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Abstract: Infrared (IR) small target detection in sky scenes is crucial for aerospace, border security,
and atmospheric monitoring. Most current works are typically designed for generalized IR scenes,
which may not be optimal for the specific scenario of sky backgrounds, particularly for detecting
small and dim targets at long ranges. In these scenarios, the presence of heavy clouds usually causes
significant false alarms due to factors such as strong edges, streaks, large undulations, and isolated
floating clouds. To address these challenges, we propose an infrared dim and small target detection
algorithm based on morphological filtering with dual-structure elements. First, we design directional
dual-structure element morphological filters, which enhance the grayscale difference between the
target and the background in various directions, thus highlighting the region of interest. The grayscale
difference is then normalized in each direction to mitigate the interference of false alarms in complex
cloud backgrounds. Second, we employ a dynamic scale awareness strategy, effectively preventing
the loss of small targets near cloud edges. We enhance the target features by multiplying and fusing
the local response values in all directions, which is followed by threshold segmentation to achieve
target detection results. Experimental results demonstrate that our method achieves strong detection
performance across various complex cloud backgrounds. Notably, it outperforms other state-of-
the-art methods in detecting targets with a low signal-to-clutter ratio (MSCR ≤ 2). Furthermore,
the algorithm does not rely on specific parameter settings and is suitable for parallel processing in
real-time systems.

Keywords: dual-structure elements; local Z-score normalization; cloud clutter suppression; infrared
small target detection

1. Introduction

With the growing demand for long-range target detection in both civil and military
fields, and the limitations of radar detection in long-range detection scenarios, optoelec-
tronic detection is receiving increasing attention [1–3]. Infrared (IR) target detection tech-
nology has been widely used in road monitoring, pest control, industrial instrument fault
location, search and rescue due to its nature of being unaffected by obstacles, weather, time
and other external factors [4–6].

IR small target detection in sky scenes plays a critical role in aerospace, border security,
and atmospheric environment monitoring. Unlike the ground scenes, the sky background
has a relatively fixed clutter morphology and changes slowly over time with observations
significantly influenced by meteorological conditions. The observation interference of the
ground background mainly comes from human factors such as occlusion and environment.
Therefore, the difficulty and focus of small target detection in the sky background lies
in the background suppression technique and the capture of high-speed moving targets,
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whereas detection in ground backgrounds often emphasizes target identification and scene
understanding. However, for long-distance detection, small targets in the sky background
tend to move slowly in the time domain, exhibit small imaging sizes, and they have
very low signal-to-noise ratios. The information in the time dimension is challenging
to utilize effectively, making single-frame-based infrared dim and small target detection
methods crucial.

Research on small targets has developed rapidly over the past few years, but the
literature on weak target detection in cloud backgrounds is scarce. High-performance
detection methods for small targets in cloud backgrounds based on single frames are
especially needed. For example, Liu et al. [7] described the sky scene as a fractal random
field and simulated the infrared small target signal using the generalized Gaussian intensity
model, which has a better suppression effect on the complex cloud background, although
its real-time performance is limited. Wu et al. [8] proposed a fast detection algorithm based
on saliency and scale space, which improves real-time performance. However, the detection
rate needs enhancement for targets with a low signal-to-noise ratio. Deng et al. [9] proposed
a weighted local difference measure (WLDM)-based scheme for detecting small targets
against various complex cloudy–sky backgrounds. Other works [10–14] detect moving
targets in cloud backgrounds by incorporating time-domain information. While there
are fewer methods specifically focusing on small target detection in cloud backgrounds,
numerous methods exist for generalized complex backgrounds, ground–air backgrounds,
and sea–sky backgrounds. These methods provide valuable insights for small target
detection amidst heavy clouds.

Single-frame-based methods can be classified into model-driven and data-driven ap-
proaches. Despite the great potential of data-driven methods, the substantial distribution
shift between different datasets and real-world scenarios, along with the lack of large-scale
datasets, hinders their practical deployment [15–23]. Consequently, model-driven methods
still hold significant value in deployment. Among the model-driven approaches, those
based on the infrared patch-image model (IPI) [24] and the infrared tensor model (IPT) [25]
are hot research topics. Although these methods perform well in complex ground scenes,
they lack significant advantages when dealing with cloud backgrounds characterized by
simple morphological structures. Moreover, their time-consuming optimization limits their
potential for engineering applications. Efficient approaches such LCM [26] and MPCM [27]
rely on target characterization. These methods are straightforward and effective when the
target is bright and are widely used in engineering. However, their performance declines
noticeably as the target grayscale decreases. Several studies have shown that incorporating
prior knowledge constraints into the model for specific scenarios can yield significant per-
formance gains [28,29], indicating the value of this theory. In addition, background-based
modeling is a classical and crucial method for small target detection in sky backgrounds.
The core of the background-based modeling approach is to extract background features
that distinguish the target, thereby suppressing the background [30–32]. Designing these
features manually is very challenging for complex backgrounds, and achieving a gener-
alized background is highly impractical. Despite these challenges, modeling background
features remains an effective and important technique for cloud backgrounds.

