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Abstract: As a significant component of the cryosphere, snow cover plays a crucial role in modulating
atmospheric circulation and regional hydrological equilibrium. Therefore, studying the dynamics
of snow cover and its response to climate change is of great significance for regional water resource
management and disaster prevention. In this study, reanalysis climate datasets and a new MODIS
snow cover extent product over China were used to analyze the characteristics of climate change and
spatiotemporal variations in snow cover in the Keriya River Basin (KRB). Furthermore, the effects of
climate factors on snow cover and their coupling effects on runoff were quantitatively evaluated by
adopting partial least squares regression (PLSR) method and structural equation modeling (SEM),
respectively. Our findings demonstrated the following: (1) Air temperature and precipitation of
KRB showed a significant increase at rates of 0.24 ◦C/decade and 14.21 mm/decade, respectively,
while the wind speed did not change significantly. (2) The snow cover frequency (SCF) in the KRB
presented the distribution characteristics of “low in the north and high in the south”. The intra-annual
variation of snow cover percentage (SCP) of KRB displayed a single peak (in winter), double peaks
(in spring and autumn), and stability (SCP > 75%), whose boundary elevations were 4000 m and
6000 m, respectively. The annual, summer, and winter SCP in the KRB declined, while the spring
and autumn SCP experienced a trend showing an insignificant increase during the hydrological
years of 2001–2020. Additionally, both the annual and seasonal SCF (except autumn) will be further
increased in more than 50% of the KRB, according to estimates. (3) Annual and winter SCF were
controlled by precipitation, of which the former showed a mainly negative response, while the latter
showed a mainly positive response, accounting for 43.1% and 76.16% of the KRB, respectively. Air
temperature controlled SCF changes in 45% of regions in spring, summer, and autumn, mainly
showing negative effects. Wind speed contributed to SCF changes in the range of 11.23% to 26.54%
across annual and seasonal scales. (4) Climate factors and snow cover mainly affect annual runoff
through direct influences, and the total effect was as follows: precipitation (0.609) > air temperature
(−0.122) > SCP (0.09).

Keywords: snow cover; climate change; runoff; partial least squares regression; Keriya River Basin

1. Introduction

Snow cover, as an indispensable constituent of the cryosphere, plays a highly im-
portant role within the global and regional climate system, exerting an essential impact
on surface radiation balance, energy balance, and hydrological partitioning [1–4]. Con-
current with the relentless warming of the global climate, the Northern Hemisphere is
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experiencing a pronounced decline in snow cover [5,6], which profoundly impacts the
regional water cycle [7,8]. Inland rivers situated in the arid and semi-arid regions of north-
west China predominantly rely on the runoff derived from the thawing of adjacent alpine
mountain snowpacks [9]. Changes in the total and seasonal runoff distributions caused by
snow cover changes will affect social and economic development in the middle and lower
reaches [10–12]. Therefore, studying the influence of snow cover dynamics and climate
change on runoff to inform decisions about the scientific management and planning of
water resources in Northwest arid areas has become imperative [13,14].

The conventional method for monitoring snow cover involves the collection of snow
cover data from meteorological stations or observation sites. However, this approach
suffers from spatial inhomogeneity due to the uneven distribution of the stations, pri-
marily concentrated in low-altitude regions [15–18]. In remote alpine areas, the complex
terrain and challenging environmental conditions impede field monitoring efforts [19].
Nevertheless, recent advancements in remote sensing technology have unlocked new op-
portunities for snow cover research. Remote sensing data offer the advantages of wide
broad coverage, frequent updating, and high spatial resolution, which compensates for the
limitations of ground-based monitoring data [20,21]. Currently, various remote sensing
data are leveraged for snow cover research, including the moderate resolution imaging
spectroradiometer (MODIS), advanced very high resolution radiometer (AVHRR), scan-
ning multichannel microwave radiometer (SMMR), and other related products [22–24].
Among these products, MODIS snow cover products have emerged as the mainstream
data of remote sensing snow cover products due to their high spatiotemporal resolutions.
Additionally, they have been widely adopted in the study of snow cover changes across
regions of varying scales [25–27]. For instance, Zou et al. [28] employed MOD10A2 and
MYD10A2 snow cover products to explore the variation of snow cover in Northern Xin-
jiang, Qinghai-Tibet Plateau, and Northeast China. Their study revealed an insignificant
increasing trend in snow cover areas and snow depths from 2001 to 2020. Thapa et al. [29]
combined three different 8 day composite snow products, including MOD10A2, MYD10A2,
and MOYDGL06, to analyze the variation trend of snow cover in the Karakoram region.
They discovered a negligible decline in snow cover areas from 2003 to 2018. However,
despite the widespread utilization of MODIS data in snow cover research, the accuracy
of MODIS data can be affected by factors such as cloud cover and land cover. Therefore,
a daily cloud-gap-filled MODIS snow cover extent product produced by Hao et al. [30],
which comprehensively considered the impact of land cover and cloud on original MODIS
snow cover data, was selected as the main data source for the present study. A detailed
explanation of these data can be seen in Section 2.2.1.

