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Abstract: The inversion of forest height using the RVoG (Random Volume over Ground) model is
susceptible to overestimation or underestimation due to three error sources, propagating inaccuracies
to the estimated forest height. Furthermore, variations in the height and density of the scenario could
impact how well the RVoG three-stage inversion performs. This work utilizes the L-band single-
baseline full polarization interferometric dataset as its basis. It optimally applies the CRITIC (Criteria
Importance Through Intercriteria Correlation) method to the first stage of a three-stage process.
This approach aims to overcome the issues mentioned above and enhance the accuracy of forest
parameter estimation. A CRITIC weighted least squares temporal decoherence iterative algorithm
is also proposed for the characteristics of the spaceborne data, in combination with the temporal
decoherence algorithm of previous research. The proposed approach is tested and applied to both
simulated and actual data. The optimization approach is first assessed using four simulated datasets
that simulate coniferous forests with different densities and heights. The preliminary findings suggest
that optimizing the complex coherence fitting process through the weighted least squares method
enhances the accuracy of ground phase estimation and, consequently, improves the accuracy of the
three-stage approach for inverting forest height. The ground phase estimation results for low forest
height consistently remained within 0.02 rad, with a root mean square error (RMSE) below 0.05 rad,
and no saturation occurred with increasing forest density. The enhanced algorithm outperforms the
traditional technique in terms of accuracy in ground phase estimation. Subsequently, the optimized
approach is applied to ALOS-2 spaceborne data, proving more successful than the conventional
algorithm in reducing the RMSE of forest height. The findings illustrate the method’s superior
inversion performance, obtaining an accuracy exceeding 80% in both the test and validation sets.
The validation set’s RMSE is approximately 2.5 m, and the mean absolute error (MAE) is within
2 m. Moreover, it is observed that to counteract the uncertainty in temporal decoherence induced by
climate change, a larger temporal baseline necessitates a larger random motion compensation term
and phase offset term.

Keywords: PolInSAR; RVoG; forest height; three-stage model; ground phase; temporal decorrelation

1. Introduction

Forests play a pivotal role as a critical component of terrestrial ecosystems. Achieving
accurate estimates of the carbon content in forests is crucial for initiatives to enhance
forest quality. A fundamental metric in this endeavor is the precise inversion of forest
height, indicating vegetation structure [1]. Widespread remote sensing applications include
monitoring large-scale regional changes in forests, ice caps, mountains, oceans, and other
environments. According to a literature review, optical remote sensing is better suited to
capturing the horizontal structure of forest stands. Information on vegetation index, texture,
and spectral responses is leveraged to facilitate modeling optical remote sensing data [2,3].
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Jung, H et al. used different vegetation indexes to assess the vegetation activity in the
Korean Peninsula, and the results of the study showed that different vegetation indexes can
be utilized to monitor vegetation drought changes in different months [4]. While Lidar can
capture the vertical structure of forest stands, its widespread application is hindered by high
costs and limited point cloud utilization, rendering it impractical for extensive regions [5].
In evaluating the vertical structure of forest areas, synthetic aperture radar (SAR) proves
more suitable than optical remote sensing and LiDAR. Despite weather conditions, SAR’s
ability to penetrate forests consistently is valuable for regions with frequent rainfall and
snowfall [6,7]. Furthermore, SAR’s capability to work with different frequency bands,
multiple polarizations, and multiple baselines supports the inversion of forest vertical
structure parameters. Currently, polarimetric SAR (PolSAR), interferometric SAR (InSAR),
polarization interferometric SAR (PolInSAR), and tomographic SAR (TomoSAR) are among
the most advanced earth observation methods employed globally.

One commonly employed tool for forest height inversion with SAR is the RVoG model
within the single-baseline PolInSAR approach. By integrating the capabilities of PolSAR
with InSAR, PolInSAR facilitates the extraction of vertical position information from var-
ious scatterers by creating interferograms across different polarization channels [8]. The
essence of the RVoG model for forest height inversion lies in utilizing different polarizations
to differentiate the central phase of the forest canopy from the ground phase. Subsequently,
the interferometric phase is employed to estimate vegetation height [9]. This process has
three predominant error sources in PolInSAR: non-volume decoherence, the ground phase
error, and the residual ground component in the polarization channel [10]. For L-band data,
the residual ground-to-volume scattering ratio (GVR) in the volume polarization channel
is considered to be 0 [11,12]. Non-volume decoherence encompasses geometric, tempo-
ral, and signal-to-noise ratio decoherence of interferometric echoes [13], with temporal
decoherence being the primary contributor, as geometric decoherence and signal-to-noise
decoherence can be corrected during SAR pre-processing [14]. The primary error sources
in forest height inversion from spaceborne data include ground phase estimate errors and
temporal decoherence, particularly for spaceborne SAR data with long-time baselines.
Temporal decoherence, observed in both L-band and P-band, increases with increasing
temporal baseline, leading to reduced inversion precision, overestimated forest height, and
diminished observational coherence [15]. A study by [15] revealed a mean forest height
overestimation of 6 m with a 30-day temporal baseline, with potential additional local
biases. Due to the L-band’s shorter wavelength than the P-band, its coherence is more
affected by temporal decoherence than that of the P-band [15,16]. In scenarios involving
airborne SAR or simulated data, temporal decoherence can be effectively considered zero,
given the shorter time baseline. For spaceborne SAR data, improved temporal decoher-
ence methods have been proposed. Yongxin Zhang et al. showed that datasets with a
long spatial baseline and long wavelength have a positive effect on the inversion of forest
height [17]. Mao et al. [18]. suggested a multiple iteration temporal decoherence approach
for the spaceborne ALOS-2 data due to its short baseline and tiny vertical wavenumber.
Even if the model’s error for tree height is only 15%, the model only uses one vertical wave
number and more iteration parameters throughout the entire map, which is devoid of
topographical detail information. Rula Sa et al. [19] improved Mao’s model by introducing
an extinction coefficient that varies with height as well as constructing a new complex
coherence using polarization decomposition to reduce excessive ground contributions in
sparse vegetation. However, the algorithm lacks a validation set to test the accuracy of
the empirical parameters. The resulting tree height map is severely fragmented when this
empirical parameter is applied to the entire area mapping process.

