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Abstract: This study employs the reflection symmetry decomposition (RSD) method to extract polar-
ization scattering features from ground object images, aiming to determine the optimal data input
scheme for deep learning networks in polarimetric synthetic aperture radar classification. Eight
distinct polarizing feature combinations were designed, and the classification accuracy of various
approaches was evaluated using the classic convolutional neural networks (CNNs) AlexNet and
VGG16. The findings reveal that the commonly employed six-parameter input scheme, favored by
many researchers, lacks the comprehensive utilization of polarization information and warrants
attention. Intriguingly, leveraging the complete nine-parameter input scheme based on the polar-
ization coherence matrix results in improved classification accuracy. Furthermore, the input scheme
incorporating all 21 parameters from the RSD and polarization coherence matrix notably enhances
overall accuracy and the Kappa coefficient compared to the other seven schemes. This comprehen-
sive approach maximizes the utilization of polarization scattering information from ground objects,
emerging as the most effective CNN input data scheme in this study. Additionally, the classification
performance using the second and third component total power values (P2 and P3) from the RSD
surpasses the approach utilizing surface scattering power value (PS) and secondary scattering power
value (PD) from the same decomposition.

Keywords: polarimetric synthetic aperture radar (PolSAR); deep learning; reflection symmetric
decomposition (RSD); input scheme; land classification; polarization feature extraction; convolutional
neural network (CNN)

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) possesses the capability to capture
the complete polarized scattering characteristics of ground objects under diverse environ-
mental conditions, making it applicable in various remote sensing scenarios [1–3]. Unlike
conventional single-polarization SAR, PolSAR actively retrieves polarization information
from surface scattering, offering a larger set of parameters to characterize electromagnetic
scattering properties. For effective classification of polarimetric SAR data, these polariza-
tion features from PolSAR images must be comprehensively explored and leveraged within
widely adopted deep learning algorithms and SAR systems are developing rapidly, and
relevant scholars have conducted in-depth research on issues such as SAR imaging [4,5].

Currently, PolSAR classification methods can be broadly categorized into three groups:
1. Polarimetric decomposition features: In this approach, PolSAR images undergo decom-
position into polarimetric components, directly extracting the scattering characteristics
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of target objects. Common methods include Freeman decomposition [6], Cloude-Potier
decomposition [7], Huynen decomposition [8], and others. 2. Statistical distribution char-
acteristics: classification is based on the statistical distribution characteristics of PolSAR
data, with commonly used algorithms such as Wishart classification [9]. 3. Deep learning
methods: With the rapid evolution of deep learning approaches, various methods have
been introduced into PolSAR image classification [9–11]. The incorporation of multiple
convolutional layers allows deep learning models to effectively extract high-level features,
enhancing overall classification performance. Despite the promising results achieved
by researchers in PolSAR image classification using deep learning methods, the existing
approaches have several limitations:

1. Some algorithms stack and combine polarimetric decomposition features without
considering the inherent limitations of the decomposition methods.

2. Some methods normalize polarimetric features without accounting for the distribution
characteristics of the data, often applying linear normalization methods to non-linear
PolSAR data.

3. Some methods employ different forms of CNN but overlook the complete scattering
information and various polarimetric scattering characteristics in PolSAR images,
utilizing incomplete polarized data as input for the network.

PolSAR images inherently contain multiple polarimetric features that can be utilized
for CNN classification. Typically, the polarization coherency matrix (T) and the polarization
covariance matrix (C) are widely used to represent polarimetric characteristics. Extract-
ing valuable feature information for neural network classification involves decomposing
PolSAR images into target polarimetric components using these matrices. Researchers
have employed Sinclair scattering matrices [12], texture features [13–15], and spatial seg-
mentation features [16] for PolSAR image classification. Pseudo-color synthesis using
decomposed target components yields color characteristics of the targets, providing diverse
information for PolSAR deep learning classification [17–19]. John Burns Kilbride et al. [20]
used spatial and temporal information and Google Earth Engine to extract information
from SAR images. They semantically segmented the forest distribution in tropical rainforest
areas and established a near-time mapping system. To some extent, this solves the timeli-
ness problem in traditional SAR classification. The challenge lies in effectively combining
these features to enhance the accuracy of PolSAR classification. Shi et al. [21] proposed a
method based on complex matrix and multi feature learning to classify PolSAR images.
Shang et al. [22] proposed a dual branch CNN structure that extracts features from PolSAR
images through shared parameters, alleviating the problem of insufficient labeled training
data in PolSAR image classification tasks.

PolSAR classification based on texture features has also received attention from rel-
evant scholars. Zakhvatkina et al. [23] used neural network algorithms and Bayesian
methods to classify land features in SAR images based on texture features. Zhang et al. [24]
also used texture feature-based methods to classify multi-band PolSAR images of land
features in the intertidal zone of coastal wetlands. Zhu et al. [25] demonstrated the potential
for universal applicability of easily computable texture features in various computer vision
tasks related to image classification. Similar classification methods include the Markov
random classification field method [26] and the covariance matrix-based method [27].

