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Abstract: In remote sensing image processing, the segmentation of clouds and their shadows is a
fundamental and vital task. For cloud images, traditional deep learning methods often have weak
generalization capabilities and are prone to interference from ground objects and noise, which not
only results in poor boundary segmentation but also causes false and missed detections of small
targets. To address these issues, we proposed a multi-branch attention fusion network (MAFNet).
In the encoder section, the dual branches of ResNet50 and the Swin transformer extract features
together. A multi-branch attention fusion module (MAFM) uses positional encoding to add position
information. Additionally, multi-branch aggregation attention (MAA) in the MAFM fully fuses
the same level of deep features extracted by ResNet50 and the Swin transformer, which enhances
the boundary segmentation ability and small target detection capability. To address the challenge
of detecting small cloud and shadow targets, an information deep aggregation module (IDAM)
was introduced to perform multi-scale deep feature aggregation, which supplements high semantic
information, improving small target detection. For the problem of rough segmentation boundaries,
a recovery guided module (RGM) was designed in the decoder section, which enables the model
to effectively allocate attention to complex boundary information, enhancing the network’s focus
on boundary information. Experimental results on the Cloud and Cloud Shadow dataset, HRC-
WHU dataset, and SPARCS dataset indicate that MAFNet surpasses existing advanced semantic
segmentation techniques.

Keywords: cloud and cloud shadow; multi-branch; boundary segmentation; small target detection

1. Introduction

In remote sensing image processing, detecting clouds and their shadows is a crucial
challenge. Clouds serve as significant meteorological indicators and their variations can
reflect climate changes. Accurate cloud detection improves the accuracy of weather fore-
casts, which helps prevent disaster weather. Nevertheless, clouds and their shadows often
obscure the actual ground situation in remote sensing images, resulting in incomplete
image information. By accurately segmenting clouds and cloud shadows, these image
datasets can be interpreted and utilized more accurately.

The traditional threshold method [1–3] is suitable for cloud detection tasks in most
scenes. It can be flexibly adjusted according to different scenes and needs, which makes it
easy to optimize. However, it is easily affected by factors such as lighting and brightness,
making it less effective in complex situations. For example, Kegelmeyer used simple pixel-
based thresholds for cloud detection [4]. Despite its simplicity and feasibility, this method
can result in many omissions and misjudgments in cloud detection. Zhu et al. [1] introduced
the object-oriented function of mask (Fmask) cloud detection technique for Landsat remote
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sensing images. Although experimental results show that the Fmask method enhances
cloud detection accuracy, it still falls short in effectively detecting thin clouds.

In comparison to the conventional threshold approach, deep learning approaches
have good universality and better prediction performance, making them prevalent in cloud
detection research. Deep learning methods improve prediction performance by training
datasets and achieve end-to-end training [5,6]. The original convolutional neural network
(CNN) in deep learning is a common basic image classification method. Some CNN-based
methods [7–9] have excellent performance in image classification, laying the groundwork
for pixel-level classification tasks, namely semantic segmentation. For semantic segmen-
tation of images, Long et al. [10] introduced a fully convolutional network (FCN). This
method replaces fully connected layers with convolutional layers and has proven to be
effective at such tasks. Ronneberger et al. [11] developed a U-shaped network structure
(UNet), which introduced skip connections between encoding and decoding layers to merge
shallow and deep features. Numerous experiments have proven that UNet achieves good
results in processing small samples. Zhuo Zhao et al. [12] proposed a pyramid scene pars-
ing network (PSPNet), utilizing a pyramid pooling module (PPM) to integrate multi-scale
features, thereby obtaining more global information. Yu et al. [13] introduced a bilateral
segmentation network (BiseNet). BiseNet uses a bilateral segmentation architecture where
different branches extract different types of information, enabling the effective combination
of detailed and semantic information. HRViT [14] and HRNet [15] extract multi-scale
information from the same feature map, improving robustness and generalization capa-
bility. Chen et al. [16] proposed DeepLab, which utilizes atrous convolution to expand
the receptive field and conditional random fields (CRF) to enhance the model’s ability to
acquire detailed information.

However, characteristics of cloud images(small scale, high similarity) bring semantic
segmentation new challenges. CNN-based models often downsample features to decrease
calculations, but this can result in the loss of small-scale features [17,18]. Foreground and
background probably possess similar materials, features, and sizes, making them easy to
be mistakenly identified. Thus, global features are needed to help segment cloud images.

Transformers’ success has opened new research paths for global modelling. Trans-
formers are commonly used sequence prediction models in natural language processing.
Carion et al. [19] introduced DETR, which utilizes the encoder–decoder structure of the
transformer to model interactions within a sequence. The introduction of vision transformer
(ViT) [20] and Swin transformer [21] into computer vision has significantly impacted the
field. ViT was specifically designed for image classification. A pyramid vision transformer
(PVT) proposed by Wang et al. [22] introduced a pyramid architecture within a transformer.
Wu et al. [23] developed a convolutional vision transformer (CVT), taking the lead in
combining convolution with self-attention. This approach extracts important details by
using convolution while focusing on global information, which enhances the transformer’s
applicability in visual tasks. The Swin transformer introduced a hierarchical design and a
sliding window method, which is more efficient for processing images and more flexible
for handling multi-scale tasks.

Some CNN-based networks are limited to extracting features from the receptive field
through filters, establishing dependencies only within local areas. Transformer models
can consider the entire input sequence at once, thereby obtaining global contextual infor-
mation, but they are less adept at capturing detailed information. In the field of cloud
and cloud shadow semantic segmentation, Lu et al. [24] proposed a dual-branch network
(DBNet) that leverages both CNN and a transformer to achieve end-to-end cloud and cloud
shadow segmentation. Gu et al. [25] proposed a multi-path multi-scale attention network
(MMANet), combining CNN and a transformer to balance spatial and detailed information,
thereby helping the model extract features more effectively. Inspired by the success of
Lu et al. [24] and Gu et al. [25] in leveraging CNN and a transformer, our paper proposed a
multi-branch attention fusion network (MAFNet). We used a combination of ResNet50 and
the Swin transformer as the backbone, taking advantage of extracting local depth informa-
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tion and modeling long-range dependencies [26]. We introduced a multi-branch attention
fusion module (MAFM), and the MAFM can add location information. The multi-branch
aggregation attention (MAA) in the MAFM facilitates interaction between deep features at
the same level, which improves the segmentation of boundaries and the detection of small
objects. We used an information deep aggregation module (IDAM) to aggregate multi-scale
features, enriching high-level semantic information and enhancing the thin cloud and point
cloud detection. A recovery guided module (RGM) was used in the decoding section to
enhance the network’s attention to complex boundary features, improving the restoration of
cloud and cloud shadow boundaries. However, MAFNet combines ResNet50 and the Swin
transformer, which require a large number of parameters and have high computational
complexity, resulting in a high demand for GPUs. Therefore, MAFNet is not suitable for
processing large-scale remote sensing images. Our main contributions are as follows:

• We designed a multi-branch attention fusion module (MAFM), increasing the posi-
tional information of feature maps. The multi-branch aggregation attention (MAA) in
the MAFM fully fuses local and global information, enhancing the boundary segmen-
tation capability and the detection capability of small targets.