To effectively suppress false alarms and highlight weak targets in complex cloud
backgrounds, it is crucial to fully utilize the spatial properties of target and background
clutter signals. In the infrared small target detection problem under complex sky back-
grounds, bright and sparse cloud edges, isolated small cloud clusters near weak targets,
and undulating thick cloud tips all pose significant challenges. To address these issues, we
propose a novel and effective detection strategy called Multi-scale and Multidirectional
Local Z-score Top-hat (MMDLTH). The main contributions of this work are as follows:

1. We introduce center-invariant rotating dual-structure elements as background sup-
pression templates, which can effectively distinguish small targets from cloud back-
grounds with multiple morphological structures.
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2. We employ a dynamically aware neighborhood scaling strategy to address the limita-
tions of traditional methods that use predefined consistent neighborhood sizes, which
often result in the loss of targets near clouds.

3. We use a sub-region local normalization method similar to the Z-score to transform
the global absolute grayscale difference to a relative grayscale difference. This method
effectively suppresses anisotropic and high-variation clouds, highlighting extremely
weak targets in homogeneous regions. Compared to traditional linear normalization
methods, it is more robust in assessing background clutter complexity and is less
affected by outliers, reducing their interference with algorithm performance.

The rest of the paper is organized as follows: Section 2 briefly reviews related work
on small target detection. Section 3 details the proposed methodology. Section 4 presents
experiments demonstrating the validity of our approach. Section 5 discusses future work.
Section 6 concludes the paper. Additional experimental results are provided in Appendix A
and Appendix B.

2. Related Work

In this section, we briefly review single-frame-based model-driven methods for in-
frared small target detection, all of which are instructive for the method proposed in this
paper. There are three main approaches for single-frame-based methods: (1) methods based
on background modeling, (2) methods based on target saliency, and (3) methods based on
the assumptions of low-rank background and sparse targets.

2.1. Methods Based on Background Modeling

Constructing an appropriate background model is very challenging when dealing
with complex backgrounds. Single-frame methods, although scarce, are crucial for sky
backgrounds. Morphology-based methods are classical approaches [30,32]. The NWTH
method [33] enhances the difference between target and background regions using a hollow
structure to improve the performance. MRWTH [34] incorporates directional information to
more accurately characterize various homogeneous features of the target. Sun et al. utilized
wavelet transform to decompose the image into time and frequency domains to extract
features, addressing sea and sky background modeling [35]. The difference of Gaussian
(DOG) filter predicts the background to detect points of interest [36]. Kernel regression is
used to estimate complex clutter backgrounds, offering better performance improvement
for complex scenes [31]. Generally, background feature-based methods are simple, efficient,
and valuable for engineering applications. Most current research focuses on generalized
scenes, often overlooking these methods due to perceived ineffectiveness for complex
scenes. However, for sky scenes, their performance can be comparable to other methods.

2.2. Methods Based on Target Saliency

Han et al. [37] conducted an in-depth study on the LCM model and proposed a
multiscale detection algorithm utilizing Relative Local Contrast Measurement (RLCM),
which can simultaneously suppress all types of interference. Subsequently, the TLLCM and
SLCM models were developed to enhance performance by incorporating shape information
of the target and fusing weighting functions [38,39]. To avoid the “expansion effect” caused
by multiscale technology, Lv et al. [40] proposed a novel algorithm (NSM), which performs
well in detecting weak point targets (MSCR < 1). Wu et al. [41] used a fixed scale to detect
small targets of different sizes (DNGM). Cui et al. [42] introduced a weighting function into
the TLLCM framework (WTLLCM), which can adapt to different scale targets. Mahdi [43]
distinguished between targets and false alarms by analyzing the variance of different
layers of neighboring patch-images (VARD). Chen et al. [44]. proposed an improved
fuzzy C-means (IFCM) clustering framework that fuses multiple features (IFCM-MF) to
suppress backgrounds, effectively handling heterogeneous backgrounds and arbitrary
noise. Du et al. [45] primarily used local contrast and homogeneity features to detect small
targets (HWLCM), which supports parallel computing. Both STLDM and STLCM construct



Remote Sens. 2024, 16, 2343 4 of 29

3D feature models in the spatio-temporal domain, which, while not strictly single-frame
methods, are useful for feature extraction [46,47].

2.3. Methods Based on Low Rank and Sparse Assumption

The infrared patch-image (IPI) model is constructed based on the low-rank assumption,
exploiting the non-local self-correlation of the infrared background [24]. Its advantage lies
in not needing to preset the size and shape of the target, making it highly adaptable to
different scenes. However, its iterative process affects real-time performance. Additionally,
due to the limitations of sparse characterization, dim targets are often over-shrunk, or
strong cloud edges remain in the target image. To further suppress false alarms caused
by strong edges, both WIPI and NIPPS introduce priors to improve the accuracy of model
constraints, enhancing false alarm suppression [48–50]. In addition, the construction of
the IPI model can destroy the local self-correlation of the image, which can lead to the loss
of prior knowledge. To address this, Dai et al. proposed the Reweighted Infrared Patch-
Tensor (RIPT) model, which can utilize both local and non-local priors simultaneously
and appropriately [25]. The PSTNN model with a joint weighted L1 norm showed great
performance and significantly reduced the complexity of the ADMM solver [51]. Guan et al.
introduced a local contrast energy feature into the IPT framework to weight the target
tensor, forming a novel detection model via non-convex tensor rank surrogate joint local
contrast energy (NTRS) [52]. Kong et al. focused on a more reasonable representation of
the background rank and robustness against noise, introducing multi-modal t-SVD and
tensor fibered nuclear norm based on the Log operator (LogTFNN) [53]. A novel Group
IPT (GIPT) model was proposed using different weights to constrain and differentiate line
structures from point structures [54]. Additionally, algorithms for dim and small infrared
target detection that fuse time–space domain features with the IPT model have also gained
attention recently [14,55–59].

