tm9 involve adding the primary electrolysis step, Tm8 requires simultaneous
using MVR technology for treating the mother liquor from double decomposition. In the
case of adopting Tm9, the sodium chlorate production is higher than the requirement for
potassium perchlorate production in Process 3 according to water balance. Thus, parts
of sodium chlorate produced should be sold. The penetration rates for each measure in
the base year and the optimization year, energy savings, pollution reduction effects, and
economic costs are provided in Table A1.
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Table 1. List of technical measures.

NO. Methods Method A Method B

Tm1

Improved coating formulation technology for single-pole gas stripping external
circulation electrolyzers; it could be used in primary electrolysis, could enhance
current density and reduce equipment footprint, but significantly increase energy
consumption intensity.

√

Tm2
Continuous cycle electrolysis, which could be used in secondary electrolysis, could
improve the current efficiency compared with the traditional deep electrolysis
technology.

√ √

Tm3 Filtering electrolyzed brine with a precise membrane filtration system could improve
brine quality and lower electrolysis energy consumption.

√

Tm4 Treatment and reuse of workshop floor and plant flushing water could reduce the
perchlorate escaping from the production process into the environment.

√ √

Tm5 Separate storage and management of hazardous waste and general solid waste could
save some unnecessary cost input, and the management is more reasonable.

√

Tm6
Vacuum dust collection system: it could be employed for dust cleaning on workers’
hands and workwear surfaces and could prevent perchlorate materials from being
discharged into the environment through workers’ hands and clothing.

√ √

Tm7 Constructing rainwater collection ponds could prevent the dispersion of perchlorate
from the factory road during rainy days.

√ √

Tm8

Adding the primary electrolysis process (accompanied by Mechanical vapor
recompression (MVR)) could realize the reuse of the mother liquor from double
decomposition, and the potassium perchlorate and sodium chloride separated by
MVR can bring certain economic benefits.

√

Tm9
Adding the primary electrolysis process (without MVR) could realize the reuse of the
mother liquor from double decomposition; some excess sodium chlorate will be sold
to the market, but this part of sodium chlorate contains a small amount of perchlorate.

√

Rm1 Hydrogen purification and recovery technology could recover hydrogen from an
electrolysis tank.

√ √

Rm2 MVR could efficiently recover NaCl and potassium perchlorate from the double
decomposition mother liquor.

√ √

Rm3 Extracting and reusing perchlorate from filter-pressed sludge.
√

Rm4 Recovering dust from the potassium perchlorate drying workshop using a bag filter.
√ √

Tt1
In ion exchange, the modified resin material has a selective adsorption capacity for
perchlorate ions in wastewater, and the adsorption capacity of the resin material is
greatly improved.

√ √

Tt2

Efficient biodegradation technology. The efficient and harmless transformation of
perchlorate in wastewater was achieved by adding efficient reducing bacteria,
controlling the REDOX potential of the reactor, and regulating hydraulic conditions of
the UASB unit to promote sludge flocculation.

√ √

Tt3 The catalytic reduction technique includes pretreatment and the “HJ-PERCl” REDOX
system, which can decompose perchlorate into chloride under specific conditions.

√ √

√
indicates the technologies that can be applied to the corresponding production mode.

2.2. The Multi-Objective Optimization Model

Considering data availability, 2020 was chosen as the baseline year for implementation.
According to the guideline from the NDRC [24], 2030 is selected as the optimization year,
aligning with the goal of further refining the dual control system for energy consumption
and achieving reasonable control of total energy consumption. This study has collected five
types of information: industrial structure, energy consumption, production and discharging
amount of perchlorate, economic cost, and the promotion situation parameter. These data
have been verified by industry experts.
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2.2.1. Objectives

This study assumes that the performances of equipment or technology will remain
unchanged within the period of the base and optimization year. Therefore, the effects on the
objectives come from the adjustment and promotion of these measures. The multi-objective
optimization model constructed in this paper comprises three objective functions:

(1) Energy intensity minimization

This objective value is calculated by deducting the energy conservation impacts of
each measure from the energy intensity in the base year, as expressed in Equations (1)–(3):

minEIt+∆t = EIt − (ECTm + ECRm) + ETt (1)

ECTm = ∑
i

[
∑
Tm

ECi,Tm × (Pi,Tm,t+∆t − Pi,Tm,t)

]
× PPi (2)

ECRm = ∑
i

[
∑
b

Gb × ∑
Rm

ECi,b,Rm × (Pi,Rm,t+∆t − Pi,Rm,t)

]
× PPi (3)

ETt = ∑
i

[
∑
Tt

Ei,Tt × (Pi,Tt,t+∆t − Pi,Tt,t)

]
× PPi (4)

where t is the base year; t + ∆t is the optimization year, b represents by-product and waste;
i is the process in potassium perchlorate manufacturing industry; EIt and EIt+∆t represent
the energy intensity of the base year and the optimization year, respectively; ECTm is the
energy conservation effects of the measure Tm; ECRm is the energy conservation amount
of the measure Rm; ETt is the energy consumption required by the terminal technology
Tt; Pi,Tm, Pi,Rm, and Pi,Tt,t+∆t represent the penetration rates of Tm, Rm, and Tt in process
i, respectively; PPi represents the ratio of the mass of process i’s product to potassium
perchlorate; and Gb is the generation coefficient of by-product and waste b, indicating the
weight of b generated per unit weight of the products.