Controlling the impact of ground phase errors on the inversion process is crucial,
as these errors propagate to other forest parameters. [20] presented a method for error
assessment at each stage of their three-stage analysis, focusing on ground phase errors
induced by geometric parameters of the coherence region in the RVoG model. Geometric
factors, such as the phase difference between the long axis and the unit circle or the narrow-
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to-width ratio of the coherence ellipse, are influenced by surface features. Consequently,
various factors, including the vertical structure of the forest (forest height and density),
affect the inversion of the ground phase. Dense forests reduce dihedral reflections in the
coherence phase, which results in lower interferometric phase separation, then the shape
of the coherence region is closer to a circle, resulting in a low accuracy of ground phase
estimation in the three-stage process [21]. In the case of electromagnetic waves, signals
attenuate as they enter the forest canopy, and the RVoG model uses an extinction coefficient
to represent signal attenuation. An inverse correlation exists between the penetration depth
and the extinction coefficient, where signal attenuation increases with forest density, leading
to a decrease in penetration depth [22]. In InSAR, the penetration depth is affected by the
canopy and ground phase difference, consequently influencing the offsets in the ground
phase center with the degree of electromagnetic wave attenuation. We hypothesize that
improving the accuracy of ground phase estimates in the three-stage model will enhance
the performance of the forest height mode.

One of our contributions involves introducing an optimization algorithm to enhance
ground phase estimation accuracy. Utilizing the PolSARpro SIM toolbox within the ESA
PolSARpro v6.0.2 software for simulation experiments [23], we point out the significance
of ground phases in forest parameter inversion and the impact of associated errors. To opti-
mize the conventional three-stage inversion process, our approach incorporates the CRITIC
weighted least squares algorithm and the coherence optimization algorithm. Subsequently,
it applies various sets of simulated datasets representing forest height–density scenarios
to estimate forest height. This study significantly contributes to enhancing the iterative
algorithm for temporal decoherence. It delves into the impact of temporal decoherence
on the forest height retrieval process in PolInSAR inversion. This study uses two sets of
ALOS2 PALSAR2 spaceborne L-band data with different temporal baselines to validate the
algorithm’s feasibility on real datasets.

2. Datasets and Pre-Processing
2.1. Simulated Dataset

The efficacy of the improved algorithm was investigated in this study under scenarios
of total forest density, along with an assessment of the influence of changing forest densities
and heights on the PolInSAR forest height inversion process. Simulated datasets were
generated using the PolSARproSim module within the PolSARpro v6.0.2 software to
mitigate the impact of temporal decoherence and other variables such as terrain and
climate. This toolbox creates ideal polarization interferometric images without issues like
temporal, signal-to-noise ratio decoherence, and co-registration errors [24,25].

After reviewing the information, it was identified that the main tree species in the
real dataset was coniferous forest, with a percentage of forest stock volume of 78.7%, so
coniferous forest was also selected for the simulation dataset. In addition, the average
forest height in the study area is less than 25 m. The simulation datasets of 10 m, 14 m,
18 m, and 22 m were chosen to represent the whole study area. It is also possible to explore
the effect of different heights on the ground phase. Nine kinds of forest densities were
established for each forest height, spanning from 100 stems/ha to 900 stems/ha. The scenes
of the simulated dataset are presented in Figure A1, and all simulated datasets are based
on airborne L-band fully polarization interferometric SAR with identical parameters, as
detailed in Table 1.

Table 1. Specific parameters of the simulated dataset.

Platform Configuration Parameter Forest/Ground Surface Configuration Parameter

Platform Altitude 3000 m Tree Species Pine
Horizontal/Vertical Baseline 10 m, 1 m Surface Properties/Ground Moisture Content 0, 0

Incidence Angle 45◦ Azimuth/Range Ground Slope 0, 0
Centre Frequency 1.3 GHZ Tree Height 10 m\14 m\18 m\22 m
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2.2. The ALOS-2 PALSAR-2 Dataset
2.2.1. Overview of the Study Area

The research site is the Saihanba Forest Farm in Chengde City, Hebei Province, China.
The Saihanba Forest Farm actively engages in afforestation and forest management carbon
sink initiatives, which are approved under the Chinese Certified Emission Reduction
(CCER) scheme [26]. In addition to actively responding to the United Nations Forest
Instrument, the Saihanba Forest Farm keeps looking into new approaches to high-quality
forestry development. Thus, mapping and monitoring the Saihanba Forest Farm requires
interferometric synthetic aperture radar (SAR). In Figure 1, the black image represents the
Saihanba Forest Farm range’s 95% coverage, while the red line delineates its boundary. The
average slope of the region is 9.86◦. Figure A2 presents the detailed elevation and slope
information for the study area.
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plots exhibited an excellent normal distribution without any exceptional values. 

Figure 1. China’s Saihanba Mechanical Forest and Research Area is in Weichang County, Hebei
Province. The red line region delineates the entire extent of the Sehamba Mechanical Forest. The
pink area on the map corresponds to Weichang County. The black quadrilateral area denotes the SAR
image coverage, exemplified using the 11 July 2020 image, while the blue triangles on the images
signify the sample plots utilized in the field survey.

2.2.2. Forest Inventory Data

Custom programming generated the ALOS-2 dataset between July and September
2020. Due to the unpredictability and uncertainty of the customized data throughout this
period, a real-time field survey of the research area was not feasible in 2020. Consequently,
in August 2021, during the boreal temperate forest’s growing season, the team conducted
a field survey of the Saihanba Mechanical Forest (Figure A3). 72 sample plots of 0.06 ha
were established during the field investigation, all located in coniferous forests. We also
ensured the sample plots (blue triangles) were evenly distributed throughout the study
area to enhance representativeness. Figure 2 displays the sample plots’ Q-Q plots and
normal distribution histograms, indicating an average tree height of 15.61 m. The sample
plots exhibited an excellent normal distribution without any exceptional values.