• To enhance the detection capability of small targets, we designed an information deep
aggregation module (IDAM), which performs multi-scale deep feature extraction,
thereby increasing the network’s sensitivity to small targets.

• In the decoder, we introduced a recovery guided module (RGM), which adjusts
the attention distribution of feature maps in the spatial dimension, enhancing the
network’s focus on boundary information and enabling finer boundary segmentation.

2. Methodology

Several structures that combine CNN and a transformer have been effectively applied
to remote sensing image processing [24,25,27,28] in the past years. The CNN is adept
at extracting local information, while the transformer excels at extracting global infor-
mation. It can better handle the segmentation of clouds and cloud shadows in complex
backgrounds to combine the advantages of both. Therefore, this paper proposed a dual-
branch architecture combining ResNet50 and the Swin transformer, as shown in Figure 1.
This architecture yields good results in detecting small targets and segmenting boundaries.
In the encoder stage, for an input image I ∈ R3×H×W , the feature map produced by the

ith layer of ResNet50 is denoted as Resi ∈ RC1
i ×

H
2i−1×

W
2i−1 , the feature map produced by

the ith layer of the Swin transformer is denoted as Transi ∈ RC2
i ×

H
2i−1×

W
2i−1 , and the feature

map produced by the ith fusion is denoted as Coni ∈ RC1
i ×

H
2i−1×

W
2i−1 . It should be noted

that i = 1, 2, 3, 4 and the channel sizes of the feature maps produced by the ith layer of
ResNet50 and the ith fusion are the same. A multi-branch attention fusion module (MAFM)
adds location information to deep feature maps at the same level and utilizes multi-branch
aggregation attention (MAA) to sufficiently aggregate deep features maps, enhancing the
precision of cloud and cloud shadow boundary segmentation and small target recognition.
An information deep aggregation module (IDAM) effectively addresses semantic gaps and
small target localization errors through multi-scale feature extraction. Based on the UNet
decoder, a recovery guided module (RGM) adaptively extracts spatial information from
shallow feature maps obtained during the fusion section, which guides our model’s focus
on boundary regions, resulting in more precise boundary segmentation.
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MAFM:Multi-branch attention fusion module

IDAM:Information deep aggregation module

RGM:Recovery guided module
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Figure 1. Multi-branch attention fusion network structure.

2.1. Backbone

It is well known that convolutional networks possess good properties such as shift,
scale, and distortion invariance, while transformers possess good properties such as dy-
namic attention, global receptive fields and superior generalization abilities [29–31]. When
it comes to feature extraction, transformers can complement the CNN, enhancing the ca-
pability of extracting information and allowing for more effective extraction of high-level
features. Therefore, we used ResNet50 and the Swin transformer as the backbone for feature
extraction. Since ResNet50 is very common, we will not elaborate further on its structure.
Next, we will focus on the Swin transformer architecture. In standard transformer blocks,
multi-head self-attention (MSA) computes global attention between each patch, which
results in a high computational load. Therefore, the standard transformer is not suited for
high-resolution tasks such as cloud and cloud shadow semantic segmentation. To mitigate
huge calculations, the Swin transformer introduces window multi-head self-attention (W-
MSA) and shifted window multi-head self-attention (SW-MSA) to replace MSA. In Swin
transformer blocks, a feature map is segmented into several windows, each of which con-
tains multiple patches. W-MSA and SW-MSA compute attention in the window while
ignoring patches outside the window, significantly reducing computational complexity.
Unlike W-MSA, which only confines attention within the window, SW-MSA still uses win-
dow offset to achieve communication between windows. Figure 2 illustrates the two types
of Swin transformer blocks: a transformer block with windows and a transformer block
with shifted windows. The two blocks always alternate in continuous Swin transformer
blocks. The formulas used in the Swin transformer blocks are as follows:

y′i = W-MSA(LN(yi−1)) + yi−1 (1)

yi = MLP(LN(y′i)) + y′i (2)

y′i+1 = SW-MSA(LN(yi)) + yi (3)

yi+1 = MLP(LN(y′i+1)) + y′i+1 (4)

where LN(·) represents the layer normalization operation, MLP(·) represents the operation
performed by the multi-layer perceptron, and yi−1, yi, and yi+1 represent the outputs
of the (i − 1)th, ith, and (i + 1)th Swin transformer blocks, respectively. Moreover, y′i
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and y′i+1 represent the intermediate values of the ith and (i + 1)th Swin transformer
blocks, respectively.
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Figure 2. Two consecutive Swin transformer blocks.

2.2. Multi-Branch Attention Fusion Module

Before fully integrating local and global features, we need to apply positional en-
coding to the three input feature maps. In transformer architectures, positional encoding
is commonly used to handle the flattened feature maps, providing each pixel with posi-
tional information. To avoid tedious repetition, we will only focus on the operations for
Res4, Con4, and Trans4. First, it is necessary to perform the flatten operation to achieve
dimensionality reduction. The specific size changes are as follows:

Res4 ∈ R
C1

4×
HW
64 ← Flatten(Res4 ∈ R

C1
4×

H
8
×

W
8 ) (5)

Con4 ∈ R
C1

4×
HW
64 ← Flatten(Con4 ∈ R

C1
4×

H
8
×

W
8 ) (6)

Trans4 ∈ R
C2

4×
HW
64 ← Flatten(Trans4 ∈ R

C2
4×

H
8
×

W
8 ) (7)

where we use ’×’ to denote size changes of feature maps. It should be noted that positional
encoding does not alter the dimensions of a feature map. The encoded Res4, Con4, and
Trans4 perform the reshape operation to restore to the sizes of their corresponding original
feature maps. The specific size changes are as follows:

X1 ∈ R
C1

4×
H
8
×

W
8 ← Reshape(Res4 ∈ R

C1
4×

HW
64 ) (8)

X2 ∈ R
C1

4×
H
8
×

W
8 ← Reshape(Con4 ∈ R

C1
4×

HW
64 ) (9)

X3 ∈ R
C2

4×
H
8
×

W
8 ← Reshape(Trans4 ∈ R

C2
4×

HW
64 ) (10)
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The obtained X1, X2, and X3 will be input into a multi-branch aggregation attention
(MAA) to fully integrate local and global features.