3. Proposed Method

The flowchart of the proposed algorithm is shown in Figure 1. We propose an infrared
dim and small target detection algorithm based on morphological filtering with dual-
structure elements. First, we design a directional dual-structure element morphological
filter. Subsequently, we perform multidirectional morphological filtering and local Z-score
normalization at each scale. Finally, we dynamically identify the scale with the highest
response in each direction and maximize the enhancement of the target by fusing the results
from all directions.

Figure 1. Flowchart of the proposed MMDLTH method.
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3.1. Background Suppression Based on Multidirectional Dual-Structure Elements Top Hat

Compared to ground backgrounds, cloud backgrounds are relatively homogeneous in
morphology and slow in intensity change despite their complexity. We aim to use a simpler
and more effective method to suppress the cloud background and highlight weak targets,
ensuring that the algorithm remains robust.

The classical Top-hat filter is based on a single structural element, which is designed
according to the size and shape of the target to be detected. This means the Top-hat filter
primarily considers the characteristics of small targets. When dealing with homogeneous
backgrounds, it can effectively highlight bright targets smaller than the structural element.
For our dual-structure elements, an additional structural element is introduced to further
characterize background features and obtain additional prior knowledge. This approach
improves the local contrast between the target and the background but does not account
for the orientation differences in background features.

Cloud edges and thin strips of cloud can easily form false alarms due to their large
gradient changes from their neighbors. However, unlike targets, which vary from their
neighbors in all directions, these cloud features differ from the background only in certain
directions and remain continuous in at least one direction. Therefore, we use directional
dual-structure elements as the basic components of the morphological filter for better
background clutter suppression.

Figure 2 illustrates the dual-structure elements of size 3 in 8 directions. The first is
a rectangular structural element representing the target region ST and marked in orange.
Its size is related to the size of the target to be detected. The second structural element
represents the background region centered on ST and is marked in dark gray. We split the
background structural element into 8 directions SBi(i = 1, 2, . . . , 8). The size of SBi in the
i-th direction is the same as that of ST. We then perform eight filtering operations, which
are each based on a dual-structure element in a different direction.

Figure 2. Illustration of dual-structure elements in eight directions.

The Top-hat method [30] predicts the background using an opening operation, which
first erodes the original image and then dilates it with the same structural element. In our
scheme, a closing operation is used to predict the background. For each direction, SBi is
used for dilation and (ST + SBi) is used for erosion. Therefore, the predicted backgrounds
in different directions are as follows:

fBi (x, y) = (I(x, y)⊕ SBi)⊖ (ST + SBi), i = 1, 2, . . . , 8, (1)

where I is the original infrared image, ST is the first structural element denoting the target
region, and SBi is the second structural element representing the i-th background of ST.
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fBi (x, y) is the predicted background using the i-th dual-structure element. The operation
symbol “⊕” refers to the dilation operation in morphological processing, which takes the
maximum value of the region covered by the structural element. Similarly, the symbol “⊖”
refers to the erosion operation, which takes the minimum value of the region of the defined
structural element.

Due to the characteristics of infrared radiation, small infrared targets will only be
local maxima, meaning that infrared targets are bright targets. Therefore, the predicted
background value at the location of the small target should be less than the original image,
so the result of background suppression can be expressed as shown below:

fTi (x, y) = I(x, y)− fBi (x, y), i = 1, 2, . . . , 8, (2)

where fTi (x, y) identifies the bright regions in the i-th direction, i.e., the candidate regions
for infrared small targets. Given a non-negative constraint, the infrared small target
detection model based on multi-directional dual-structure elements morphological filtering
can be defined as follows:

MDTHi(x, y) = I(x, y)− min
(

fBi (x, y), I(x, y)
)
, i = 1, 2, . . . , 8. (3)

3.2. Target Enhancement Based on Multi-Directional Fusion

With the morphological filtering based on dual-structure elements, we have obtained
results for background suppression in eight directions. False alarms from structures such
as strip clouds and cloud edges have been suppressed as much as possible. However,
if the target is weak enough, it can still be drowned out by complex background clutter.
Therefore, additional features need to be extracted to further enhance the targets.

Since the responses of the target are strong in all directions, while the backgrounds are
not, we can fuse them by multiplication. The formula is defined as follows:

FI(x, y) =
8

∏
i=1

MDTHi(x, y). (4)

The target will be significantly enhanced by the fusion, as shown in Figure 3. It
can be seen that the cloud background suppression and small target enhancement based
on multidirectional dual-structure elements lead to promising detection performance.
However, there are still some challenging cases that need further improvement.

3.3. Local Z-Score Normalization

In the sky background, clouds are major contributors to false alarms because they
are the main radiation source aside from the target. Despite suppressing false alarms that
are inconsistent with the target’s directional characteristics, anisotropic cloud false alarms
remain. In regions with large areas of cloud, there are significant grayscale variations;
the difference in grayscale between peaks and adjacent areas is much greater than in
regions without clouds. In the operations described above, when the target’s grayscale
is low and the cloud clutter is strong, it is difficult to highlight the target using absolute
grayscale features.