There are also related methods that use traditional machine learning to construct
PolSAR image classification schemes [28–30]. Kersten et al. [31] used the EM and fuzzy
clustering methods, combined with multiple distance measurement methods, to segment
PolSAR images. The experimental results indicate that using the Wishart method is superior
to other methods. Wang et al. [32] evaluated the classification performance of sea ice during
the melting period using multi-frequency PolSAR data. Using the maximum similarity
classification method, support vector machine method, random forest, and backpropagation
neural network method, 12, 14, 15, and 19 polarization features were used for classification.
Before classification, these features are classified into different feature combinations based
on Euclidean distance. Then the classification results are evaluated, and the research
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content can provide certain reference significance for relevant scholars. However, these
methods require a lot of manpower and time to extract features.

With the advent of deep learning, researchers have explored various polarimetric
data input schemes for PolSAR classification. A large number of scholars have used deep
learning methods to study PolSAR image classification methods [33–38]. Liu et al. [33]
proposed a polarimetric convolutional network for the classification of PolSAR images,
which achieved good classification results. Based on literature research, the most commonly
employed input schemes are the six-parameter method [39–41] and the nine-parameter
method [42]. Additionally, some researchers [43] have integrated Cloude-Potier decomposi-
tion, Freeman-Durden decomposition, and Huynen decomposition, resulting in a total of 16
polarimetric features input schemes for PolSAR image classification. Nie et al. [12] utilized
12 polarimetric features from Freeman-Durden decomposition, Van Zyl decomposition [44],
and Cloude-Potier decomposition, applying an enhanced learning framework for PolSAR
image classification. Jafari et al. [45] used VGG16, ResNet-50, and ConvNeXt networks to
fuse the features extracted from SAR images, as well as the statistical and spatial features
and incident angles, to classify ships and sea ice in the images. However, the features used
in CNNs do not have clear physical meanings, meaning that they do not have physical
interpretability. Although good classification results have been achieved, further research
is needed on the classification features in the future. Ren et al. [46] used a graph neural
network with transfer attention to segment PolSAR images and used an end-to-end train-
able residual model to fuse the extracted multi-scale feature representations. The proposed
method performed well in classifying similar features in unknown images.

While these methods have achieved high-accuracy classification of PolSAR images,
increasing the number of polarimetric features does not consistently lead to improved
classification accuracy [47] in PolSAR image classification. We attribute this to the fol-
lowing factors: (1) non-independence of polarimetric features obtained from polarimetric
coherence/covariance matrices; (2) indiscriminate input of polarimetric features into the
network, often increasing the difficulty of feature learning; and (3) the associated increase
in computational cost with an increased number of polarimetric features. Additionally,
researchers have not thoroughly investigated the merits and limitations of polarimetric
decomposition methods when utilizing polarimetric features. Instead, they directly applied
components obtained from these algorithms without fully leveraging complete polari-
metric decomposition to extract comprehensive backscattering information from objects.
Consequently, the information at the data input stage remains incomplete, necessitating the
combination of feature parameters at the input end of deep learning—a novel exploration
in PolSAR deep learning classification.

PolSAR images encapsulate various original features of targets and extensive polariza-
tion information. This study adopts reflection symmetric decomposition (RSD), which can
fully extract target polarization information. Polarimetric scattering features are extracted,
and eight polarimetric feature input schemes are designed; comparing classification ac-
curacy on the classical CNNs, AlexNet and VGG16, is more common when analyzing
performance. The article conducts a comparative analysis based on various classification
schemes employed by different scholars. By enhancing existing research schemes through
feature extraction at the input stage and utilizing classic CNNs for PolSAR image classifica-
tion, we achieve elevated classification accuracy and determine the optimal combination of
polarimetric features as input schemes. The key conclusions of this study, with implications
for researchers, are as follows:

1. The classification performance utilizing total power values of the second component
(P2) and the third component (P3) obtained from RSD surpasses schemes using surface
scattering power value (PS) and double-bounce scattering power value (PD) from
RSD. However, the optimal input scheme includes P2, P3, PS, and PD.

2. The commonly employed six-parameter input scheme [39–41] inadequately exploits
polarimetric information. All seven alternative input strategies outperform this scheme.
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3. Regarding input schemes, in the face of limited computational resources, it is ad-
visable to directly use the input scheme with all elements of the T-matrix or uti-
lize all components obtained through RSD, as both ensure the completeness of
polarimetric information.

4. The 21-channel input scheme should be used when computational resources are sufficient.
5. The two classic CNNs employed, VGG16 and AlexNet, differ in depth. After five

rounds of accuracy statistics, VGG16 demonstrates superior stability. While the five-
layer AlexNet neural network achieves high accuracy, it suggests that for PolSAR
image classification using CNNs, an excessively deep network is unnecessary. In
other words, VGG16 exhibits better stability, while the five-layer AlexNet achieves
higher accuracy.

The subsequent sections of the article are organized as follows: Part II primarily
introduces classifiers for CNN classification and classic PolSAR decomposition methods.
Part III presents the selected polar decomposition methods and the research plan. Part IV
delves into experimental results and analysis. Finally, Part V elucidates the experimental
conclusions and outlines prospects for future research endeavors.

