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Abstract: (1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering
effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms
of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking
integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on choles-
terol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota
structure and metabolite composition after POS addition were investigated using Illumina MiSeq
sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results:
The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances
of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it
decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities.
POS changed the composition of gut microbiota fermentation metabolites (P24), causing signifi-
cant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis
and promoting the production of short-chain fatty acids. The abundances of four types of choles-
terol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate,
guanosine and butyrate) were significantly higher in the P24 group than those in the control group
without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholes-
terolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated
that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by
cholesterol-related gut microbiota and specific metabolites.

Keywords: citrus pectin oligosaccharides; cholesterol metabolism; gut microbiota and metabolites

1. Introduction

As an indispensable part of the human body, gastrointestinal microflora is of impor-
tance to human health, nutrient metabolism and disease development [1–4]. In general,
the major gut microbial phyla include Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
Fusobacteria and Verrucomicrobia, with Firmicutes and Bacteroidetes being the two most abun-
dant phyla [5–7]. Strong correlations were observed between changes in cholesterol levels
and microbiota composition [8–10]. The abundance of fecal Bifidobacterium and Bacteroides
in hypercholesterolemia patients is negatively correlated with changes in blood cholesterol
levels [8]. Sudun et al. found that probiotics alleviated high-fat diet-induced hypercholes-
terolemia by regulating the gut microbiota [9]. In addition, mannan oligosaccharides have
been suggested to regulate cholesterol metabolism via gut microbiota [10]. Thus, adjusting
the gut microbiota composition has been regarded as a promising strategy to modulate
cholesterol metabolism.

Nutrients 2024, 16, 2002. https://doi.org/10.3390/nu16132002 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16132002
https://doi.org/10.3390/nu16132002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://doi.org/10.3390/nu16132002
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16132002?type=check_update&version=1


Nutrients 2024, 16, 2002 2 of 22

The essential role of cholesterol metabolism-related gut flora and their microbial
metabolites is receiving attention [11–16]. For gut microflora, Bacteroidetes, as a symbiotic
gut bacterium, has been proven to possess cholesterol-lowering properties [11]. Moreover,
the main probiotics, lactobacilli and bifidobacteria, are reported to be effective in reduc-
ing cholesterol levels [12,13]. Various metabolites could be produced in gut microbiota
metabolism [14–16]. A large body of evidence has shown that intestinal bacteria metabolites
regulate the host metabolism positively [17,18]. Bile acids synthesis is reported to be im-
proved by regulating the transcriptional activity of FXR [19]. As the three main short-chain
fatty acids (SCFAs) of gut microbiota metabolites, acetic acid, propionic acid and butyric
acid were found to reduce plasma total cholesterol (TC) levels in hamsters by promoting
cholesterol decomposition and efflux [20]. The adenosine triphosphate (ATP)-binding
cassette transporter A1 (ABCA1) is one of the key mediators of macrophage cholesterol
efflux [21]. Cholesterol metabolism could be promoted by upregulating the expression
of the ABCA1 gene to enhance cholesterol efflux [21]. Butyric acid has been reported to
promote cholesterol efflux in HF-diet ApoE knockout mice by upregulating ABCA1 gene
expression in macrophages [22].

The intestinal microbiota composition was reported to be selectively stimulated by
prebiotics to confer health effects [23]. As potential prebiotics, pectin and chitosan oligosac-
charides have been proven to promote cholesterol metabolism by modifying intestinal flora
compositions and SCFA profiles [24,25]. According to our previous study, citrus pectin
oligosaccharide (POS), previously referred to as POSH1, prepared from a novel chemically
controllable degradation method, is a potential prebiotic [26]. Our findings indicated that
the hypocholesterolemic effects of POSH1 were related to specific gut bacterial groups and
their metabolites [27]. Furthermore, microbial metabolites of POSH1 (previously referred
to as P24) have been demonstrated to promote cholesterol efflux and inhibit cholesterol
uptake and synthesis, as reported in our previous research [28]. However, the mechanisms
of POSH1 on cholesterol metabolisms via an integrative analysis of gut microbiota structure
and P24 composition remain unknown. Therefore, the aims of this study were to (i) charac-
terize the intestinal flora structure after POSH1 intervention, (ii) analyze the composition of
P24 and (ii) reveal the possible regulatory mechanism of POSH1 on cholesterol metabolism
via gut microflora and their metabolites.