Multi-branch aggregation attention: To make the cloud and cloud shadow segmen-
tation boundaries fine and enhance the capability of small target detection, inspired by
the self-attention mechanism in the VIT [20], we designed a multi-branch aggregation
attention (MAA) in the multi-branch attention fusion module (MBAF). Figure 3 displays
the structure of the MAA. We apply a depthwise separable convolution with a 3× 3 kernel
size to X1, X2, and X3, generating query (Q), key (K), and value (V). Compared to a
conventional 2D convolution with a 3× 3 kernel size, the depthwise separable convolution
with a 3× 3 kernel size significantly reduces computation when generating Q, K, and V.
Notably, the common attention calculation only requires a single input feature map to yield-
ing Q, K and V, while MAA requires three different input feature maps. After convolution,
we embed two updatable vectors into K. One denoted as PW represents horizontal spatial
attention, while the other denoted as PH represents vertical spatial attention. The formulas
are as follows:

Q = DW3×3(X1) (11)

K = DW3×3(X2) + PW + PH (12)

V = DW3×3(X3) (13)

where DW3×3(·) represents a depthwise separable convolution operation with a 3× 3 kernel
size, Q ∈ RC1

4×
H
8 ×

W
8 , K ∈ RC1

4×
H
8 ×

W
8 and V ∈ RC2

4×
H
8 ×

W
8 . Notably, PW ∈ RC1

4×1×W
8

and PH ∈ RC1
4×

H
8 ×1 can update gradients during backpropagation, thereby optimizing

pixels in the W and H dimensions, which achieves a calibration effect on K. Next, we
perform rearrange operations on Q, K, and V separately to divide them into multiple heads,
obtaining MQ, MK, and MV. Then, we use MQ, MK, and MV to obtain a weighted feature
map. The formulas are as follows:

MQ = Reshape(Q) (14)

MK = Reshape(K) (15)

MV = Reshape(V) (16)

FW = So f tmax(MQ⊗MKT)⊗MV (17)

where Reshape(·) represents the arrange operation, MQ ∈ Rφ× HW
64 ×

C1
4

φ , MK ∈ Rφ× HW
64 ×

C1
4

φ ,

MV ∈ Rφ× HW
64 ×

C2
4

φ , and φ represents the number of heads in the multi-head attention.
Compared to the single-head attention mechanism, the multi-head attention mechanism
significantly improves the model’s expression and feature extraction ability by computing
multiple attention heads in parallel. ⊗ represents matrix multiplication, (·)T represents
the transpose operation, So f tmax(·) is a common normalization operation, and FW ∈

Rφ× HW
64 ×

C2
4

φ represents the weighted feature map. Next, we apply the arrange operation
and the convolution with a 1× 1 kernel size to FW to ensure its size matches that of X1. We
denote the resulting feature map as Fx. There is a learnable parameter γ is set to calibrate Fx.
Finally, we introduce a skip connection to add the calibrated Fx to X1, obtaining an output
feature map which contains high-level semantic information. Overall, MAFM improves
the localization ability of small targets by adding positional information, while the novel
multi-head attention mechanism in the MAA enhances attention to complex segmentation
boundaries, making segmentation boundaries finer. The formulas are as follows:

FR = Reshape(Fw) (18)

Fx = Conv1×1(FR) (19)
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Fout = X1 + γ× Fx (20)

where Conv1×1(·) represents the convolution with a 1× 1 kernel size, FR ∈ RC2
4×

H
8 ×

W
8 , and

Fx ∈ RC1
4×

H
8 ×

W
8 . Additionally, Fout ∈ RC1

4×
H
8 ×

W
8 represents the output of the MMA.

Q

V

MQ

MK

MV

K
DW 3×3

X1

X2

X3

γ×Fx

Fx

Reshape

 Conv 1×1

DW 3×3 Reshape

DW 3×3 Reshape

Reshape TT Softmax

PW PH

Figure 3. Multi-branch aggregation attention.

2.3. Information Deep Aggregation Module

Effectively extracting small target features for the semantic segmentation of remote
sensing images faces significant challenges. For example, DeepLab [16] uses atrous convo-
lutions to increase the receptive field, fully extracting high semantic information. However,
atrous convolutions can make the model insensitive to small-scale targets, leading to missed
or false detections. To enhance the capability of our model to recognize small targets, we
designed an information deep aggregation module (IDAM). Figure 4 shows the structure
of the IDAM.

First, the IDAM conducts multi-scale pooling operations on the input feature map
to deeply extract information. Next, each pooled feature map, after being upsampled to
match the size of the original feature map, has the input feature map added to it through
pixel-wise addition. Subsequently, the input feature map and resulting feature maps and
are concatenated, achieving deep aggregation of multi-scale features. Then, the feature map
obtained through concatenation undergoes the convolution operation with a 1× 1 kernel
size to adjust the quantity of channels to that of the input, followed by pixel-level addition
with the input. The addition operation not only avoid gradient disappearance and explosion
but also uses low-level features to help the high-level feature segmentation become more
refined. Eventually, conducting a convolution with a 1× 1 kernel size on the result from
the addition to obtain the desired quantity of channels. Overall, in the IDAM , multi-scale
feature extraction and deep integration of contextual information can help capture the
details and semantic information of small targets, effectively reducing missed and false
detections of small targets. The formulas are as follows:

Yi =

{
Upsample(Pooli( fin)) + fin , i = 1, 2, 3, 4, 5
fin , i = 6

(21)

fout = Conv1×1(Conv1×1(Concat(Y1, Y2, Y3, Y4, Y5, Y6)) + Y6) (22)
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where fin ∈ {Res4, Con4, Trans4} denotes the input of the IDAM, Pooli(·) denotes the
multi-scale pooling operation, Upsample(·) denotes the upsampling operation, Conv1×1(·)
denotes the convolution operation with a 1× 1 kernel size, Concat(·) denotes the concate-
nation operation, and fout denotes the output feature map of the IDAM.

Adapative

AvgPool

1×1

Adapative

AvgPool

2×2

Adapative

AvgPool

3×3

Adapative

AvgPool

6×6

MaxPool

3×3

CC

Conv 1×1

Conv 1×1

Upsample UpsampleUpsample Upsample Upsample

Figure 4. Information deep aggregation module.

2.4. Recovery Guided Module

Firstly, semantic dilution inevitably occurs in the decoding stage of semantic seg-
mentation networks based on encoders and decoders [32]. Secondly, clouds and cloud
shadows have textures similar to the background, irregular shapes, and indistinct target
features. Their colour depth is easily affected by factors like weather, making cloud and
cloud shadow semantic segmentation highly susceptible to background noise. The above
two issues can result in poor boundary segmentation. Inspired by the spatial attention
module (SAM) [33], based on the UNet decoder, we introduce a recovery guided module
(RGM) to enhance the capability of the segmentation boundary restoration. The RGM is
shown at the top of Figure 1.