Snow cover, as an exceedingly responsive component of the cryosphere, is pro-
foundly influenced by climate change and is regarded as a vital indicator of global climate
change [31]. Unveiling the response of snow cover to climate change has emerged as a
primary focus within snow cover research, garnering extensive attention from the scholarly
community. For instance, Du et al. [32] conducted an analysis of the relationship between
snow cover frequency (SCF) and climate factors in the Qilian Mountains from 2000 to 2020.
They suggested that the SCF was dominated by precipitation rather than air temperature,
with precipitation playing a positive role. However, Hussain et al. [33] investigated the
impact of climate factors on snow cover area within the Gilgit River Basin from 2001 to 2015
and reported a negative correlation between snow cover area and air temperature, while
precipitation exhibited no evident relationship. In recent years, the focus of scholars has
predominantly centered around the influence of air temperature and precipitation on snow
cover, often neglecting the potential effect of wind speed. Although certain researchers
have discussed the potential impact of wind speed on snow cover [34–36], the majority of
these discussions lie within the realm of qualitative studies, with few quantitative analyses
conducted on the impact of wind speed on snow cover [37]. Moreover, regarding research
methods, most researchers mainly applied the Pearson correlation method to investigate
the influence of climate factors on snow cover. However, this kind of method ignores the
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interactions among various climate factors, which subsequently affects the accuracy of
the results derived from the analysis. In contrast, partial least squares regression (PLSR)
represents a new multivariate statistical data analysis method capable of eliminating the
multiple correlations among independent variables [38], which enables one to clarify the
degree of influence of different climate factors on snow cover change.

The Keriya River, a typical inland river in the arid region, stands as the largest river
and primary water source for the Yutian Oasis. The alpine mountains contribute crucial
meltwater, which serves as the principal supply for the Keriya River and represents a valu-
able resource for the survival and development of the downstream regions [39]. Although
most of the glaciers within the Keriya River Basin (KRB) exhibited stability, there existed
a slight trend of total area reduction [40]. In contrast, the snow cover area experienced a
trend depicting a slight increase [41]. From 1957 to 2017, the KRB witnessed an increase in
runoff depth at a rate of 4.27 mm/decade, which was mainly affected by air temperature
and precipitation [41,42]. Recent studies concerning the KRB only focus on the changes in
snow cover or runoff, with few conducting quantitative and systematic analyses regarding
the relationship between climate, snow cover, and runoff. Structural equation modeling
(SEM) can comprehensively analyze the relationship between various variables, allowing
one to quantify the direct and indirect effects of climate and snow cover on runoff.

The research objectives of this study were as follows: (1) to reveal the variation
characteristics of climate and snow cover in KRB based on reanalysis climate datasets and
the new MODIS snow cover extent product over China, (2) to analyze the influence of
different climate factors (air temperature, precipitation, and wind speed) on SCF at the
pixel scale by adopting PLSR method, and (3) to discuss the interplay between snow cover,
climate factors, and their collective influence on runoff through the application of structural
equation modeling (SEM). The results of this paper could facilitate a better understanding
the spatiotemporal variation of snow cover in the KRB and its influencing mechanism and
clarify the regional water cycle process. Furthermore, this study is of great significance to
the utilization and management of water resources in the context of climate change.

2. Materials and Methods
2.1. Study Area

The Keriya River, originating from the Guliya Ice Cap in the West Kunlun Mountains,
holds the distinction of being the largest river coursing through Yutian County in Xin-
jiang Uygur Autonomous Region (Figure 1). The KRB exhibits a distinctive topographical
gradient, with higher elevations situated in the southern region and lower elevations in
the north. The KRB, controlled by Keriya Hydrological Station (36◦45′N, 81◦48′E), spans
a geographical range from 35◦11′ to 36◦27′N and 81◦27′ to 82◦50′E with an altitude of
1972–6858 m and an expansive area of approximately 8350.25 km2. The glacier-covered
region in the source region of the KRB spans 682 km2, approximately constituting 8.2%
of the total basin area. Characterized by a warm temperate arid desert climate, the KRB
experiences an average annual evaporation of 1922 mm (as observed by the Keriya Hy-
drological Station), an average annual air temperature of 9.6 ◦C, and an average annual
precipitation of 129.7 mm. The average annual runoff depth of the KRB is 91.3 mm, with
glacier and snow meltwater contributing to 47.3% of the total runoff, which is one of the
important sources of replenishment for the KRB.