2. Materials and Methods
2.1. Chemicals and Reagents

POSH1 was prepared from a novel chemical controllable degradation method, accord-
ing to our previous study [26]. TransStart FastPfu Fly PCR SuperMix was purchased from
Transgen Biotech (Beijing, China). E.Z.N.A.® soil DNA kit was from Omega (Guangzhou,
China), and AxyPrep DNA Gel Recovery Kit was from Axygen Biosciences (Union City,
CA, USA). Acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid and iso-
valeric acid were of chromatographic grade from Sigma-Aldrich (St. Louis, MA, USA).
Chromatographic-grade methanol, acetonitrile, formic acid, propanol and ultrapure wa-
ter were all purchased from Thermo Fisher Scientific (Waltham, MA, USA), except for
L-2-chlorophenylalanine, which was from Aladdin (Shanghai, China).

2.2. In Vitro Fermentation

In vitro fermentation was performed according to our previous report [28]. Detailed
methods are included in the in the Supplementary Materials. Supernatants were defined as
P24 (background medium without POSH1: P24_1, P24_2, P24_3, P24_4, P24_5 and P24_6)
or N24 (background medium with POSH1 substrate: N24_1, N24_2, N24_3, N24_4, N24_5
and N24_6), respectively. The sediment of bacterial sludge obtained from the control group
was denoted as Group N, which consisted of 6 samples (N1, N2, N3, N4, N5 and N6).
Sediments of bacterial sludge obtained from the POSH1 group were denoted as Group P,
which consisted of 6 samples (P1, P2, P3, P4, P5 and P6).
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2.3. DNA Extraction, PCR Amplification and Illumina MiSeq Sequencing

E.Z.N.A.® soil DNA Kit was used to extract microbial community genomic DNA from
bacterial sludge sediments. Details regarding the methods employed for the DNA extrac-
tion, PCR amplification and Illumina MiSeq sequencing are provided in the Supplementary
Materials. Each assay was repeated three times.

2.4. Processing of Sequencing Data

The raw 16S rRNA gene sequencing reads were demultiplexed, quality-filtered by
fastp version 0.20.0 [29] and merged by FLASH version 1.2.7 with the following criteria [30].
Detailed analyses of the processes are shown in the Supplementary Materials [31–33].

2.5. Metabolite Extraction and UPLC-MS/MS Analysis

Metabolites were extracted and characterized through UPLC-TOF/MS analysis. Addi-
tional details are included in the Supplementary Materials. Each assay was replicated a
minimum of three times.

2.6. Data Preprocessing and Annotation

After the UPLC-TOF/MS analyses, Progenesis QI 2.3 (Waters, MA, USA) was used for
peak detection and alignment of the raw data. Accurate mass, MS/MS fragment spectra and
isotope ratio differences, along with searching in reliable biochemical databases such as the
Human Metabolome Database (HMDB) and the Metlin database, were used to identify the
mass spectra of these metabolic features. Details are given in the Supplementary Materials.

2.7. Multivariate Statistical Analysis

Majorbio Cloud Platform was employed to perform a multivariate statistical analysis.
Principle component analysis (PCA) using an unsupervised method was applied to obtain
an overview of the metabolic data; general clustering, trends or outliers were visualized.
Partial least squares discriminate analysis (PLS-DA) was used for a statistical analysis to
determine the global metabolic changes between comparable groups. Details are provided
in the Supplementary Materials.

2.8. Differential Metabolites Analysis

Statistically significant results among groups were selected according to the VIP value
(>1) and p-value (<0.05). Metabolic enrichment and a pathway analysis based on database
search were utilized to summarize and map differential metabolites among two groups
into their biochemical pathways. Details are given in the Supplementary Materials.

2.9. Determination of the Concentration of SCFAs in Intestinal Flora Fermentation Products

The detection of SCFAs was analyzed using gas chromatography−mass spectrom-
etry. Details are provided in the Supplementary Materials. Each assay was performed
in triplicate.

2.10. Statistical Analysis

The Wilcoxon rank-sum test was used to analyze the significant difference between
the α-diversity index and the intestinal microbial species group, and the ANOSIM test
was used to analyze the significant difference between the β-diversity index groups. The
difference between the supernatant fermentation products was analyzed by Student’s t-test.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
was performed on the differential fermentation products; Fisher’s exact test was used
for the enrichment analysis, and Benjamini and Hochberg were selected to verify the p-
value; and the false positive of the enrichment results was controlled; and Benjamini was
used by default, and the Hochberg method corrected the p-values. The corrected p-value
takes 0.05 as the threshold, and KEGG pathways satisfying this condition are defined as
KEGG pathways that are significantly enriched in the metabolic set. All the experimental
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data of SCFAs were repeated three times independently, and the results were expressed
as mean ± standard error of the mean (SEM). Excel software 2021 was used to sort out
the experimental data, and GraphPad Prism 7.0 software was used for the analysis. The
t-test was used for a comparison between the two groups, and p < 0.05 indicated that the
difference was statistically significant.

One-way ANOVA analysis was used to compare the differences between the means
of each group, and an LSD post hoc test was used to compare the differences between the
two groups. The difference was statistically significant when p < 0.05. The data analysis
software was SPSS v. 21.0 software (IBM, NY, USA).