(2) Perchlorate discharge intensity minimization

Similarly, the discharge intensity of perchlorate is calculated as shown in Equations (5)–(8):

minPEIt+∆t = [PEIt − (ERTm + ERRm)]× [1 − µ] (5)

ERTm = ∑
i

[
∑
Tm

ERi,Tm × (Pi,Tm,t+∆t − Pi,Tm,t)

]
× PPi (6)

ERRm = ∑
i

[
∑
Rm

ERi,Rm × (Pi,Rm,t+∆t − Pi,Rm,t)

]
× PPi (7)

µ = ∑
Tt

µTt × (PTt,t+∆t − PTt,t) (8)

where PET is the discharge intensity of perchlorate in the potassium perchlorate manu-
facturing industry; ER is the discharging reduction amount; ERi,Tm and ERi,Rm reflect the
perchlorate discharge reduction effect from Tm and Rm in process I, respectively; µ is the
perchlorate removal efficiency; and µTt reflects the perchlorate removal efficiency of Tt.

(3) Economic cost minimization

Economic Cost includes the investment and operational costs of technology and
equipment, the raw material and energy costs, and considerations of economic benefits
resulting from discharging reduction measures (energy savings and raw material savings).
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This study assumes that the cost of equipment and technical removal and clearance is 0.
The calculation method is shown in Equations (9)–(12):

minC = C f + Co − B (9)

C f = ∑
i

∑
Tm

Ii,Tm × (Pi,Tm,t+∆t − Pi,Tm,t)×
r

1 − (1 + r)−LTm
+

∑
i

∑
Rm

Ii,Rm × (Pi,Rm,t+∆t − Pi,Rm,t)×
r

1 − (1 + r)−LRm
+

∑
i

∑
Tt

Ii,Tt × (Pi,Tt,t+∆t − Pi,Tt,t)×
r

1 − (1 + r)−LTt

(10)

Co = ∑
i

∑
Tm

Oi,Tm × (Pi,Tm,t+∆t − Pi,Tm,t)+

∑
i

∑
Rm

Oi,Rm × (Pi,Rm,t+∆t − Pi,Rm,t)+

∑
i

∑
Tt

Oi,Tt × (Pi,Tt,t+∆t − Pi,Tt,t)

(11)

B = (ECTm + ECb)× EUP + ∑
b

Gb × BCb × ∑
Rm

Rb,Rm × (Pi,Rm,t+∆t − Pi,Rm,t) (12)

where C f is the fixed investment; CO is the operational costs, and B stands for the economic
benefits resulting from energy savings and recovery of by-products and waste; r is the
discount rate; L is technical lifetime; EUP is the energy unit price; Rb,Rm is the recovery rate
of reutilization approach Rm for b; BCb is the equivalent price of b; and I and O represent
the fixed investment and operational costs of implementing measures, respectively.

2.2.2. Constraints

In this study, three types of constraints are set to ensure the practical feasibility of the
solution results.

(1) Logical constraints of decision variables

The decision variables in the model are the penetration rates of different measures. The
logical range of the decision variable is between 0% and 100%, as shown in Equations (13)–(15):

0 ≤ Pi,Tm ≤ 100% (13)

0 ≤ Pi,Rm ≤ 100% (14)

0 ≤ Pi,Tt ≤ 100% (15)

(2) Constraints of technology promotion

Tm1 reduces device footprint by increasing current density but results in higher
energy consumption. Thus, it should be phased out gradually based on practical evidence.
Therefore, the penetration rate of Tm1 in the optimization year should be lower than the
baseline year level. The penetration rates of other measures should be maintained at or
above the baseline year level, as shown in Equations (16)–(19):

Pi,Tm,t ≥ Pi,Tm,t+∆t, Tm = 1 (16)

Pi,Tm,t ≤ Pi,Tm,t+∆t, Tm = 2, 3, . . . , 7 (17)

Pi,Rm,t ≤ Pi,Rm,t+∆t (18)

Pi,Tt,t ≤ Pi,Tt,t+∆t (19)

(3) Mass balance of the by-products and waste constraint
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In theory, the utilization of by-products and waste should not surpass their generation
amount, meaning that the recycling rate should not exceed 100%, as illustrated in Equation (20):