2.2. Data Sources
2.2.1. Snow Cover Dataset

The new MODIS snow cover extent product over China was obtained from the Na-
tional Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 1 October 2022)).
This dataset offered a daily temporal resolution and a spatial resolution of 500 m for the pe-
riod spanning from 2000 to 2020. The creation of this dataset involved the utilization of the
MODIS reflectivity product MOD/MYD09GA, incorporating a snow-discriminant decision
tree algorithm for diverse surface types. Furthermore, a vacancy-filling algorithm, such

http://data.tpdc.ac.cn/
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as a spatiotemporal interpolation algorithm for the hidden Markov random field model,
was employed to complete the cloud removal within the dataset. The overall accuracy of
the dataset exceeds 93%, with omission error and commission error values constrained
within 10% [30,43], thus affirming the reliability and suitability of the dataset for snow
cover research. In this study, the dataset was extracted according to the hydrological year
(HY) scale (from 1 September to 31 August of the following year), enabling an analysis
of the spatiotemporal variation characteristics of snow cover within the KRB from 2001
to 2020.
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Figure 1. Location and topography of the KRB.

2.2.2. Climate and Runoff Data

The observation data regarding air temperature, precipitation, and wind speed from
2000 to 2020 were obtained from meteorological and hydrological stations positioned within
the KRB and its surrounding areas. The monthly runoff data was sourced from the Keriya
Hydrological Station.

The 1-km monthly mean temperature dataset for China was obtained from the Na-
tional Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 5 January 2023)).
This dataset encompasses a temporal resolution of monthly intervals, a spatial resolution of
1 km, and a time series spanning from 1960 to 2020. The dataset underwent spatial down-
scaling from CRU TS v4.02 using WorldClim datasets, employing the Delta downscaling
method. Its accuracy was verified against 496 national weather stations, confirming its high
reliability [44–48]. We further evaluated its applicability to the KRB by using the observed
air temperature data at stations and found that the correlation coefficients of both were
above 0.97, which proved the reliability of the datasets.

The precipitation data utilized in this study was sourced from ERA5-Land monthly
averaged data provided by European Centre for Medium-Range Weather Forecasts (https:
//cds.climate.copernicus.eu/ (accessed on 5 January 2023)). This dataset demonstrates
a temporal resolution of monthly intervals, a spatial resolution of 0.1◦, and a time series
spanning from 1960 to 2020. ERA5-Land is derived by replaying the land component
of the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis,
there providing an accurate description of the historical climate conditions [49]. Here,

http://data.tpdc.ac.cn/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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the accuracy of this dataset was analyzed based on the observed monthly precipitation
data of different stations, and we found that the correlation coefficients were above 0.64 at
the significance level of 0.05, indicating that this dataset could sufficiently reflect the real
precipitation situation in the KRB.

The wind speed data adopted in this study were obtained from the High Asia Refined
(HAR) analysis version 2 dataset (https://www.klima.tu-berlin.de/ (accessed on 8 January
2023)). This dataset offers a temporal resolution of monthly intervals, a spatial resolution
of 10 km, and a time series spanning from 1980 to 2020. The HAR v2 dataset was generated
through the application of the Weather Research and Forecasting model (WRF) version 4.1
to dynamically downscale the ERA5 reanalysis data, which is widely utilized for research
purposes [50]. The accuracy of this dataset was analyzed based on the observed wind
speed data from different stations, and the average correlation coefficient reached 0.50,
meeting the needs of this study.

To align with the spatial resolution of the snow cover data, a statistical downscaling
method was employed to reduce the spatial resolution of the three climate reanalysis
datasets to 500 m. Subsequently, the data were divided according to the hydrological
year scale.

2.2.3. Digital Elevation Model (DEM)

The DEM employed in this study possesses a spatial resolution of 90 m, which was
provided by the Shuttle Radar Topography Mission (http://srtm.csi.cgiar.org (accessed
on 1 October 2022)). To match the spatial resolution of the snow cover data, the DEM was
resampled to 500 m by using a bilinear interpolation method. Subsequently, aspect and
slope were calculated based on the DEM. Table 1 presents the zonal division results of
elevation, aspect, and slope.

Table 1. Zonal features extracted from DEM of the KRB.