3. Results
3.1. Changes in the Dilution Curve

A total of 589,656 optimized sequences (with an average sequencing depth of 49,138)
were obtained by the high-throughput sequencing of 12 samples in Group P and Group N.
Operational taxonomic unit (OTU) clustering was performed on the optimized sequence,
with a threshold of 97% similarity; a total of 401 OTUs were obtained, and the average cov-
erage of these OTUs for all sequences in the sample was 99.9%. At the current sequencing
depth, the Shannon exponential dilution curves of all samples have reached a plateau, as
shown in Figure 1. As shown in the dilution curves of intestinal microorganisms in Groups
P and N, the dilution curve tended to be flat as the number of sequences increased and
the number of species increased to a constant level. The abovementioned results indicated
that the sequencing results were reliable and that the vast majority of species in the sample
have been covered. The intestinal microbial dilution curves of the P group and the N group
demonstrated that the intestinal microbial diversity of the P group was higher than that
of the N group, indicating that the addition of POSH1 to the control group significantly
increased the intestinal microbial diversity.
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3.2. The Effects of POSH1 on the α-Diversity of Intestinal Microorganisms

The effect of POSH1 on the α-diversity of intestinal microorganisms is shown in
Figure 2. POSH1 significantly increased the Shannon index (p < 0.01) when compared to
the control group, and the Shannon index was positively correlated with species diversity.
POSH1 significantly decreased the Simpson index (p < 0.01) when compared to the control
group, and the Simpson index value was negatively correlated with community diversity.
POSH1 significantly increased the Chao index (p < 0.01) compared to the control group,
and the Chao index was positively correlated with community species richness. POSH1
significantly increased the Ace index (p < 0.01) compared to the control group, and the Ace
index was positively correlated with the species richness of the community. Therefore, the
gut microbes of the POSH1 group exhibited higher alpha diversity.
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3.3. The Effects of POSH1 on Intestinal Microbial β Diversity

Based on the Bray–Curtis distance, a cluster analysis was performed on all samples,
as shown in Figure 3A. The results of the sample-level cluster analysis showed that the
composition of bacterial communities in Group P and the control group, Group N, was
significantly different. To further investigate the effects of adding POSH1 to the medium on
the overall structure of intestinal microorganisms, the principal component analysis (PCA)
was used as an evaluation index for the β-diversity of intestinal microorganisms, and the
results are shown in Figure 3B. The PCA analysis indicated that the distribution of samples
between the P group and the N group was far away, and the similarity between groups
with clear boundaries was low, indicating that a significant difference in the intestinal flora
composition between the two groups was observed and that the composition of intestinal
bacteria in the samples of the two groups was significantly different (p = 0.003).
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3.4. The Effects of POSH1 on the Abundance of Gut Microbial Phylum, Genus and Species

The effects of POSH1 on gut microbes at the phylum level and significant differences
between groups are shown in Figure 4A and 4B, respectively. The dominant phyla of
intestinal microorganisms in Group N and Group P were Proteobacteria, Firmicutes and Bac-
teroidetes, but their abundance ratios were different. The relative abundances of Firmicutes,
Bacteroidetes and Actinobacteria in Group P were 51.20%, 20.56% and 9.58%, respectively,
which were significantly higher than those in Group N (Firmicutes, 17.14%; Bacteroidetes,
9.95%; and Actinobacteria, 0.45%) (both p = 0.005). Among them, the promotional effect of
POSH1 on the abundance of Firmicutes and Bacteroidetes is consistent with the findings of
our previous report [27]. The abundances of Proteobacteria and Fusobacteria in Group P were
15.97% and 2.40%, respectively, which were significantly lower in Group N (Proteobacteria,
65.82%, p < 0.01; and Fusobacteria, 6.487%, p < 0.05).

The effects of POSH1 on gut microbes at the genus level and significant differences
between groups at the genus level are shown in Figure 5A and 5B, respectively. Escherichia
coli is the main member of the Proteobacteria phylum, and the abundance of Escherichia–
Shigella in Group P was 5.28%, which was 10% of the abundance in Group N (51.85%)
(p = 0.005). The genus Megamonas was a member of Firmicutes, and its abundance in Group
P (20.53%) was significantly higher than that in Group N (2.57%) (p = 0.005). Prevotella
is one of the main genera of Bacteroidetes, and its abundance in Group P was 5.75 times
higher than that in Group N (2.39%); its abundance was 13.71% (p = 0.005). Bifidobacterium
is the main genus in Actinomycetes, and its abundance in Group P (0.45%) was significantly
higher than that in Group N (0.03%), which was 13 times that of Group N (p = 0.005). This
result is consistent with the growth-promoting effect of POSH1 on bifidobacteria noted
in our previous reports [20,21]. The abundance of Enterococcus in Group P (0.23%) was
significantly lower than that in Group N (1.8%) (p = 0.005), which is consistent with the
effect of POSH1 on fecal contents in vivo in our previous observations [27]. The trend
of the change in the number of Enterococcus was consistent. In addition, the diversity
results showed that small amounts of Lactobacillus (0.003%) and Akkermansia (0.006%) were
detected in the P group, while the presence of these two bacteria was not detected in the
N group. Among them, the Lactobacillus in Group P was significantly higher than that in
Group N (p < 0.05), and this result was in agreement with the growth-promoting effect of
POSH1 on lactic acid bacteria found in our previous research [27].