∑
Rm

Rb,Rm ≤ 100% (20)

2.3. Optimization Method

The methodology of the optimization model can be divided into four main parts:
(1) Random sampling to simulate fluctuations of uncertain parameters within their specified
ranges; (2) Optimization, which uses the NSGA-II and GDE3 Algorithms to optimize the
constructed model and introduces a mean effective objective function value mechanism
in NSGA-II to calculate the objective values of the samples; (3) Algorithm performance
verification, which assesses the reliability and quality of the algorithm and the solution sets;
and (4) Decision strategy generation, which uses the TOPSIS approach to generate final
decision strategies under different objective preferences from the optimal solutions. The
methodological framework is depicted in Figure 2.
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This study considers four categories of uncertainty factors, as shown in Table A2,
involving a total of 121 parameters. Monte Carlo Sampling (MCS) and Latin Hyper-
cube Sampling (LHS) are two widely adopted uncertainty sampling methods in current
research [25]. In comparison to MCS, LHS significantly enhances the uniformity and
coverage of sampling, reducing computational workload by 50% and achieving higher
efficiency [26]. Therefore, this study employs LHS to simulate uncertainties, assuming that
uncertain parameters fluctuate uniformly within the sampling boundaries, conducting a
1000-time sampling.

This study adopts two commonly used multi-objective optimization algorithms,
NSGA-II and GDE3, to search for optimal solutions [17,27]. NSGA-II primarily com-
prises five steps: solution set initialization, objective function computation, non-dominated
sorting, competitive solutions, and genetic operators. These five steps are iterated a certain
number of times to seek the optimal solution. In optimization problems under uncertainty,
an individual solution will yield a set of objective values. Therefore, this study employs the
mean effective objective function value mechanism to calculate the objective value.

GDE3, another widely recognized multi-objective optimization algorithm, extends the
Differential Evolution (DE) algorithm. It introduces a more flexible handling of constraints
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and incorporates a non-dominated sorting mechanism similar to NSGA-II, allowing it to
effectively explore and exploit the solution space.

As the existing literature [17,28] provides detailed descriptions of both NSGA-II and
GDE3 implementations, readers can refer to these works for further details. This study sets
the maximum iteration count at 150 for both algorithms.

This study utilizes the Spacing metric, Hypervolume indicator, and inverted gener-
ational distance (IGD) to verify the algorithm’s performance, ensuring the effectiveness
of the optimal solutions. The Spacing metric indicator is the standard deviation of the
distance between the neighboring solution points [29], which reflects the uniformity of the
solutions. A smaller Spacing value indicates a more uniformly distributed solution set [30].

The Hypervolume indicator, one of the most widely used algorithm performance
evaluation metrics [31,32], calculates the volume of a hyperspace enclosed by a reference
point and the non-dominated solution points [33]. It reflects the overall performance of the
algorithm, with higher values indicating better algorithm performance [34].

Additionally, the inverted generational distance (IGD) is employed to measure both
the convergence and diversity of the solutions [35]. IGD calculates the average distance
from a set of true Pareto-optimal solutions to the obtained solutions. A lower IGD value
indicates that the solution set is closer to the true Pareto front, reflecting better convergence
and diversity. By incorporating IGD, this study further enhances the robustness of the
performance evaluation.

This study set the scale of the solution as 100, which means 100 Pareto solutions
will be generated after optimization. However, decision-makers may have diverse
objective preferences, facing the challenge of generating a specific decision strategy
from these optimal solutions. This study employs the TOPSIS method [21] to solve this
problem, conducting similarity ranking for the 100 ideal solutions generated through
multi-objective optimization. The fundamental principle is to minimize the Euclidean
distance between the chosen solution and the ideal point while maximizing the Eu-
clidean distance between the chosen solution and the anti-ideal point [23,36]. Given the
three objectives of ECPDR management in the potassium perchlorate manufacturing
industry, three types of objective preferences are defined: (1) energy conservation prefer-
ence (ECP), (2) perchlorate reduction preference (PERP), and (3) cost control preference
(CCP). In each preference, the weight of the preferred objective is set to 0.6, while the
weights of the other objectives are set to 0.2 [17,30].

3. Results
3.1. Analysis of Perchlorate Production and Discharging Characteristics

Pollutants generated during the production process include electrolytic exhaust gases,
dust from the drying workshop, sludge, and industrial wastewater. Table 2 presents the
key discharging nodes with intensities in the potassium perchlorate production process:

1. The mother liquor from double decomposition

During the double decomposition reaction stage, the sodium perchlorate solution
generated from secondary electrolysis is combined with the potassium chloride solution
in the double decomposition reactor. The wet potassium perchlorate coarse crystals are
separated from the reaction mixture through centrifugal, cooling, and crystalline. The
residual reaction mixture is called the mother liquor from double decomposition, which
contains approximately 15 g/L of perchlorate. The discharging intensity is equivalent to
about 36.15 kg/t KClO4 of perchlorate.

