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Abstract: Digital elevation models (DEMs) are widely used in digital terrain analysis, global change
research, digital Earth applications, and studies concerning natural disasters. In this investigation, a
thorough examination and comparison of five open-source DEMs (ALOS PALSAR, SRTM1 DEM,
SRTM3 DEM, NASADEM, and ASTER GDEM V3) was carried out, with a focus on the Chongqing
region as a specific case study. By utilizing ICESat-2 ATL08 data for validation and employing a
random forest model to refine terrain variables such as slope, aspect, land cover, and landform
type, a study was undertaken to assess the precision of DEM data. Research indicates that spatial
resolution significantly impacts the accuracy of DEMs. ALOS PALSAR demonstrated satisfactory
performance, reducing the corrected root mean square error (RMSE) from 13.29 m to 9.15 m. The
implementation of the random forest model resulted in a significant improvement in the accuracy
of the 30 m resolution NASADEM product. This improvement was supported by a decrease in
the RMSE from 38.24 m to 9.77 m, demonstrating a significant 74.45% enhancement in accuracy.
Consequently, the ALOS PALSAR and NASADEM datasets are considered the preferred data sources
for mountainous urban areas. Furthermore, the study established a clear relationship between the
precision of DEMs and slope, demonstrating a consistent decline in precision as slope steepness
increases. The influence of aspect on accuracy was considered to be relatively minor, while vegetated
areas and medium-to-high-relief mountainous terrains were identified as the main challenges in
attaining accuracy in the DEMs. This study offers valuable insights into selecting DEM datasets for
complex terrains in mountainous urban areas, highlighting the critical importance of choosing the
appropriate DEM data for scientific research.

Keywords: DEM; ICESat-2 ATL08; accuracy assessment; random forest; Chongqing

1. Introduction

Digital elevation models (DEMs) are essential datasets for analyzing the heights and
features of the Earth’s surface. DEMs are extensively used in agricultural terrain suitability
studies, topographic mapping, the distribution of climatic elements, hydrological modeling,
and urban planning [1–4]. DEMs have become essential variables in the creation of land-
use and land-cover maps on sloping terrains using machine learning and deep learning
techniques. The creation of DEM datasets involves various technical methods [5], such as
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ground-based field surveys [6], digital topographic maps [7], stereophotogrammetry [8],
Interferometric Synthetic Aperture Radar (InSAR) [9], and Airborne Light Detection and
Ranging (LiDAR) scanning [10].

With the continuous advancement of remote sensing and Earth observation technolo-
gies, the development of large-area, high-resolution DEMs has become crucial. Over the
years, the development of these technologies has resulted in a variety of global open-source
digital elevation model data products. Examples include the L-band interferometric SAR-
based ALOS PALSAR [11], the Space Shuttle Radar Topography Mission SRTM, generated
using SAR interferometry [12], the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM) [13], and the TanDEM-X
DEM [14], which was obtained from radar satellite interferometry. These open-source
DEMs provide valuable and extensive data sources for researchers, enhancing understand-
ing of the Earth’s surface in developing countries, particularly in regions with limited
geospatial infrastructure.

However, it is crucial to assess the accuracy of global open-source DEMs. Despite their
high accuracy potential, models are still only approximations of reality. Due to differences
in imaging configurations and data processing methods, the quality of DEMs can vary
depending on terrain conditions and land-cover types, leading to inherent errors [15]. These
errors have significant implications for various applications of DEMs [16–18]. Therefore,
accurate elevation data are essential for various applications like terrain analysis, hydrolog-
ical modeling, decision support, risk assessment, and algorithm enhancement. By assessing
the accuracy of DEMs, it is possible to determine if data can be trusted in specific scenarios,
improving the reliability of decision making and applications. Furthermore, accuracy
assessments can refine DEM generation algorithms, enhancing the quality and precision
of the resulting DEM. Therefore, when selecting DEM data, it is essential to consider their
accuracy to enhance the quality of experiments, support geographical research, and ensure
precision. Conducting accuracy assessments of global free open-source DEMs is crucial to
ensure data reliability and effective application.

Currently, the assessment of DEMs for accuracy has become an important area of
focus for researchers [19]. One common method for assessing the accuracy of open-source
DEM datasets is the traditional method [20] of comparing DEM data with precise Ground
Control Points (GCPs). However, traditional field measurement methods for obtaining
highly accurate GCPs are both time-consuming and costly, and thus they no longer meet
the demands of current accuracy assessments and stereoscopic mapping tasks. In 2003, the
Ice, Cloud, and Land Elevation Satellite (ICESat) was launched with the Geoscience Laser
Altimeter System [12], making it the first satellite with a laser altimetry system. GLAS
emitted laser footprints on the Earth’s surface with a 70 m diameter and 170 m spacing
at a 40 kHz frequency. The GLAS system demonstrated high accuracy, with planimetric
accuracy at the order of 10 m and vertical accuracy ranging from 0.12 m to 0.50 m [21,22].
Therefore, ICESat/GLAS provides high-precision global elevation data and has been used
as a data source for global GCPs [23,24]. On 15 September 2018, the Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) was successfully launched, equipped with the Advanced
Topographic Laser Altimeter System (ATLAS). The ATLAS system reduced the footprint
size from 70 m to 17 m, decreased the spacing between footprints from 150 m to 0.7 m, and
increased the operating frequency to 10 kHz compared to GLAS, allowing for denser data
points. This enables ATLAS to capture almost continuous surface profiles of the Earth’s
surface. Consequently, ATLAS effectively captures complex changes in mountainous terrain
and resists slope effects, achieving higher precision in mountain measurements.

Research indicates that ICESat-2/ATLAS exhibits higher accuracy. For example,
Wang [25] validated the surface elevation of ICESat-2’s Level-2 product ATL03 in the
United States using LiDAR data, with an average error of -0.61 m. ATL08, being a more
advanced product compared to ATL03, offers data on both terrain and canopy height.
Neuenschwander [26] comprehensively validated the horizontal positioning and vertical
elevation accuracy of single-track ATL08 data. The results showed that the horizontal
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positioning offset was 5 m, which falls within the 6.5 m horizontal positioning accuracy
range described by ICESat-2/ATLAS. The accuracies of extracting ground elevation and
canopy height vertically were 0.85 m and 3.2 m, respectively. Subsequently, Neuenschwan-
der et al. [27] collected ATL08 data in the Finland region for 11 months and validated the
accuracy of the data using LiDAR data as a reference. The results showed that the ground
elevation extraction error by ATL08 was under 0.75 m, and the canopy height extraction
error was 0.56 m. Therefore, ICESat-2 is precise enough to be used as a high-precision
ground control point data source for evaluating and improving global open-source DEM
data products [28–30].

In recent years, many studies have been dedicated to reducing errors in DEMs. How-
ever, most current methods for eliminating errors in DEMs rely on traditional approaches,
such as improving data collection methods and utilizing high-precision altimetry satel-
lites [31–33]. Nevertheless, these methods are often costly and limited to relatively small
areas, making them impractical for large-scale regions. Machine learning, especially neural
networks, is a mature technology widely used for tasks such as regression analysis and
prediction because of its powerful computational capabilities. Therefore, techniques such
as machine learning and neural networks have the potential to enhance and improve the ac-
curacy of DEM data. Currently, there are primarily two methods for improving the quality
of DEM data. The first involves using artificial intelligence technologies, such as machine
learning and neural networks, to enhance the accuracy of existing DEM data [34,35]. The
second method involves utilizing multi-source DEM data and merging existing DEM data
by calculating weighting coefficients [36].

Chongqing’s complex mountainous terrain and frequent cloud cover create a diverse
landscape with mountains, hills, and river valleys. Due to this significant spatial variability,
assessing the accuracy of DEMs in Chongqing poses challenges and practical implications.
Therefore, this study compares five open-source DEM datasets (ALOS PALSAR, SRTM1
DEM, SRTM3 DEM, NASADEM, and ASTER GDEM V3) using terrain elevation infor-
mation derived from ICESat-2 ATL08 laser altimetry data to accurately depict the terrain
of Chongqing and provide support for various Earth science research endeavors. The
study evaluates whether these DEMs exhibit limitations or peculiarities in vertical accu-
racy in the typical mountainous regions with frequent cloud cover in China (Chongqing).
The aim is to provide useful guidance for other researchers using these DEMs in similar
terrain conditions.