The effects of POSH1 on the species level of intestinal microorganisms and significant
differences between groups at the species level of microorganisms are shown in Figure 6A
and 6B, respectively. The abundance of Escherichia coli in Group P is 5.27%, while 10%
of its abundance in Group N (51.72%) (p = 0.005), which is consistent with the growth
inhibitory effect of POSH1 on Escherichia coli in our previous report [27]. The changes at
the species level of Megamonas and Prevotella in Groups P and N were consistent with the
above-mentioned alterations at the genus level. The relative abundance of Enterococcus
faecium in Group P was 0.18%, which was significantly lower than that in Group N (1.37%).
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The abundances of Bifidobacterium pseudocatenulatum and Bifidobacterium longum of the
Bifidobacterium genus in Group P was significantly higher than that in Group N, as they
were 17.8 and 5.5 times that of Group N (p < 0.05). The growth-promoting effect of POSH1
on bifidobacteria was in agreement with our previous reports [26,27].
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3.5. The Effect of POSH1 on the Composition of Fermentation Products of Intestinal Flora

The metabolomics results demonstrated that a total of 6217 ions were identified in
the positive ion mode, and 5312 in the negative ion mode. During the analysis process,
three QC tests were performed on the samples. After removing low-mass ions (relative
standard deviation > 30%), 5217 and 4721 ions were identified in the positive and negative
ion modes, respectively. As shown in Figure 7, the results of the partial least squares
discriminant analysis (PLS-DA) showed that the R2 and Q2 of the positive and negative
ion score maps were both close to 1, indicating that the model was stable and reliable and
had good predictive ability. Under this model, the supernatant fermentation products of
the P24 and N24 groups were well separated.
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The principal component analysis (PCA) results of the supernatant samples of the P24
and N24 groups are shown in Figure 8. The PCA analysis indicated that the non-targeted
metabolomics data of the P24 and N24 groups had a clear boundary; the sample distribution
between the groups was far away and the similarity was low. Those results indicated that
the composition of the fermentation products of the two groups was significantly different
(p < 0.05), showing that the addition of POSH1 to the medium caused metabolic changes in
the overall gut microbiota.
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The mass spectrometric identification results of supernatant metabolome showed that
593 kinds of fermentation products were identified in the supernatants of the P24 and N24
groups. To further investigate and explain the influence of POSH1 on the composition of
supernatant fermentation products, the difference of fermentation products in the super-
natant P24 and N24 of the two groups was analyzed via screening with a p < 0.05 and
VIP > 1, and a total of 221 species were obtained in the two groups. Compared with the
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control group, Group N24, the abundance of 121 fermentation products was elevated and
100 fermentation products decreased in the P24 group with POSH1 fermentation.

3.6. Analysis of Differential Fermentation Products

The mass spectrum results of differential fermentation products were matched with the
HMDB database, and the number of differential fermentation products was classified. The
three major categories of substances are acids and their derivatives and organic heterocyclic
compounds (Figure 9).
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The mass spectrum information of differential fermentation products was matched
with the KEGG database, and the differential fermentation products were classified accord-
ing to the involved pathways. As shown in Figure 10, seven categories can be divided in
KEGG metabolic pathways, namely metabolism, genetic information processing, environ-
mental information processing, cellular processes, biological systems, human diseases and
drug development.

Taking the collection of all fermentation products of this species as the enrichment
background, a KEGG pathway enrichment analysis was performed on the differential
fermentation products. Fisher’s exact test was used for the enrichment analysis, and
with a p < 0.05 as the threshold, 68 metabolic pathways with significant enrichment of
differential fermentation products could be screened, as shown in Figure 11. The above
68 significantly enriched pathways consisted of 38 differential fermentation products, as
shown in Table 1. Among them, three kinds of cholesterol metabolism-related metabolites
were detected: adenosine monophosphate, cyclic adenosine monophosphate (cAMP) and
guanosine nucleoside. Their abundance in the P24 group was significantly higher than that
in the N24 group.
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Table 1. Metabolites with significant differences between P24 and N24 groups.