2. The dust from the drying shop

The wet potassium perchlorate coarse crystals obtained require airflow drying and
grinding to achieve a qualified product with moisture content less than or equal to 0.02%.
The final drying process is fully enclosed, but there will be a minor escape of product dust
during the grinding and packaging processes, resulting in an approximate yield of 1.9 kg/t
KClO4 of perchlorate.
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3. The salt sludge from pressure filters

In the salt refining process, insoluble substances such as CaCO3, Mg(OH)2, and BaSO4
are formed by the precipitation of impurity ions in industrial salt raw materials like calcium,
magnesium, and barium. These insoluble substances need to be separated through the
plate and frame filter. It results in the formation of salt sludge. Since the mother liquor from
double decomposition containing potassium perchlorate is recycled for the salt-dissolving
process, the salt sludge generated contains a portion of perchlorates, with a perchlorate
discharging intensity of around 13.09 kg/t KClO4.

4. The potassium perchlorate powder scattered to the floor of the packaging workshop

During the packaging process, a small amount of potassium perchlorate may be scattered
on the workshop floor. This portion of perchlorate is approximately 0.051 kg/t KClO4.

5. The potassium perchlorate residual on the factory road surface.

The contamination of the factory road surface primarily originates from the dispersion
of potassium perchlorate caused by product transportation and workshop floor cleaning.
According to the probability of being contaminated, the factory ground is divided into
three zones: the vicinity of the packaging workshop and storage warehouse, transporta-
tion surfaces, and other areas. Through sampling and analysis, the potassium perchlo-
rate concentrations on the ground in these three zones are determined as 469.78 mg/m2,
212.56 mg/m2, and 2.45 mg/m2, respectively. Finally, combining the total road area and
product amount, the potassium perchlorate residual amount on the factory ground is
estimated as about 0.001 kg/t KClO4.

6. The potassium perchlorate carried on workers’ hands and clothing.

The perchlorate amount carried on workers’ hands and clothing was estimated as
0.0056 kg/t through measurement methods at the actual perchlorate manufacturing plant.

Due to the absence of the primary electrolysis process in Method A, the recycling of the
mother liquor from double decomposition is not feasible, and there is no pressure-filtered
salt sludge. Therefore, the main discharging nodes are 1⃝, 2⃝, 4⃝, 5⃝, and 6⃝ for Method
A. For the production enterprises with a single electrolytic process (Method B), part of the
double decomposition mother liquor (about 82.16%) is used back in the salt process, and the
rest is discharged, so 6.45 kg/t of perchlorate enters the environment with this part. Thus,
the primary discharging nodes are 1⃝ to 6⃝. The perchlorate discharge intensity for Method
A and B was about 9.61 kg/t KClO4 and 38.11 kg/t KClO4, respectively. Since each method
contributes roughly 50% to the total amount of potassium perchlorate produced in China
currently, the integrated perchlorate discharge intensity for the potassium perchlorate
manufacturing industry is around 23.86 kg/t KClO4.

Table 2. The key discharging nodes and pollutant intensities in the potassium perchlorate manufac-
turing industry.

NO. Nodes Intensities
(kg/t KClO4) Method A Method B

1⃝ The mother liquor from double decomposition 36.15 6.45
√

2⃝ The dust from the drying shop 1.90
√ √

3⃝ The salt sludge from pressure filters 1.20
√

4⃝ The potassium perchlorate powder scattered to the floor of the
packaging workshop 0.051

√ √

5⃝ The potassium perchlorate residual on the factory road surface 0.001
√ √

6⃝ The potassium perchlorate carried on workers’ hands and clothing 0.0056
√ √

Total (kg/t KClO4) 9.61 38.11
√

denotes the nodes that were presented in this method.
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3.2. The Model Optimization Results
3.2.1. The Algorithm Performance Verification Results

The trend of the Hypervolume indicators, Spacing metric and inverted generational
distance, along with the iteration, are shown in Figure 3. The Spacing metric and inverted
generational distance gradually decreased while the Hypervolume indicator increased
steadily. This signifies a more even distribution of Pareto front solutions throughout the
optimization process, emphasizing the algorithm’s robust performance in addressing the
multi-objective optimization model used in this study. All three indicators remained steady
before the number of iteration times reached 150, showing that the solutions converged
before termination and the optimal solutions were reliable.
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3.2.2. The Optimal Solutions

To quantify whether uncertainty factors are considered in the optimal results, this
study compares the trend of optimal objective values of the solutions under certainty (the
contrast) and uncertainty in each iteration generation. Furthermore, due to the differences
in applicable technologies and input parameters, this study undertook optimizations for
two scenarios (Method A and Method B), with the results presented in Figure 4. For Method
A, uncertainty factors exhibited negative effects during the optimization for both perchlo-
rate discharge reduction and cost control objectives. However, during the optimization
of the energy conservation objective, the effect of uncertainties is positive. For Method B,
the influence of uncertainties shifts from negative to positive during the optimization of
the energy-saving objective. However, whether uncertainties are considered or not, the
minimum energy intensity remains almost unaffected. In addition, uncertainties have
a negative impact on the optimization process for the perchlorate discharge reduction
objective but do not significantly affect the economic cost.