First, we perform average pooling operations on the input in the H and W dimensions
separately and then use matrix multiplication to reconstruct the input feature map for
the first time. Next, by parallelly performing max pooling and average pooling in the
channel dimension, global features are deeply extracted from the reconstruct feature map.
After that, we concatenate the two pooled feature maps, apply convolution, and then use a
sigmoid transformation to acquire the attention weights of the first reconstructed feature
map. Subsequently, we multiply these weights pixel by pixel with the first reconstructed
feature map, enabling a second reconstruction of the feature map. Overall, RGM uses
multi-dimensional pooling to achieve secondary reconstruction on inputs acquired from
the fusion section, enhancing the network’s focus on boundary features, which improves
the boundary segmentation capability. The formulas are as follows:

F′in = Avgpool-H(Fin)⊗ Avgpool-W(Fin) (23)

F′′in = σ(Conv7×7(Concat(Avgpool-C(F′in), Maxpool-C(F′in))))⊙ F′in (24)
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Fout = F′in + F′′in (25)

where Fin ∈ {Con1, Con2} represents the input, Avgpool-H(·), Avgpool-W(·), Maxpool-
C(·), and Avgpool-C(·) represent the average pooling operation in the height dimension,
the average pooling operation in the width dimension, the max pooling operation in the
channel dimension, and the average pooling operation in the width dimension, respec-
tively. F′in denotes the first reconstructed feature map, Conv7×7(·) denotes the convolution
operation with a 7× 7 kernel size, σ(·) denotes the sigmoid transformation, ⊙ denotes the
pixel-wise multiplication operation, F′′in denotes the second reconstructed feature map, and
Fout represents the output feature map.

3. Experiments
3.1. Datasets
3.1.1. Cloud and Cloud Shadow Dataset

This dataset originates from data organized by Landsat-8 and Sentinel-2. Landsat-8
was developed collaboratively by the NASA and USGS. It is equipped with the operational
land imager (OLI) and the thermal infrared sensor (TIRS) instruments. Both of them can
obtain images with a spatial resolution of 30 m and achieve annual coverage of global
regions. The sensors carried by Sentinel-2 can capture 13 different spectral bands. The spa-
tial resolution of the images monitored by Sentinel-2 ranges from 10 m to 60 m, achieving
systematic coverage of land surfaces, coastal waters, and the entire Mediterranean region
from 56◦ latitude south to 84◦ latitude north. Since the original remote sensing images have
a high-pixel resolution and the GPU memory capacity is limited, training models directly
on the original images takes a long time. Therefore, we cropped the original images into
small images of 224× 224 pixels, obtaining 25,314 samples. According to experimental
requirements, these images were divided into 16,000 training samples, 4000 test samples,
and 5314 validation samples. The dataset includes semantic annotations for clouds, cloud
shadows, and the background to evaluate the model’s recognition capabilities in different
environments. Additionally, the dataset covers a variety of complex terrains including
plateaus, plains, hills, cities, and farmlands. Figure 5 shows several samples of the dataset.

(a) (b) (c) (d) (e)

Figure 5. Cloud and Cloud Shadow Dataset. The first row displays the cropped images which include
(a) city, (b) shrubs, (c) farmland, (d) desert, and (e) forest. The second row displays corresponding labels.

3.1.2. HRC-WHU Dataset

To evaluate the generalization capability of the model, we use the high-resolution
cloud cover validation dataset created by researchers Li et al. from Wuhan University
(HRC-WHU) [34]. This dataset consists of 150 images, each with three RGB channels.
These images have a pixel resolution of 1280× 720 and their spatial resolution varies from
0.5 to 15 m. We cropped these images into small images of 224× 224 pixels for training.
To prevent model overfitting, we also performed data augmentation by flipping images,
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rotating images, and adding noise to the images. The dataset includes complex scenes such
as snow, water, deserts, plants, and cities. Several samples of the dataset are displayed in
Figure 6

(a) (b) (c) (d) (e)

Figure 6. HRC-WHU dataset. The first row displays the cropped images which include (a) desert,
(b) ocean, (c) city, (d) ridge, and (e) snow. The second row displays corresponding labels.

3.1.3. SPARCS Dataset

The spatial procedures for automated removal of cloud and shadow (SPARCS) [35]
was used to further evaluate the generalization capability of our model. The SPARCS
dataset, derived from data collected by Landsat-8, includes 80 images of 1000× 1000 pixels.
We cropped them into small images of 256× 256 pixels, resulting in 1280 samples. Flipping
and rotating operations were conducted on the cropped images to enhance the diversity
of samples and the generalization performance of our model. After data augmentation,
the resulting images were then divided into a training set and a validation set in an
8:2 ratio. The dataset includes multiple scenes such as fields, deserts, hills, woodlands,
snow, and water. Figure 7 shows several samples of the SPARCS Dataset.

(a) (b) (c) (d) (e)

Figure 7. SPARCS Dataset. The first row displays the cropped images which include (a) mountains,
(b) forest, (c) snow, (d) wetlands, and (e) desert. The second row displays corresponding labels.

3.2. Experimental Details

The experiments were based on the PyTorch platform with an RTX 3080 GPU (NVIDIA
Corporation, Santa Clara, CA, USA). We utilized the Adam optimizer to iterate the experi-
mental parameters, with the exponential decay rate for the first moment estimate β1 set to
0.9 and for the second moment estimate β2 set to 0.999. The learning rate strategy adopted
by us is the step learning rate schedule (StepLR). The initial learning rate lrinitial was set to
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0.001 and the adjustment multiplier γ was set to 0.95. The adjustment interval, denoted by
stepsize, was set to 3. The model was trained for a total of 300 iterations, with the current
number of iterations denoted by epoch. The calculation formula of the new learning rate
that is denoted by lrnew is as follows:

lrnew = lrinitial × γ
epoch

stepsize (26)

The loss function adopted by us is the cross-entropy loss function during the training
process. Due to GPU capacity limitations, the experiments were performed with a batch
size of 16. We selected precision (P), recall (R), F1 score, pixel accuracy (PA), and mean inter-
section over union (MIoU) among many metrics to evaluate the segmentation performance
of different models. The formulas for the above metrics are as follows:

P =
TP

TP + FP
(27)

R =
TP

TP + FN
(28)

F1 = 2× P× R
P + R

(29)

PA =
∑k

i=0 Nii

∑k
i=0 ∑k

j=0 Nij
(30)

MPA =
1

k + 1

k

∑
i=0

Nii

∑k
j=0 Nij

(31)

MIoU =
1

k + 1

k

∑
i=0

Nii

(∑k
j=0 Nij + ∑k

j=0 Nji)− Nii
(32)

where TP, FP, and FN represent the number of pixels rightly identified as the foreground,
wrongly identified as the foreground, and incorrectly identified as the background, respec-
tively. k denotes the number of classes (excluding the background). Nii, Nij, and Nji denote
the number of pixels rightly identified as class i, the number of pixels of class i identified as
class j and the number of pixels of class j identified as class i, respectively.