Metabolite KEGG Pathway Description Fold
Change (P24/N24) p-Value VIP Value

Glycocholic Acid Bile secretion; cholesterol metabolism; secondary bile acid biosynthesis; primary bile acid biosynthesis 1.17 0.001 1.24

Taurocholic acid Cholesterol metabolism; taurine and hypotaurine metabolism; secondary bile acid biosynthesis; bile secretion;
primary bile acid biosynthesis 2.20 0.000 2.34

Sphinganine Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway 0.61 0.000 2.21

CGMP
Purine metabolism; bile secretion; salivary secretion; gap junction; thermogenesis; vascular smooth muscle
contraction; oxytocin signaling pathway; circadian entrainment; regulation of lipolysis in adipocytes;
aldosterone synthesis and secretion; renin secretion; cGMP-PKG

1.68 0.000 2.16

Signaling pathway; olfactory transduction; long-term depression; phototransduction; platelet activation

Adenine Purine metabolism; zeatin biosynthesis 2.64 0.000 2.57

Inosine ABC transporters; purine metabolism 1.17 0.000 1.14

Sphingosine Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway; apoptosis; necroptosis 0.82 0.006 1.01

3-ketosphinganine Sphingolipid metabolism 0.24 0.000 2.57

3a,7a,12a-Trihydroxy-5b-
cholestan-26-al Primary bile acid biosynthesis 0.83 0.000 1.12

L-Phenylalanine

Mineral absorption; biosynthesis of secondary metabolites; aminoacyl-tRNA biosynthesis; cyanoamino acid
metabolism; tropane, piperidine and pyridine alkaloid biosynthesis; ABC transporters; biosynthesis of various
secondary metabolites—part 2; biosynthesis of amino acids; glucosinolate biosynthesis; 2-oxocarboxylic acid
metabolism; phenylpropanoid biosynthesis; biosynthesis of plant hormones; phenylalanine metabolism;
protein digestion and absorption; phenylalanine, tyrosine and tryptophan biosynthesis; biosynthesis of
alkaloids derived from ornithine, lysine and nicotinic acid; biosynthesis of alkaloids derived from shikimate
pathway; central carbon metabolism in cancer; biosynthesis of phenylpropanoids; biosynthesis of plant
secondary metabolites

0.43 0.000 1.86

Guanine Purine metabolism 398.08 0.000 2.90

Guanosine ABC transporters; purine metabolism 2.73 0.000 2.70

L-5-Hydroxytryptophan Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; tryptophan metabolism;
axon regeneration 1.30 0.000 1.48

5′-Deoxy-5′-(methylthio)
adenosine Cysteine and methionine metabolism; biosynthesis of plant secondary metabolites; zeatin biosynthesis 1.23 0.000 1.32

L-Carnitine Bile secretion; thermogenesis 1.25 0.000 1.25
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Table 1. Cont.

Metabolite KEGG Pathway Description Fold
Change (P24/N24) p-Value VIP Value

Glycerophosp Ether lipid metabolism; glycerophospholipid 2.40 0.000 2.73

hocholine metabolism; choline metabolism in cancer

Spermine Bile secretion; glutathione metabolism; arginine and proline metabolism; beta-alanine metabolism 0.25 0.000 2.26

Cadaverine

Lysine degradation; biosynthesis of secondary metabolites; microbial metabolism in diverse environments;
tropane, piperidine and pyridine alkaloid biosynthesis; glutathione metabolism; protein digestion and
absorption; biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid; biosynthesis of plant
secondary metabolites

0.03 0.000 2.97

2-Hydroxycinnamic acid Biosynthesis of secondary metabolites; metabolic pathways; phenylpropanoid biosynthesis; microbial
metabolism in diverse environments; phenylalanine metabolism 1.13 0.029 1.02

Adenosine monophosphate

Biosynthesis of secondary metabolites; purine metabolism; longevity regulating pathway; zeatin biosynthesis;
Parkinson’s disease; regulation of lipolysis in adipocytes; aldosterone synthesis and secretion; renin secretion;
cortisol synthesis and secretion; parathyroid hormone synthesis, secretion and action; biosynthesis of alkaloids
derived from histidine and purine; taste transduction; morphine addiction; biosynthesis of plant secondary
metabolites; metabolic pathways; FoxO signaling pathway; cGMP-PKG signaling pathway; olfactory
transduction; cAMP signaling pathway; biosynthesis of plant hormones; antifolate resistance; Cushing
syndrome; mTOR signaling pathway; PI3K-Akt signaling pathway; AMPK signaling pathway

6.11 0.000 2.56

L-Fucose Microbial metabolism in diverse environments; amino sugar and nucleotide 0.66 0.000 1.75

sugar metabolism; quorum sensing; fructose and mannose metabolism; two-component system; C-type lectin
receptor signaling pathway