Elevation (m) Area (km2) Aspect Area (km2) Slope (◦) Area (km2)

≤2500 145.75 North (N) 1427.75 ≤5 2088.75
2500–3000 281.75 Northeast (NE) 1119.50 5–10 2039.00
3000–3500 324.5 East (E) 801.75 10–15 1713.00
3500–4000 357.75 Southeast (SE) 920.75 15–20 1263.25
4000–4500 692.75 South (S) 1050.00 20–25 772.00
4500–5000 2129.25 Southwest (SW) 818.00 25–30 348.50
5000–5500 2815.00 West (W) 891.75 >30 125.75
5500–6000 1271.50 Northwest (NW) 1320.75

>6000 332.00

2.3. Methods
2.3.1. Snow Cover Indices

Snow cover percentage (SCP) and snow cover frequency (SCF), regarded as two
commonly used snow cover indices, hold substantial significance in investigating the
spatiotemporal variation of snow cover. SCP is defined as the percentage of snow cover
within the basin. The formula is as follows:

SCP =
S
A
× 100% (1)

where S represents the snow cover area within the KRB, and A represents the total area of
the KRB.

SCF is defined as the proportion of days with snow cover on a pixel within the basin
to the total number of days. The formula is as follows:

SCF =
Ds

D
× 100% (2)

https://www.klima.tu-berlin.de/
http://srtm.csi.cgiar.org


Remote Sens. 2023, 15, 3435 6 of 18

where Ds represents the number of days with snow cover in a specific pixel, and D repre-
sents the total number of days in a year (or a season).

2.3.2. Time-Series Analysis

Sen’s slope method, a nonparametric statistical approach, was adopted to estimate
increasing or decreasing trend changes within time series [51]. The Mann–Kendall trend
test, a quantitative analysis tool, was used to assess the significance of the changing trends in
the time series, while the Mann–Kendall mutation test was applied to identify the position
of mutation points within the time series [52,53]. Typically, the combination of Sen’s slope
method and the Mann–Kendall trend test allows for the evaluation of trend characteristics
and the rates, which is why they are widely applied in hydro-climatic studies [54]. In this
study, these methods were used to analyze changing trends and mutation points in snow
cover and climate factors in time series.

The Hurst exponent, often determined via R/S analysis, is an effective method for the
prediction of future change trends according to the long-term dependence or persistence of
time series [55]. In this study, the Hurst exponent was adopted to analyze and predict the
future change trends of SCF at each pixel.

2.3.3. Partial Least Squares Regression (PLSR)

PLSR is a comprehensive analysis method that combines principal component anal-
ysis, canonical correlation analysis, and multiple linear regression analysis. It possesses
the advantages of these three methods and can eliminate multiple correlations among
independent variables [38]. PLSR can be divided into univariate PLSR and multivariate
PLSR. Since this study only involved a single dependent variable, univariate PLSR was
adopted to explore the response of snow cover change to climate change.

Firstly, both the snow cover and climate data were standardized. F0 represents the
standardized variable of snow cover data (dependent variable), and E0 represents the
standardized matrix of the set of air temperature, precipitation, and wind speed data. A
component u1 was extracted from F0, satisfying u1 = F0c1, where c1 represents the first
axis of F0. Similarly, component t1 was extracted from E0, satisfying t1 = E0w1, where w1
represents the first axis of E0. Following the principles of principal component analysis and
canonical correlation analysis, the following can be obtained:

w1 = ET
0 F0/

∥∥∥ET
0 F0

∥∥∥ (3)

Next, the regression equations for E0 and F0 with respect to t1 are obtained, respectively.

E0 = t1 pT
1 + E1 (4)

F0 = t1r1 + F1 (5)

where p1 and r1 represent regression coefficients, and E1 and F1 represent residual matrices
of the regression equation. Subsequently, components t1, t2, . . . , tm were successively
extracted from component th using the same approach. The regression equation for F0 with
respect to th can be obtained using the formula:

F0 = r1t1 + r2t2 + · · ·+ rmtm + Fm (6)

When x∗j = E0j and y∗ = F0, the following formula can be obtained:

ŷ∗ = α1x∗1 + α2x∗2 + · · ·+ αpx∗p (7)

The regression coefficient of x∗j is expressed as follows:

αj =
m

∑
h=1

rhw∗hj (8)
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where w∗hj represents the jth component of w∗h . If xj contributes significantly to the construc-
tion of th, the coefficient of xj in the regression model will be larger. In this study, PLSR was
applied to examine the influence of climate factors on SCF at each pixel.

2.3.4. Structural Equation Modeling (SEM)

SEM allows for the representation of complex direct and indirect causal relationships
among multiple variables. It involves the establishment of a specific model based on exist-
ing theoretical knowledge, encompassing both the measurement model and the structural
model for the hypothesized causal relationship among observed variables [56]. Path analy-
sis, which is considered a special case in SEM, refers to the situation where all variables
are directly available, resulting in the existence of only the structural model [57]. This
approach not only enables the determination of the total effect of independent variables
on the dependent variable but also observes the mutual effect between the independent
variables and further divides the total influence into direct and indirect effects. In this study,
SEM was employed to investigate the extent to which snow cover and climate elements
affect runoff.