2. Related Works
2.1. PolSAR Classification with CNN

The advent of computer hardware development has ushered in the era of deep learn-
ing, giving rise to networks such as AlexNet [48], GoogleNet [49], and the VGG series [50].
These networks have demonstrated exceptional performance across various domains.
In a convolutional neural network, deep-level features of objects within images are ex-
tracted through convolutional layers, pooling layers, activation layers, and fully connected
layers. This approach is more efficient than traditional methods and has been applied
extensively [51–53].

The distinctive imaging mechanisms of PolSAR images render traditional methods for
optical image classification obsolete. Challenges arise from differences in imaging geometry
shape, object size, speckle noise, and non-linear normalization of PolSAR data. Scholars
have turned to deep learning methods for PolSAR image classification, achieving notable
success. Nie et al. [12] employed reinforcement learning to address low classification
accuracy with limited samples. Gui et al. [54] proposed the use of gray-level co-occurrence
matrices and conducted experiments on an enhanced convolutional autoencoder, achiev-
ing higher accuracy. Bi et al. [55] adopted a graph-based deep learning approach, en-
hancing classification performance by pairing and merging semi-supervised terms with
limited samples.

2.2. Perform Polarization Decomposition Using a Scattering Mechanism

Target decomposition stands as a pivotal approach in the processing of PolSAR data,
fundamentally expressing pixels as a weighted sum of diverse scattering mechanisms. In
1998, scholars Anthony Freeman and Stephen L. Durden introduced the initial model-based,
non-coherent polarimetric decomposition algorithm [8], subsequently acknowledged as
Freeman decomposition. Originally, Freeman’s decomposition aimed to provide viewers
of multi-view SAR images with an intuitive means to distinguish the primary scattering
mechanisms of objects. Freeman decomposition relies entirely on the back-scattering data
observed by radar, with each component in its decomposition yielding a corresponding
physical interpretation. Consequently, it earned its distinction as the first model-based,
non-coherent polarimetric decomposition algorithm. The advent of Freeman decomposi-
tion marked a significant breakthrough. However, following its inception, extensive usage
and further exploration unveiled three primary issues associated with its decomposition
method: an overestimation of the volume scattering component, the presence of negative
power components in the results, and the loss of polarization information. Notably, these
three issues were found to be interrelated. For instance, the overestimation of the volume
scattering component contributed to the existence of negative power values in subsequent
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surface scattering and double scattering components. Simultaneously, the loss of polariza-
tion information played a role in the inappropriate estimation of the power values of the
volume scattering component [56].

In 2005, Yamaguchi et al. introduced a second model-based, non-coherent polarimetric
decomposition algorithm [57], denoted as the Yamaguchi algorithm hereafter. This algo-
rithm comprises four scattering components and introduced helix scattering as the fourth
component, challenging the reflection symmetry assumption of Freeman decomposition
and enhancing its applicability, particularly in urban area analysis. While this model-based
approach opened avenues for improving the performance of non-coherent polarimetric
decomposition algorithms through scattering model modifications, it did not offer a theo-
retical foundation for choosing helix scattering as the fourth component. According to the
authors, the selection was more comparative and preferential. Notably, the innovations of
Yamaguchi decomposition centered on the scattering model without altering the decompo-
sition algorithm, which employed Freeman decomposition’s processing method. Despite
exhibiting improved experimental results, the Yamaguchi algorithm retained issues like
overestimation of volume scattering, negative power components, and loss of polarization
information [58].

In the subsequent decade, numerous model-based, non-coherent polarimetric decom-
position algorithms emerged. Reflection symmetry decomposition (RSD) [59,60] is a novel
model-based, non-coherent polarimetric decomposition method that preserves polarization
information. Demonstrating excellent algorithmic performance, RSD decomposes three
components, all adhering to the mirror symmetry assumption. Notably, the original po-
larimetric coherence matrix can be fully reconstructed from RSD’s decomposition results,
rendering it a comprehensive decomposition algorithm. The RSD algorithm employs an
expanded set of polarimetric decomposition parameters, primarily involving unitary trans-
formation, with superior mathematical properties and more expansive research possibilities
compared to other decomposition algorithms. Leveraging these advantages, we adopt RSD
as the polarimetric decomposition method for PolSAR images in this study.

3. Methods

This section outlines the experimental processing flow, covering radiometric calibra-
tion, polarization filtering, polarization feature extraction, and the configuration of CNNs
and relevant parameters. It emphasizes the processing of PolSAR data and polarization fea-
tures, providing insights into the basis and specific distribution of the chosen polarization
data input scheme. The details are as follows:

3.1. Data Analysis and Feature Extraction

PolSAR data, represented by a 2 × 2 Sinclair matrix under a single look, reflects
polarimetric backscattering information related solely to the targets. The polarimetric
scattering matrix can be expressed as follows:

S =

[
SHH SHV
SVH SVV

]
(1)

The polarization coherency matrix T includes the complete information regarding
the polarization scattering of the targets. It is vital for PolSAR image classification. Upon
satisfying the reciprocity theorem, the polarization coherency matrix T is derived after
multi-look processing, eliminating coherent speckle noise [58]:

T =
〈

kkH
〉
=

T11 T12 T13
T∗

12 T22 T23
T∗

13 T∗
23 T33

 (2)
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Among them,

k =
1√
2

SHH + SVV
SHH − SVV
SHV − SVH

 (3)

k represents the scattering vector of the backscattering S matrix in the Pauli basis, where
the superscript H denotes the Hermitian transpose. <•> represents an ensemble average.
Additionally, the S-matrix is vectorized using the Lexicographic basis to obtain the po-
larimetric covariance matrix C, which can be converted back and forth between C-matrix
and T-matrix. The T-matrix is a positive semi-definite Hermitian matrix, which can be
represented as a 9-dimensional real vector [T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12),
Im(T13), Im(T23)]. Tij represents the element in the i-th row and j-th column of the T matrix.
Re(Tij) and Im(Tij) represent the real and imaginary parts of the Tij element, respectively.

Researchers have used this vector or its partial parameters for PolSAR image clas-
sification [39–41]. Additionally, the T-matrix can undergo non-coherent polarimetric de-
composition, yielding several scattering components with parameters utilized for Pol-
SAR classification [12,43]. Furthermore, pseudocolored power values of the scattering
components from polarimetric decomposition provide color information for features in
PolSAR images.

3.2. PolSAR Data Preprocessing and Input Schemes

The PolSAR images, acquired from the L1A-level standard single-look data of China’s
GF-3 satellite, underwent polarization decomposition. The T-matrix and all polarization
feature parameters from RSD were obtained. Non-local means filtering [61], chosen for its
superior effect after comparison with methods like mean filtering, median filtering, Lee
filtering [62], and polarization whitening filtering [63], was employed.

In PolSAR image classification, emphasis is often placed on the potential enhancement
of classification accuracy through various deep learning modules, analyzing input values.
However, attention to the polarization parameter schemes of the input is scarce. Effective
feature combinations are crucial for PolSAR image classification, as different polarimetric
scattering features can reflect object scattering characteristics from diverse perspectives.

While CNNs typically use only a subset of these features for training, limiting the
utilization of polarization information, each pixel in PolSAR data can be represented by the
T matrix—a fundamental form for PolSAR classification tasks.

Target decomposition, a primary approach in polarimetric SAR data processing, rep-
resents pixels as a weighted sum of several scattering mechanisms. In 1998, Freeman
and Durden proposed the first model-based incoherent polarimetric decomposition al-
gorithm [8], which had issues such as overestimation of volume scattering components,
presence of negative power components, and loss of polarization information. In 2005,
Yamaguchi et al. introduced the second model-based incoherent polarimetric decompo-
sition algorithm [57]. Despite improvements in the scattering model, the decomposition
algorithm itself still followed Freeman’s method, and issues of overestimation, negative
power components, and loss of polarization information persisted [58].

Compared to several classic polar decomposition algorithms, RSD [59] possesses ad-
vantages such as no negative power components in the decomposition results, complete
reconstruction of the original polarimetric covariance matrix, and structural conformity of
the three components with the selected scattering model. By applying RSD, more polari-
metric decomposition physical quantities can be obtained. The decomposition algorithm,
mainly involving unitary transformation, exhibits better mathematical properties and more
research possibilities compared to other methods. Hence, this study selects RSD as the
polarimetric decomposition method for PolSAR imagery.

The polarized characteristics derived from reflected symmetry decomposition encom-
pass surface scattering power (PV), secondary scattering power (PS), bulk scattering power
(PD), the total power value of the second component of reflected symmetry decomposition
(P2), and the total power value of the third component of reflected symmetry decomposition
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(P3). The value range for these components is [0, +∞). The doubled directional angle θ
spans (−π/2, π/2], and the doubled helix angle φ covers [−π/4, π/4]. The power propor-
tion of spherical scattering in the second component of reflected symmetry decomposition
is denoted as x, and in the third component, it is denoted as y. Both x and y range from [0, 1].
The phase of element a in the second component of reflected symmetry decomposition (T12)
and the phase of element b in the third component of reflected symmetry decomposition
(T12) both fall within the range of [−π, π] [60].

Before inputting these physical quantities into the CNN model, it is essential to
normalize their ranges. In the T-matrix, the total power value is normalized by converting
Span to a unit of dB. For nonlinear polarization features like the scattering power parameters
T11, T22, T33, PS, PD, PV, P2, and P3 are all divided by Span to achieve normalization. The
remaining components, because of linear characteristics, undergo maximum–minimum
normalization, as indicated in Formula (4).

XL =
x − nmin

mmax − nmin
(4)

The correlation coefficients between channels T12, T23, and T23 in the T-matrix are
given by Formulas (5)–(7).

coe12 = |T12|/
√

T11 · T22 (5)

coe13 = |T13|/
√

T11 · T33 (6)

coe23 = |T23|/
√

T33 · T22 (7)

This article adopts the complete decomposition method—reflection symmetric de-
composition (RSD)—to extract ground features. Compared with traditional methods such
as Freeman and Yamaguchi decomposition methods, it can obtain more information. It
mainly selects the extracted ground features based on the information in the polarization
power and T-matrix and divides the research scheme according to the normalization of
physical quantities.