N2-Acetyl-L-ornithine 2-Oxocarboxylic acid metabolism; arginine biosynthesis; biosynthesis of secondary metabolites; biosynthesis of
amino acids 1.15 0.000 1.03

cAMP

Human T-cell leukemia virus 1 infection; cell cycle—yeast; Chagas disease (American trypanosomiasis);
meiosis—yeast; oocyte meiosis; purine metabolism; inflammatory mediator regulation of TRP channels; Rap1
signaling pathway; Ras signaling pathway; pancreatic secretion; gap junction; MAPK signaling pathway;
insulin secretion; human papillomavirus infection; apelin signaling pathway; longevity regulating
pathway—multiple species; phospholipase D-signaling pathway

1.17 0.000 1.17

N-Acetylornithine 2-Oxocarboxylic acid metabolism; arginine biosynthesis; biosynthesis of secondary metabolites; biosynthesis of
amino acids 3.00 0.000 2.56

5-Hydroxy-L-tryptophan Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; tryptophan metabolism;
axon regeneration 1.24 0.000 1.33
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Table 1. Cont.

Metabolite KEGG Pathway Description Fold
Change (P24/N24) p-Value VIP Value

LysoPC
(16:1(9Z)/0:0) Glycerophospholipid metabolism; choline metabolism in cancer 4.19 0.000 2.16

LysoPC
(16:0) Glycerophospholipid metabolism; choline metabolism in cancer 3.88 0.000 1.86

LysoPC
(14:1(9Z)) Glycerophospholipid metabolism; choline metabolism in cancer 5.45 0.000 2.06

L-Methionine

Mineral absorption; biosynthesis of secondary metabolites; 2-oxocarboxylic acid metabolism; cysteine and
methionine metabolism; biosynthesis of amino acids; glucosinolate biosynthesis; protein digestion and
absorption; aminoacyl-tRNA biosynthesis; antifolate resistance; central carbon metabolism in cancer;
biosynthesis of plant hormones; biosynthesis of plant secondary metabolites

0.06 0.000 2.07

P-salicylic acid Degradation of aromatic compounds; 1.27 0.000 1.20

biosynthesis of secondary metabolites; microbial metabolism in diverse environments; aminobenzoate
degradation; ubiquinone and other terpenoid-quinone biosynthesis; toluene degradation; bisphenol
degradation; benzoate degradation; folate biosynthesis; benzoic acid family; biosynthesis of phenylpropanoids

Pseudoegonine Tropane, piperidine and pyridine alkaloid biosynthesis; 0.27 0.000 1.96

L-Tryptophan

biosynthesis of secondary metabolites; glycine, serine and threonine metabolism; biosynthesis of various
secondary metabolites—part 2; African trypanosomiasis; indole alkaloid biosynthesis; glucosinolate
biosynthesis; Serotonergic synapse; biosynthesis of alkaloids derived from shikimate pathway; biosynthesis of
phenylpropanoids; biosynthesis of plant secondary metabolites; metabolic pathways; 2-oxocarboxylic acid
metabolism; biosynthesis of amino acids; axon

3.66 0.000 2.64

Citric acid

Biosynthesis of various secondary metabolites—part 3; carbon metabolism; biosynthesis of secondary
metabolites; citrate cycle (TCA cycle); glyoxylate and dicarboxylate metabolism; glucagon signaling pathway;
biosynthesis of alkaloids derived from terpenoid and polyketide; biosynthesis of alkaloids derived from
histidine and purine; taste transduction; biosynthesis of alkaloids derived from shikimate pathway;
biosynthesis of terpenoids and steroids; biosynthesis of phenylpropanoids; biosynthesis of plant secondary
metabolites; metabolic pathways; microbial metabolism in diverse environments; 2-oxocarboxylic acid
metabolism; biosynthesis of amino acids; biosynthesis of alkaloids derived from

1.48 0.000 2.02

ornithine, lysine and nicotinic acid; carbon fixation pathways in prokaryotes; two-component system;
biosynthesis of siderophore group nonribosomal peptides; alanine, aspartate and glutamate metabolism;
central carbon metabolism in cancer; biosynthesis of plant hormones
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Table 1. Cont.