3. Results
3.1. Characteristics of Climate Change in the KRB

In this study, the average annual values of climate reanalysis data were extracted
based on the hydrological year. Subsequently, Sen’s slope method and the Mann–Kendall
trend and mutation test were employed to analyze the trends and mutation characteristics
of air temperature and precipitation in the KRB from 1961 to 2020, as well as wind speed
from 1981 to 2020 (Figure 2).
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From 1961 to 2020, there was a significant increase in air temperature and precipita-
tion, with rates of 0.24 ◦C/decade and 14.21 mm/decade, respectively (both passing the
significance level of 0.001). These findings aligned with the climate change trend observed
in Xinjiang over the past 60 years [58]. The average annual air temperature was −7.3 ◦C,
reaching a maximum value of −5.9 ◦C in 2007 (Figure 2(a1)). As shown in Figure 2(a2), the
mutation year for air temperature occurred in 1996. Prior to the mutation year, the average
annual air temperature demonstrated a fluctuating trend, which continued to rise after the
mutation year and exceeded the significance level of 0.05 after 2001. The average annual
precipitation was 431.9 mm, with a maximum value of 516.3 mm in 2016 (Figure 2(b1)).
As depicted in Figure 2(b2), the variation trend of annual precipitation can be roughly
divided into three stages: an increase during 1961–1965, a decrease during 1965–1973, and
another increase during 1973–2020. There was a mutation year in 1986, followed by a
significant increase after 1989. From 1981 to 2020, the average annual wind speed was
5.0 m/s, reaching a maximum value of 5.5 m/s in 1988 (Figure 2(c1)). As can be seen from
Figure 2(c2), the average annual wind speed indicated a slight overall upward trend, with a
significant increase from 1985 to 1990. However, the changing trend during the remaining
periods was insignificant (without an abrupt change point).

3.2. Characteristics of Snow Cover Change in the KRB
3.2.1. Spatial Distribution Characteristics of Snow Cover

Figure 3 illustrates the spatial distribution characteristics of the average annual SCF
in the KRB across 20 hydrological years. The SCF exhibited lower values within the low
elevation area in the northern part of the KRB, while higher SCF values were observed
within the high elevation area in the southern part. This spatial pattern demonstrated a
positive correlation between SCF and elevation.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

upward trend, with a significant increase from 1985 to 1990. However, the changing 

trend during the remaining periods was insignificant (without an abrupt change point). 

 

Figure 2. Mann–Kendall trend (a1,b1,c1) and mutation test (a2,b2,c2) of average annual air tem-

perature (a1,a2), precipitation (b1,b2), and wind speed (c1,c2) in the KRB. The dotted lines in the 

right column figures represent critical Zc values at the significance level of 0.05. 

3.2. Characteristics of Snow Cover Change in the KRB 

3.2.1. Spatial Distribution Characteristics of Snow Cover 

Figure 3 illustrates the spatial distribution characteristics of the average annual SCF 

in the KRB across 20 hydrological years. The SCF exhibited lower values within the low 

elevation area in the northern part of the KRB, while higher SCF values were observed 

within the high elevation area in the southern part. This spatial pattern demonstrated a 

positive correlation between SCF and elevation. 

 

Figure 3. Spatial distribution of annual average SCF in the KRB from 2001 to 2020. Figure 3. Spatial distribution of annual average SCF in the KRB from 2001 to 2020.

To study the distribution characteristics of SCP across different terrains in the KRB,
regional statistics for SCP were conducted based on elevation, aspect, and slope (Figure 4).



Remote Sens. 2023, 15, 3435 9 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

To study the distribution characteristics of SCP across different terrains in the KRB, 

regional statistics for SCP were conducted based on elevation, aspect, and slope (Figure 4). 

The impact of elevation on SCP is presented in Figure 4a. With the increase in eleva-

tion, the SCP in the KRB increased from 4.46% to 93.22%. The SCP exhibited a gradual 

increase at an elevation below 5000 m, while a more rapid increase was observed above 

5000 m. This may be due to the higher temperature in low-elevation areas compared to 

high-elevation areas, which hindered the formation of stable snow cover. 

Figure 4b shows the distribution of SCP across various aspects. The SCP exhibited 

distinct patterns among different aspects. Specifically, the SCP values exceeded 35% in 

the north, northeast, and east aspects, with the highest SCP (38.12%) observed in the 

northeast aspect. In contrast, the SCP values were relatively low in the south, southwest, 

and west aspect, with the lowest SCP observed in the south aspect at only 28.78%. This 

difference can be attributed to the increased solar radiation received by the south-facing 

region, leading to more rapid snow melting compared to other regions. 