The structure of this article is as follows. Section 2 provides an overview of the research
area, datasets, and research methods. Specifically, this section outlines the preprocessing
of ICESat-2 ATL08 data, introduces evaluation metrics and terrain factors, explains the
prediction process of the random forest model, and presents a flowchart of the article’s
research content. Section 3 provides quality assessments and analysis results before and
after corrections. Section 4 discusses how various terrain factors affect the accuracy of
DEMs and the selection of DEMs for mountainous urban areas. Section 5 summarizes the
conclusions of the entire article.

2. Materials and Methods
2.1. Study Area

Chongqing, situated in the southeastern part of China, serves as a transitional area
between the Qinghai–Tibet Plateau and the middle and lower reaches of the Yangtze River
Plain (Figure 1). The region spans from approximately 105◦11′ to 110◦11′ east longitude
and 28◦10′ to 32◦13′ north latitude, covering a total area of approximately 82,400 square
kilometers. Chongqing’s terrain combines mountains, river valleys, and hilly areas. The
diverse and intricate terrain pattern in this area makes it ideal for evaluating various DEM
products. Therefore, this region is highly effective for evaluating the accuracy of various
DEM products.
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Figure 1. Study area and ICESat-2 ATL08 tracks. (a) The location of the study area. (b) The overall
tracks of ICESat-2 ATL08; the black dots represent the laser footprint of the ICESat-2 satellite on the
ground. (c) Land-cover type. (d) Landform type: A–E represent, respectively, terrace, hills, small
rolling hills, medium rolling hills, and large rolling hills.

2.2. Data

This study compared five commonly used open-source DEM datasets. The DEM
datasets were ALOS PALSAR, SRTM1 DEM, SRTM3 DEM, NASADEM, and ASTER GDEM
V3. Table 1 provides basic information on the DEMs and their publicly accessible sources.

Table 1. Basic parameters of five open-source DEM data products used in this study.

Datasets Acquired Producer Version Resolution Coverage
Datum
Plain/

Vertical

Method
Source

Vertical
Accuracy

Access
Website

ALOS
PALSAR 2018 JAXA V001 12.5 m 60◦N~59◦S WGS84

/WGS84 L-SAR 5 m URL1

SRTM1
DEM 2014 NASA V003 1′′(~30 m) 60◦N~56◦S WGS84

/EGM96 C-SAR 9 m URL2

SRTM3
DEM 2015 NASA V4.1 3′′(~90 m) 60◦N~56◦S WGS84

/EGM96 C-SAR 16 m URL2

NASA
DEM 2020 LP DAAC V001 1′′(~30 m) 60◦N~56◦S WGS84

/EGM96
Reprocessed

C-SAR 5 m URL3

ASTER
GDEM V3 2019 NASA

METI V3 1′′(~30 m) 83◦N~83◦S WGS84
/EGM96

Stereo NIR
imagery ~10 m URL4

ICESat-2
ATL08 2018 NASA V005 100 m 90◦N~90◦S WGS84

/WGS84
Photon-

counting 0.75 m URL5

Note: URL1: https://search.asf.alaska.edu/#/, access on 25 November 2023; URL2: https://earthexplorer.
usgs.gov/, access on 25 November 2023; URL3: https://lpdaac.usgs.gov/products/nasadem_hgtv001/, access
on 25 November 2023; URL4: https://asterweb.jpl.nasa.gov/gdem.asp, access on 25 November 2023; URL5:
https://nsidc.org/data/icesat-2, access on 28 November 2023.

https://search.asf.alaska.edu/#/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/products/nasadem_hgtv001/
https://asterweb.jpl.nasa.gov/gdem.asp
https://nsidc.org/data/icesat-2
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2.2.1. ALOS PALSAR

ALOS PALSAR data are sourced from a satellite launched by the Japan Aerospace
Exploration Agency (JAXA) in May 2006. It carries the Phased Array L-band Synthetic
Aperture Radar. The primary goal of PALSAR is to provide global land-coverage infor-
mation, including terrain elevation data. The data have a spatial resolution of 12.5 m and
utilize the L-band frequency, providing high-resolution surface observation capabilities
that are effective in all weather conditions and can operate day and night.

2.2.2. SRTM DEM

The SRTM1 and SRTM3 datasets originate from the Space Shuttle Radar Topography
Mission, which was launched in February 2000. This mission utilized InSAR to produce
two land elevation data products with different spatial resolutions. The U.S. product has a
spatial resolution of 1 arc second (30 m), while the global product has a resolution of 3 arc
seconds (90 m). They cover about 80% of the Earth’s land surface, ranging from 60◦ north
latitude to 56◦ south latitude. The SRTM sensor uses C-band SAR to measure the heights of
ground and non-ground features on the Earth’s surface. According to the SRTM mission
objectives, the SRTM DEM is expected to have a linear vertical absolute height error of
around 16 m and a linear vertical relative height error of 10 m [13]. This article uses the
latest version data of V003 (30 m) and V4.1 (90 m) released in 2014 and 2015.

2.2.3. NASADEM

The NASADEM dataset, released in February 2020, is derived from the original SRTM
data through secondary processing with additional datasets such as ASTER GDEM, PRISM,
ICESat, and GLAS, providing a 30 m spatial resolution. The main goal is to enhance geo-
graphic positioning accuracy by addressing gaps and limitations in the SRTM dataset [37].
The development team utilized ICESat data to conduct a quantitative evaluation in Canada
and found that the vertical accuracy of the data was 5.3 m [38], and 6.59 m in China [39].

2.2.4. ASTER GDEM V3

The ASTER GDEM project is a collaboration between NASA and the Ministry of
Economy, Trade, and Industry (METI) of Japan. It uses stereophotogrammetry from orbit
to create near-infrared images spanning latitudes from 83◦N to 83◦S. ASTER GDEM has
had three versions, with the latest upgrade being ASTER GDEM V3, which was released
on 5 August 2019. This version incorporates 360,000 pairs of optical stereo data to reduce
elevation discrepancies and anomalies in water bodies. Previous studies indicate a slight
improvement in vertical accuracy using ASTER GDEM V3, with RMSE ranging from 6.92 m
to 9.25 m across different land-cover types in the United States [40].

2.2.5. ICESat-2 ATL08 Data

NASA’s ICESat-2, a satellite-borne laser satellite carrying the Advanced Topographic
Laser Altimeter System (ATLAS), released on 15 September 2018, is a follow-up mission to
ICESat. ATLAS can emit three pairs of laser beams with a 532 nm wavelength at a 10 kHz
pulse repetition rate. Each overlapping footprint has a diameter of approximately 17 m,
with a spacing of about 0.7 m between orbits. Each pair of beams consists of a strong
beam and a weak beam, with a strong-to-weak energy ratio of 4:1, spaced approximately
3.3 km apart, with a 90 m spacing per pair [41]. Consequently, ICESat-2 demonstrates
significant enhancements in data coverage density, data accuracy, and spatial resolution.
Additionally, ICESat-2 demonstrates strong resistance to slope effects, enabling more precise
measurements of mountainous terrain [27,42,43].

Data collected by ATLAS are processed into 22 products (ATL00-ATL21). Among these,
ATL08 products are derived from ATL03 (global geolocated photon cloud) and provide
global coverage of terrain and canopy height data. ATL08 provides height information
(h_te_interp) at 100 m intervals, along with the most suitable terrain elevation (h_te_bestfit)
at the midpoint of each 100 m segment [44]. Due to the inclusion of detailed parameters like
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latitude, longitude, slope, cloud cover, acquisition time, terrain, and canopy information,
ATL08 is a crucial source of information for control points. Previous studies have shown
that the vertical accuracy of ground elevation in ATL08 data is 0.75 m [27], making it a
suitable reference for surface elevation.

As ground and vegetation reflectance is low, the return signal in remote sensing data
mainly originates from the strong beam, which provides more accurate ground elevation
precision than the weak beam. Therefore, our experimental data consist solely of strong
beam trajectories. Additionally, there is a significant amount of noise photons during
data acquisition, with background noise in night-time data notably lower than during
the daytime. Hence, data filtering is performed using night flags (night_flag), cloud flags
(cloud_flag_atm), and low slope information (terrain_slope) to ensure reliable ground
elevation information is obtained [45–47].