The normalized polarimetric feature parameters mentioned above are categorized
into different input schemes following specified rules. We mainly divide based on three
principles: whether the total polarization power is normalized, whether it includes po-
larization power components, elements in the T matrix, and polarization power features.
First, as per references [39–41], the non-normalized total power (NonP0), T11, T22, T33, and
the correlation coefficients coe12, coe13, coe23 between the T12, T13, and T23 channels form
input scheme 1. Recognizing that the polarimetric total power Span is not normalized,
normalized Span (P0) is adopted as research scheme 2. Subsequently, normalized T11 is
added to research scheme 2 as research scheme 3. Considering that PS, PD, and PV are all
polarization power values, these three physical quantities are replaced, resulting in research
scheme 4. The decomposed total power values P2 and P3 obtained through reflection sym-
metry decomposition are used to substitute PS and PD in research scheme 4, resulting
in research scheme 5. P2, P3, PS, and PD are simultaneously inputted into the CNN as
research scheme 6. Furthermore, based on the research of related scholars, all elements of
the T-matrix, augmented with the normalized Span (P0), form research scheme 7. Finally,
all reflection symmetry decomposition parameters after normalization constitute research
scheme 8. The specific details of all eight polarization data input schemes are shown
in Table 1.

Table 1. List of eight polarization data input schemes.

Scheme Parameters Polarization Features

1 6 NonP0, T22, T33, coe12, coe13, coe23
2 6 P0, T22, T33, coe12, coe13, coe23
3 7 P0, T11, T22, T33, coe12, coe13, coe23
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Table 1. Cont.

Scheme Parameters Polarization Features

4 7 P0,T11, T22, T33, PS, PD, PV
5 7 P0, T11, T22, T33, P2, P3, PV
6 9 P0, T11, T22, T33, P2, P3, PS, PD, PV
7 10 P0, T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23)

8 21 P0, T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), P2, P3,
PS, PD, PV, x, y, a, b

3.3. Network Selection and Parameter Configuration, Loss Function, Evaluation Criteria

AlexNet and VGG16 are seminal networks in deep learning that demonstrate excep-
tional performance in image classification tasks. This paper opts for these two networks to
validate the accuracy of each research scheme. The utilized AlexNet comprises 3 convolu-
tional layers, one pooling layer, 3 fully connected layers, and one softmax layer. VGG16,
on the other hand, integrates 13 convolutional layers, four max-pooling layers, three fully
connected layers, and one softmax layer. Post-experimentation, within both networks,
AlexNet and VGG16, the input data size is set at 64 × 64 × n, where n represents the num-
ber of parameters in the polarized data input scheme. Employing the Kaiming initialization
method [64], an initial learning rate of 0.1, decay rate of 0.1, weight initialization of 0.9,
and weight decay coefficient of 0.0005 [65] are applied to achieve optimal training accuracy.
The cross-entropy loss function is a function wherein we need to calculate the loss value
for each sample when training a neural network and minimize it. For this function, we
can use the stochastic gradient descent optimization algorithm to minimize it. Specifically,
we calculate the gradient value of the function by taking its derivative and then updating
the model parameters. The network utilizes the cross-entropy loss function, as expressed
in Formula (8).

LSo f tmax =
1
N ∑

i
Li = − 1

N ∑
i

M

∑
c=1

yic log(pic) (8)

Here, M signifies the number of categories, yic represents the indicator function
(0 or 1), and pic is the probability of observing the sample value. To quantitatively as-
sess classification accuracy, five experiments are conducted on the classification results,
utilizing average accuracy, highest overall accuracy, accuracy for each land cover type, and
the Kappa coefficient.

3.4. Experimental Process

Figure 1 illustrates the process of employing a CNN to classify eight polarimetric data
input schemes. Initially, upon obtaining L1A level GF3 data, the original data undergo
radiometric calibration [66] and polarimetric filtering [61]. Subsequently, the processed data
undergo polarimetric decomposition to extract features characterizing the back-scattering
information of the targets. Following different normalization rules, the data are segmented
into eight polarimetric data input schemes. The acquired datasets are then trained and
validated using the CNN, saving parameters such as weights and biases. Finally, the trained
model classifies the entire image, leveraging convolution to ascertain feature value sizes.
The fully connected layer and the softmax function are employed to determine the class to
which the targets belong. The classification results are filled into an empty matrix of the
same size as the predicted image, yielding the complete image classification results.
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As mentioned in the previous section, the sample size used in the experiment is
64 × 64 × n, where n represents the number of polarization features in the scheme. This
approach not only classifies the terrain from the perspective of polarization features, but
also considers the influence of neighboring pixels from the dimension of spatial features.

4. Experimental Results and Analysis

In this section, we conducted experiments employing various research approaches
with AlexNet and VGG16, systematically comparing the accuracy variations between them.
For training and testing, four scenes of high-resolution polarimetric Synthetic Aperture
Radar (SAR) images from the Yellow River Delta area, acquired by the GF3 satellite, were
employed. All experiments were executed on a single GeForce 3060Ti GPU with the
PyTorch 3.8 framework, and the results were derived from five independent trials.