2.2.3. SAR Data and Pre-Processing

The JAXA (Japan Aerospace and Exploration Agency) Land Observing Satellite mis-
sion ALOS-2 [6] aims to provide data support for environmental monitoring, mapping,
disaster monitoring, and other applications. As a successor to ALOS, ALOS-2 incorporates
the PALSAR-2 sensor for day and night observation of the study area. The utilization of
fully polarized L-band (1.27 GHz) Synthetic Aperture Radar (SAR) data not only enhances
capability but also reduces the satellite revisit period from 46 days to 14 days [27]. However,
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its interferometric ability is still constrained by the temporal baseline, leading to lower
coherence affecting forest parameter estimation.
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This study selected three images from the ALOS-2 collection. The specific SAR data,
including acquisition time, incidence angle, spatial resolution, and center slant distance,
are presented in Table 2. The dataset consists of L-band single-look complex (SLC) Level 1.1
SAR products in StripMap mode with full polarization. The spatial resolution of the image
in the slant–azimuth SAR coordinate system is 2.86 m × 2.64 m (slant range × azimuth).

Table 2. Specific parameters of the ALOS-2 PALSAR-2 datasets.

Acquisition SAR
Dates Level Polarization Incidence Angle Spatial Resolution

(Rg × Az)
Center Range

(SLC)

11 July 2020 L1.1 CEOS Full (Quad.) 27.8054◦ 2.86 m × 2.64 m 710,741.6730 m
25 July 2020 L1.1 CEOS Full (Quad.) 27.8029◦ 2.86 m × 2.64 m 710,741.6730 m

19 September 2020 L1.1 CEOS Full (Quad.) 27.7975◦ 2.86 m × 2.64 m 710,741.6730 m

This study employed three images, detailed in Table 3, consisting of two sets of
interferometric pairs with temporal baselines of 14 and 90 days, respectively. PolSARpro
v6.0.2 software and GAMMA software (http://www.gamma-rs.ch) were used for SAR pre-
processing and geocoding, respectively. Major pre-processing steps included radiometric
calibration, multilooking, speckle filtering, atmospheric ionospheric filtering, and complex
coherence generation. Multilooking in the SAR image involved nine azimuth and four range
directions, with 7 × 7 LEE refined speckle filtering applied to eliminate coherence speckle
noise [28]. The dimensions of the multi-looking image were 2098 pixels × 2900 pixels, and
the ground range resolution is range × azimuth = 25.31 m × 23.76 m. Figure 3 showed the
pre-processed interferometric image and the DEM image of the study area.

Table 3. Details for two pairs of interferometric pairs.

Master Image Slave Image Mean kz (rad/m) Temporal Baseline (Day)

11 July 2020 25 July 2020 0.0144 14
11 July 2020 19 September 2020 0.0201 70

http://www.gamma-rs.ch
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Figure 3. The ALOS-2 PALSAR-2 fully polarization image of 11 July 2020 is an example. (a) displays
a Pauli-based RGB map where |HH − VV| is represented in red, |HV| in green, and |HH + VV| in
blue. (b) The interferogram removal of atmospheric-ionospheric effects. (c) A DEM image in SAR
coordinates with 30 m × 30 m resolution SRTM-DEM.

2.2.4. Weather Condition

In this study, the Weichang County weather station, which records weather data every
three hours, provided the weather information. Figure 4 illustrates the weather conditions
for the day of the three image acquisitions and the three preceding days. There was no
precipitation on 11 July, 25 July, or the three days before. While 19 September had no rain,
16 September experienced some rainfall. Wind conditions influenced the movement of
leaves and branches throughout the image acquisition periods.
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Figure 4. The day of the three SAR images and the preceding three days depict the weather conditions.
(A) represents temperature variation, with the middle line indicating the average temperature and the
lower and upper lines denoting the minimum and maximum temperatures, respectively. (B) illustrates
the average wind speed, and (C) depicts precipitation. (D) shows the relative humidity.

Additionally, there was no snowfall on the days corresponding to the three images and
the preceding days. On 19 September, the lowest temperature recorded was 2.1 ◦C, while
the highest temperature differential recorded was 20 ◦C. No sub-freezing temperatures
were recorded during the monitoring times, indicating non-freezing scenarios [29].
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3. The CRITIC-ITDRvoG Algorithm
3.1. The RVoG Method

Cloude et al. resolved the RVoG model into a straight-line structure (Equation (1))
and divided the forest structure into a uniformly dense volume layer and a ground layer.
They used the property that complex coherences with different polarizations exhibit a
straight-line distribution in the complex unit circle. However, it is noteworthy that they did
not consider noise decoherence, temporal decoherence, or other decoherence assumptions.

γ(w) = ejϕground [γv + Lw(1 − γv)], Lw =
m(w)

1 + m(w)
, (1)

γv = 2σ
2σ+jkz cos θ ·

exp(2σhv/ cos θ+jkzhv)−1
exp(2σhv/ cos θ)−1 , kz =

4πB⊥
λRsinθ , (2)

where γv denotes the pure volume complex coherence of the forest canopy, m(w) represents
the ground-to-volume scattering ratio for a specific polarization mode, Lw signifies the
ground scattering ratio, and ϕground corresponds to the ground phase. Additionally, σ
denotes the vegetation extinction coefficient, indicating the energy attenuation of electro-
magnetic waves caused by the canopy structure, θ embodies the angle of incidence of the
master image radar, and kz denotes the vertical wavenumber.

The three-stage approach divides the quantitative inversion process of vegetation
parameters into three stages (Figure 5): (a) employing the ordinary least squares method
to fit straight lines in the complex unit circle for each complex coherence, with a refined
explanation provided in the subsequent section; (b) determining the actual ground phase
through the intersection of the fitted straight line with the complex unit circle; and (c)
inverting forest heights and extinction coefficients by constructing a height–extinction
coefficient two-dimensional lookup table LUT(hv, σ) following Equation (2). The pure
volume layer γv is a polarization-independent function that only varies with the vegetation
height hv and extinction coefficient σ [11]. The available research suggests that the extinction
coefficient does not significantly impact the inversion error. Thus, for this study, the
assumption is made that the extinction coefficient is 0.5 dB/m. Under this assumption,
the forest height inversion process is represented by Equation (3), leading to improved
inversion efficiency. Identifying the minimum value between the assumed pure volume
coherence γV−assu and the pure volume coherence established through the lookup table
determines the corresponding forest height.

height = argmin
(height)

{∣∣∣γV−assue−iϕground − LUT(hv, σ = 0.4)
∣∣∣}, (3)

Vertical baseline, slant range, wavelength, and radar incidence angle influence the
vertical wavenumber kz. Many studies have indicated that the theoretical model of forest
scattering is sensitive to terrain slope, mainly due to terrain fluctuations in the Saihanba
area. A higher terrain slope corresponds to increased inversion errors in forest height. Our
study incorporates the local incidence angle ϕ0 to correct the vertical wavenumber in the
forest scattering mode to correct terrain effects. Figure 6 illustrates the two sets of ALOS-2
vertical wavenumbers after correction.