2.2.6. GlobeLand30

GlobeLand30, a global surface coverage dataset with 30 m spatial resolution, devel-
oped in China, was initially released in 2014 for the 2000 and 2010 editions. The Ministry of
Natural Resources (MNR) updated the dataset in 2017 to create the 2020 edition. This prod-
uct utilizes existing land-cover data, global MODIS NDVI data, global basic geographic
information data, global DEMs, and online high-resolution imagery to assist in sample
selection and auxiliary classification. It has been reported that the overall accuracy of this
dataset is 85.72%. Considering that land cover has different effects on the reflection, ab-
sorption, and scattering characteristics of the Earth’s surface, utilizing land-cover data can
help evaluate and enhance DEM elevation products. Therefore, in our study, we utilized
both the 2010 and 2020 versions of the GlobeLand30 dataset.

2.3. Methods
2.3.1. Pre-Processing of ICESat-2 ATL08 Data

Initially, elevation data (Table 2) were extracted from the original HDF5 files of ATL08
using Python (v3.9.12). We extracted the laser point data for Chongqing City for the entire
year of 2020, totaling 74,972 control points. Previous studies [48,49] have indicated that
ATLAS photon data may be influenced by various factors such as slope, cloud cover, and
imaging time. These factors can lead to a reduction in photon energy and introduce errors in
distance measurements. Among these factors, slope has a particularly significant impact on
elevation accuracy, with accuracy decreasing significantly as slope increases. Additionally,
elevation accuracy is typically higher during night-time observations, and clearer skies also
reduce photon obstructions, thereby improving accuracy.

Table 2. Descriptions of ATL08 data product parameters.

Parameters Describe

latitude Latitude of the most central signal photon in each segment.
longitude Longitude of the most central signal photon in each segment.

h_te_best_fit Best terrain elevation of midpoint of every 100 m segment.
terrain_slope Along-track slope of the terrain within each segment, calculated by linearly fitting the terrain classification.

cloud_flag_atm Cloud cover flag. If the flag is greater than 0, aerosols or clouds may be present. Valid range is 0–10.
night_flag Flag indicating data were collected at night: 0 = day, 1 = night.

We set filtering thresholds based on relevant criteria, such as “terrain_slope < 0.01”,
“cloud_flag_atm < 2”, and “night_flag = 1”. After a series of meticulous filtering rounds, the
dataset was reduced to 51,642 control points. To enhance the credibility of the results and
ensure the accuracy of the elevation data, we calculated the height differences (∆h) between
each ground control point and all DEM datasets. Points with height differences exceeding
±100 were identified as outliers and removed. Ultimately, we obtained 50,998 high-quality
control points that met the experimental criteria.
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Due to differences in vertical reference systems and spatial resolutions among the
five DEM datasets, there may be discrepancies in elevation information. Before extracting
elevation data, it is essential to standardize the vertical reference systems of all datasets.
We converted orthometric heights (EGM96) to ellipsoidal heights (WGS84) to eliminate
errors from vertical datum differences. The conversion relationship is as follows:

Helip = Hortho + G (1)

In the equation, Helip represents the ellipsoidal height, Hortho represents the orthomet-
ric height, and G denotes the difference between ellipsoidal height and orthometric height,
which can be obtained from the ‘WG84.img’ file provided by ArcGIS 10.8.

Subsequently, we utilized bilinear interpolation to align DEM data with ICESat-2 laser
data, ensuring consistency across various data sources. Through this process, we interpo-
lated lower-resolution DEM data to match the spatial locations of the higher-resolution
DEM data. This ensures data accuracy and reliability, establishing a strong foundation for
further analysis and applications.

2.3.2. Assessment of Vertical Accuracy

Accurately speaking, all global open-source digital elevation models (DEMs) are
digital surface models (DSMs) [33,50]. Typically, we uniformly consider them as DEMs.
Therefore, in this paper, we will use the term “DEM” [51,52]. To comprehensively evaluate
the differences in elevation distribution between ATL08 and the DEMs and measure the
vertical accuracy of the DEMs, we selected four key evaluation metrics: mean error, mean
absolute error, standard deviation, and root mean square error. Additionally, these metrics
help us understand the accuracy of elevation data and provide detailed insights into errors.
The specific formulas are as follows:

ME =
1
N ∑N

i=1(HICE2i − HDEMi) =
1
N ∑N

i=1 ∆hi (2)

MAE =
1
N ∑N

i=1 |HICE2i − HDEMi| =
1
N ∑N

i=1|∆hi| (3)

SD =

√
1

N − 1∑N
i=1(∆hi − ME)2 (4)

RMSE =

√
1
N ∑N

i=1 ∆h2
i (5)

In the equations, HICE2i represents the elevation value from ICESat-2, HDEMi repre-
sents the elevation value from the DEM corresponding to each ICESat-2 laser point, and
∆hi represents the difference in elevation between ICESat-2 and the DEM.

2.3.3. Elevation Accuracy Response Considering Different Slope, Aspect, Land Cover and
Landform Types

In our study, slope, aspect, land cover, and terrain type are identified as crucial
factors for evaluating the accuracy of global open-source DEMs. These factors are essential
components of terrain data and are critical for various geographic information applications.
Research has shown a positive correlation between slope and DEM accuracy [30]. Therefore,
we categorized slope into five groups (≤5◦, 5–10◦, 10–15◦, 15–20◦, and ≥20◦) to evaluate
the effect of slope on DEM accuracy in mountainous urban areas. Aspect was divided
into eight primary directions based on cardinal directions: north (337.5–22.5◦), northeast
(22.5–67.5◦), east (67.5–112.5◦), southeast (112.5–157.5◦), south (157.5–202.5◦), southwest
(202.5–247.5◦), west (247.5–292.5◦), and northwest (292.5–337.5◦).

To quantitatively assess the impact of land cover on DEM accuracy, we identified
six land-cover categories from the 30 m GlobeLand30 data: cropland, forest, grassland,
shrubland, water bodies, and artificial surfaces. Additionally, Chongqing is known as
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a “mountain city” because of its unique terrain features. Since terrain type is a crucial
factor reflecting surface morphology, we identified six terrain types in the Chongqing
region based on 1:1,000,000 topographic maps: plain, terrace, hills, small rolling hills,
medium rolling hills, and large rolling hills. Considering terrain factors comprehensively
enables a more thorough assessment of DEM data performance and applicability in specific
geographic regions.

2.3.4. Random Forest Model

In this study, we utilized the random forest (RF) model to correct the five DEMs.
Random forest is an ensemble learning algorithm based on decision trees and bagging,
proposed by Breiman and Cutler in 2001 [53].

Compared to traditional decision tree models, the random forest model shows out-
standing generalization ability. This method constructs multiple decision trees and com-
bines their results through voting or averaging to decrease the model’s variance and
improve stability [54]. Additionally, random forest reduces overfitting risk by randomly
selecting feature subsets to build multiple decision trees. This process enhances generaliza-
tion capability and improves robustness against outliers. Random forest has been shown in
previous studies [34,55,56] to be a superior choice for DEM correction compared to other
models like MLR, GRNN, BPNN, and GBT in predicting surface elevation.

We implemented the random forest model using the “Random Forest” package in the
R programming language. We utilized 50,998 filtered ATL08 high-precision laser points
as elevation data, randomly splitting them into a 70% training set and a 30% testing set to
evaluate the accuracy improvements after correcting the five DEMs.

To achieve accurate random forest correction results, we established a mapping func-
tion to describe the relationship between seven factors: longitude, latitude, elevation, slope,
aspect, land cover, terrain type, and ICESat-2 ATL08. The general relationship can be
represented as follows:

HICE2 = f (Lat, Lon, HDEMs, Sl, As, Lc, L f ) (6)

In the equation, f (·) represent the mapping function used to quantitatively describe the
functional relationship between the target variable and the feature variables. Here, HICE2
represents the target variable, and Lat, Lon, HDEMs, Sl, As, Lc, L f represent the seven feature
variables of longitude, latitude, elevation, slope, aspect, land cover, and terrain type. We
denote the random forest model’s predictions for ICESat-2 ATL08 as the corrected elevation.