Metabolite KEGG Pathway Description Fold
Change (P24/N24) p-Value VIP Value

Uric acid bile secretion; purine metabolism; microbial metabolism in diverse environments 1.61 0.000 1.71

L-asparagine
Mineral absorption; biosynthesis of secondary metabolites; cyanoamino acid metabolism; biosynthesis of
amino acids; alanine, aspartate and glutamate metabolism; protein digestion and absorption; aminoacyl-tRNA
biosynthesis; central carbon metabolism in cancer; biosynthesis of plant secondary metabolites

7.33 0.000 2.55

L-glutamate

Biosynthesis of various secondary metabolites—part 3; carbon metabolism; arginine and proline metabolism;
glutathione metabolism; carbapenem biosynthesis; taste transduction; alanine, aspartate and glutamate
metabolism; nicotine addiction; protein digestion and absorption; phospholipase D-signaling pathway;
ferroptosis; glyoxylate and dicarboxylate metabolism; taurine and hypotaurine metabolism; proximal tubule
bicarbonate reclamation; D-glutamine and D-glutamate metabolism; ABC transporters; porphyrin and
chlorophyll metabolism; neuroactive ligand-receptor interaction; Huntington disease; spinocerebellar ataxia;
amyotrophic lateral sclerosis (ALS); GABAergic synapse; biosynthesis of alkaloids derived from ornithine,
lysine and nicotinic acid; retrograde endocannabinoid signaling; amphetamine addiction; synaptic vesicle
cycle; biosynthesis of plant secondary metabolites; metabolic pathways; arginine biosynthesis; gap junction

1.29 0.000 1.48

Microbial metabolism in diverse environments; 2-oxocarboxylic acid metabolism; histidine metabolism;
neomycin, kanamycin and gentamicin biosynthesis; biosynthesis of amino acids; FoxO signaling pathway;
alcoholism; biosynthesis of secondary metabolites; C5-branched dibasic acid metabolism; glutamatergic
synapse; cocaine addiction; butanoate metabolism; nitrogen metabolism; two-component system; circadian
entrainment; Aminoacyl-tRNA biosynthesis; central carbon metabolism in cancer; Long-term potentiation;
Long-term depression

LysoPC(18:0) Ether lipid metabolism; glycerophospholipid metabolism; choline metabolism in cancer; metabolic pathways 1.61 0.010 1.16

Phenylacetic acid Tropane, piperidine and pyridine alkaloid biosynthesis; phenylalanine metabolism; biosynthesis of alkaloids
derived from ornithine, lysine and nicotinic acid 0.72 0.000 1.89



Nutrients 2024, 16, 2002 15 of 22

Nutrients 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 9. Human Metabolome Database (HMDB) compound classification of metabolites with sig-
nificant differences between P24 and N24 groups at the superclass level. 

The mass spectrum information of differential fermentation products was matched 
with the KEGG database, and the differential fermentation products were classified ac-
cording to the involved pathways. As shown in Figure 10, seven categories can be divided 
in KEGG metabolic pathways, namely metabolism, genetic information processing, envi-
ronmental information processing, cellular processes, biological systems, human diseases 
and drug development. 

 
Figure 10. KEGG pathway classification of metabolites with significant differences between P24 and 
N24 groups at the superclass level. 

Figure 10. KEGG pathway classification of metabolites with significant differences between P24 and
N24 groups at the superclass level.

Nutrients 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 

Taking the collection of all fermentation products of this species as the enrichment 
background, a KEGG pathway enrichment analysis was performed on the differential fer-
mentation products. Fisher’s exact test was used for the enrichment analysis, and with a p 
< 0.05 as the threshold, 68 metabolic pathways with significant enrichment of differential 
fermentation products could be screened, as shown in Figure 11. The above 68 signifi-
cantly enriched pathways consisted of 38 differential fermentation products, as shown in 
Table 1. Among them, three kinds of cholesterol metabolism-related metabolites were de-
tected: adenosine monophosphate, cyclic adenosine monophosphate (cAMP) and guano-
sine nucleoside. Their abundance in the P24 group was significantly higher than that in 
the N24 group. 

 
Figure 11. KEGG pathway enrichment analysis for metabolites with significant differences between 
P24 and N24 groups. Values are presented as the means ± SEM. p < 0.05. 

Table 1. Metabolites with significant differences between P24 and N24 groups. 

Metabolite KEGG Pathway Description 
Fold  
Change 
(P24/N24) 

p-Value 
VIP 
Value 

Glycocholic Acid 
Bile secretion; cholesterol metabolism; secondary bile acid biosynthesis; primary bile acid bio-
synthesis 

1.17 0.001 1.24 

Taurocholic acid 
Cholesterol metabolism; taurine and hypotaurine metabolism; secondary bile acid biosynthe-
sis; bile secretion; primary bile acid biosynthesis 

2.20 0.000 2.34 

Sphinganine Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway 0.61 0.000 2.21 

CGMP 
Purine metabolism; bile secretion; salivary secretion; gap junction; thermogenesis; vascular 
smooth muscle contraction; oxytocin signaling pathway; circadian entrainment; regulation of 
lipolysis in adipocytes; aldosterone synthesis and secretion; renin secretion; cGMP-PKG  

1.68 0.000 2.16 

 
Signaling pathway; olfactory transduction; long-term depression; phototransduction; platelet 
activation 