3.3. Network Backbone Selection

Before the ablation and comparative experiments, we selected six dual-branch struc-
tures to screen the best network backbone. Table 1 displays the comparison results. Accord-
ing to the results, the optimal network backbone is our Swin + ResNet50, which achieves the
highest scores in both F1 and MIoU. Next, we analysed why Swin + ResNet50 is the best in
terms of network structure. Compared to the MSA in PVT and CVT, which calculates global
attention on the feature maps and only focuses on global information, the W-MSA (Figure 2)
in the Swin transformer calculates local attention within each window, capturing local
contextual information. Furthermore, The SW-MSA (Figure 2) facilitates communication
between windows through window offset, which takes into account global information,
so Swin is superior to PVT and CVT. ResNet50, with more network layers than ResNet34,
has deeper abstraction and analytical capabilities when processing image features, which
help it extract more high-level semantic information, so ResNet50 is superior to ResNet34.
Overall, from the perspective of both experimental results and network structures, our
Swin + ResNet50 is the optimal backbone network.
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Table 1. Selection of different backbones (bold represents the best result).

Method F1 (%) MIoU (%)

PVT + ResNet34 92.78 92.76
PVT + ResNet50 92.86 92.91
CVT + ResNet34 92.97 92.56
CVT + ResNet50 93.09 92.71
Swin + ResNet34 94.28 93.47

Swin + ResNet50 (ours) 95.18 93.67

3.4. Network Fusion Experiment

To obtain the best fusion method, we conducted comparative experiments on the
encoder fusion section. The comparison results are shown in Table 2, where Concat, +
and ⊙ denote the concatenation, the pixel-wise addition and the pixel-wise multiplication,
respectively. The optimal fusion method is the concatenation, which achieves the highest
F1 and MIoU scores. Compared to the concatenation, which preserves all feature maps,
the pixel-wise addition and multiplication merge features through pixel-wise numerical
operations, resulting in feature loss.

Table 2. Selection of fusion methods (bold represents the best result).

Method F1 (%) MIoU (%)

Concat 95.18 93.67
+ 93.70 93.13
⊙ 93.85 93.23

Next, we conducted comparative experiments to determine whether the feature maps
obtained from the fusion section should be processed by the RGM. The comparison results
are displayed in Table 3, where (i) indicates the feature map from the ith fusion stage (Coni)
is processed by the RGM and i = 1, 2, 3, 4. The optimal method is (1) + (2), which achieves
the highest F1 and MIoU scores. This is because both Con3 and Con4 are derived from
deeper layers of the network, allowing the RGM to process the two feature maps causes
the model to learn noise, which inevitably results in overfitting.

Table 3. Selection of RGM inputs (bold represents the best result).

Method F1 (%) MIoU (%)

(1) + (2) 95.18 93.67
(1) + (2) + (3) 93.69 93.03

(1) + (2) + (3) + (4) 93.42 92.90

3.5. Ablation Experiments on Cloud and Cloud Shadow Dataset

We performed ablation experiments on this dataset to better understand the structure
and function of various modules. Firstly, we used the ResNet50 with the UNet decoder
as a reference and gradually add modules to better understand their impact on model
performance. In subsequent ablation experiments, we used MIoU for evaluation. Table 4
displays the results of ablation experiments, indicating that our proposed model has the
optimal performance.

• Ablation for Swin: To enhance global modelling capabilities, we introduced a Swin
transformer based on the ResNet50 architecture. Table 4 indicates that MIoU is
0.41% higher than that of the simple ResNet50, which adequately demonstrates that it
can strengthen the performance of our model to extract global information utilizing
the Swin transformer.

• Ablation for MAFM: To improve the boundary segmentation of clouds and their
shadows, as well as the detection capability of small objects, we introduced MAFM.
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The MAFM enhances the positional information of feature maps. Its MMA allows
deep features at the same level to guide each other, fully fusing fine and rough features.
Table 4 indicates that the introduction of the MAFM improves the MIoU by 1.10%,
which demonstrates the MAFM is effective in the semantic segmentation of clouds
and their shadows.

• Ablation for IDAM: To further enhance the localization capability for small target
clouds and cloud shadows, we introduced IDAM to extract deep features at multiple
scales and supplement high semantic information, thus increasing sensitivity to small
targets. Table 4 indicates that the introduction of IDAM can improve the MIoU
by 0.57%.

• Ablation for RGM: Fine boundary segmentation has always been a major challenge
in the segmentation of clouds and their shadows. To address this issue, we added
the RGM based on the UNet decoder. The RGM can focus the model on important
information in the feature map, enhancing the model’s focus on complex boundary
features. As shown in Table 4, the introduction of the RGM improves the MIoU
by 0.39%, which sufficiently demonstrates that the RGM effectively facilitates the
refinement of segmentation boundaries.

Table 4. Ablation for different modules (bold represents the best result).

Method F1 (%) MIoU (%)

ResNet50 90.55 91.20
ResNet50 + Swin 91.20 91.61 (0.41↑)
ResNet50 + Swin + MAFM 93.09 92.71 (1.10↑)
ResNet50 + Swin + MAFM + IDAM 93.85 93.28 (0.57↑)
ResNet50 + Swin + MAFM + IDAM + RGM 95.18 93.67 (0.39↑)

More intuitively, Figure 8 shows the ablation heatmaps for two images including
clouds and their shadows. In the 4 × 5 heatmap grid, the first and third rows show
heatmaps related to clouds, while the second and fourth rows show heatmaps related to
cloud shadows. In these heatmaps, red areas acquire high attention, while blue areas require
no attention. Next, we will assess the performance of each module using the heatmaps
and the F1 score metric. Figure 8a displays the prediction situation of ResNet50, indicating
that the pure convolutional network can effectively locate cloud shadows, but it has a high
false detection rate at the edges of clouds. The segmentation results obtained using the
pure convolutional network significantly differ from the corresponding label, with the
corresponding F1 in Table 4 being only 90.55%, which is the lowest value. Due to the
fact that the pure convolutional network only has local perception ability and lacks global
modelling ability, we introduced the Swin transformer. Compared to Figure 8b, in Figure 8c,
there is a noticeable increase in the red areas of the heatmaps for clouds and cloud shadows,
and the classification results are more similar to the corresponding labels. Since the self-
attention mechanism in the Swin transformer adjusts the attention distribution of feature
maps, it allows our model to pay attention to more critical regions and enhances focus on
boundary information. The corresponding F1 in Table 4 is 91.20%, an increase of 0.65%.
Figure 8d shows the visualization heatmap with the addition of MAFM module. Compared
to Figure 8c, the cloud heatmap of the first image in Figure 8d shows red areas are more
concentrated and the prediction results closely matches the corresponding label. This is
because MAFM fully integrates local information and global information, enhancing the
boundary segmentation capabilities for clouds and their shadows and improving small
target detection. In Figure 8d, the red areas in the cloud shadow heatmaps of the first
and second images become sparser, which causes the heatmaps to differ significantly
from the corresponding labels. This is because the attention mechanism in the MAFM
weakens the attention to cloud shadows. Despite a decrease in the detection rate of cloud
shadows, the corresponding F1 in Table 4 is 93.09%, an increase of 1.89%. To improve the
ability to recognize small targets, we introduced IDAM. Compared to Figure 8d, the cloud
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shadow heatmap of the first image in Figure 8e shows finer yellow boundaries and more
concentrated red areas, which indicates that the IDAM is very sensitive to small target
cloud shadows on the segmentation boundaries, enabling the model to regain its focus on
cloud shadows. The corresponding F1 in Table 4 is 93.85%, an increase of 0.86%. However,
in Figure 8e, the red areas in the cloud heatmap of the first image become sparser. This
is because the IDAM excessively extracts information, resulting in learning noise and
worsening the cloud segmentation effect. To mitigate the impact of noise, we introduced
RGM. The RGM can enhance the weight of critical areas in the spatial dimension and reduce
noise interference, which strengthens the repair capability of segmentation boundaries.
Compared to Figure 8e, in the first and third heat maps in Figure 8f, the red regions
are more concentrated, the blue regions are reduced and the yellow boundary lines are
finer. The corresponding F1 in Table 4 is 95.18%, which is the highest among all methods,
an increase of 1.33%.