Figure 4c depicts the relationship between SCP and slope. The SCP demonstrated 

an initial increase followed by a decrease as slope values increased, with a distinct 

boundary observed at 15 degrees. The highest SCP value, reaching 37.07%, was observed 

within the 10–15 degree zone. SCP values were relatively low at about 30% in the 0–5 

degree and above 30 degree zones. This pattern can be attributed to the flatter terrain in 

the downstream areas of the KRB, particularly at lower elevations, where higher tem-

peratures prevailed. When the slope exceeded 30 degrees, the terrain became steeper 

and more susceptible to avalanches[59]. 

 

Figure 4. SCP distribution at different elevations (a), aspects (b), and slopes (c) in the KRB from 

2001 to 2020. 

3.2.2. Intra-Annual Variation of Snow Cover 

This study extracted the annual average daily SCP for the KRB and different eleva-

tion zones over a period of 20 hydrological years. As shown in Figure 5a, the accumula-

tion of snow cover in the KRB initiated in September, gradually increasing until it 

reached its peak in mid-October. Between November and December, the SCP experi-

Figure 4. SCP distribution at different elevations (a), aspects (b), and slopes (c) in the KRB from 2001
to 2020.

The impact of elevation on SCP is presented in Figure 4a. With the increase in elevation,
the SCP in the KRB increased from 4.46% to 93.22%. The SCP exhibited a gradual increase
at an elevation below 5000 m, while a more rapid increase was observed above 5000 m. This
may be due to the higher temperature in low-elevation areas compared to high-elevation
areas, which hindered the formation of stable snow cover.

Figure 4b shows the distribution of SCP across various aspects. The SCP exhibited
distinct patterns among different aspects. Specifically, the SCP values exceeded 35% in the
north, northeast, and east aspects, with the highest SCP (38.12%) observed in the northeast
aspect. In contrast, the SCP values were relatively low in the south, southwest, and west
aspect, with the lowest SCP observed in the south aspect at only 28.78%. This difference can
be attributed to the increased solar radiation received by the south-facing region, leading
to more rapid snow melting compared to other regions.

Figure 4c depicts the relationship between SCP and slope. The SCP demonstrated an
initial increase followed by a decrease as slope values increased, with a distinct boundary
observed at 15 degrees. The highest SCP value, reaching 37.07%, was observed within the
10–15 degree zone. SCP values were relatively low at about 30% in the 0–5 degree and above
30 degree zones. This pattern can be attributed to the flatter terrain in the downstream
areas of the KRB, particularly at lower elevations, where higher temperatures prevailed.
When the slope exceeded 30 degrees, the terrain became steeper and more susceptible to
avalanches [59].

3.2.2. Intra-Annual Variation of Snow Cover

This study extracted the annual average daily SCP for the KRB and different elevation
zones over a period of 20 hydrological years. As shown in Figure 5a, the accumulation
of snow cover in the KRB initiated in September, gradually increasing until it reached its
peak in mid-October. Between November and December, the SCP experienced a slight
decrease and was relatively low due to low precipitation. Subsequently, the SCP exhibited
a fluctuating upward trend, with a maximum value of 49.68% observed in mid-April. As
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the air temperature increased, the SCP began to decline rapidly from June, reaching a
minimum of 13% in early August. Overall, the SCP exhibited two peak periods, one in
autumn and the other in spring. The inter-annual fluctuation of SCP was slight in summer
but extensive in other seasons.
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The intra-annual variation of SCP at different elevation zones can be divided into
three types (Figure 5b). (1) Below 4000 m, the SCP demonstrated a unimodal trend, with
the peak value mainly concentrated in late-winter and early-spring. Below 3500 m, the
peak value of SCP appeared in February, while it appeared in March for elevations between
3500 m and 4000 m. As the elevation increased, the peak value of SCP tended to be delayed.
(2) The SCP between 4000 m and 6000 m exhibited bimodal variation characteristics, with
the peaks occurring in autumn and spring, respectively. The autumn peak period, except
for the 4500–5000 m zone in late-September, generally appeared in mid-October across
other elevation zones. In the spring peak period, each elevation zone had a different peak
period, ranging from early-March to early-June. With the increase in elevation, the peak
time of SCP was further delayed, the peak value increased, and the duration of the snow
accumulation period lengthened. (3) The SCP above 6000 m remained relatively stable,
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with the SCP values exceeding 75%. This zone was characterized by perennial snow and
glaciers, which were less affected by seasonal changes.