As shown in Figure 4, the blue box on the left contains a very weak target in a
uniform background, which exhibits noticeable grayscale variation from the surrounding
background and is identifiable as a target to the human eye. In contrast, the red box on the
right contains a false alarm in non-homogeneous clouds, which appears as a continuous
background to the human eye. However, based on the numerical values obtained from the
calculation of absolute grayscale features, these false alarms are more likely to be identified
as candidate targets. We need a more effective strategy for calculating feature differences to
avoid interference from the undulating background region.
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Figure 3. Fusion of multidirectional background suppression result.

Figure 4. Schematic representation of the grayscale distribution of a weak target and clouds.

To address this problem, relative grayscale differences should be introduced in place
of absolute grayscale differences. Z-score normalization is employed, and the formula for
Z-score normalization is defined as follows:

Z =
X − u

σ
, (5)

where X is the raw data, u is the mean value of the raw data X, and σ is the standard
deviation of X. Z is the normalized data, i.e., the normalized score. It indicates the
position of the raw data relative to the mean value, which is expressed as a multiple of the
standard deviation. Applied to the task in this paper, u and σ are statistical values from the
background region, and X is the value of the target region.
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This approach is consistent with the definition of the signal-to-clutter ratio in IR target
detection. With this normalization, the Z-score value of the target in Figure 4 will be greater
than that of the cloud false alarms. This method allows different data to be unified under
the same scale for easy comparison and further analysis, and it better resists the interference
of outliers compared to other normalization methods.

Z-score normalization is further applied to subregions to more accurately describe
the complexity of the background. This comes from the fact that if the variance of the
background around the target localization is calculated directly, it does not correctly reflect
the fluctuations of the background in some specific cases; even the normalization step leads
to the missing of some targets. As shown in Figure 5, the variance value is larger when the
target is at a boundary position. However, the subregions are homogeneous, indicating
that the model is inaccurate.

Figure 5. Schematic representation of local variance in local Z-score.

To address this, local Z-score normalization of subregions is introduced to improve
the model’s accuracy. The values of u and σ will be computed in each of the 8 subregions.
In our model, the mean value u of the subregion background is replaced with the predicted
value of the background fBi (x, y) from morphological filtering. The subregion’s range
of σBi and u are consistent with the second structure element SBi in the background
suppression described above. The improved local MDTHi, named the MDLTHi model,
can be expressed as follows:

MDLTHi(x, y) =
I(x, y)− min((I(x, y)⊕ SBi)⊖ (ST + SBi), I(x, y))

σBi + ε
, i = 1, 2, . . . , 8, (6)

where σBi denotes the standard deviation of the i-th direction background as shown in
Figure 5, and ε is set to 0.5 according to the experiments. This formula provides the residual
results after normalization in each direction, where the differences between the target and
background are normalized for each direction.

This grayscale difference quantification method can more accurately reflect the local
significance of the target. The local multidirectional standard deviation of subregions
can more reasonably describe background fluctuations, preventing excessive background
suppression due to large variances at cloud edges. In homogeneous backgrounds, the
standard deviation σBi tends to be small or even less than 1. As a result, the computed local
difference is closer to, or even larger than, the grayscale differences themselves. This means
that when the background variance is minimal, the target can be greatly enhanced. This is
a critical step in combating interference from heavy clouds.

As can be seen in Figure 6, the mean signal-to-clutter ratio (MSCR), as defined in
Section 4.1, is 0.469. The grayscale value difference between the target and its neighbors
is less than 10, as shown in the bottom right subfigure. In fact, experiments show that its
grayscale difference is 5, making it difficult to detect with the human eye and not very
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prominent in the local region. This frequently ignored target can be detected correctly by our
method. Moreover, as shown in Figure 7, the extremely dim target is highlighted, and heavy
clouds are well suppressed compared to the results without local Z-score normalization.

Figure 6. A dim target and 3D maps of the neighborhood size of 40 × 40 and 20 × 20 centered locally
on it.

Figure 7. Three-dimensional (3D) display before and after cloud suppression by local Z-score
normalization.

3.4. Dynamic Awareness of Scale Strategy

Multiscale models are widely used for IR target detection, focusing on identifying the
scale layer where the characteristic feature response is maximized. However, the maximum
characteristic response of the target in different directions does not always come from the
same scale of filters. As shown in Figure 5, when the target is close to the cloud boundary,
the background area around the target in 8 directions does not present a high response at
the same scale. In such cases, if the target is dim enough, it is likely to be missed.

If the target boundary is 7 pixels from the cloud boundary and a structural element size
of 9 is used, the response in that direction will be low. However, if the size of the structural
elements is 3, the target features are preserved and highly responsive in that direction. This
indicates that the response of the target in different directions may come from different
scales. Therefore, we dynamically determine the reasonable scales in different directions to
solve this problem. According to the Society of Photo-Optical Instrumentation Engineers
(SPIE), the size of a small infrared target is less than 9 × 9 [1]. We use four different sizes of
filter templates: 3 × 3, 5 × 5, 7 × 7, and 9 × 9, respectively. Thus, the dynamic multiscale
model MMDLTHi can be expressed as

MMDLTHi(x, y) = max
k∈{3,5,7,9}

MDLTHi,k(x, y), i = 1, 2, . . . , 8, (7)
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where k represents the side length of the square template. As analyzed above, there is a
high probability that the targets will have a high response in all directions. The final fusion
result of responses in 8 directions is given similarly to Equation (4), and can be expressed as

FM(x, y) =
8

∏
i=1

MMDLTHi(x, y). (8)

3.5. Threshold Segmentation

After the above set of operations, the dim targets are greatly enhanced. Experimen-
tally, we verified that the target can be extracted by simply using adaptive threshold
segmentation. The threshold th can be expressed as

th = uFM + ω · σFM, (9)

where uFM and σFM denote the mean value and the standard deviation of FM(x, y). ω is
a factor ranging from 1 to 60 based on the experiments. The operator symbol “·” stands
for multiplication.