To determine the best parameter combination, we utilized the grid search method to
perform three rounds of tuning for five parameters. These parameters were the number of
trees (n_estimators), maximum depth (max_depth), minimum samples required to split a
node (min_samples_split), minimum samples required at a leaf node (min_samples_leaf),
and the maximum number of leaf nodes (max_leaf_nodes). The aim of adjusting parameters
is to control the model’s complexity and performance to prevent overfitting. During the
grid search parameter tuning process, cross-validation was used to evaluate each model’s
performance and identify the best parameter combination to improve its generalization
capability. Specifically, we utilized five-fold cross-validation for model evaluation to deter-
mine the best values for the five parameters. Additionally, we chose RMSE as the model’s
loss function to evaluate its performance. The disparities between adjusted elevation and
ICESat-2 ATL08 data aid in assessing a model’s fit and predictive accuracy. The process of
evaluating and correcting the five DEMs’ accuracies is illustrated in Figure 2.
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3. Results
3.1. Accuracy Evaluation of Five DEMs before and after Correction

For convenience, we will use the abbreviations ALOS, SRTM1, SRTM3, NASA, and
ASTER to refer to ALOS PALSAR, SRTM1 DEM, SRTM3 DEM, NASADEM, and ASTER
GDEM V3, respectively.

In this study, we first assessed elevation variations among the five DEMs to understand
their accuracy before using the random forest model for correction. After analyzing the
histograms (Figure 3), we found that the elevation variances of all five DEMs conformed to
a normal distribution. Compared to the reference data from ICESat-2 ATL08, all five DEMs
generally showed negative ME values, indicating a consistent elevation overestimation
in the Chongqing region. Possible reasons for this result include (1) the complex terrain
of the Chongqing region, especially in terrain depressions such as gorges and valleys,
where satellite-measured elevation values may be lower than the actual ground elevation;
(2) dense vegetation in the Chongqing region, which may affect the penetration and
reflection of satellite radar signals, resulting in underestimated measurement results; and
(3) terrain masking effects, where mountainous terrain may have shadowed areas, leading
to weaker satellite signals and lower elevation measurements.

All the DEMs showed a significant negative bias. ALOS demonstrated the best
performance, with an ME of −5.57 m and an RMSE of 13.29 m, indicating a symmetri-
cal distribution around zero. Conversely, SRTM3 performed the worst, with an ME of
−38.52 m and an RMSE of 40.47 m. The accuracy ranking of the other three DEMs was as
follows: ASTER, NASA, and SRTM1. This comprehensive evaluation outcome is a crucial
reference for our subsequent correction using the random forest model. It helps understand
elevation change characteristics in various DEM datasets and guides the need and direction
for corrections.

Figure 4 displays the error distributions and scatter plots of the five DEM products
before and after correction. The application of the random forest model greatly enhances
the accuracy of all DEMs, reducing the average error value to nearly zero, representing
a significant improvement. Among them, NASA achieved the highest accuracy after
correction, with an RMSE of 9.77 m, which improved by 74.45% compared to before the
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correction. The remaining four DEMs ranked in the following order after correction: SRTM1,
SRTM3, ASTER, and ALOS, with RMSE values of 10.37 m, 11.23 m, 10.49 m, and 9.15 m,
respectively. These values represent accuracy improvements of 74.15%, 72.25%, 71.12%, and
31.15%. Although the improvement in ALOS was only 31.15%, its high spatial resolution of
12.5 m resulted in the highest accuracy after correction (RMSE = 9.15 m), surpassing the
other four DEM products. This shows that the random forest model has a significant effect
in improving the accuracy of the DEMs.
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3.2. Comparison of the Accuracy of Five DEMs before and after Correction
3.2.1. DEM Accuracy Analysis before and after Correction Based on Slope

To comprehensively compare the accuracy and consistency of the five DEMs against
different slope levels, precision analyses were conducted on the five DEMs before and
after correction for different slope levels to observe the relationship between elevation
differences and slope levels.

Before correction, we found that all DEMs exhibited negative biases and were in a
significantly unstable state of dispersion. This means that under different slope levels, the
DEM error distribution in Chongqing is inconsistent and there is a tendency for a large
negative deviation from the true value. However, after applying random forest correction,
we observed significant improvement. After correction, the error distributions of the five
DEMs were symmetrically distributed around zero, indicating that the corrected DEMs
more accurately reflected the terrain features of the various slope categories. Additionally,
all DEMs showed uniformly distributed dispersion, resulting in more stable and consistent
results, thereby largely eliminating negative biases. This result demonstrates the significant
role of the random forest model in improving the accuracy and consistency of DEMs under
different terrain conditions.

Table 3 presents the ME and RMSE of each DEM before and after correction for various
slope levels, demonstrating a notable correlation between elevation accuracy and terrain
slope. From Figure 5 and Table 3, it can be observed that as the slope level increases, the
accuracy of each DEM exhibits a noticeable decrease both before and after correction. At
the ≤5◦ level, SRTM3, NASA, and ASTER exhibit the highest accuracy, with cRMSE values
of 3.74 m, 4.63 m, and 5.78 m, respectively. When the slope is greater than or equal to 20◦,
all DEM products exhibit the highest errors. Therefore, an increase in slope is positively
correlated with a decrease in data accuracy, confirming the significant impact of terrain
slope on DEM data quality.
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Table 3. Errors of the five DEMs before and after correction based on different slope grades.

DEM Statistical
Parameters ≤5◦ 5~10◦ 10~15◦ 15~20◦ ≥20◦

ALOS
PALSAR Sample Point 2069 2104 2051 2393 42,381

ME −0.41 −3.81 −5.24 −6.55 −10.37
cME 0.18 0.15 0.11 0.16 0.08

RMSE 11.16 9.53 11.34 13.49 18.85
cRMSE 5.11 4.82 5.08 6.47 10.79

SRTM1 DEM Sample Point 2594 2380 2531 2292 41,201
ME −38.20 −38.60 −37.96 −38.01 −39.07
cME 0.17 0.07 0.18 −0.05 0.09

RMSE 39.77 39.90 39.47 39.78 41.44
cRMSE 4.65 4.37 5.73 7.80 10.88

SRTM3 DEM Sample Point 4825 3416 2904 2505 37,348
ME −39.59 −38.96 −37.40 −37.71 −39.27
cME 0.12 −0.02 0.08 0.01 0.15

RMSE 41.01 40.57 39.37 40.07 43.31
cRMSE 3.74 4.48 6.06 6.64 12.76

NASADEM Sample Point 2584 2496 2692 2459 40,767
ME −39.13 −36.42 −35.79 −36.10 −37.57
cME 0.12 −0.03 0.01 −0.01 0.08

RMSE 37.69 37.78 37.41 38.07 40.05
cRMSE 4.63 5.27 5.43 7.30 10.87

ASTER
GDEM V3 Sample Point 2575 2354 2598 2323 41,148

ME −34.02 −34.29 −33.19 −34.02 −39.02
cME −0.03 0.05 0.04 −0.04 0.06

RMSE 36.32 36.37 35.81 37.39 43.33
cRMSE 5.78 5.78 5.89 7.00 11.26

Note: cME represents the corrected ME value, and cRMSE represents the corrected RMSE value.

3.2.2. DEM Accuracy Analysis before and after Correction Based on Aspect

Figure 6 depicts a radial radar chart illustrating the elevation errors of each DEM
under different aspects. Before correction, all five DEMs exhibit noticeable errors in eight
directions, with relatively consistent errors in each direction. Specifically, the error dis-
tribution range of the ALOS data is the smallest, ranging from 11.82 m to 14.47 m. The
maximum error occurs in the due north direction, while the minimum error is in the due
west direction. Similarly, the error distribution of the SRTM3 data is the largest, ranging
from 39.66 m to 40.72 m, with the maximum errors occurring in the due east and south-
west directions, and the minimum error in the northwest direction. The remaining three
products are ranked in descending order of error as follows: ASTER, NASA, and SRTM1.
Overall, before correction, the maximum error distributions of all DEMs are in the northeast
and due east directions, while the minimum error distributions are in the northwest and
due north directions.