4.1. Data Explanation

GF-3 stands as China’s first C-band high-resolution fully-polarimetric SAR, widely
applied owing to its diverse imaging modes [67–69]. Particularly, the full-polarimetric
imaging mode I (QPSI) proves suitable for large-scale land cover investigations. The Yellow
River Delta, selected as the research area based on field investigations, provided data
obtained from the China Ocean Satellite Data Service System [70]. Four images were
utilized: two taken on 14 September 2021 (7882 × 9072 pixels and 7882 × 9070 pixels), one
on 13 October 2021 (6526 × 7317 pixels), and one on 12 October 2017 (6014 × 7637 pixels).
The initial three images were allocated for training, while the last image served as the
test set. All images, acquired via the QPSI imaging mode, spanned an imaging range
of (118◦33′–119◦20′E, 37◦35′–38◦12′N), with an incidence angle range of 30.97◦–37.71◦.
Table 2 provides specific details and applications of the images, with the test image size set
at 6014 × 7637 pixels.

Table 2. Experiment images.

ID Date Time (UTC) Inc. Angle (◦) Mode Resolution Use

1 2021.09.14 22:14:11 30.98 QPSI 8 m Train
2 2021.09.14 22:14:06 30.97 QPSI 8 m Train
3 2021.10.13 10:05:35 37.71 QPSI 8 m Train
4 2017.10.12 22:07:36 36.89 QPSI 8 m Test
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After field investigations, the primary land cover types in the research area were
identified as nearshore water, seawater, spartina alterniflora, tamarix, reed, and tidal flats.
Figure 2 illustrates pseudocolored composites of PS, PD, and PV in the Yellow River Delta
region and the ground truth map.
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Figure 2. Research area and ground truth map.

In this study, based on field investigations, the land cover types in the Yellow River
Delta were classified into seven categories: nearshore water, seawater, spartina alterniflora,
tamarix, reed, tidal flat, and suaeda salsa, labeled as numbers 1 to 7, respectively. In
three training images, specific areas for each land cover type were chosen based on field
investigations. Within these areas, 1000 samples were randomly selected, with 800 used for
training and 200 for validation. The distribution of data samples is detailed in Table 3.

Table 3. Distribution of Training and Validation Datasets.

Images Nearshore Water Seawater Spartina Alterniflora Tamarix Reed Tidal Flat Suaeda Salsa

20210914_1 500 400 1000 500 500 500 500
20210914_2 500 200 0 0 0 500 0
20211013 0 400 0 500 500 0 500

Total 1000 1000 1000 1000 1000 1000 1000

For test samples, 1000 samples for each land cover type on the test image were
randomly selected. These samples constituted the test set, inputted into the trained model
for testing. The classification results for the entire image were provided simultaneously,
accompanied by an evaluation of the network model’s classification performance and the
various polarimetric data input schemes using diverse accuracy indicators.

Figure 3 depicts the specific selection of training and testing sample datasets.
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4.2. Classification Results of the Yellow River Delta on AlexNet

To ensure the robustness of our findings and mitigate the impact of individual results
on the ultimate conclusion, we conducted five independent experiments on AlexNet,
assessing eight polarized data input schemes. In each experiment, we calculated the overall
accuracy and kappa coefficient for classification. The results of these experiments were
then arranged in descending order, with the highest value representing the top overall
classification accuracy. We computed the average accuracy over the five experiments and
utilized the Kappa coefficient to evaluate the quality of the classification outcomes. Both
the accuracy for each terrain class and the Kappa coefficient were derived from the highest
overall classification accuracy result.

The classification results of the eight polarized data input schemes are presented in
Table 4 and Figure 4. Notably, the six-parameter classification using research scheme 1
demonstrated lower overall accuracy and average overall accuracy and Kappa coefficient
compared to the other seven research schemes. Normalizing the total power value led to
a 2.81% increase in the highest overall classification accuracy and a 6.54% rise in average
overall classification accuracy. This underscores the importance of normalizing inputs
to meet the CNN’s requirements. Additionally, the incorporation of the T11 component
further enhanced classification accuracy, with the highest overall accuracy increasing by
0.74% and the average accuracy rising by 1.026%. Thus, supplementing the network with
pertinent information aids in extracting effective features through convolution and pooling,
thereby improving accuracy.
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Table 4. Classification accuracy of the eight polarized data input schemes on the AlexNet network.

Classification Accuracy
Input Scheme 1 2 3 4 5 6 7 8

Nearshore water 96.8 100 76.9 85.0 93.4 94.8 96.4 99.7
Seawater 96.9 100 99.5 98.8 98.7 99.2 98.7 99.7

Spartina alterniflora 96.8 100 93.3 93.2 85.2 92.9 95.5 100
Tamarix 100 97.6 99.0 93.8 75.9 100 96.0 96.7

Reed 94.5 98.3 93.4 63.7 93.3 94.9 99.2 100
Tidal flat 49.3 16.2 49.5 78.6 85.5 61.1 71.6 90.6