In the optimization process, both NSGA-II and GDE3 algorithms are employed to
optimize the model. The comparison between these two algorithms shows that GDE3 has a
faster convergence rate than NSGA-II, as evidenced by the quicker attainment of a stable
solution in fewer generations. This accelerated convergence of GDE3 can be attributed to its
enhanced ability to maintain diversity within the population while simultaneously pushing
toward the Pareto front. Despite the difference in convergence speed, the final optimized
solutions obtained by both NSGA-II and GDE3 are almost identical in terms of the objective
function values. This demonstrates that both algorithms are highly effective in identify-
ing the optimal trade-offs between conflicting objectives in the model, highlighting the
robustness of both methods in solving this multi-objective optimization problem. However,
the use of GDE3 may provide an advantage in scenarios where computational efficiency
is critical, as it reaches the optimal solution in a shorter time without compromising the
quality of the results.

Since the optimal results of the two algorithms show no significant differences after
150 iterations, we select the optimization results from GDE3 to discuss the effects on the
three objective values under both deterministic and uncertain conditions. The objective
values of the final optimal results are shown in Table 3. For Method A, the energy intensity
in the base year was 7820 kW·h/t. Under uncertain conditions, the energy-saving effect
was 199.89 kW·h/t, 1.1% higher than under deterministic conditions (197.65 kW·h/t). For
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the perchlorate discharge reduction objective, the optimal solutions under both determin-
istic and uncertain conditions achieved nearly a 100% reduction in perchlorate discharge.
Additionally, the expected economic benefit from the optimal solutions under uncertainty
is 0.2% lower than that under deterministic conditions.
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Table 3. The optimal target value under the two production methods.

Method A Method B

Value in 2020 Certainty Uncertainty Value in 2020 Certainty Uncertainty

Energy intensity
(kW·h/t) 7820 7622.35 7620.11 3790 3692.77 3693.52

Perchlorate discharging intensity
(kg/t) 9.61 3.17 × 10−3 3.17 × 10−3 38.11 2.4 × 10−7 3 × 10−6

Economic cost
(CNY/t) / −457.03 * −456.31 * / −514.65 * −531.16 *

*: A negative cost value indicates that the benefits exceed the costs.

For Method B, considering the energy intensity in the base year (3790 kW·h/t) as
the reference, the optimal solutions under uncertainty can achieve energy conservation of
96.48 kW·h/t, which is 0.8% lower than that under deterministic conditions (97.23 kW·h/t).
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Similarly, the optimal solutions under both deterministic and uncertain conditions achieve
nearly a 100% reduction in perchlorate discharge. As for the economic cost objective, the
economic benefits under uncertainty are 3.2% higher than under deterministic conditions.

These findings suggest the necessity of incorporating uncertainty factors when estab-
lishing suitable industrial ECPDR management goals, as targets optimized under deter-
ministic conditions may not be realistic.

3.3. Decision Strategy

According to the above analysis, we choose to use the optimization results of the
GDE3 algorithm in the uncertain scenario to make the next decision. This study adopts
the TOPSIS ranking technique to select the optimal solutions that match each objective
preference and generate the final decision strategies. The objective values for the final
decision strategies under each objective preference are presented in Table 4. Typically, each
preference has the best performance in the corresponding objective.

Table 4. The objective values are under different objective preferences.

Objective ECP PERP CCP

Energy intensity (kW·h/t) 3910.10 7831.42 7840.82
Perchlorate discharge intensity (kg/t) 0.0097 0.0032 0.0032
Economic cost (CNY/t) −310.95 −417.90 −442.09

The optimal solution for the ECP corresponds to the production scenario without
primary electrolysis (Method B). Implementing this solution can achieve a reduction in
perchlorate discharge intensity to 0.0097 kg/t (a 99.97% decrease) at an energy intensity of
3910.10 kW·h/t, resulting in an economic benefit of 310.95 CNY/t. For PERP and CCP, the
optimal solution corresponds to the production scenario with primary electrolysis (Method
A). Implementing the optimal solutions for both objective preferences results in a reduction
of perchlorate intensity by approximately 99.97%. However, the CCP solution offers greater
economic benefits compared to the PERP solution, while the PERP solution achieves better
reduction effects at a lower energy intensity. These strategies provide optional schemes
for decision-makers to make differentiated ECPDR management policies in the potassium
perchlorate manufacturing industry.