After correction, there were no significant differences in elevation errors among the
five DEMs across the eight directions. The random forest model improved accuracy across
all aspects. Among them, the smallest improvement was observed in the ALOS data, with
the corrected cRMSE ranging from 8.71 m to 12.43 m. The maximum values occurred in the
due north and southeast directions, while the minimum value occurred in the southwest
direction. This may be because ALOS PALSAR itself has high data quality with a spatial
resolution of 12.5 m, and already contains relatively accurate terrain information, hence
the relatively small improvement after correction. In contrast, other digital elevation
model products with lower spatial resolutions showed more significant improvements
after correction. Additionally, the random forest model may not be suitable for correcting
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ALOS PALSAR data. Therefore, other correction methods or models, such as those based
on deep learning or other nonlinear regression models, could be considered. SRTM1
showed the best correction effect, with a corrected cRMSE range of 8.50 m to 12.13 m. The
maximum error occurred in the due north direction, while the minimum error occurred in
the southeast direction. The other three DEMs were ranked in descending order of error as
follows: NASA, ASTER, and SRTM3, with their maximum and minimum errors consistent
with the former.
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In summary, the random forest model improved the accuracy of the five DEM datasets
in various aspects. Although no significant differences in elevation were observed across
directions before and after correction, errors generally decreased after the correction.

3.2.3. DEM Accuracy Analysis before and after Correction Based on Land Cover Type

Figure 7 shows the elevation error distribution of five DEMs and ICESat-2 ATL08
in six land cover types, and uses histograms to statistically analyze the data before and
after correction.

Before correction, ALOS data had the largest error in water bodies, with an RMSE of
24.49 m, while grassland had the smallest error, with an RMSE of 8.35 m. The minimum
errors for the other four DEM products occurred in water bodies, except for ASTER, whose
maximum error occurred in forests. The maximum values for the other three DEMs
occurred in shrublands.

After correction, ALOS showed the most significant improvement for water bodies,
with a decrease in cRMSE to 8.50m. Among them, NASA data showed the most significant
improvement for forests, with a cRMSE of 12.94 m, while ASTER performed the least
effectively for forests, with a cRMSE of 13.83 m. In terrain conditions with dense vegetation,
the absorption and reflection effects of leaves, branches, and trunks cause the elevation
information obtained by DEMs to fall within the vertical range of the vegetation rather
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than the actual land surface. Additionally, after correction, the minimum errors for ALOS
and SRTM1 occurred in grassland types, with error proportions of 13%. The cRMSE values
were 7.36 m and 7.45 m, respectively. The minimum errors for NASA and ASTER were
observed in water bodies, with error proportions of 12% and cRMSE values of 6.39 m and
7.15 m, respectively. In contrast, the minimum error for SRTM3 shifted from water bodies
to artificial surfaces, with an error proportion of 13% and a cRMSE of 7.77 m.
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3.2.4. DEM Accuracy Analysis before and after Correction Based on Landform Types

Figure 8 illustrates the error distribution before and after correction for various terrain
types. Due to the sparse sample points for the plain terrain type, it is not extensively
described in this paper.

By observing the visualized results, it is evident that all terrain types exhibited a
significant decrease in all indicators before and after correction. All DEMs showed negative
biases in the various types of terrain. After correction, the negative biases in all terrain types
were significantly reduced. However, in the category of rugged mountains, negative biases
still persisted even after correction, and the degree of bias was relatively significant. This
complexity may be attributed to the rugged terrain in mountainous areas, which includes
features such as cliffs and valleys. These features might have been misinterpreted or
overlooked in the original data, leading to residual biases in the corrected data. Additionally,
rugged mountainous terrain may be influenced by weather conditions such as cloud
and fog, which could increase the uncertainty of the collected data and consequently
affect accuracy.
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Table 4 summarizes the ME and RMSE indicators of the five DEMs before and after
correction. The minimum errors for all DEMs occurred in the plains, while the maximum
errors were observed in the large rolling hills. Specifically, NASA performed the best in
plains, terraces, and large rolling hills, with cRMSE values of 0.44 m, 2.67 m, and 23.31 m,
respectively. However, ASTER performed the worst in plateaus and hills, with cRMSE
values ranging from 3.25 m to 6.12 m. It is noteworthy that SRTM3 data exhibited the
highest accuracy in terraces and hills. However, with increasing ruggedness, significant
errors were observed, reaching a cRMSE of 38.41 m in rugged mountainous terrain. The
cRMSE values for ALOS ranged from 2.84 m to 23.80 m. Compared to the other four
DEM products, the correction effect of ALOS was consistent with the other terrain features.
However, NASA exhibited better accuracy after correction compared to ALOS, with cRMSE
values ranging from 2.67 m to 23.31 m. Following NASA, the order of performance was
SRTM1, ASTER, and SRTM3, with cRMSE values ranging from 2.81 m to 24.23 m, 3.25 m to
24.62 m, and 2.77 m to 38.41 m, respectively.
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Table 4. Error of the five DEMs before and after correction based on landform types.

DEM Statistical
Parameters Plain Terrace Hills Small

Rolling Hills
Medium

Rolling Hills
Large

Rolling Hills

ALOS
PALSAR Sample Point 4 3243 11,177 24,099 11,885 590

ME −5.24 −3.21 −3.62 −5.02 −8.59 −17.80
cME −1.19 −0.04 0.02 0.29 0.04 −4.50

RMSE 5.35 5.18 8.81 12.76 17.54 28.90
cRMSE 1.72 2.84 5.83 8.98 14.53 23.80

SRTM1 DEM Sample Point 4 3243 11,177 24,099 11,885 590
ME −45.70 −42.59 −40.80 −36.90 −37.70 −44.60
cME −0.33 −0.09 0.01 0.25 0.14 −4.94

RMSE 45.70 42.84 41.72 38.74 40.09 48.74
cRMSE 0.68 2.81 5.96 9.03 14.41 24.23

SRTM3 DEM Sample Point 4 3243 11,177 24,099 11,885 590
ME −46.04 −42.88 −41.19 −37.22 −37.34 −40.12
cME −0.68 −0.10 0.03 0.31 0.13 −4.57

RMSE 46.04 43.14 42.12 39.20 40.35 47.04
cRMSE 0.98 2.77 5.66 9.27 16.17 38.41

NASADEM Sample Point 4 3243 11,177 24,099 11,885 590
ME −43.29 −40.07 −38.50 −34.83 −36.38 −43.87
cME −0.24 −0.07 −0.03 0.27 0.04 −4.44

RMSE 43.30 40.33 39.45 36.72 38.97 48.00
cRMSE 0.44 2.67 5.80 9.25 14.09 23.31

ASTER
GDEM V3 Sample Point 4 3243 11,177 24,099 11,885 590

ME −44.80 −39.46 −35.62 −31.98 −36.48 −45.50
cME 0.45 −0.05 0.01 0.26 −0.02 −5.24

RMSE 45.12 40.20 37.47 34.87 40.25 50.48
cRMSE 1.28 3.25 6.12 9.94 14.78 24.62

Note: cME represents the corrected ME value, and cRMSE represents the corrected RMSE value.

3.3. Global and Local Analysis of Five Types of DEM before and after Correction

Figure 9 shows the overall effects of the five DEMs before and after correction. To
highlight the visual features of the five DEMs, we standardized their elevation ranges. No
significant terrain variations were observed in the initial data. However, after correction
with the random forest model, the terrain features of all global open-source DEMs were
significantly improved. Especially in areas such as “Southwestern Chongqing” and “North-
east Chongqing”, the undulations of the terrain and the sense of vertical and horizontal
terrain are more obvious. ALOS, NASA, and ASTER showed wide error ranges from −49
to 49. On the other hand, SRTM1 and SRTM3 had narrow error ranges, with variances of
approximately ±1 m. Additionally, error distribution varied among the different DEMs.
The error distributions of ALOS and NASA were relatively uniform, indicating consistent
correction effects across different terrain conditions. However, ASTER’s error distribution
was uneven, indicating potential limitations in the optical product’s data processing. Of
SRTM1 and SRTM3, positive errors were more significant in SRTM1, while negative errors
were more pronounced in SRTM3. This variation may result from the differences in data
acquisition time and processing methods used in various DEM products. For example,
SRTM data were released earlier, and may show slight terrain variations compared to
other DEM products. In densely populated regions like “Southwest Chongqing,” human-
induced changes may have caused variations in positive and negative errors between
SRTM1 and SRTM3.
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In our statistical analysis, we found that the maximum elevation recorded in the ALOS
dataset was the lowest. According to a report from the Chongqing Forestry Bureau, the
highest elevation in Chongqing is 2796.8 m (source: https://lyj.cq.gov.cn/, accessed on
4 May 2024). However, the highest elevation recorded in the ALOS dataset is 2700 m.
This indicates that the elevation values in high-altitude areas in the ALOS dataset were
underestimated before correction. After correction with the random forest model, a sig-
nificant increase in the maximum elevation value was observed, reaching 2771 m. This
finding further validates the effectiveness of the random forest model in improving the
accuracy of DEMs. The corrected elevation values are now closer to the officially reported
data, suggesting that the corrected data more accurately reflect geographical reality. These
enhancements establish the groundwork for accurate terrain modeling in the Chongqing
region, allowing for a more precise understanding and analysis of terrain features. This
provides reliable geographic information support for urban planning, natural disaster
prevention, and resource management.