4. Experimental Results and Analysis

In this section, we present the details of our experiments. We first introduce the
evaluation metrics, baseline methods, and datasets. To illustrate the performance of the
algorithm, we demonstrate its capability for background suppression and target detection
across different scenarios, varying signal-to-clutter ratios of targets, and the presence of
multiple targets.

4.1. Evaluation Metrics

To illustrate the performance of our proposed algorithm, the signal-to-clutter ratio
(SCR) is introduced to represent the difficulty of small target detection. It is defined
as follows:

SCR =
|ut − ub|

σb
, (10)

where ut and ub denote the mean value of the target region and its surrounding background
region, as shown in Figure 8, and σb is the standard deviation of the background. Here, the
SCR is calculated using the mean value of the target region; hence, it is also known as the
mean signal-to-clutter ratio (MSCR). Similarly, we can measure the ratio of the intensity of
the peak signal of the target to the background clutter by replacing the mean value ut with
the maximum value pt in the target region in Equation (10), which is known as the peak
signal-to-clutter ratio (PSCR).

Figure 8. Schematic of the target and its local background.
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In our experiments, the values of a and b are the height and width of the external
rectangle of the infrared small targets. d is the computational range representing the
background region, which is centered and symmetric to the target region. To facilitate
comparative experiments, we set d = 20, which is the same as in paper [49]. In general, the
higher the signal-to-clutter ratio, the easier it is to detect the target.

The metrics MSCR and PSCR reflect the difficulty of detecting the target. The ability to
enhance small and dim targets and suppress complex backgrounds directly determines the
overall performance of the detection algorithm. Therefore, the gain of the signal-to-clutter
ratio (SCRG) and the background suppression factor (BSF) are common evaluation metrics
used. SCRG is defined as follows:

SCRG =
MSCRout

MSCRin
, (11)

where the suffixes “in” and “out” represent the original image and the processed image,
respectively. The definition of BSF is as follows:

BSF =
σin
σout

, (12)

where σin and σout represent the standard deviations of the background before and after
the detection algorithm, respectively. Higher SCRG and BSF values are desired, as they
indicate better detection capability.

To further evaluate the performance of the proposed method, the receiver operating
characteristic (ROC) curve is used as a key evaluation metric. It shows the relationship
between the true positive rate (TPR) and the false positive rate (FPR). The TPR and FPR in
infrared small target detection are defined as follows:

TPR =
number of true targets detected

number of true targets
, (13)

FPR =
number of false pixels detected

number of images
. (14)

According to the definition of the ROC curve, the closer the curve is to the upper left corner,
the better the algorithm performs.

4.2. Baseline Methods

To validate the effectiveness of the proposed method, we compare it against several
classical methods. Firstly, the classical Top-hat method is used as a baseline. Our approach
is inspired by MNWTH [33] and MDRTH [34], and our experimental results will be com-
pared with these methods. Among methods based on human visual systems, LCM [26]
and MCPM [27] are highly representative; thus, both are included in our comparison.
Additionally, methods based on low-rank and sparse decomposition can be categorized
into matrix decomposition and tensor decomposition. In this work, IPI [24] and NRAM [49]
are used as baseline methods for low-rank matrix factorization. Furthermore, we select
RIPT [25] and PSTNN [51] as baseline methods, which are widely followed by researchers.
The parameters used for these baseline algorithms during experimentation are provided in
Table 1.

Table 1. Detailed parameter settings for the ten methods.

Algorithm Name Parameter Settings

TOPHAT Window size: 9 × 9, Window shape: disk

MNWTH Window shape: disk, S(∆B) = S(Bb) = 12, S(Bi) = 5

MDRTH Window shape: disk, S(∆B) = S(Bb) = 12, S(Bi) = 5
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Table 1. Cont.

Algorithm Name Parameter Settings

LCM Size of u: 3 × 3, 5 × 5, 7 × 7, 9 × 9

MPCM N = 3, 5, 7, 9

IPI Sliding step:10, Patch size: 50 × 50, L = 1, λ = L/
√

min(m, n)

NRAM Sliding step:10, Patch size: 50 × 50, L = 1, λ = L/
√

min(m, n)

RIPT
Sliding step:10, Patch size: 30 × 30,

λ = L/
√

min(m, n, v), h = 1, ε = 10−7

PSTNN
Sliding step: 40 , Patch size: 40 × 40, L = 1,

λ = 0.6/
√

max(m, n) ∗ v, ε = 10−7

PROPOSED Window size: 3 × 3, 5 × 5, 7 × 7, 9 × 9

4.3. Datasets

Our experimental data include two parts. The first part is the public dataset of
SIRST [17], which contains 315 images of sky scenes required for our experiments. Both
homogeneous and non-homogeneous backgrounds are included. According to the litera-
ture [34], the maximum resolution of the target is 78 pixels, and the minimum is 4 pixels. A
few images contain more than two targets.