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Ablation heatmaps of cloud and cloud shadow which include (a) test image, (b) ResNet50,
(c) ResNet50 + Swin, (d) ResNet50 + Swin + MAFM, (e) ResNet50 + Swin + MAFM + IDAM,
(f) ResNet50 + Swin + MAFM + IDAM + RGM and (g) label.

3.6. Comparative Experiments on Different Datasets

In the subsequent comparative experiments, we compared our model with currently
popular models based on CNN or transformers. The network structures or feature ex-
traction methods of some networks are similar to ours. As a pure transformer model,
PVT can automatically extract and encode critical features from an input sequence. Ad-
ditionally, the PVT uses a multi-scale pyramid structure to effectively capture features at
different scales. CVT integrates features extracted by convolution into the transformer,
combining the local perceptual capability of CNN with the global perceptual capability of
a transformer. Mpvit, BiseNetV2, and DBNet use a dual branch network to integrate detail
information and semantic information, but their network structures are different. Both
HRViT and CMT are hybrid models that combine CNN and transformers. CGNet utilizes
a multi-scale contextual integration mechanism to enhance its segmentation capability
in complex scenes. UNet uses a unique encoder and decoder structure that thoroughly
fuses low-level and high-level features. SwinUNet, an UNet structure based on the Swin
transformer, utilizes the advantages of UNet and the Swin transformer. DeepLabV3 and
PSPNet use a pyramid pooling module (PPM) to capture multi-scale features, effectively
enhancing the performance of large-scale image segmentation. HRNet uses multi-scale at
the same feature level to combine fine and rough features. PAN uses a feature pyramid
attention (FPA) to enhance the efficiency and accuracy of classification. CloudNet and
CDUNet, specifically designed for cloud images, achieve notable results in detecting clouds
and their shadows. As an advanced semantic segmentation model, OCRNet pays attention
to object-level contextual information to enhance segmentation accuracy.
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3.6.1. Comparison Test on Cloud and Cloud Shadow Dataset

To fully understand the effectiveness of our model, we designed comparative experi-
ments on this dataset. Our model was compared with the current cutting-edge semantic
segmentation technologies. To ensure the objectivity of the experiment, we set the experi-
mental parameters to default values. Table 5 records the P (%), R (%), and F1 (%) of cloud
and cloud shadow categories, as well as the comprehensive metrics PA (%), MPA (%) and
MIoU (%) of the comparison models. Table 5 also provides the time of training a picture
(time) for each model as a direct measure of the model’s inference speed. In Table 5, the
P (%) of the cloud category obtained using our model is slightly lower than that obtained
using DBNet, but the R (%) and F1 (%) of the cloud category obtained using our model reach
optimal results. In cloud shadow detection, our model ranks ahead in P (%), R (%), and
F1 (%) among all models. Additionally, our model ranks ahead in PA (%) and achieves the
best results in MPA (%) and MIoU (%). Notably, although our model combines ResNet50
and the Swin transformer, which results in high memory overhead, it only takes 19.33 ms
to train a picture, ranking it as average in inference speed among all models.

Table 5. Comparison of different models on Cloud and Cloud Dataset (bold represents the best result).

Cloud Cloud Shadow

Model P (%) R (%) F1 (%) P (%) R(%) F1 (%) PA (%) MPA (%) MIoU (%) Time (ms)

Unet [11] 95.28 92.82 90.73 91.84 92.37 88.73 95.28 94.43 89.16 3.12
PVT [22] 94.90 94.36 92.02 91.63 93.14 89.34 95.63 94.48 89.83 30.10

CGNet [36] 93.90 95.47 92.60 92.76 92.62 89.38 95.72 94.61 90.08 7.42
CVT [23] 93.91 96.05 93.15 93.45 92.62 89.71 95.93 94.90 90.54 16.54

Mpvit [37] 96.62 93.55 92.04 94.04 92.47 89.84 96.02 95.65 90.77 37.48
CloudNet [38] 94.58 95.51 92.97 92.20 94.69 91.04 96.09 94.81 90.89 5.30

DeepLabV3 [39] 94.21 95.97 93.22 94.02 93.29 90.61 96.17 95.23 91.09 7.20
BiseNetv2 [40] 94.76 96.05 93.56 93.82 93.27 90.49 96.23 95.33 91.23 8.30

CMT [41] 93.15 93.99 90.85 97.46 97.06 95.85 96.25 95.26 91.26 16.52
SwinUNet [42] 94.91 96.37 93.95 94.17 92.61 90.03 96.33 95.50 91.36 16.07

HRVit [14] 92.29 94.72 91.12 97.92 96.77 95.79 96.38 95.09 91.48 57.41
PSPNet [12] 94.77 95.99 93.51 95.09 92.82 90.64 96.35 95.71 91.52 6.80

PAN [43] 95.80 95.76 93.79 95.61 92.00 90.10 96.44 96.10 91.69 9.87
HRNet [15] 94.76 96.65 94.13 94.29 93.96 91.36 97.82 95.62 91.92 41.48
DBNet [24] 96.22 95.66 93.90 92.87 95.63 92.24 97.83 95.64 92.18 29.37

OCRNet [44] 95.87 96.15 94.20 94.44 94.38 91.83 96.74 95.99 92.36 40.25
CDUNet [32] 95.04 93.67 91.44 97.94 97.39 96.40 96.84 96.05 92.57 32.15