Based on visual analysis, we extracted the local landform features of five different
landform types within the study area. As shown in Figure 10, there were notable enhance-
ments and adjustments in the globally available DEMs following correction. Particularly
in areas with significant terrain variations, the corrected DEMs could more accurately
depict mountainous terrain details. This included increasing terrain complexity, refining
contour lines, and enhancing descriptions of terrain attributes. Through analyzing local
features, we gained a better understanding of the impact of correcting DEM data. The
corrected data showed improved performance across the different landform categories,
highlighting the importance of these variations for terrain analysis and practical applica-
tions. The improvements provide more accurate terrain data, supporting research and
decision making for urban planning in mountainous areas, resource management, and
environmental planning. The corrected DEMs have improved accuracy and offer detailed
terrain information, facilitating a better understanding and management of terrain features
and environmental changes in mountainous regions.

https://lyj.cq.gov.cn/
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4. Discussion
4.1. The Impact of Spatial Resolution on DEM Accuracy

We observed that the corrected RMSE values reflected the improvement in the accuracy
of the individual DEM products. The ALOS data with a 12.5 m resolution showed a
significant enhancement in precision. The RMSE values decreased from 13.29 m to 9.15 m
after correction, indicating the notable effectiveness of the correction algorithm. In contrast,
the 30 m resolution data from NASA and SRTM1 exhibited more significant improvements
in accuracy post-correction, with RMSE values of 9.77 m and 10.37 m, respectively. These
results may be closely related to the characteristics of the correction algorithm and the data
source. The 90 m resolution SRTM3 data performed the poorest, with an RMSE of 11.23 m
post-correction, highlighting the direct impact of spatial resolution on DEM accuracy.
Higher spatial resolution enables a better representation of terrain details. Therefore, the
ALOS product, with a 12.5 m resolution, maintained higher accuracy both pre- and post-
correction, while the 90 m resolution SRTM3 exhibited the lowest overall accuracy. Further
analysis revealed that different types of DEM products exhibit varying levels of accuracy
at different spatial resolutions. This difference arises from the ability of higher spatial
resolution to capture terrain details more effectively. It is worth noting that ALOS, SRTM,
and NASA are all SAR products, while ASTER is an optical stereophotogrammetric product.
Previous studies [57–59] have indicated that optical photogrammetric products inevitably
produce shadows on images when observing the same area from different directions,
resulting in void values and limited accuracy. Optical image capture and processing
techniques are susceptible to weather and imaging conditions, such as cloud, fog, and
sunlight. Therefore, lower accuracy is observed in the cloudy and foggy mountainous areas
of Chongqing.

Furthermore, the random forest correction method not only enhanced the quality
of the high-resolution DEM data, but also improved medium- and low-resolution DEM
products, particularly in complex terrain areas [11,60,61]. Among them, the enhancement
was most significant for NASA data, with the product being improved to meet practical
application demands. Given the complex terrain of Chongqing, using suitable correction
methods to improve DEM accuracy is crucial. These results highlight the significance of
choosing suitable DEM products and correction methods for terrain modeling and related
applications [62,63].
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4.2. Slope and Aspect

Slope is one of the most important features of topography: it describes the degree
of inclination of the ground surface relative to the horizontal axis and is a quantitative
indicator of the steepness of terrain [32]. However, abrupt changes in slope can lead to
discontinuities in surface elevation, making it challenging for sensors to accurately capture
subtle terrain features during data collection and DEM generation [64].

Our results are consistent with previous studies [65,66] showing that the accuracy of
DEMs exhibits significant uncertainty as slope class increases. This uncertainty may stem
from two aspects. Firstly, the terrain in high-slope-class areas is usually steeper and more
complex, resulting in sparser sample points, and this data imbalance may cause the model
to favor terrain features with more sample points when learning, and the model may not
be able to fully learn the complexity of terrain features, which affects the correction effect.
Secondly, the random forest model may suffer from overfitting during the training process,
resulting in poor extrapolation ability for terrain features with slopes >20◦. This means
that the model learns better for low-slope terrain in the training phase and performs poorly
for high-slope terrain in the testing phase. These factors make it difficult for the model to
accurately learn and predict terrain features in areas with higher slopes, which affects the
effectiveness of the correction.

Additionally, we observed that aspect has a relatively minor impact on DEM accuracy.
Although there was some improvement in accuracy in all aspects after correction, no
significant features were observed in any aspect. This could be attributed to the random
forest model showcasing consistent performance when handling aspect information, as it
does not yield notable variances in accuracy among various aspects. These findings provide
important insights into understanding the impact of terrain features on DEM accuracy and
offer guidance for future improvements to correction methods and models.

4.3. Land Cover and Landform

Land-cover and terrain types exhibit distinct error features in DEMs, primarily due
to the significant influence of vegetation cover. The reflection and scattering effects of
vegetation can lead to fluctuations in remotely sensed signals, which can result in arti-
facts or blurring in DEMs, posing a challenge to the sensor in accurately detecting the
ground [32,67]. This effect is particularly pronounced in areas with significant terrain
variations. Shadow effects and vegetation obstruction make it more difficult to obtain
accurate elevation information, thereby affecting the quality of the DEM.

Figures 9 and 10 show notable changes in terrain features before and after correcting
the DEM data. After correction, all DEM data show excellent performance in representing
terrain features, especially in mountainous regions with significant elevation variations.
However, there were noticeable differences in the surface errors of the SRTM1 and SRTM3
data compared to the other DEMs. This issue may arise from their earlier production times,
leading to potential noise or data gaps during collection and processing. Despite using the
latest released data and addressing noise and missing values, challenges may persist due
to temporal differences and inadequate data processing techniques.

Among the correction methods we selected, the random forest algorithm effectively
improved data accuracy and precision. However, even after correction, subtle errors or
uncertainties may still exist due to limitations in the original data. Therefore, visualization
may not effectively highlight subtle changes after correction, necessitating more sensitive
visualization techniques or tools. To improve the accuracy of DEMs for different land-cover
and terrain types, it is crucial to utilize advanced and adaptive algorithms for terrain
features. In densely vegetated areas, adjustments to vegetation height can be made by
integrating vegetation indices, vegetation height models, and leaf area indices to accurately
estimate ground elevation. This approach helps reduce errors in elevation caused by
vegetation. In addition, the accuracy of various land-cover types must be taken into
account, along with the Bayesian average method [68] to merge different DEM data. These
improvements are crucial for terrain analysis and practical applications in densely vegetated
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areas like Chongqing with complex landforms, and improve the credibility and accuracy
of DEMs.

4.4. The Best DEM Choice for Mountainous Cities

Mountainous terrain is even more demanding on the accuracy of digital elevation
models. Therefore, special attention is needed when selecting DEM data for applied
research. Our results show that data with high spatial resolution are more suitable for
application in studies that require higher data quality. For instance, the 12.5 m resolution
ALOS data are better suited for extracting finer hydrological features and studying terrain
in mountainous urban areas. However, considering issues related to data volume and
storage, they may not be as suitable for extensive applications.