3.2.3. Interannual Variation of Snow Cover

This study employed Sen’s slope method and the Mann–Kendall methods to assess
the interannual variation of SCP in the KRB across 20 hydrological years between 2001 and
2020 considering both annual and four-season time scales (Figure 6). Overall, the trends
observed for SCP on both the annual and seasonal scales did not exhibit the statistical
significance level of 0.05, and no evident mutation year was identified. In terms of annual
scale, the SCP demonstrated a decrease at a rate of −1.17%/decade, with an average
annual SCP of 34.09%. The SCP was higher in 2003 and 2019, reaching 43.05% and 45.02%,
respectively. Prior to 2014, the UF values were greater than 0 in most years, whereas
after 2014, the UF values were less than 0. Thus, based on a division at 2014, the average
annual SCP displayed an increasing trend followed by a decreasing trend. Regarding the
four-season time scale, the highest average seasonal SCP was observed in spring (42.95%),
while the lowest was recorded in summer (24.72%). The change rate of SCP in summer was
the highest, reaching −2.13%.
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(c1,c2), autumn (d1,d2), and winter (e1,e2). The dotted lines in the right column figures represent
critical Zc values at a significance level of 0.05.
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The spatial variation trend of the annual and seasonal SCF in the KRB during the study
period was investigated by applying Sen’s slope method (in the left column of Figure 7).
The significance of the variation trend was analyzed in conjunction with the Mann–Kendall
trend test (in the middle column of Figure 7). In addition, the Hurst exponent was adopted
to predict the future variation trends (in the right column of Figure 7). The results indicated
that the trends observed for the annual and seasonal SCF in the KRB from 2001 to 2020
were dominated by insignificant changes. Regions exhibiting a decreasing trend of SCF
accounted for more than 50% of the total area in the annual, spring, summer, and winter
seasons. Specifically, the areas with a decreasing trend of SCF in annual, spring, and winter
were mainly concentrated in the northern, central, and southwestern regions of the KRB,
while they were mainly located in the southern regions in summer. On the other hand,
SCF in autumn displayed a primarily increasing trend, accounting for 38.24% of the total
area of the basin, with 4.04% of the area showing a significant increase (significant at the
0.05 level), mainly distributed in the central area of the basin. In terms of future change
trends, both the annual and seasonal SCF (except autumn) are expected to increase, with
more than 45% of the regions displaying a reversal in the past change trend.
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Figure 7. Spatial distribution of SCF variation trends (in the left column), significance (in the middle
column), and future changes (in the right column) in the KRB from 2001 to 2020 at different time scales:
annual (a1,a2,a3), spring (b1,b2,b3), summer (c1,c2,c3), autumn (d1,d2,d3), and winter (e1,e2,e3).

4. Discussion
4.1. Response of Snow Cover Change to Climate Change

Considering the multiple correlations among air temperature, precipitation, and wind
speed, PLSR method was used to investigate the influence of different climate factors on
SCF. By comparing the maximum of absolute value of PLSR coefficients on each pixel, the
main controlling factors of SCF in each pixel of the KRB across 20 hydrological years (from
2001 to 2020) were obtained (Figure 8). On an annual scale, precipitation emerged as the
main factor affecting the SCF, with a mainly negative influence, accounting for 43.10% of
the total area. In contrast, SCF in winter was mainly positively affected by precipitation,
accounting for 76.16% of the area. During spring, summer, and autumn, air temperature
controlled SCF in over 45% of the KRB, with a dominant negative influence. Among these
seasons, autumn accounted for the largest proportion (60.93%). The influence of wind
speed on annual and seasonal SCF accounted for 11.23% to 26.54%, primarily exerting a
positive effect on the annual and spring scales while having a negative influence during
summer, autumn, and winter.
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In both annual and seasonal scales, air temperature exerted a predominantly negative
influence on SCF due to the snow cover’s susceptibility to air temperature changes. An
increase in air temperature directly led to the snow melting. The influence of precipitation
on SCF varied across the four seasons. In spring, autumn, and winter, precipitation mainly
demonstrated a positive effect on SCF, possibly because most of the precipitation occurred
as solid snow, facilitating snow accumulation. However, in annual and summer scales,
precipitation had a negative effect on SCF, particularly in the high elevation areas in
the southern part of the KRB. These regions contained a large amount of eternal snow,
where additional snowfall did not contribute to increased SCF. Instead, excessive snow
accumulation can lead to a decrease in the SCF due to snow avalanches [60]. In addition to
air temperature and precipitation, wind speed also played a role in influencing SCF. In the
annual and spring scales, wind speed exhibited a positive effect on SCF. It redistributed
snow cover within the KRB, resulting in a more uniform spatial distribution. Conversely,
wind speed had a negative impact on SCF in summer, autumn, and winter, mainly observed
in the high elevation areas. This could be due to the persistently subzero air temperatures
and arid conditions in these regions. Under the influence of wind speed, snow cover
sublimation was significant, and the wind speed could also promote the occurrence of
snow drifts and avalanches [61]. Combining three kinds of climate data, this study focuses
on the effects of climate change on SCF. However, terrain also plays an important role in
snow cover change. In the future, we will continue to examine the influencing factors of
snow cover and attempt to analyze the elevation effect of snow cover change on climate
response [62].