MAFNet(ours) 96.21 96.95 95.13 95.79 95.33 93.37 97.31 96.70 93.67 19.33

Figure 9 shows the semantic segmentation images of the top six models ranked by
the MIoU metric. In Figure 9, the first three rows show the segmentation effect of an
urban scene, a forest scene and a mountain scene, respectively. Our model performs
well in the three scenes, effectively distinguishing the boundaries between clouds and
background, as well as between cloud shadows and background. This is because the RGM
in our model enhances the focus on boundary information, resulting in finer boundary
segmentation. In Table 5, our model achieves F1 of 95.13% for clouds and 93.37% for cloud
shadows, respectively, which indicates its superior performance in segmenting boundaries
of clouds and their shadows. The fourth row shows the segmentation effect of a shrub
scene. In the fourth row, the elliptical frame highlights our model’s excellent recognition
ability for cloud shadows and the two rectangular frames illustrate that our model precisely
processes boundaries between different categories. In the drought scene of the fifth row
and the canyon scene of the sixth row, the segmentation situation of our model is similar
to the corresponding label. Since MAFM promotes the interaction of deep features at the
same level and fully integrates local and global information, it enhances the boundary
segmentation capabilities for clouds and their shadows and improves small target detection,
thus achieving better classification. In Table 5, our model shows great cloud and cloud
shadow detection capabilities with P (%) reaching 96.21% for cloud detection and 95.79%
for cloud shadow detection. In the glacier scene of the seventh row and the snow scene
of the eighth row, snow and clouds, which have similar colours and shapes, can easily be
confused. Our model’s IDAM deeply aggregates multi-scale depth features, enhancing
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the recognition of small targets and preventing misidentification of snow on the ground
as clouds. Compared to other methods, our model shows great performance in boundary
repair and small target detection.

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Comparison of different models under different scenarios on Cloud and Cloud Shadow
Dataset. (a) test image. (b) PAN. (c) HRNet. (d) DBNet. (e) OCRNet. (f) CDUNet. (g) MAFNet
(ours). (h) label. Yellow circles and frames represent significant segmentation differences between
different models.

As shown in Figure 10, we also selected four scenes with severe false and missed
detections for prediction comparison. In the first forest scenes, PAN and HRNet misclassify
the background. In the second forest scenes, PAN fails to detect cloud shadows and
OCRNet misclassifies the background as cloud shadows. In the third farmland scene, PAN
has a high false detection rate for cloud shadows and HRNet has a high missed detection
rate for clouds, while only our model achieves the most refined boundary segmentation
between clouds and the background. In the fourth drought scene, PAN has a high false
detection rate for cloud shadows and HRNet shows several missed detections of small
target cloud shadows, while DBNet, OCRNet, CDUNet and our model demonstrate the
excellent localization ability for clouds and cloud shadows. PAN and HRNet contain a
large number of CNN structures, which suppresses the model’s global perception ability.
This suppression causes the model to ignore regions with high similarity, resulting in false
and missed detections of clouds and shadows. DBNet uses a dual-branch network to
extract features, which is very effective for cloud detection. In Table 5, DBNet achieves the
highest P (%) for the cloud category at 96.22%. As a CNN-based structure, OCRNet extracts
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object-level context information, but it still lacks the extraction of global features. CDUNet,
a method specifically for the cloud and cloud shadow detection, utilizes excellent detail
extraction capabilities to detect and process the distribution of cloud shadows. The P (%),
R (%) and F1 (%) of CDUNet for cloud shadows are the highest, at 97.94%, 97.39% and
96.40%, respectively. However, the inference speed of CDUNet is too slow, and the time
metric of CDUNet is 32.15 ms. In our model, MAFM and IDAM enhance the ability to detect
small targets, in addition to MAFM and RGM refining the boundary segmentation, resulting
in our model achieving optimal classification results. Compared to DBNet and CDUNet,
which combine CNN and a transformer, MAFNet exhibits significant advantages. Table 5
demonstrates the MIoU (%) of our model reaches the maximum value of 93.67%, fully
demonstrating our model’s powerful performance in detecting clouds and their shadows.

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. False detection comparison of different models on Cloud and Cloud Shadow Dataset.
(a) test images. (b) PAN. (c) HRNet. (d) DBNet. (e) OCRNet. (f) CDUNet. (g) MAFNet (ours). (h) label.
Yellow circles and frames represent significant segmentation differences between different models.

3.6.2. Generalization Experiment of HRC-WHU Dataset

Comparative experiments on this dataset were performed to test the generalization
performance of our model. The parameters in the experiments were set to default values.
The experimental results are shown in Table 6. Since we only selected two categories
(cloud and background) for the comparative experiments, most models demonstrate their
excellent performance. Compared to other networks, our model achieves the highest values
in PA (%), MPA (%), R (%), and MIoU (%), which verifies the generalization capability of
our model.

Table 6. Comparison of different models on HRC-WHU dataset (bold represents the best result).

Model PA (%) MPA (%) R (%) F1 (%) MIoU (%)

BiseNetv2 96.72 94.65 95.96 93.44 91.12
DeepLabV3 96.96 95.85 95.57 93.67 91.87

CGNet 97.05 95.47 96.13 94.01 92.02
CMT 97.27 95.49 96.71 94.55 92.26
PAN 97.22 95.71 96.39 94.37 92.47
Unet 97.29 95.59 96.68 94.58 92.61

CloudNet 97.43 96.21 96.50 94.72 93.04
HRVit 97.48 96.06 96.76 94.89 93.13
PVT 97.49 96.54 96.36 94.76 93.21

PSPNet 97.54 96.17 96.81 95.00 93.28
Mpvit 97.58 96.75 96.43 94.92 93.47

SwinUNet 97.68 96.61 96.81 95.22 93.69
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Table 6. Cont.

Model PA (%) MPA (%) R (%) F1 (%) MIoU (%)

HRNet 97.71 96.38 97.10 95.38 93.74
CVT 97.75 96.65 96.96 95.38 93.86

OCRNet 97.84 96.45 97.38 97.72 94.05
DBNet 97.96 97.06 97.36 98.01 94.43

CDUNet 98.15 97.17 97.57 96.22 94.91
MAFNet (ours) 98.59 97.81 98.19 97.13 96.10

In Figure 11, we compared the prediction images of our network with the other
five highest MIoU models. In the first row of a desert scene, each model’s classification
situation is similar to the corresponding label, while our model has the most precise
segmentation boundaries for clouds. In the second row of a floral garden scene, where
the colour difference between clouds and background is large and easy to distinguish, our
model accurately identifies the most clouds. In Table 6, the PA (%) of our model reaches
the highest value of 98.59%, demonstrating our model’s capability for cloud detection.
Accurate localization of thin clouds has always been a significant challenge in remote
sensing images. In the third row of a hill scene, where the colours of thin clouds and
the background are similar and difficult to distinguish, the other five models are notably
weaker in the localization of thin cloud boundaries and the detection of small thin cloud
targets compared to our model. In Table 6, the MPA (%) of our model reaches the highest
value of 97.81%, indicating that our model is the best to differentiate between thin clouds
and the background. This is because MAFM and RGM enhance attention to similar regions,
improving the ability to distinguish clouds. In the fourth row of a mountain scene, our
model achieves more precise boundary segmentation. In the fifth row of an urban scene,
our model has strong thin cloud localization capability. Table 6 displays our model’s R (%)
reaches the highest value of 98.19%, fully demonstrating high sensitivity of our model to
thin clouds. In the sixth row of a forest scene, there are many small cloud targets that are
prone to false and missed detection. Because MAFM and IDAM improve the recognition
ability for small targets, Our model accurately localizes the small cloud targets. In summary,
on the HRC-WHU dataset, our model outperforms other models in small target localization,
boundary segmentation, and other aspects.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Comparison of different models under different scenarios on HRC-WHU Dataset. (a) test
images. (b) HRNet. (c) CVT. (d) OCRNet. (e) DBNet. (f) CDUNet. (g) MAFNet (ours). (h) label.
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3.6.3. Generalization Experiment of SPARCS Dataset