In contrast, the 30 m resolution SRTM1, NASA, and ASTER data are more suitable
for comprehensive studies. Among them, NASA data exhibit higher robustness and are
thus applicable to steep slopes and rugged terrain, and can rival higher-resolution data in
describing terrain details. Secondly, SRTM1 data can be considered as an alternative.

However, it is not advisable to use the 30 m resolution ASTER data produced by optical
photogrammetry techniques or the 90 m low-resolution SRTM3 data for mountainous urban
areas. This is because mountainous urban terrain is complex, with shadow effects and dense
vegetation cover posing challenges to the accuracy of optical products and low-resolution
data [69–71]. It should be noted that although the accuracy of ASTER is higher than that of
SRTM3, it is still not as good as high-resolution ALOS and high-quality NASA and SRTM1
data. In addition, ASTER and SRTM3 data have certain applicability in areas with simple
terrain (plains, mesas, and hills), but they should be used with caution in mountainous
cities with complex terrain.

4.5. Limitations and Recommendations

There are limitations to this work that must be acknowledged. Temporal inconsis-
tencies in land-cover data can cause variability in results. The use of 2010 and 2020 data
versions may not align with the production dates of the DEM data, potentially causing
elevation changes, particularly in dynamic areas like water bodies and man-made surfaces.
Therefore, the impact on the assessment results needs to be studied and analyzed in more
depth. Secondly, this study did not consider the effect of factors such as the height and
type of vegetation and seasonal changes in water bodies on topographic elevation. Future
research could utilize high-precision vegetation data, such as global forest product and
GEDI LiDAR data, in combination with long time series of water body area and water
level height data, and incorporate these parameters into machine learning models to more
comprehensively assess the accuracy and reliability of terrain data.

In addition, future research could explore the accuracy of other 30 m resolution optical
and radar products in mountainous cities, like AW3D30 and COPERNICUS. The TanDEM-
X product, a free 90 m LiDAR product, was recently released. However, further research
is needed to assess its accuracy in representing terrain features in complex mountainous
urban areas. Although open-source DEMs are globally accessible, variations in technical
methods and collection timing result in differences in DEM quality. This necessitates the
secondary verification of global DEM data, adding to the workload of other researchers.

In the future, it is important to consider researchers’ global DEM assessment results
when producing DEMs. Especially in complex terrains like high-undulating mountains,
glaciers, or karst terrain with broken features, it is essential to consider the impact of
topographic factors. The application effects of new data products on terrain data should be
explored to enhance research depth and accuracy.

5. Conclusions

This study conducted a comprehensive comparison and analysis of the accuracy of
five DEMs using the case study of Chongqing. The aim was to evaluate their accuracy
and applicability in mountainous urban environments. By analyzing the impact of terrain
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factors on DEM data quality and applying a random forest model for correction, we
obtained some key findings.

1. We found that spatial resolution is a major factor influencing the accuracy of DEMs.
Data with higher spatial resolution, such as ALOS PALSAR, provide greater accuracy,
especially in challenging terrains and dense vegetation areas. Additionally, we ob-
served a positive correlation between slope and DEM accuracy. As the slope increases,
the accuracy of the DEM generally decreases. The influence of aspect on DEM accu-
racy is relatively weak, but our correction method can improve the consistency of
DEMs across various aspects.

2. Vegetation cover and medium-to-large rolling hills pose significant challenges to
the accuracy of DEMs. Before and after correction, all DEMs exhibited high error
characteristics in vegetation types such as shrublands and forests. These factors
are particularly important for complex mountainous urban terrain as they affect the
quality and accuracy of DEM data.

3. In mountainous urban areas like Chongqing, ALOS PALSAR and NASADEM demon-
strate higher robustness and accuracy, especially after correction. Although the ran-
dom forest model improved the accuracy of all DEMs, the correction effect was most
significant for NASADEM, with its accuracy increasing by 74.44%. This was followed
by SRTM1 DEM (74.15%), SRTM3 DEM (72.25%), ASTER GDEM V3 (71.12%), and
ALOS PALSAR (31.15%). Therefore, selecting appropriate DEM datasets is crucial for
research in mountainous urban areas. ALOS PALSAR and NASADEM outperformed
the other datasets, mitigating the impact of terrain factors on DEM accuracy. This
resulted in a more dependable and precise terrain data framework for research in
mountainous urban areas.

In summary, these study results offer valuable insights for researching mountainous
urban terrain and provide practical guidance on selecting DEM datasets and correction
methods. Future research can explore new data products and correction methods to
improve the accuracy and applicability of DEM data in complex terrain environments.
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32. Varga, M.; Bašić, T. Accuracy validation and comparison of global digital elevation models over Croatia. Int. J. Remote Sens. 2015,
36, 170–189. [CrossRef]

33. Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical accuracy evaluation of freely available latest
high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points.
Int. J. Digit. Earth 2018, 12, 500–524. [CrossRef]

34. Chen, C.; Yang, S.; Li, Y. Accuracy assessment and correction of SRTM DEM using ICESat/GLAS data under data coregistration.
Remote Sens. 2020, 12, 3435. [CrossRef]

35. Du, P.; Bai, X.; Tan, K.; Xue, Z.; Samat, A.; Xia, J.; Li, E.; Su, H.; Liu, W. Advances of Four Machine Learning Methods for Spatial
Data Handling: A Review. J. Geovisualization Spat. Anal. 2020, 4, 13. [CrossRef]

36. Zhao, S.; Liu, J.; Cheng, W.; Zhou, C. Fusion Scheme and Implementation Based on SRTM1, ASTER GDEM V3, and AW3D30.
ISPRS Int. J. Geo-Inf. 2022, 11, 207. [CrossRef]

https://doi.org/10.1111/0031-868X.00117
https://doi.org/10.1007/s40808-019-00578-y
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1080/08120091003677553
https://doi.org/10.1109/mgrs.2014.2318895
https://doi.org/10.1016/j.cageo.2005.02.014
https://doi.org/10.30897/ijegeo.300739
https://doi.org/10.30897/ijegeo.1079851
https://doi.org/10.15233/gfz.2018.35.7
https://doi.org/10.3390/rs6054600
https://doi.org/10.1029/2005gl023423
https://doi.org/10.1109/tgrs.2011.2127483
https://doi.org/10.1080/01431161.2014.999166
https://doi.org/10.1109/tgrs.2010.2041355
https://doi.org/10.1364/oe.27.038168
https://doi.org/10.3390/rs11141721
https://doi.org/10.1016/j.rse.2020.112110
https://doi.org/10.1016/j.rse.2021.112621
https://doi.org/10.3390/rs14143380
https://doi.org/10.1080/17538947.2023.2297843
https://doi.org/10.14358/PERS.72.3.249
https://doi.org/10.1080/01431161.2014.994720
https://doi.org/10.1080/17538947.2018.1458163
https://doi.org/10.3390/rs12203435
https://doi.org/10.1007/s41651-020-00048-5
https://doi.org/10.3390/ijgi11030207


Remote Sens. 2024, 16, 1903 23 of 24

37. Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al.
Nasadem Global Elevation Model: Methods and Progress. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016; 41,
125–128. [CrossRef]

38. Buckley, S.M.; Agram, P.S.; Belz, J.E.; Crippen, R.E.; Gurrola, E.M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.M.; Neumann,
M.; et al. NASA DEM: User Guide (Technical Report January). 2020. Available online: https://lpdaac.usgs.gov/documents/592/
NASADEM_User_Guide_V1.pdf (accessed on 4 May 2024).

39. Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs vary from one to another: An evaluation of newly released Copernicus,
NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data. Int. J. Digit. Earth 2022, 15, 1149–1168.
[CrossRef]

40. Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D. Validation of the Aster Global Digital Elevation Model Version 3 over the
Conterminous United States. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016; 41, 143–148. [CrossRef]

41. Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al.
The ice, cloud, and land elevation satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ.
2017, 190, 260–273. [CrossRef]

42. Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock,
D.W.; et al. The ice, cloud, and land elevation satellite—2 mission: A global geolocated photon product derived from the advanced
topographic laser altimeter system. Remote Sens. Environ. 2019, 233, 111325. [CrossRef]

43. Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221,
247–259. [CrossRef]

44. Amy Neuenschwander, K.P.; Jelley, B.; Robbins, J. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) Algorithm Theoretical Basis
Document (ATBD); icesat2_atl08_atbd_r005_1; NASA: Greenbelt, MA, USA, 2022; Volume 2, p. 2022.

45. Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height
retrievals. Remote Sens. Environ. 2021, 264, 112571. [CrossRef]

46. Osama, N.; Shao, Z.; Ma, Y.; Yan, J.; Fan, Y.; Magdy Habib, S.; Freeshah, M. The ATL08 as a height reference for the global digital
elevation models. Geo-Spat. Inf. Sci. 2022, 27, 327–346. [CrossRef]

47. Li, B.; Xie, H.; Tong, X.; Liu, S.; Xu, Q.; Sun, Y. Extracting accurate terrain in vegetated areas from ICESat-2 data. International J.
Appl. Earth Obs. Geoinf. 2023, 117, 103200. [CrossRef]

48. Atmani, F.; Bookhagen, B.; Smith, T. Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna
Using Spaceborne Lidars. Remote Sens. 2022, 14, 2928. [CrossRef]

49. Shang, D.; Zhang, Y.; Dai, C.; Ma, Q.; Wang, Z. Extraction Strategy for ICESat-2 Elevation Control Points Based on ATL08 Product.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5705012. [CrossRef]

50. del Rosario González-Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs
for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote
Sens. Environ. 2020, 237, 111509. [CrossRef]

51. Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrogra-
phy Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [CrossRef]

52. Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s
floodplains. Sci. Data 2019, 6, 180309. [CrossRef] [PubMed]

53. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
54. He, X.; Chaney, N.W.; Schleiss, M.; Sheffield, J. Spatial downscaling of precipitation using adaptable random forests. Water Resour.

Res. 2016, 52, 8217–8237. [CrossRef]
55. Su, Y.; Guo, Q. A practical method for SRTM DEM correction over vegetated mountain areas. ISPRS J. Photogramm. Remote Sens.

2014, 87, 216–228. [CrossRef]
56. Hu, M.; Ji, S. Accuracy evaluation and improvement of common DEM in Hubei Region based on ICESat/GLAS data. Earth Sci.

Inform. 2021, 15, 221–231. [CrossRef]
57. Li, H.; Deng, Q.; Wang, L. Automatic co-registration of digital elevation models based on centroids of subwatersheds. IEEE Trans.

Geosci. Remote Sens. 2017, 55, 6639–6650. [CrossRef]
58. Liu, X.; Ran, M.; Xia, H.; Deng, M. Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in

China Using GPS Control Points. Remote Sens. 2022, 14, 2000. [CrossRef]
59. Huang, J.; Wei, L.; Chen, T.; Luo, M.; Yang, H.; Sang, Y. Evaluation of DEM Accuracy Improvement Methods Based on

Multi-Source Data Fusion in Typical Gully Areas of Loess Plateau. Sensors 2023, 23, 3878. [CrossRef] [PubMed]
60. Das, A.; Agrawal, R.; Mohan, S. Topographic correction of ALOS-PALSAR images using InSAR-derived DEM. Geocarto Int. 2014,

30, 145–153. [CrossRef]
61. Mesa-Mingorance, J.L.; Ariza-López, F.J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices

of the Past Three Decades. Remote Sens. 2020, 12, 2630. [CrossRef]
62. Ouyang, Z.; Zhou, C.; Xie, J.; Zhu, J.; Zhang, G.; Ao, M. SRTM DEM correction using ensemble machine learning algorithm.

Remote Sens. 2023, 15, 3946. [CrossRef]
63. Meadows, M.; Wilson, M. A Comparison of Machine Learning Approaches to Improve Free Topography Data for Flood Modelling.

Remote Sens. 2021, 13, 275. [CrossRef]

https://doi.org/10.5194/isprsarchives-XLI-B4-125-2016
https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf
https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf
https://doi.org/10.1080/17538947.2022.2094002
https://doi.org/10.5194/isprsarchives-XLI-B4-143-2016
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.1016/j.rse.2018.11.005
https://doi.org/10.1016/j.rse.2021.112571
https://doi.org/10.1080/10095020.2022.2087108
https://doi.org/10.1016/j.jag.2023.103200
https://doi.org/10.3390/rs14122928
https://doi.org/10.1109/tgrs.2022.3218750
https://doi.org/10.1016/j.rse.2019.111509
https://doi.org/10.1029/2019wr024873
https://doi.org/10.1038/sdata.2018.309
https://www.ncbi.nlm.nih.gov/pubmed/30644852
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/2016wr019034
https://doi.org/10.1016/j.isprsjprs.2013.11.009
https://doi.org/10.1007/s12145-021-00721-3
https://doi.org/10.1109/tgrs.2017.2731048
https://doi.org/10.3390/rs14092000
https://doi.org/10.3390/s23083878
https://www.ncbi.nlm.nih.gov/pubmed/37112219
https://doi.org/10.1080/10106049.2014.883436
https://doi.org/10.3390/rs12162630
https://doi.org/10.3390/rs15163946
https://doi.org/10.3390/rs13020275


Remote Sens. 2024, 16, 1903 24 of 24

64. Li, H.; Zhao, J. Evaluation of the newly released worldwide AW3D30 DEM over typical landforms of China using two global
DEMs and ICESat/GLAS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4430–4440. [CrossRef]

65. Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical accuracy of freely available global digital elevation models
(ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [CrossRef]

66. Li, M.; Yin, X.; Tang, B.-H.; Yang, M. Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using
ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China. Remote Sens. 2023, 15, 1952. [CrossRef]

67. Zhao, X.; Su, Y.; Hu, T.; Chen, L.; Gao, S.; Wang, R.; Jin, S.; Guo, Q. A global corrected SRTM DEM product for vegetated areas.
Remote Sens. Lett. 2018, 9, 393–402. [CrossRef]

68. Zhou, C.; Zhang, G.; Yang, Z.; Ao, M.; Liu, Z.; Zhu, J. An adaptive terrain-dependent method for SRTM DEM correction over
mountainous areas. IEEE Access 2020, 8, 130878–130887. [CrossRef]

69. Pham, H.T.; Marshall, L.; Johnson, F.; Sharma, A. A method for combining SRTM DEM and ASTER GDEM2 to improve
topography estimation in regions without reference data. Remote Sens. Environ. 2018, 210, 229–241. [CrossRef]

70. Guan, L.; Pan, H.; Zou, S.; Hu, J.; Zhu, X.; Zhou, P. The impact of horizontal errors on the accuracy of freely available Digital
Elevation Models (DEMs). Int. J. Remote Sens. 2020, 41, 7383–7399. [CrossRef]

71. Shen, X.; Zhou, C.; Zhu, J. Improving the Accuracy of TanDEM-X Digital Elevation Model Using Least Squares Collocation
Method. Remote Sens. 2023, 15, 3695. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/jstars.2018.2874361
https://doi.org/10.3390/rs12213482
https://doi.org/10.3390/rs15071952
https://doi.org/10.1080/2150704x.2018.1425560
https://doi.org/10.1109/access.2020.3009851
https://doi.org/10.1016/j.rse.2018.03.026
https://doi.org/10.1080/01431161.2020.1759840
https://doi.org/10.3390/rs15143695

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	ALOS PALSAR 
	SRTM DEM 
	NASADEM 
	ASTER GDEM V3 
	ICESat-2 ATL08 Data 
	GlobeLand30 

	Methods 
	Pre-Processing of ICESat-2 ATL08 Data 
	Assessment of Vertical Accuracy 
	Elevation Accuracy Response Considering Different Slope, Aspect, Land Cover and Landform Types 
	Random Forest Model 


	Results 
	Accuracy Evaluation of Five DEMs before and after Correction 
	Comparison of the Accuracy of Five DEMs before and after Correction 
	DEM Accuracy Analysis before and after Correction Based on Slope 
	DEM Accuracy Analysis before and after Correction Based on Aspect 
	DEM Accuracy Analysis before and after Correction Based on Land Cover Type 
	DEM Accuracy Analysis before and after Correction Based on Landform Types 

	Global and Local Analysis of Five Types of DEM before and after Correction 

	Discussion 
	The Impact of Spatial Resolution on DEM Accuracy 
	Slope and Aspect 
	Land Cover and Landform 
	The Best DEM Choice for Mountainous Cities 
	Limitations and Recommendations 

	Conclusions 
	References