Suaeda salsa 50.8 92.7 98.4 97.6 95.1 99.4 98.2 100

Indepent experiments
Overall Accuracy

83.59 86.40 87.14 87.24 89.59 91.76 93.66 98.10
81.41 85.19 84.27 87.19 88.91 91.76 91.84 96.54
77.83 82.64 84.01 85.37 86.30 87.69 91.06 96.44
73.66 81.86 83.67 85.29 86.19 86.61 89.29 96.40
68.87 81.53 83.66 84.96 85.30 86.60 89.33 96.36

Average Overall Accuracy 77.072 83.524 84.55 86.01 87.258 88.884 91.036 96.768
Kappa coefficient 0.8085 0.8413 0.8500 0.8512 0.8785 0.9038 0.9260 0.9778
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Moreover, when employing the power value combination for classification, the tra-
ditional polarized data input scheme 4, using the PS, PD, and PV elements, outperformed
the three research schemes mentioned earlier. Similarly, when classifying results using the
reflection symmetric decomposition P2 and P3, polarized data input scheme 5 surpassed the
PS and PD research schemes. The highest overall classification accuracy improved by 2.35%,
and the average accuracy increased by 1.24%. This implies that using the reflected sym-
metric decomposed P2 and P3 is superior to the PS and PD research schemes. A study on a
combination that includes P2, P3, PS, and PD (polarized data input scheme 6) indicated that
when using only polarized power components, the highest overall classification accuracy
increased by 4.52% and 2.17%, and the average accuracy improved by 2.874% and 1.626%,
respectively. When all elements in the T-matrix were used for classification (polarized
data input scheme 7), the highest overall classification accuracy increased by 1.9%, and
the average overall classification accuracy improved by 2.152%. Finally, when using all
parameters in the T-matrix and all components obtained from the reflected symmetric
decomposition (polarized data input scheme 8), both the highest overall classification
accuracy (98.1%) and the average classification accuracy (96.768%) were the highest. Com-
pared to the six-parameter research scheme 1, there was an improvement of 14.51% and
19.696%, respectively.

Notably, when employing scheme 1, the classification accuracy for the tidal flat falls
below 50%. This can be attributed to the tidal flats being influenced by multiple types of
terrain scattering, particularly the presence of diverse vegetation on the beach. The six-
parameter research scheme cannot effectively input the polarized scattering characteristics
representing this terrain into the network, resulting in reduced classification accuracy for
this area. A similar decrease in accuracy is evident for tamarix-covered terrain. Given that
tamarix is closely associated with tidal flats, the polarized scattering characteristics within
the sixparameters are insufficient for distinguishing the polarization traits of this terrain.
Thus, the six-parameter input scheme under scheme 1 is inherently incomplete, failing
to input all the polarized characteristics representing terrain information into the CNN.
Moreover, inputting normalized polarized total power notably enhances the accuracy of
identifying tamarix-covered terrain, validating the effectiveness of the improved input
scheme for this terrain. However, scheme 2 actually reduces the classification accuracy of
the tidal flat, prompting a continued search for new polarized scattering characteristics.
When we input T11 from the T-matrix into the CNN, accuracy slightly improves. Introduc-
ing PS, PD, and PV decomposed from RSD into the CNN enhances the overall classification
accuracy by 29.1%. Furthermore, inputting all polarized scattering characteristics decom-
posed by RSD into the CNN raises the highest overall accuracy to 90.6%, highlighting the
efficacy of the designed polarized data input scheme. For the other six terrain types, the
classification accuracy generally exhibits an upward trend from schemes 1 to 8. This trend
reinforces the effectiveness of employing reflection symmetry decomposition to extract
terrain-polarized characteristics for classification.

The image classification outcomes using various research schemes are depicted in
Figure 4. From the classification result graph, it can be seen that using scheme 8 can
effectively distinguish the features in homogeneous areas, while also achieving better
classification results in heterogeneous areas. This indicates that when using polarization
features such as the T-matrix and polarization power, the polarization features of the
features can be well characterized. The neural network used can also effectively extract
and classify the ground objects through these features.

From the texture perspective, the information in the T-matrix can already represent
the polarization characteristics of the terrain to a certain extent. When incorporating fea-
tures such as polarization power and total polarization power obtained through reflection
symmetry decomposition, it further supplements the missing information.
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4.3. Classification Results on VGG16

Similarly, we validated the eight polarimetric data input schemes on VGG16. Table 5
presents the accuracy of each land category on VGG16, along with the highest overall
accuracy, average overall accuracy, and distribution of Kappa coefficients. The table reveals
that the classification accuracy for the tidal flat category under the eight data input schemes
aligns with the experimental results of AlexNet. This indicates that the decomposed
polarimetric scattering features indeed contribute to the classification of land categories.
It also suggests that using the six-parameter polarimetric data input scheme 1 for CNN
classification is insufficient in terms of information. We speculate that this is due to the
fact that the polarization features such as correlation coefficients included in the scheme
cannot effectively represent the features in the PolSAR image. At the same time, only six
polarization features have fewer elements than the elements in the T matrix, indicating a
lack of information.

Table 5. Classification accuracy of eight polarimetric data input schemes on the VGG16 network.