To further validate the algorithm’s detection ability in low SCR and complex back-
grounds, we also use real backgrounds superimposed on simulated targets to obtain
additional datasets. A detailed description of the data is presented in Table 2. The MSCR
and PSCR of targets for each dataset are shown in Figure 9. For clarity, each curve is
arranged in order of MSCR from smallest to largest, making the MSCR and PSCR ranges of
targets in each sequence clearly visible. Except for the public SIRST dataset, the MSCR of
small targets in our datasets are all lower.

Table 2. Detailed description of the six real sequences.

Sequences Length Image Size Target Size Description

Seq1 315 – 3 × 3 ∼ 9 × 9 Images in SIRST dataset. Targets with different characteristics and backgrounds for
different scenarios.

Seq2 76 256 × 320 3 × 3 Sequential images of scene 1 with a complex background structure and a target moving in
the background.

Seq3 71 256 × 320 3 × 3 Sequential images of scene 2 with a complex background structure and a target moving in
the background.

Seq4 90 256 × 320 3 × 3 Cloudy backgrounds for different scenes, with larger but more gentle clouds.

Seq5 80 256 × 320 3 × 3 Cloudy background for different scenes with more undulating clouds and weaker targets.

Seq6 80 256 × 320 3 × 3 Cloud background for different scenes with more types of cloud morphology structures
and weaker targets.

Let pt be the peak value of the target, and let ut and ub be the mean values of the target
and background regions, respectively. For small targets, the relationship pt > ut > ub
typically holds in most cases, leading to PSCR being greater than MSCR. However, when
the target is extremely weak, the relationship pt > ub > ut may occur, causing MSCR to be
less than PSCR when taking the absolute value in Equation (10). As shown in Figure 9, most
of the data we used contain very weak targets, highlighting the challenge for detection.
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Figure 9. The PSCR and MSCR of the six tested sequences are presented in Table 2. (a–f) correspond
to Seq1–Seq6, respectively.

4.4. Qualitative Evaluation
4.4.1. Robustness to Various Scenes

First, we verified the background suppression ability in different kinds of sky scenes.
In Figures 10 and 11, we show the results after background suppression and target en-
hancement operations in uniform and complex backgrounds, respectively. Both sets of
image data are from the SIRST dataset. In Figure 10, it can be seen that the targets under a
uniform sky background without clouds in the ten images are relatively more significant,
and the background clutter interference is not serious. Therefore, the backgrounds are
better suppressed, and the targets are highlighted by the method proposed in this paper.

In Figure 11, we use another 10 sets of data to illustrate the robustness of our algorithm
in complex sky scenes. These data are also from the SIRST dataset. As shown in the 3D
display of the original images in columns (b) and (e), compared to the previous set of data
in Figure 10, the overall undulation of the image background is larger, the prominence of
the targets is greatly diminished, and some targets are even submerged in the background.
However, as seen in (c) and (f), our method still maintains excellent background suppres-
sion, and the targets are greatly highlighted, making it easier to separate the background
from the targets subsequently.
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Figure 10. Background suppression ability on homogenized sky backgrounds. (a) Original infrared
images (1)–(5); (b) 3D display of original images; (c) 3D display of background suppression results;
(d) original infrared images (6)–(10); (e) 3D display of original images; (f) 3D display of background
suppression results.
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Figure 11. Background suppression ability on complex sky backgrounds with heavy clouds.
(a) Original infrared images (1)–(5); (b) 3D display of original image; (c) 3D display of background
suppression results; (d) original infrared images (6)–(10); (e) 3D display of original image; (f) 3D
display of background suppression results.
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4.4.2. Robustness to Multiple Targets

If multiple targets exist simultaneously, the detection becomes more challenging due
to the uncertainty of target information, such as different sizes, signal-to-noise ratios, and
shapes. This can lead to the loss of targets if the priors are not fully utilized. In Figure 12,
10 sets of examples with multiple targets are presented. The number of targets in the images
varies from two to six, and the locations of the targets are either close together or scattered.

In Figure 12, we see examples with thin or thick clouds in the sky backgrounds.
Despite these challenging conditions, all the targets are highlighted simultaneously, and
the background is well suppressed. Our method shows good adaptability for scenes with
multiple targets.

Targets

4

Targets

Targets

Targets

Targets

Targets

Targets

Targets

Targets

Targets
Targets

Targets

TargetsTargets

Targets

Targets

Targets

Targets

Targets

Targes

Targets
Targets

Targets

TargetsTargets

Targets

Targets

Targets

Targets

Targets

(1)

(2)

(3)

(4)

(6)

(7)

(8)

(9)

(a) (b) (c) (d) (e) (f)

(5) (10)

Figure 12. Background suppression ability on sky backgrounds with the presence of multiple targets.
(a) Original infrared image (1)–(5); (b) 3D display of original image; (c) 3D display of background
suppression results; (d) original infrared image (6)–(10); (e) 3D display of original image; (f) 3D
display of background suppression results.