θ0 = θ − α, (4)

kz0 =
4πB⊥

λRsinθ0
, (5)

3.2. The CRITIC-WLS Algorithm

This study utilizes the CRITIC method to ascertain the weight assigned to each co-
herence in the first stage of the traditional three-stage algorithm. In this study, n complex
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coherences fit straight lines, where the real and imaginary parts of the complex coherences
act as the evaluation samples (m = 2), and the complex coherence acts as assessment criteria.

X =

 x11 . . . x1n
...

. . .
...

xm1 · · · xmn

, (6)Remote Sens. 2024, 13, x FOR PEER REVIEW 8 of 26 
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The conventional ground phase estimation algorithm is optimized using this approach,
which focuses on contrast intensity and conflictivity in measurement assessment, as pro-
posed by Diakoulaki [30]. Contrast intensity can be quantified using standard deviation Sn.
A higher standard deviation of the complex coherence signifies greater fluctuation and in-
formative content, consequently assigning more weight to enhance the evaluation strength
of the respective indicator. The correlation coefficient rmn indicates the conflictiveness of
multiple indicators; minimal conflict exists when two coherences exhibit a significantly
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strong correlation. This subsequently leads to a reduction in the weight assigned to the
respective indicator. In order to eliminate the influence of the dimension on the evaluation
results, each indicator is dimensionless, and the matrix elements after processing are x′

mn. x′
n = 1

M ∑M
m=1 x′

mn

Sn =

√
∑M

m=1 (x′mn−x′n)2

N−1

, (7)

Rn = ∑N
m=1(1 − rmn), (8)

These two characteristics combined comprise the information Cn. The weight assigned
increases with the level of information provided and the importance of nth complex
coherence in the overall evaluation indicators system. Consequently, the CRITIC method’s
objective weights Wn are determined.

Cn = Sn∑N
m=1(1 − rmn) = Sn × Rn, (9)

Wn =
Cn

∑N
n=1 Cn

, (10)

We employed a coherence optimization technique to enhance the degree of complex
coherence separation and refined the complex coherence fitting approach. Although co-
herence straight line fit uses complex coherences such as HH, HV, HH-VV, OPT1, OPT2,
and OPT3, they do not fully characterize the shape of the coherence region. This limitation
affects the accuracy of ground phase inversion and, consequently, the forest height inver-
sion. In this study, we utilized the coherence region boundary algorithm [31] to acquire
polarization vectors (ω1, ω2) with maximum separation in the complex plane. By rotating
the phase, this method generates multiple pairs of boundary points on the coherence region.
The optimal coherence line is determined by connecting the two farthest locations among
all extracted boundary points [32]:{

T = (T11 + T22)/2
Ω =

(
Ω11eiϕ + Ω∗T

22 e−iϕ
)/

2
, (11)

T−1Ω(ϕ)ω = λ(ϕ)ω

⇒ max
ϕ

|λmax(ϕ)− λmin(ϕ)|

⇒
{

λmax → ωmax → γmax
λmin → ωmin → γmin

, (12)

3.3. Iterative Process of Temporal Decorrelation

According to the characteristics of the ALOS-2 (the long temporal baseline and rela-
tively small vertical wavenumber), among many forest height inversion techniques, the
multiple iteration method is chosen in this study, which yields the relationship between the
observed canopy phases and the actual canopy heights, as seen in Equation (13). Where
ε represents the correction term for canopy random motion and the correction term φe
for the phase center offset. Considering overall coherence, the magnitude term of tem-
poral decoherence |γe| is introduced, resulting in the final form of the model as given in
Equation (14). Figure 7 illustrates a schematic of the interference technique with multiple
iterative algorithms.

ϕvol = εkzh + φe, (13)

γ̂ = |γe| · eiφe
2σ

cosθ(e
2σhv
cosθ − 1)

∫ hv

0
e−i(ε·kz)ze−

2σz
cosθ dz, (14)
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This study introduces the concept of mitigating reduced observational coherence by
quantifying systematic decoherence γSystem instead of |γe| aiming to enhance the efficiency
of the model iteration process. The coherence γObs observed by PolInSAR is quantified
by the degree of correlation between two complex images: e1 and e2 (Equation (15)).
γObs comprises various independent decoherence mechanisms, with the primary ones
under consideration being system decorrelation γSystem, temporal decorrelation γTemp, and
volume decorrelation γVol [13]. System decorrelation γSystem further divides into thermal
SNR (signal-to-noise) decorrelation γSNR arising from sensor antenna characteristics, co-
registration decorrelation γCoreg due to registration errors in interferometric pre-processing,
and spatial baseline decorrelation γBaseline [14,33].

γObs =
|⟨e1e∗2⟩|√〈
|e1|2

〉〈∣∣e∗2 ∣∣2〉 , (15)

γobs = γSystemγTempγVol = (γSNRγCoregγBaseline)γTempγVol , (16)

The process involves the removal of systematic decoherence, followed by the mini-
mization of temporal decoherence. Subsequently, the model of temporal decorrelation is
employed to deduce the vertical structure of the vegetation. Taking the 11 July–25 July inter-
ference pair as an illustration, the SNR is initially computed from metadata. Subsequently,
the SNR decoherence is determined using Equation (17), in which NEσ0 represents the
Noise Equivalent Sigma Naught for normalized backscattering. The calculation involves
co-polarization γSNR = 0.9952 and cross-polarization γSNR = 0.9974, and the one with a
greater influence of the SNR, denoted as γSNR = 0.9952, is selected.

γSNR =
SNR

1 + SNR
, SNR =

σ0

NEσ0 , (17)

The co-registration decorrelation is represented by Equation (18) [34]. The pixel
accuracy of the co-registration is consistently within 0.2 pixels for both range-directed δrg
and azimuth-directed δaz, thus obtaining γCoreg = 0.8751.