The optimization results indicate that for production enterprises without a primary
electrolysis process, technical upgrades should be implemented to add a primary electrol-
ysis process from the perspectives of perchlorate reduction and economic benefits. The
technology list includes two methods for adding a primary electrolysis process to Method
A (i.e., Tm8 and Tm9). However, Tm9 would result in a portion of perchlorate (0.835 kg/t)
being sold with surplus sodium chlorate to the market, and it has higher energy intensity
and economic costs compared to Tm8. Therefore, during the optimization process, the pri-
mary electrolysis process with MVR technology (Tm8) is prioritized as the key technology
for adding a primary electrolysis process.

Figure 5 visually presents the penetration rates of Tm, Rm, and Tt under various
scenarios, with detailed data in Table A3. PR-2020 represents the penetration rate of each
measure adopted in 2020. PR-2030 represents the penetration rate of each measure pre-
dicted by experts for 2030. ECP, PERP, and CCP reflect the penetration rates of measures in
the optimization year under objective preference obtained through model optimization.
The penetration rate of Tm1 is 0 under all three objective preferences, far below expert
predictions. Tm1 implementation enhances current density and reduces equipment foot-
print; it leads to a substantial increase in energy consumption and minimal reduction of
perchlorate discharging. Hence, the accelerated phase-out of Tm1 is recommended.
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The outward red arrows indicate that under this objective preference, the optimized
penetration rates of certain measures exceed the expert-predicted penetration rates in the
optimization year or reach 100%. Hence, they should be promoted as key measures in the
next stage, as shown in Table 5. The hydrogen purification and recovery system (Rm1),
MVR technology (Rm2), bag filter recovery in the potassium perchlorate drying workshop
(Rm4), and efficient biodegradation technology (Tt2) are identified as key promotion
measures for the next phase under all three objective preferences.

Table 5. Key measures under different preferences.

Preference Key Measures

ECP Tm6, Rm1, Rm2, Rm4, Tt2
PERP Tm3, Rm1, Rm2, Rm4, Tt2
CCP Tm3, Tm4, Tm6, Rm1, Rm2, Rm4, Tt2

Additionally, huge investment is needed in equipment for some energy saving and
pollution reduction measures, such as primary electrolysis and MVR technology. The
equipment investment cost of adding a primary electrolytic process is about 15 million
yuan, and the corresponding annual output of potassium perchlorate is 10,000 t. A set
of MVR equipment with a designed processing capacity of 5 t/h costs about 6 million
yuan. The substantial upfront capital investment for upgrading technology will bring
great pressure on the economic situation of the enterprise. Hence, the implementation
of advanced measures should be gradually progressed based on the specific cash flow
situation of the enterprise.
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4. Discussion

Currently, China lacks a comprehensive and robust environmental risk management
system for toxic pollutants, failing to promptly address the health risks associated with per-
chlorates. Industries involved in perchlorate discharges primarily include manufacturers
of perchlorates, fireworks, firecrackers, explosives, and pyrotechnic products. However,
only a few discharge sources are subject to pollution control measures based on industry
water discharge standards specific to perchlorates. For instance, the benchmark discharge
volume control requirement for the explosive materials manufacturing industry is set at
9 m3/d, while those for initiating explosive devices and ammunition loading industries
are set at 60 m3/d each. Other relevant water pollutant discharge standards, such as the
“Integrated wastewater discharge standard” (GB8978-1996 [37]) and “Emission standards
of pollutants for the inorganic chemical industry” (GB 31573−2015 [38]), do not provide
explicit emission control requirements for perchlorates.

Comprehensive perchlorate discharge intensity for the potassium perchlorate manu-
facturing industry is estimated to be around 23.86 kg/t of product in China. The annual
output of potassium perchlorate in China is about 157,600 tons, and due to the lack of
corresponding control measures, about 3760.34 tons of perchlorate are discharged into the
environmental system every year. Therefore, it is necessary to formulate and implement
strict control policies.

These measures significantly promote the control of potassium perchlorate pollution.
In comparison with the target optimization results achievable under the optimal solutions
for ECP and CCP, it is evident that PERP achieves a substantial decrease in perchlorate
discharge intensity at the cost of reducing energy savings and economic benefits. This
validates the complex conflicts and synergies among objectives, emphasizing the need for a
comprehensive approach by governments in formulating management policies to balance
the mutual influences of various objectives for sustainable development.