4.2. Effect of Snow Cover and Climate on Runoff

In this study, SEM was employed to analyze the impact of air temperature, precipi-
tation, and SCP on runoff from 2001 to 2020. The results indicated the total effect, direct
effect, and indirect effect of these three factors on runoff at the annual scale (Figure 9). In
terms of the total effect, the standardized regression coefficients of the effect for air temper-
ature, precipitation, and snow cover on runoff were −0.122, 0.609, and 0.09, respectively.
Precipitation emerged as the major driver of runoff.
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The direct effect of air temperature on runoff exhibited a magnitude of −0.197. This
can be due to the consistently low average annual air temperature in the KRB, where the
majority of areas experienced temperatures below 0 ◦C. The increase in air temperature
had a limited effect on snow melt, but it resulted in higher evaporation rates, leading
to a decrease in the runoff. Both precipitation and SCP had a direct positive effect on
runoff, with the effect coefficients of 0.663 and 0.113, respectively. Wang et al. [63] found
that the annual runoff of the Keriya River was negatively correlated with air temperature
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and positively correlated with precipitation, which was consistent with the findings of
this study.

Regarding the indirect effects, the indirect effect coefficients of air temperature and
SCP on runoff through precipitation were relatively significant, measuring 0.123 and
−0.107, respectively. However, it is worth noting that the indirect effect coefficients of
air temperature, precipitation, and SCP on runoff were all smaller than the direct effect
coefficients, indicating that the three factors mainly exerted direct effects on runoff. Due to
the temporal extent of the MODIS snow cover data, this study only analyzed the impact of
SCP and climate factors on runoff across 20 hydrological years. In the future, it would be
beneficial to incorporate observational data from meteorological stations to supplement the
snow cover data. This would enable an analysis of the effect mechanism on runoff at longer
time scales, facilitating a deeper understanding of the water cycle processes of the KRB.

5. Conclusions

In this study, reanalysis climate datasets were used to analyze the characteristics of
climate change in the KRB. The spatiotemporal distributions of snow cover in the KRB
during 20 hydrological years from 2001 to 2020 were analyzed utilizing a new MODIS snow
cover extent product over China. The response of snow cover change to climate factors was
evaluated using PLSR. Furthermore, the study delved into the impact of snow cover and
climate factors on annual runoff by employing SEM. The findings from the present study
can be summarized as follows:

(1) There was a significant increase in air temperature and precipitation, with rates of
0.24 ◦C/decade and 14.21 mm/decade, and the mutation year occurred in 1996 and
1986, respectively. However, wind speed did not change significantly.

(2) In terms of spatial distribution, the SCF in the KRB presented “low in the north and
high in the south” distribution characteristics. The SCP in the KRB demonstrated an
elevation-dependent increase, with the highest values observed in the north aspect
and in the 10–15 degrees slope zone. Regarding the intra-annual variation, the SCP
within the KRB demonstrated distinctive patterns, including a single peak in winter,
double peaks in both spring and autumn, and a consistent high value (SCP > 75%)
with turning elevations of 4000 m and 6000 m, respectively. Moreover, the peak
SCP values showed a delayed trend with increasing elevation. In terms of temporal
change, the SCP in the KRB decreased annually and in summer and winter; however,
it increased in spring and autumn between 2001 and 2020. More than 50% of the
KRB experienced a decreasing trend for annual, spring, summer, and winter SCF,
whereas 38.24% of the areas showed an increasing trend in autumn. In addition to
autumn, annual and seasonal SCF is estimated to show an upward trend in the future,
accounting for more than 50% of the KRB.

(3) The annual SCF was mainly negatively affected by precipitation, while in winter, it
was mainly positively affected by precipitation, accounting for 43.1% and 76.16% of
the area, respectively. The spring, summer, and autumn SCF changes in more than
45% of KRB were controlled by air temperature, exerting a predominantly negative
influence. Annually and during spring, the impact of wind speed on SCF was mainly
positive; however, it negative in summer, autumn, and winter, with the area controlled
by wind speed ranging from 11.23% to 26.54%.

(4) The total effect of climate factors and SCP on the annual runoff in the KRB was as
follows: precipitation (0.609) > air temperature (−0.122) > SCP (0.09). Climate factors
and SCP mainly exerted a direct effect on the changes in annual runoff.
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