γCoreg =
sin(πδrg)

πδrg
· sin(πδaz)

πδaz
, (18)

Surface scattering gives rise to a notable coherence loss known as baseline decoherence
γBaseline, expressed as a function of system parameters that include the speed of light c, the
perpendicular baseline B⊥, bandwidth W, wavelength λ, slant length R, and local incidence
θlocal , as defined in Equation (19). The computation yields the value γBaseline = 0.9919.
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γBaseline = 1 − cB⊥
WλR tan θlocal

, (19)

Multiplying the three decoherences produces the system decoherence γSystem = 0.8639
for the 11 July–25 July interferometric pair and γSystem = 0.8601 the 11 July–19 September
interferometric pair. As system decoherence solely impacts coherence amplitude and is
phase-independent [35], the observed coherence is normalized by dividing it by the system
coherence to acquire the corrected observed coherence.

The corrected observed coherence encompasses volumetric γVol and temporal de-
coherence γTemp, representing complex factors that influence the observed coherence’s
magnitude and phase [36]. These factors are the sole remaining coherence components
associated with the vertical structure and forest height [37]. In the ALOS-2 data, we modi-
fied the multiple iteration algorithm of [18]. Also, we introduced the CRITIC method to
improve the ground phase estimation accuracy, resulting in the modified CRITIC-ITDRvoG
algorithm as in Equation (20). Figure 8 depicts the inversion flowchart of the PolInSAR
algorithm, presenting technical details for both simulated and real datasets.

γ̂ = γSystemeiφe
2σ

cos θ(e
2σhv
cos θ − 1)

∫ hv

0
e−i(εkz0)ze−

2σz
cos θ dz, (20)Remote Sens. 2024, 13, x FOR PEER REVIEW 12 of 26 
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4. Results
4.1. Inversion Results for the Simulated Dataset

The CRITIC-WLS algorithm is employed primarily for enhancing the estimation of
ground phase and forest height, given that the simulated dataset is devoid of influences
from terrain slope and temporal decoherence. A comparative analysis is conducted between
the ground phase and forest height results derived from the CRITIC-WLS algorithm and
those obtained using the conventional three-stage algorithm.

4.1.1. Results of Ground Phase Estimation

The actual ground phase of the simulated dataset is 0 rad. Figure 9a–d illustrate and
compare the ground phase and accuracy of the two methods, respectively. Compared to
the original algorithm, the optimized approach demonstrates significantly higher accuracy
in both ground phase inversion and overall accuracy. The method consistently reduces the
ground phase estimation error across forest height–density datasets.
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The enhanced algorithm’s inversion progressively increased the ground phase at
lower forest heights (10 m/14 m) without reaching a saturation point. The estimation
results consistently remained within 0.02 rad, and the RMSE continuously measured below
0.05 rad, indicating superior performance compared to the conventional algorithm. Notably,
the ground phase now exhibits less sensitivity to the forest density.

The accuracy of ground phase estimation declines as the range of ground phase change
increases due to rising forest density at high forest heights (18 m/22 m). When the forest
height is 18 m, the ground phase of the improved algorithm stays within 0.04 rad, while the
ground phase result of the traditional algorithm exceeds 0.04 rad at 300 stems/ha, which
indicates that the improved algorithm can significantly improve the inversion performance.
Despite the ground phase reaching a saturation point at 400 stems/ha both before and
after the improvement, the improved algorithm significantly enhances the accuracy of
ground phase estimation by 0.05 rad at a 22 m forest height. Consequently, the primary
determinant impacting ground phase estimation accuracy is the variation in forest height,
with forest density exerting a secondary influence. The higher the forest height, the lower
the ground phase estimate accuracy, causing the ground phase saturation point to occur at
a lower forest density.
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4.1.2. Results of Forest Height Estimation

The average forest height and inversion accuracy of the simulated datasets for each
height type are presented in Figure 10a–d. Overall, the optimized algorithm demonstrates
superior inversion accuracy to the original algorithm. The application of the RVoG model
in scenarios involving 10 m 100 stems/ha and 10 m 200 stems/ha forests faces challenges
due to their low and sparse nature, resulting in irregular changes in complex coherence.
The RVoG model currently has this issue. Notably, the optimization algorithm exhibits
stability, as evidenced by the improvement in the RMSE of forest height across various
height–density datasets.
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Figure 10. (a) Histogram of the average forest height and line graph of RMSE for the original
algorithm; (b) histogram of the average forest height and line graph of RMSE for the improved
algorithm; (c) line graph of the forest height for both algorithms; (d) line graph of the forest height
RMSE for both algorithms.

In the low stand scenario, with the increase in forest density, the inversion results
of forest height gradually increased. Additionally, the corresponding RMSE gradually
decreased, and the saturation point of forest height also gradually appeared: this trend
was especially obvious in the 14 m dataset. The saturation point of forest height appeared
earlier in taller stands, and the increasing trend of forest height was no longer obvious
with the increase in forest density. Overall, the accuracy of the optimized algorithm for
inversion of forest height was improved by 0.5 m compared with the traditional algorithm,
and the optimized algorithm was effective in reducing the RMSE of forest height. Table 4
showed the MAPE of two tree height models, and the accuracy of the improved model was
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better than that of the traditional algorithm, indicating that the optimized ground phase
had a significant effect on improving the accuracy of the inversion of forest height.

Table 4. Accuracy of forest height MAPE (%) for four dataset groups.

Forest Density (stems/ha) 100 200 300 400 500 600 700 800 900

10 m forest height MAPE (%)

LS 39.17 38.67 35.89 32.70 31.97 28.36 28.32 23.67 21.84
CRITIC-WLS 56.48 40.12 35.66 31.56 30.52 26.57 26.77 21.56 19.76

14 m forest height MAPE (%)

LS 42.54 29.03 21.33 17.24 15.70 16.90 14.93 14.18 15.34
CRITIC-WLS 41.07 25.99 18.19 14.31 14.30 14.99 14.06 12.96 14.40

18 m forest height MAPE (%)

LS 26.05 17.59 15.64 14.56 16.13 15.25 15.98 14.29 15.03
CRITIC-WLS 20.33 14.39 13.45 13.56 13.90 13.79 13.72 12.66 14.62

22 m forest height MAPE (%)

LS 21.20 16.47 16.54 15.74 15.26 15.89 14.83 15.66 17.22
CRITIC-WLS 15.75 13.99 15.26 14.78 14.43 14.33 14.44 14.33 15.49

4.2. Inversion Results for the Real Dataset

In this study, a ratio of 1:2 was employed for the number of test and validation sets,
comprising 24 sample plots in the test set and 48 sample plots in the validation set. The
datasets 11 July–25 July and 11 July–19 September had parameters that were iterated using
the test set data. The flowchart (Figure 11) displays the specific iteration parameters. In this
instance, a canopy random motion compensation term ranging from 20 to 40 is applied,
guided by a priori conclusions drawn from the literature [31]. However, this study enhances
the multiple iteration algorithm proposed by [31]: instead of specifying the coherence
amplitude iteration term, we introduce quantized system decoherence. Simultaneously, the
initial value of the canopy random motion compensation term is increased, set between 30
and 50. This approach substitutes the system decoherence and a higher canopy random
motion compensation term for the coherence amplitude iteration term in the original model,
thereby enhancing the efficiency of the multiple iteration procedure.
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represent fitted lines, and black lines represent 1:1 lines. (a) 11 July–25 July. (b) 11 July–19 September.