The current pollution control measures for the potassium perchlorate manufacturing
industry are notably weak, lacking systematic studies and traceability analyses. This study
quantitatively analyzes the pollution situation in the potassium perchlorate manufacturing
industry to address this gap and proposes the following policy recommendations based on
the results of multi-objective optimization: (1) Promote key technologies such as negative
pressure dust collection and MVR, gradually phasing out production processes without a
primary electrolysis step, and encourage the adoption of combined production processes
incorporating MVR technology. Strictly enforce a zero-production wastewater discharge
policy. (2) Incentivize technological upgrades, provide financial and tax support to alleviate
cost pressures, and enhance willingness for technological improvement. (3) Formulate
environmental standards and control policies tailored to the characteristics of domestic in-
dustries and strengthen regulatory oversight. (4) Increase research investment to stimulate
the development and application of energy-saving and discharge-reduction technologies,
elevating the overall technological and environmental standards of the industry.

By implementing the aforementioned policy recommendations, not only can potassium
perchlorate manufacturing effectively reduce perchlorate pollution and promote green
production, but it can also provide strong support for the sustainable development of this
sector. Additionally, valuable experiences and models for environmental protection and
energy conservation can be offered to other industries.

This study has potential limitations. Due to data availability, much of the industrial-
related data in the model was obtained through field investigations by the authors and
validation with experts in the relevant fields. However, the actual operational data from
different factories exhibit varying degrees of fluctuation, which may affect the final op-
timization results of the model. Nevertheless, the study employed the Latin Hypercube
Sampling method to randomly sample uncertain parameters, which mitigates the impact
to some extent.
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5. Conclusions

This study is conducted to provide scientific and technological support for the control
of perchlorate pollution in China, taking the potassium perchlorate manufacturing indus-
try as the typical industry. After comprehensively analyzing the perchlorate discharge
characteristics, a comprehensive control strategy was proposed based on a multi-objective
optimization method. This study focused on the synergistic optimization of energy saving,
perchlorate reduction, and economic costs in the ECPDR management of this industry. It
constructed an optimization model with three objectives and three types of constraints.
This study utilized both the NSGA-II and GDE3 optimization algorithms to solve the
model, comparing their performance after 150 iterations. The result was a Pareto solution
set consisting of 100 alternative scenarios. Finally, the TOPSIS method was applied for
multicriteria decision-making to identify the optimal solutions under varying objective
preferences. The main conclusions of this study are as follows:

(1) The major perchlorate discharging nodes include the mother liquor from double
decomposition, product drying dust, and refined pressed filter sludge. The compre-
hensive perchlorate discharge intensity for the potassium perchlorate manufacturing
industry is estimated to be around 23.86 kg/t of product in China. This means
3760.34 t perchlorate per year is discharged into the environment, considering the
current pollution discharging control policy lacks control over perchlorate.

(2) For the optimization of the multi-objective model constructed in this study, while both
the NSGA-II and GDE3 algorithms are effective in identifying the optimal trade-offs
between conflicting objectives, GDE3 demonstrates superior overall performance in
terms of convergence speed. It can find optimal solutions within a limited number of
iterations, providing a more robust and efficient approach.

(3) The optimization results have unveiled significant achievements that could be pro-
duced through ECPDR management of this industry. Implementing the optimal
solution under ECP can achieve a 99.97% reduction in perchlorate discharge intensity
(0.0097 kg/t) at an energy intensity of 3910.10 kWh/t. Under PERP, the optimal
solution can reduce perchlorate discharge intensity to 0.0032 kg/t. Additionally, the
optimal solution under CCP can yield an economic benefit of 432.53 CNY/t.

(4) In the next decade of development for the potassium perchlorate manufacturing
industry, hydrogen purification and recovery technology, MVR technology, bag filter
dust collection technology for the drying workshop, and efficient biodegradation
technology should be vigorously promoted as key technologies.

(5) Considering both perchlorate discharge reduction and economic cost control, produc-
tion processes without primary electrolysis should be gradually phased out. Instead,
primary electrolysis processes equipped with MVR technology should be added.

In summary, this study provides support for formulating ECPDR management policies
in potassium perchlorate manufacturing. However, some drawbacks still exist, such as the
co-benefits of ECPDR measures’ application such as human health improvement (from
reduced perchlorate discharging) are not considered. Filling these gaps will be the future
research direction in this field.
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Appendix A

Process 1. Preparation of sodium chlorate by primary electrolysis

Using industrial salt as the primary raw material, dissolve it into the saturated solution,
followed by the addition of soda ash, caustic soda, and calcium chloride to remove calcium,
magnesium, and sulfate ions. After clarification and filtration, refined brine is obtained.
Prior to being sent to the electrolytic cell, hydrochloric acid is introduced for pH adjustment.
The electrolytic process employs external circulation electrolysis technology. The main
reaction formula is shown in Equation (A1):

NaCl + 3H2O
electrolysis−−−−−−→ NaClO3 + 3H2 ↑ (A1)

The sodium chlorate solution obtained by electrolysis was de-hypochlorite, crystal-
lized, separated and dried to obtain crystal sodium chlorate. (Method B eliminates this step
and purchases sodium chlorate as raw material from outside).