We continued with comparative experiments using the SPARCS 7 classification dataset
to additionally verify our model’s generalization capability. Table 7 displays comparison
results. Class pixel accuracy represents the P (%) for each category. Our model achieves the
highest values in the comprehensive metrics F1 (%) and MIoU (%), indicating our model’s
advantage in the multi-class detection. In addition, the P (%) for the land category and
P (%) for the snow category reach the highest utilizing our model, which indicates that
MAFNet has high applicability in snow and land scenes. The P (%) of our model for the
cloud category is slightly lower than that of UNet, which achieves the highest P (%) for the
cloud category. The P(%) of our model for the cloud shadow category is only second to the
that of CGNet.

Table 7. Comparison of different models on the SPARCS dataset (bold represents the best result).

Class Pixel Accuracy Comprehensive Metric

Model Cloud (%) Cloud Shadow (%) Water (%) Snow (%) Land (%) Shadow over Water (%) Flood (%) F1 (%) MIoU (%)

Unet 92.75 66.40 86.52 94.59 93.46 39.51 91.03 77.62 71.58
BiseNetv2 89.65 67.76 86.21 94.24 95.79 46.98 88.79 78.56 73.27
CloudNet 88.23 68.02 88.35 94.27 96.43 41.63 89.74 78.88 73.54

CGNet 72.10 90.10 93.11 95.95 50.19 91.59 85.63 79.45 74.67
CVT 86.72 73.07 90.90 95.75 96.62 47.78 92.94 80.47 75.56
PVT 90.21 74.22 92.03 94.70 96.52 51.33 91.82 81.63 77.00

HRVit 91.29 75.99 86.31 95.08 96.56 58.00 94.16 81.75 77.34
PAN 91.22 72.99 89.29 94.39 96.25 66.59 91.50 81.64 77.35

SwinUNet 91.94 75.42 91.08 95.00 95.89 60.22 89.67 81.94 77.55
HRNet 91.35 75.58 87.56 95.61 96.60 63.19 93.16 81.98 77.78
CMT 91.33 75.56 87.61 95.59 96.69 63.17 93.19 82.09 77.90

PSPNet 91.30 74.29 90.78 94.69 96.51 55.56 94.10 82.65 78.09
Mpvit 91.38 74.98 93.32 96.59 96.80 51.31 92.34 82.73 78.24
DBNet 91.78 75.11 91.22 96.79 96.42 63.11 90.99 82.89 78.67

DeepLabV3 92.31 75.47 90.18 94.96 96.79 57.64 93.06 83.33 78.80
OCRNet 92.14 75.57 92.25 95.05 96.60 61.04 94.15 83.52 79.29
CDUNet 90.31 79.24 92.95 94.72 96.89 62.89 93.90 83.72 79.68

MAFNet (ours) 92.25 80.87 91.64 96.99 97.11 61.26 93.85 84.95 80.89

In Figure 12, we compared, the prediction images of our network with the other five
highest MIoU models. The first line displays the classification situation of the cloud, cloud
shadow, water, land and shadow over water categories. Few omissions and misjudgments
appears at the real segmentation boundaries between the five categories if our model is
used. In Table 7, our model’s F1 (%) reaches the highest value of 84.95%, demonstrating
its excellent ability to repair boundaries between different categories. The second and
third lines display the classification situation of the snow, water, cloud, cloud shadow
and land categories. Our model detects more clouds and their shadows and exhibits the
strongest detection capabilities for the snow and land categories. In Table 7, the P (%) of our
model for the snow and land category are the highest at 96.99% and 97.11%,respectively,
indicating our model’s excellent discrimination ability for the snow and land categories.
The fourth line displays the classification situation for the cloud, water, land, and flood
categories. Our model demonstrates superior performance in detecting small cloud targets.
The fifth line displays the classification situation for the cloud, cloud shadow and land
categories. Since the colour of the original image is dark, non-cloud shadows are easily
misclassified as cloud shadows. However, our model exhibits excellent discrimination
capability for cloud shadows, with no large-scale omissions and misjudgments for the
cloud shadow category. As shown in Table 7, the P (%) of our model for the cloud shadow
reaches 80.87% and ranks second. The sixth row demonstrates the classification situation
for the cloud, cloud shadow, water, and land categories. Our model demonstrates the most
precise boundary segmentation for the water and land categories. In summary, our model
performs better than other networks in cloud and cloud shadow detection, small target
detection, and boundary repair. This is mainly because combining CNN with a transformer
effectively integrates global and detailed information, MAFM and RGM contribute to more
refined segmentation boundaries, and MAFM and IDAM enhance the network’s focus on
small targets.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12. Comparison of different models under different scenarios on SPARCS Dataset. (a) test
images. (b) Mpvit. (c) DBNet. (d) DeepLabV3. (e) OCRNet. (f) CDUNet. (g) MAFNet (ours). (h) label.

4. Conclusions

This paper proposed a multi-branch attention fusion network (MAFNet). In the
encoder section, we utilized the advantages of ResNet50 in extracting detailed information
and Swin transformer in extracting global information. To achieve full fusion of the
local information and global information, we designed a multi-branch attention fusion
module (MAFM), thereby enhancing boundary segmentation and improving small target
detection. To enhance the detection accuracy of small targets, we introduced an information
deep aggregation module (IDAM), which extracts multi-scale deep features and performs
deep aggregation, increasing the sensitivity to small targets. To make the segmentation
boundaries finer, we designed a recover guided module (RGM) in the decoder section to
adjust the attention distribution of the network on feature maps, enhancing the network’s
focus on boundary information. Experiments display that the MAFNet outperforms other
networks on Cloud and Cloud Shadow dataset, HRC-WHU dataset, and SPARCS dataset.
In the future, we will apply the network to other remote sensing images, making the
network widely applicable for cloud detection. Additionally, we will attempt to make the
network more lightweight for less memory overhead.
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