After iteration, the improved model obtains the corresponding phase offset term and
the vertical wavenumber by introducing the vertical wavenumber with pixel-by-pixel
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correction, the CRITIC-WLS ground phase estimation method, and the system decoherence.
The specific parameters are displayed in Table 5. Root mean square error (RMSE), mean
absolute percentage error (MAPE), and mean absolute error (MAE) for both the validation
and test sets are computed by applying the empirical parameters to the two validation sets,
as indicated in Table 5.

Table 5. Iteration parameters and inversion accuracy results for two sets of interference pairs. The
inversion accuracy includes the accuracy results of the test and validation sets.

Datasets φe Average Suitable kz RMSE (m) MAPE (%) MAE (m)

11 July–25 July ei·0.94π 0.43 4.43/2.27 27.30/11.33 3.73/1.84
11 July–19 September ei·2.83π 0.70 4.56/2.59 29.05/11.56 3.55/1.86

Table 5 illustrates the enhanced model’s superior performance in reducing the impacts
of temporal decoherence. This is evidenced by the accuracy of both test and validation sets
exceeding 80%, the validation set’s RMSE being approximately 2.5 m, and the MAE being
less than 2 m. Notably, the long-term baseline dataset’s inversion accuracy is improved,
suggesting the enhanced technique is robust. Figures 11 and 12 present scatterplots for the
test and validation sets, respectively.
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5. Discussion
5.1. Discussion of the Ground Phase

When transformed by the vertical wavenumber, the ideal scenario entails the interfer-
ometric phase difference between topography and canopy equivalent to the forest height.
In practical terms, however, with increasing forest height, the ground phase shifts from the
surface, causing a concurrent rise in coherence phase height, as illustrated in Figure 13a. A
phase difference arises, not corresponding directly to the vegetation height, due to the shift
of the canopy phase center away from the top of the canopy caused by electromagnetic
wave penetration. The penetration capability of electromagnetic waves diminishes with
increasing forest density, resulting in a saturation phenomenon in the coherence phase.
Conversely, as forest density decreases, electromagnetic wave penetration capability in-
creases, reducing the phase difference between the ground and canopy and increasing the
error of the associated vegetation height. This observation underscores the necessity to
assess the impact of more precise ground phase compensation on the accuracy of forest
height measurements.
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Figure 13. Relationship of coherence phase with forest height and forest density. (a) Fixed forest
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5.2. Discussion of Errors in Forest Heights

With polarization, dependence, ground, and canopy contributions can influence the
ground-to-volume scattering ratio (GVR). In Figure 14a, as forest height grows, the GVRs
of the ground scattering and volume scattering gradually decline and rise, respectively.
The phase center of each polarization rises with increasing forest height (Figure 13a), the
corresponding ground phase center increasingly deviates from the actual ground position,
and the GVR, which represents the ground scattering, diminishes as the forest height
rises. The distance between the ground and the canopy’s polarization centers increases
significantly with forest height (Figure 13a), which causes a corresponding increase in the
GVR that represents scattering from the volume (Figure 14a).

GVR(ω) =
abs(γV−assu − γObs(ω))

abs(γObs(ω)− exp(iϕground))
, (21)
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Figure 14. Ground-to-volume scattering ratio (GVR) versus forest height and forest density. (a) Fixed
forest density of 500 stems/ha, plot of GVRs versus forest height for usual polarizations. (b) Fixed
forest height of 14 m, plot of GVRs versus forest density for usual polarizations.

As illustrated in Figure 14b, an increase in forest density leads to a gradual reduction
in the GVR representing volume scattering, while the GVR reflecting ground scattering
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shows a corresponding increase. This observation aligns with the conclusions of [36], as
stronger ground echoes in areas with sparser vegetation allow the electromagnetic wave to
reach the surface more easily. Conversely, with a higher density of the forest stand, stronger
canopy echoes decrease the GVR associated with volume scattering.

The GVR of HV/PDHigh polarization, indicative of canopy scattering, was consis-
tently lower than that of HH-VV/PDLow polarization, representing ground scattering
across varying forest heights and densities. Representative volume scattering’s GVR
demonstrated a positive correlation with forest height and an inverse relationship with
forest density. If the accuracy of the three-stage algorithm is less than 10%, the mini-
mum GVR of the volume scattering should be less than −10 dB. However, this study’s
observed minimum GVR values under different forest heights and densities slightly exceed
−10 dB. Consequently, GVR variations also impact the inversion outcomes of the improved
algorithm.