4.4.3. Robustness to Low SCR Targets

To verify the detection performance of the algorithms for weaker targets, we add
simulated weak targets in different real sky backgrounds. These targets follow Gaussian
distributions. Figures 13 and 14 show the experimental results for targets with MSCR be-
tween 1 and 2 and MSCR below 1, respectively. The MSCR is calculated using Equation (10),
where the neighboring background sizes of the targets take the value of d = 20 according
to the IPI method.

Since the targets are very weak, they are difficult to discriminate in the original image
or its 3D display. Therefore, the local regions of the targets are shown in the lower right
corner of the original image in (a) and (d) with a corresponding local 3D display of the
targets in the lower left corner. The targets are all located in the upper left corner of the
image. As seen in the experimental results (c) and (f), the targets are greatly emphasized
with a sufficiently large difference from the background.
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Figure 13. Background suppression ability on sky backgrounds with low SCR (1 < MSCR < 2, d = 20)
of small targets. (a) Original infrared image; (b) 3D display of original image; (c) 3D display of
background suppression results; (d) original infrared image; (e) 3D display of original image; (f) 3D
display of background suppression results.
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Figure 14. Background suppression ability on sky backgrounds with low SCR (MSCR < 1, d = 20)
of small targets. (a) Original infrared image; (b) 3D display of original image; (c) 3D display of
background suppression results; (d) original infrared image; (e) 3D display of original image; (f) 3D
display of background suppression results.



Remote Sens. 2024, 16, 2343 17 of 29

4.4.4. Visual Comparison with Baselines

To further visualize the performance of all the competing methods, we present the
detection results of four representative infrared images compared to the baseline methods.
The four original images are shown in Figure 15 along with their 3D images. The target
locations and MSCR values are also noted in the figure. As seen from the 3D representations
of the original images, the targets are difficult to recognize even with the human eye. The
MSCRs of the four targets are all less than 3.

Figure 16 presents the experimental results of the proposed method compared with
nine baseline methods. The red circle indicates the target’s location. If the red circle is not
marked, it signifies that the target was not detected. The results demonstrate that for the
four images with complex backgrounds and weak targets, the proposed algorithm main-
tains robust detection performance. It exhibits strong background suppression capabilities,
effectively distinguishing target features from background features.

Figure 15. Four representative infrared images with low SCR targets.

4.5. Quantitative Evaluation

In addition to visually demonstrating the robustness of our method through single-
frame detection results of targets with different backgrounds and signal-to-noise ratios, we
also provide quantitative evaluations using the signal-to-clutter gain (SCRG), background
suppression factor (BSF), and ROC curves. Table 3 lists the experimental results for all
10 methods across sequences 1–6. Note that INF (i.e., infinity) indicates that the entire
background is completely suppressed to zero.

Table 3. SCRG and BSF of the six real sequences.

Methods Metrics Seq1 Seq2 Seq 3 Seq4 Seq5 Seq6

TOPHAT SCRG 13.20 9.11 9.35 5.73 8.78 2.15
BSF 19.89 2.98 5.63 136.75 4.55 5.88

MNWTH SCRG 35.10 29.45 20.13 31.78 19.33 7.09
BSF 21.78 9.45 11.36 8.12 3.95 4.66

MRWTH SCRG INF INF INF INF INF INF
BSF 2456.42 4982.77 4211.22 7209.91 1221.30 588.21

LCM SCRG 1.75 1.33 1.98 0.45 1.77 2.03
BSF 0.78 1.56 0.87 1.36 0.27 0.91

MPCM SCRG 188.76 365.90 91.31 56.68 45.89 77.98
BSF 29.25 56.33 31.88 39.62 41.13 25.34

IPI SCRG INF INF INF INF INF INF
BSF 1235.79 58.34 78.46 133.55 27.90 29.45

NRAM SCRG INF – – – – –
BSF 3998.45 – – – – –
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Table 3. Cont.

Methods Metrics Seq1 Seq2 Seq 3 Seq4 Seq5 Seq6

RIPT SCRG INF INF INF INF INF INF
BSF INF INF INF INF INF INF

PSTNN SCRG INF INF INF INF INF INF
BSF INF INF INF INF INF INF

PROPOSED SCRG INF INF INF INF INF INF
BSF 82,457.33 61,225.76 59,987.24 87,734.01 39,128.50 96,342.12

Figure 16. The detection results of the proposed algorithm and 9 baseline methods of images from
Figure 15.



Remote Sens. 2024, 16, 2343 19 of 29

For the methods IPI, RIPT, and PSTNN, the local background regional variance and
global background variance of the target are 0 or infinitesimally small, so the value of
SCRG is denoted as INF. Similarly, for the method proposed in this paper, the target’s local
background variance is also generally infinitesimal, resulting in SCRG values recorded as
INF. The NRAM method frequently resulted in target loss during experiments with no
false alarms present; in these cases, the outputs were all 0, and therefore, no statistics were
available for SCRG and BSF. The BSF value of our method is notably high, demonstrating
the algorithm’s ability to distinguish features of weak targets from clutter. As shown
in Table 3, compared with other methods, the proposed method exhibits an excellent
enhancement of weak targets and suppression of complex cloud backgrounds.

In addition, we plot the ROC curves for the six test sequences. As shown in Figure 17,
the curves for our method are consistently close to the upper left corner across all six
representative sequences, indicating superior overall performance.