Process 2. Preparation of sodium perchlorate by secondary electrolysis

Sodium chlorate is dissolved in water before being fed into the electrolytic cell, where
direct current is applied. Electrolyzing the sodium chlorate solution leads to the formation
of sodium perchlorate solution and hydrogen gas. The primary reaction is represented by
Equation (A2):

NaClO3 + H2O
electrolysis−−−−−−→ NaClO4 + H2 ↑ (A2)

Process 3. Preparation of potassium perchlorate by double decomposition reaction

The sodium perchlorate solution produced is directed into the storage tank of the
double decomposition section. Upon heating and dissolution, potassium chloride is in-
jected into the elevated tank. Within the double decomposition reaction tank, these two
substances undergo a double decomposition reaction, with agitation and cooling crystal-
lization ensuring a complete reaction. Due to the lower solubility of potassium perchlorate
compared to sodium perchlorate and potassium chloride, a mixed solution containing
potassium perchlorate crystals can be formed. After cooling centrifugation, crude potas-
sium perchlorate crystals are obtained and then subjected to airflow drying and crushing to
obtain the final potassium perchlorate product. This process is described by Equation (A3).

NaClO4 + KCl → KClO4 + NaCl (A3)

Appendix B

Table A1. The parameters of process equipment.

NO.
Energy

Conservation
(kWh/t)

Perchlorate
Reduction

(kg ClO4-/t)

Fixed
Investment

(CNY/t)

Operational
Cost (CNY/t)

Benefits
(CNY/t)

Penetration
Rate-2020

(%)

Penetration
Rate-2030

(%)

Tm1 −200 0 10 150 50 50 20
Tm2 1000 0 120 1700 10 90 100
Tm3 −1 0 0.4 1 50 50 90
Tm4 −5 0.05 0.2 1 1 10 90
Tm5 −0.1 0.005 0.2 1 1 50 100
Tm6 −1 0.005 0.1 1 1 10 50
Tm7 −1 0.05 0.5 1 2 50 100
Tm8 −4570.4 29.70 177.12 3500.99 4620.05 30 80
Tm9 −9000 29.16 300 7000 9464.6 30 10
Rm1 −130.95 0 8.47 129.4 680 50 90
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Table A1. Cont.

NO.
Energy

Conservation
(kWh/t)

Perchlorate
Reduction

(kg ClO4-/t)

Fixed
Investment

(CNY/t)

Operational
Cost (CNY/t)

Benefits
(CNY/t)

Penetration
Rate-2020

(%)

Penetration
Rate-2030

(%)

Rm2 −70.4 0.835 27.12 0.99 155.25 30 80
Rm3 0 0.1 0 0 1 50 100
Rm4 0 2 1 0 20 50 80
Tt1 −1.2 (99%) * 111.12 17.28 0 0 /
Tt2 −1.0 (99.92%) * 10 17.04 0 0 /
Tt3 −280 (99%) * 106.66 160 0 0 /

*: 99%, 99.92% and 99% represent the perchlorate removal rates of T1, T2 and T3, respectively.

Table A2. Sampling boundary of uncertainty parameter.

Categories Uncertainty Parameter Range

Energy performance
Energy consumption intensity in the base year ±10%
Energy-saving effect of advanced technology ±20%
Energy intensity of by-product and waste recovery technology ±20%

Parameter of perchlorate discharge
Perchlorate discharge intensity in base year ±10%
Direct perchlorate discharge reduction amount ±20%

Economic cost
Electricity price ±10%
Potassium perchlorate price ±20%

Present situation of application Penetration rate ±20%

Table A3. Penetration rate of measures under three objective preferences.

NO. Baseline Year Penetration Rate
(%)

Predicted Penetration Rate-2030
(%)

ECP
(%)

PERP
(%)

CCP
(%)

Tm1 50 20 / 0 0
Tm2 90 100 90 93 90
Tm3 50 90 / 100 100
Tm4 10 90 80 65 94
Tm5 50 100 / 52 95
Tm6 10 50 88 34 93
Tm7 50 100 67 97 71
Tm8 30 80 0 / /
Tm9 30 10 0 / /
Rm1 50 90 100 100 100
Rm2 30 80 99 98 98
Rm3 50 100 / 80 97
Rm4 50 80 99 100 100
Tt1 0 / 0 0 0
Tt2 0 / 100 100 100
Tt3 0 / 0 0 0

Table A4. Parameter Settings for the NSGA-II Algorithm.

Parameter Population Size Iteration Times Mutation Probability Crossover Probability

Value 100 150 0.04 0.9
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