5.3. Limitations of the CRITIC-WLS Ground Phase Improvement Algorithm

The improved methodology exhibits limitations in its applicability to low, sparse
forests, which is consistent with findings reported in other implementations of the RVoG
model [36]. This constraint arises due to the non-uniformity of complex coherence varia-
tions in low, sparse environments and the heterogeneous structure of the forest, deviating
from the assumptions inherent in RVoG model applications. These assumptions include
uniform mean extinction for all polarizations, a homogeneous layer of randomly oriented
vegetation particles, and an impenetrable ground. In specific instances, there is nearly equal
coherence among all polarizations, notably between the HH-VV polarization of the ground
and the HV polarization representing the canopy in scenarios with forest densities of 10 m
100 stems/ha and 10 m 200 stems/ha, as depicted in Figure 15. The reason for this occur-
rence is that when forest density and forest height increase, volume coherence decreases.
The volume decoherence of low and sparse forests is weak, and the coherence difference of
different polarization is not significant in low and sparse forests. This especially happens
when the SNR decoherence dominates the phase error. Addressing SNR decoherence in
low and sparse forest settings has the potential to enhance inversion performance.
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Similar complex coherences arise due to the effective penetration of electromagnetic
waves through the canopy in areas characterized by lower and sparse vegetation. As
depicted by the black and red ellipses in Figure 16, there is less separation of the complex
coherence in the low, sparse forest (10 m 100 stems/ha) than in the tall, dense forest (14 m
500 stems/ha). A geometric parameter known as the “narrowness ratio” is introduced
to quantify this observation. This ratio represents the relationship between the long and
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short axes of the coherence ellipse and was initially introduced in the literature of [18]. The
ground phase estimation error decreases as the narrowness ratio decreases, bringing the
results closer to the actual forest. Notably, low, sparse forests exhibit a larger narrowness
ratio, resulting in elevated errors in topographic estimation. Under low, sparse forest
conditions, specifically at 10 m 100 stems/ha and 10 m 200 stems/ha, combining these
two factors leads to the poor inversion effects of the CRITIC improved algorithm.
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5.4. Discussion of the CRITIC-ITDRvoG Algorithm

The extraction of the terrain-corrected vertical wave number for each pixel, a feature
also integrated into the iterative model, represents a notable enhancement over the original
model employed in this study. The precision of topographical information is evident in the
inversion result maps of forest height in the Saihanba for both datasets, as illustrated in
Figure A4. In contrast to the original model, which utilized a single average vertical wave
value for the entire map, the improved model provides a more detailed consideration of
the terrain effects on each pixel.

While valuable, the conclusion drawn in [31] is not directly applicable to this study.
Our improved algorithm incorporates the enhanced canopy random motion phase offset
term, system decoherence, and phase error term resulting from SAR penetration of the
canopy. However, it does not explicitly define a coherence amplitude iteration term value.
The research findings indicate a substantial increase in phase offset and error terms as the
temporal baseline extends. Illustrated in Figure 17 are the phase frequency histograms
and diagrams for the two datasets. In the 11 July–19 September dataset, it is observed
that the phase values are lower, and there is a uniform and reduced overall frequency
of interference phase occurrences. This narrowing of the phase gap adversely affects
the fitting of the complex coherence straight line compared to the dataset with a shorter
time baseline. Table 6 presents the mean, standard deviation, and variance of the HV-
polarized interferometric phases for each interferometric pair. Larger standard deviation
and variance values for the 11 July–25 July data suggest a more dispersed and discrepant
phase distribution for this interferometric pair. Conversely, the long-time baseline 11
July–19 September dataset, influenced by greater temporal decoherence, exhibits a lower
phase that is typically less varied and discrepant. Consequently, the 11 July–19 September
dataset requires a higher phase compensation term than the 11 July–25 July dataset.



Remote Sens. 2024, 16, 1137 19 of 25
Remote Sens. 2024, 13, x FOR PEER REVIEW 20 of 26 
 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 17. Phase graphs and phase frequency histograms of HV polarization for both datasets. (a) 
Phase graphs for 11 July–25 July. (b) Phase frequency histograms for 11 July–25 July. (c) Phase 
graphs for 11 July–19 September. (d) Phase frequency histograms for 11 July–19 September. 

Table 6. Statistical parameters of HV interference phases for two datasets. 

Datasets Average of HV 
Phases 

Variance of HV 
Phase 

The Standard Devia-
tion of HV Phase 

11 July–25 July 0.2004 3.6603 1.9132 
11 July–19 September 0.0909 3.3908 1.8419 

While the improved model demonstrates enhanced inversion accuracy, it is acknowl-
edged that the coherence amplitude diminishes with the increase in time baseline. How-
ever, the proposition in this study is that the system decoherence and canopy random 
motion term may compensate for the shift in coherence amplitude. Figure 18 illustrates 
the coherence amplitude frequency histograms and HV-polarized amplitude plots for the 
interference pairs 11 July–25 July and 11 July–19 September. The coherence amplitude of 
the dataset with a longer time baseline is approximately 0.2, which is smaller than that of 
the dataset with a shorter time baseline. This study attributes this difference to meteoro-
logical variations, particularly differences in wind speed and seasonal changes. Figure 5 
indicates that there was no rainfall during the data collection on 11 July and 25 July, high-
lighting wind speed fluctuations as the primary factor influencing the random movement 
of the canopy. The 70-day interval between the collection time of the 19 September slave 
image and the master image, along with the lowest temperature of 2.1 °C on the day of 
image collection on 19 September and the commencement of the forest defoliation season 

Figure 17. Phase graphs and phase frequency histograms of HV polarization for both datasets.
(a) Phase graphs for 11 July–25 July. (b) Phase frequency histograms for 11 July–25 July. (c) Phase
graphs for 11 July–19 September. (d) Phase frequency histograms for 11 July–19 September.

Table 6. Statistical parameters of HV interference phases for two datasets.

Datasets Average of HV
Phases

Variance of HV
Phase

The Standard Deviation
of HV Phase

11 July–25 July 0.2004 3.6603 1.9132
11 July–19 September 0.0909 3.3908 1.8419

While the improved model demonstrates enhanced inversion accuracy, it is acknowl-
edged that the coherence amplitude diminishes with the increase in time baseline. How-
ever, the proposition in this study is that the system decoherence and canopy random
motion term may compensate for the shift in coherence amplitude. Figure 18 illustrates
the coherence amplitude frequency histograms and HV-polarized amplitude plots for the
interference pairs 11 July–25 July and 11 July–19 September. The coherence amplitude of the
dataset with a longer time baseline is approximately 0.2, which is smaller than that of the
dataset with a shorter time baseline. This study attributes this difference to meteorological
variations, particularly differences in wind speed and seasonal changes. Figure 5 indicates
that there was no rainfall during the data collection on 11 July and 25 July, highlighting
wind speed fluctuations as the primary factor influencing the random movement of the
canopy. The 70-day interval between the collection time of the 19 September slave image
and the master image, along with the lowest temperature of 2.1 ◦C on the day of image
collection on 19 September and the commencement of the forest defoliation season in the
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study area, characterized by high wind speeds, collectively contributed to a reduction in
the amplitude of the 11 July–19 September dataset. In this interferometric pair, the decrease
in amplitude necessitated more significant compensation for random motion. Additionally,
rainfall on 16 September and subsequent dielectric constant variations influenced this
sample’s phase correction term.
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amplitude frequency histograms for 11 July–19 September.