Figure 17. ROC curves of different algorithms in Table 2. (a–f) correspond to Seq1–Seq6, respectively.
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5. Discussion

Infrared weak target detection methods are a significant research area that has garnered
much attention. The detection performance of many methods diminishes significantly
under strong clutter interference. This is mainly because the complex background feature
information is not sufficiently utilized, and the target information is poor and not well
enhanced. However, we note that robust small target detection methods in generalized
scenarios are difficult to achieve. In practical applications, there is an urgent demand
for high-accuracy small target detection methods tailored to specific scenarios. Only by
leveraging specific scenario priors of the background clutter and small targets can stable
performance be achieved. Therefore, we explore and focus on the most common sky
background, aiming to propose a framework for small target detection that can be applied
in real-world scenarios with robust detection performance.

Mainstream state-of-the-art methods based on low-rank and sparse assumptions
effectively detect very small targets but face challenges in practical application due to
iterative optimization and parameter selection. Target saliency methods have potential
but struggle at low signal-to-clutter ratios. Filtering-based methods are simple and easy to
implement but perform poorly in complex scenarios.

To balance performance metrics, we draw on both target saliency-based and filtering-
based ideas. We use morphological filtering methods suitable for parallel computation to
achieve background suppression in multiple directions and at multiple scales. Then, we
normalize the global differences using the local standard deviation, which is similar to
computing local contrast in HSV. Finally, we fuse the local differences of the entire image
to maximize target enhancement, leveraging the feature that the target has significant
differences from the local background in all directions.

Compared with the baseline algorithms, we discuss the performance of different
methods under four conditions.

As image 1 shown in Figure 18, when the background is homogeneous and the
absolute grayscale of the target varies widely, all methods can detect the target well with
few false alarms.

As image 2 shown in Figure 18, when the background is homogeneous and the
absolute grayscale difference of the target is small, especially when the target grayscale is
lower than the background variance, making it difficult to see with the human eye, only
our method and the MDRTH method maintain stable performance.

As image 3 shown in Figure 18, when the background is complex with heavy clouds
and the target is prominent in the local region, the performance of IPI, NRAM, RIPT, PSTNN,
MDRTH, and our method is promising. However, TOPHAT and MNWTH struggle to
suppress the complex background well due to the simplicity of their models. LCM and
MPCM enhance the contrast of the target but introduce some false alarms with similar
characteristics to the target, weakening detection performance.

As image 4 shown in Figure 18, when the background is complex with heavy clouds
and the absolute grayscale difference of the target is small, TOPHAT, MNWTH, LCM, and
MPCM perform unsatisfactorily. Methods based on the low-rank assumption are affected
by convergence conditions, leading to a significant increase in algorithm time consumption.
Since MDRTH uses global differences, the small absolute grayscale differences of the
targets result in many highly responsive false alarms in undulating background areas.
Promisingly, our method performs a normalization operation and thus still performs well
in such extremely complex scenes.

Although our method significantly outperforms other baseline methods in detecting
small targets under complex sky backgrounds in the test datasets, it has some limitations.
One of the more noticeable drawbacks is the loss of some edge pixels from the target after
segmentation. This problem can be mitigated by increasing the size of the filtering template,
but doing so also leads to an increase in false alarms, which is an issue worth optimizing in
the future. Additionally, whether the method can be applied to other types of backgrounds
warrants further exploration.
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Figure 18. Four representative images with different features.

6. Conclusions

In long-range infrared detection, targets are imaged weakly, especially in complex sky
scenes where drastic cloud changes make dim target detection more difficult. To effectively
solve the problems of cloud clutter suppression and infrared small target detection, we
introduce a center-invariant rotating dual-structure element template as a background sup-
pression template, which can effectively distinguish small targets from cloud backgrounds
with multiple morphological structures. Meanwhile, we use a dynamically-aware neighbor-
hood scaling strategy to address the problem of using predefined consistent neighborhood
sizes in traditional methods, which tends to result in the loss of targets close to clouds.
Finally, a subregion normalization method similar to Z-score is used to transform the global
absolute grayscale difference into a more accurate subdivided relative grayscale difference,
which can effectively suppress the isotropic anisotropy and high-variation clouds while
highlighting some very weak targets in the smoothing region. Experimental results show
that our method performs well in different SCR. In particular, when MSCR < 3, it has
fewer false alarms than other tested methods for the same detection rate. Our method has
higher background suppression and target enhancement capabilities and has the potential
of parallel computing, which is promising to be applied in practice in the future.
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Appendix A

As shown in Figures A1 and A2, these are the detection results for 16 images not
shown in the main body of this paper.

Figure A1. The detection results of the first group of 8 images.
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Figure A2. The detection results of the second group of 8 images.
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Appendix B

To further illustrate the capability of our method, Figures A3–A5 give the detection
results of nine images not shown in the main text, while the MSCR of the target is labeled
in the figures. Figures A6–A8 show the results of the 3D map of the proposed algorithm in
this paper compared to other baseline algorithms.

Figure A3. The detection results of images (1) to (3).

Figure A4. The detection results of images (4) to (6).
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Figure A5. The detection results of images (7) to (9).

Figure A6. The 3D map of the proposed algorithm and 9 baseline methods for images (1) to (3).



Remote Sens. 2024, 16, 2343 26 of 29

Figure A7. The 3D map of the proposed algorithm and 9 baseline methods for images (4) to (6).

Figure A8. The 3D map of the proposed algorithm and 9 baseline methods for images (7) to (9).
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