Classification Accuracy
Input Scheme 1 2 3 4 5 6 7 8

Nearshore water 95.7 82.5 91.1 91.3 94.9 93.4 90.5 77.2
Seawater 97.7 98.8 99.8 98.5 99.4 99.3 99.3 99.6

Spartina alterniflora 96.6 95.9 94.1 95.7 93.5 94.9 98.7 100
Tamarix 98.5 100 1000 67.5 100 89.6 99.9 90.8

Reed 93.8 85.0 91.3 68.0 82.2 69.6 91.7 99.9
Tidal flat 28.5 42.0 25.7 88.5 67.2 95.8 71.4 99.8

Suaeda salsa 66.2 91.3 94.1 98.9 100 100 99.6 100

Indepent experiments
Overall Accuracy

82.43 85.07 85.16 86.91 91.03 91.80 93.01 95.33
82.21 85.03 84.66 86.63 88.99 90.61 92.03 94.93
81.44 84.74 84.10 86.57 87.50 90.54 91.94 94.76
79.44 82.06 83.64 84.90 86.77 90.43 91.29 92.96
77.53 81.93 83.41 80.47 86.83 90.37 89.94 91.97

Average Overall Accuracy 80.61 83.766 84.194 85.096 88.224 90.75 91.642 93.99
Kappa coefficient 0.7950 0.8258 0.8268 0.8473 0.8953 0.9043 0.9185 0.9455

Continuously optimizing the input scheme and incorporating more polarimetric
scattering features favorable for classification into the CNN will help improve the final
classification accuracy. Furthermore, the conclusion that the results from classifying with
P2 and P3 are better than PS and PD is also validated. When using all of the information
from the T matrix for classification, higher accuracy can be achieved, and the processing
time is also less than that of the 21-parameter polarimetric data input scheme. However,
when using 21 elements to classify PolSAR images, better results can be achieved in terms
of accuracy. Therefore, if the accuracy requirement is not very high, all elements in the
T-matrix can be used as the selection scheme.

It is notable that when employing all parameters decomposed from the T-matrix and
reflection symmetry, the accuracy of tidal flat classification reaches 99.8%. In contrast,
AlexNet achieves a classification accuracy of 90.6% with the same input scheme. Thus,
VGG16 exhibits a stronger capacity than AlexNet to recognize polarimetric scattering
features of land categories in complex environments. Additionally, VGG16 maintains a
relatively high accuracy across various land categories.

Figure 5 illustrates the classification results of the eight research schemes using VGG16.
When using VGG16 for classification, it can be seen that in each scheme, the overall
classification effect in the image is better, and the clustering effect of various features is
better than AlexNet, indicating that in terms of the neural network used, VGG16 can extract
deeper features in PolSAR images.
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Simultaneously, we conducted a statistical comparison of the classification results
of the two network architectures, as depicted in Figure 6. “OA” represents the highest
classification accuracy, and “AA” represents the average classification accuracy. Among
the 21-parameter polarized data input schemes, AlexNet achieved a higher overall accu-
racy than VGG16. However, the highest overall accuracy was not stable and fluctuated
significantly, while VGG16 exhibited more stability. Thus, when classifying PolSAR data
using a CNN, a deeper network does not necessarily ensure higher performance. AlexNet,
with only five layers, can achieve high classification accuracy. However, deeper networks
can achieve more stable classification results.
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5. Conclusions

This study delved into polarization data input schemes at the neural network’s input
stage. Eight schemes were proposed and tested using classic CNN models—AlexNet and
VGG16—as the primary experimental networks. The findings on various combinations of
polarization scattering features are summarized as follows:

1. The classification performance utilizing total power values of the second component
(P2) and the third component (P3), obtained through reflection symmetry decom-
position, surpasses the research scheme using surface scattering power (PS) and
second-order scattering power (PD) from RSD.

2. The six-parameter polarization data input scheme [39–41] provides incomplete in-
formation. The seven alternative methods designed alongside it all outperform it.
Therefore, the six-parameter scheme is not recommended.

3. Concerning polarization data input schemes with limited computational resources,
direct use of scheme 7, which encompasses all of the information of the T-matrix, is
suggested. If device configuration allows, prioritizing the use of the 21-parameter
polarization data input scheme 8, including all parameters of the T-matrix and RSD,
is recommended.

4. Among the two classic CNN models in the experiment, VGG16 exhibits better sta-
bility, while the five-layer AlexNet achieves higher overall classification accuracy.
Therefore, for PolSAR image classification using a CNN, an excessively deep network
may not be necessary. However, deeper networks tend to offer better stability in
training accuracy.

This study highlights that deep CNNs cannot spontaneously learn all polarization fea-
ture information. Hence, it is crucial to ensure the input polarization feature information is
mathematically complete, as incomplete input results in the loss of some polarization infor-
mation in classification. There is also a need to input more polarization feature information
into deep neural networks, provided computational resources allow. However, further
research is required to determine whether all extractable polarization feature information
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should be inputted into the network, the necessity of having over a hundred polarization
feature parameters as input, and whether redundant information is abundant. Our fu-
ture work will explore more effective polarization information in PolSAR data, propose
polarization data input schemes for better utilization of object back-scattering informa-
tion with increased efficiency, and enhance classification performance while maintaining
computational efficiency.
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