Figure 19 illustrates the configurations of coherence regions for two ALOS-2 inter-
ferometric pairings within the same pixel. A red dashed ellipse denotes the tall forest
stand at 21.9 m, while a green dashed ellipse represents the low forest stand at 12.9 m.
Additionally, we present the configurations of coherence regions for simulated datasets
with average tree heights of 14 m (depicted by the green solid ellipse) and 22 m (represented
by the black solid ellipse). This comparative study aims to assess the impact of temporal
decoherence on the polarization interferometric dataset. We observe that, in the absence of
temporal decoherence interference (simulated dataset), the long axis of the coherence ellipse
is slightly larger in tall stands compared to low stands. Notably, the coherence phases of
different complex coherences exhibit variations, and the coherence magnitude is slightly
smaller in tall stands than in low stands. However, in the case of the ALOS-2 dataset under
temporal decoherence interference, both the coherence amplitudes and coherence phases
of the two interfering pairs decrease with the increase in the temporal baseline for both tall
and low forest stands. Within an image pixel, the variability of complex coherence phases
diminishes as the coherence amplitude approaches the origin of the complex unit circle.
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Notably, in low stands, both the coherence amplitude and coherence phase experience a
reduction of more than half, highlighting the significant impact of temporal decoherence,
which is more pronounced in low stands compared to taller stands. For instance, as the
temporal baseline extends from 14 to 70 days for a forest height of 12.9 m, the amplitude of
HV polarization diminishes from 0.4 to 0.1 and the coherence phase declines from exp(i · π)
to exp(i · 1.65π). Building upon the preceding discussion, in a physical context, this implies
that the phase center of HV polarization in the canopy is higher for the 11 July–19 Septem-
ber dataset (70-day temporal baseline) than the 11 July–25 July dataset (14-day temporal
baseline). Hence, a larger correction parameter is employed to manage this error term,
considering both the number of vertical wavenumbers and random motions within the
canopy. Consequently, the inversion of the 11 July–25 July dataset demonstrates higher
accuracy than the 11 July–19 September dataset, which tends to be overestimated and
exhibits a larger iteratively corrected vertical wavenumber than the former.
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tree height of 14 m, and the black solid ellipse represents an average tree height of 22 m.

6. Conclusions

This study enhances the first stage of the conventional three-stage model by integrat-
ing the CRITIC weighted least squares model to estimate the ground phase, leading to
improved ground phase estimation and forest height inversion accuracy. This methodology
achieves a more accurate ground phase estimate by reducing the weights of indicators
containing redundant data. However, it is essential to note that the application of the
enhanced algorithm in lower and sparse-scene scenarios remains constrained. In low,
sparse forest scenarios, on the one hand, the coherence of polarizations representing both
the ground and the canopy is nearly identical. Despite enhanced accuracy in ground phase
estimation, distinguishing the canopy–ground phase in this context remains challenging
due to the narrow width of the coherence ellipse.

This study further elucidates that forest height rather than density is the primary factor
influencing ground phase estimation errors. An excessively high stand density saturates the
ground phase, diminishing the ability to distinguish the canopy from the ground. Volume
scattering’s GVR demonstrated a positive correlation with forest height and an inverse
relationship with forest density. Both forest height and density affect the GVR. The residual
ground contribution in the volume scattering channel also affects the inversion accuracy of
the improved algorithm. In the next stage, we combine the CRITIC-weighted method for
estimating ground phase with coherence magnitude and the three-stage hybrid iterative
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application model [20] for whole stand density. We explore whether the improved model
can reduce the interference of forest structure to the model.

Furthermore, we employ this CRITIC-weighted method with the iterative temporal
decoherence algorithm on the L-band ALOS-2 PALSAR satellite datasets, characterized by
varying temporal baselines. The inversion accuracies for both datasets exceed 80%, with
errors consistently within 2 m, attesting to the remarkable accuracy and robustness of the
algorithm. Concurrently, we observed that temporal decoherence induces attenuation in
both phase and amplitude, particularly affecting shorter stands to a greater extent than
taller ones. When dealing with larger temporal baseline datasets, compensatory terms
for canopy random motion and phase offset become more substantial to mitigate the risk
of overestimating tree height inversion. Furthermore, the inherent instability stemming
from temperature, wind, and precipitation variations during data collection exacerbates
the impact of temporal decoherence, which is particularly pronounced in large temporal
baseline datasets.

This study proposes an optimization method for improving the accuracy of ground
phase and correcting temporal decoherence. The effects of ground phase on forest height
and forest density and the error sources affecting the inversion of stand height were
analyzed. At the same time, the source of temporal decoherence, the qualitative law of
temporal decoherence and forest height, phase, and amplitude, are given, which also lays a
foundation for finding the quantitative relationship between these SAR parameters and
forest structure parameters in the future.
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tion in both phase and amplitude, particularly affecting shorter stands to a greater extent 
than taller ones. When dealing with larger temporal baseline datasets, compensatory 
terms for canopy random motion and phase offset become more substantial to mitigate 
the risk of overestimating tree height inversion. Furthermore, the inherent instability 
stemming from temperature, wind, and precipitation variations during data collection ex-
acerbates the impact of temporal decoherence, which is particularly pronounced in large 
temporal baseline datasets. 

This study proposes an optimization method for improving the accuracy of ground 
phase and correcting temporal decoherence. The effects of ground phase on forest height 
and forest density and the error sources affecting the inversion of stand height were ana-
lyzed. At the same time, the source of temporal decoherence, the qualitative law of tem-
poral decoherence and forest height, phase, and amplitude, are given, which also lays a 
foundation for finding the quantitative relationship between these SAR parameters and 
forest structure parameters in the future. 
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Figure A3. Situation of the forest in the study region and details of field measurements. (a,f): repre-
sentative larch forest state in the study area; (b,c): measurements at standard plot boundaries and 
recording of sample plot coordinates; (d): diameter at breast height (DBH) measurements for each 
tree in the sample plot; (e): height measurements for each tree in the sample plot. 
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Figure A4. Inversion results of forest height in the Saihanba under SAR coordinate system. (a) 11 
July–25 July. (b) 11 July–19 September. 
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