   

Adenine Purine metabolism; zeatin biosynthesis 2.64 0.000 2.57 
Inosine ABC transporters; purine metabolism 1.17 0.000 1.14 

Sphingosine 
Sphingolipid metabolism; metabolic pathways; sphingolipid signaling pathway; apoptosis; 
necroptosis 

0.82 0.006 1.01 

3-ketosphinganine Sphingolipid metabolism 0.24 0.000 2.57 
3a,7a,12a-Trihydroxy-
5b-cholestan-26-al 

Primary bile acid biosynthesis 0.83 0.000 1.12 

Figure 11. KEGG pathway enrichment analysis for metabolites with significant differences between
P24 and N24 groups. Values are presented as the means ± SEM. p < 0.05.

3.7. The Effects of POSH1 on SCFAs in the Fermentation Products of Intestinal Flora

The effects of POSH1 on SCFAs in the fermentation products of intestinal flora are
shown in Figure 12. The composition of SCFAs was similar in the N24 and P24 groups.
Acetic acid was the highest content of all SCFAs, followed by butyric acid (the sum of
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butyric acid and isobutyric acid) and propionic acid, and the lowest content was valeric
acid (the sum of valeric acid plus isovaleric acid). The P24 group significantly increased
the levels of the detected six SCFAs in the fermentation products of the intestinal flora
compared to the control group, Group N24, which was similar with the phenomenon
observed in previous study [27].
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4. Discussion

This study investigated the cholesterol-lowering mechanisms of POSH1 via an inte-
grative analysis of the gut microbiota. The findings indicated that POS promoted the
growth of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lacto-
bacillus and increased four types of cholesterol metabolism-related metabolites (adenosine
monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) concentrations
in non-targeted metabolomics and SCFA analyses. Our results demonstrated that the
potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated
by cholesterol-related gut microbiota and specific metabolites.

The microecological balance of the intestinal microbial composition played an impor-
tant role in maintaining body homeostasis [31]. A β-diversity analysis was used to analyze
the similarity or difference relationship of microbial community structures in different sam-
ples. The results of the β-diversity showed that the intervention of POSH1 caused changes
in the intestinal microorganisms. Alpha diversity was used to analyze the diversity and
species richness of different samples [32,33]. The results of α-diversity in this study showed
that POSH1 significantly increased the Shannon, Chao and Ace indices and significantly
decreased the Simpson indices compared to the control group. In conclusion, the addition
of POSH1 significantly increased the diversity and richness of intestinal microorganisms.

Our study demonstrated that POSH1 significantly altered the composition of fecal
gut microbiota, inhibited the growth of potential pathogenic bacteria, and promoted the
growth of beneficial bacteria. At the phylum level, Proteobacteria showed the highest
abundance in the control group in the dominant phylum, followed by Firmicutes and
Bacteroidetes, while Firmicutes reflected the highest abundance in the POSH1 group, followed
by Bacteroidetes and Actinobacteria; and Proteobacteria with Fusobacteria were relatively less
abundant bacteria. Proteobacteria was an opportunistic pathogen, including Escherichia
coli, Salmonella and Campylobacter. Proteobacteria has been reported as a potential factor
resulting in intestinal diseases, and the increased Proteobacteria abundance increased the
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prevalence of intestinal diseases risk [34,35]. In the current study, POSH1 significantly
reduced the abundance of Proteobacteria, which was consistent with the report in the
literature that pectin reduced the abundance of Proteobacteria in pig intestinal flora [36],
indicating that POSH1 has potentially regulated intestinal flora and reduced the risk of
intestinal diseases. The abundance of Firmicutes was significantly increased in the POSH1
group and became the dominant phylum with the highest abundance. The promotional
effect of POSH1 on the abundance of Firmicutes was consistent with the experimental
phenomenon observed in our previous study [27]. Similar results have been reported in
related studies. The lemon pectin treatment group significantly promoted the abundance of
Firmicutes, which became the most abundant phylum in the human intestinal flora [37]. Our
results of the increased growth of Bacteroidetes and Actinobacteria stimulated by POSH1 are in
accordance with previous studies [38,39]. Moreover, the increased abundance of cholesterol
metabolism-related microbiota Bacteroidetes after POSH1 supplementation is in agreement
with observations made in our previous study [27]. The structural analysis performed in
our previous study showed that POSH1 was a low-esterification pectin oligosaccharide [28].
Larsen et al. reported that the lower the degree of pectin esterification, the easier it is to
be decomposed and utilized by Bacteroidetes, and the better it is to promote the growth
of Bacteroides [40], which may be the explanation for the increased abundance of the
Bacteroidetes phylum by POSH1.

At the genus and species levels, POSH1 significantly inhibited the growth of Escherichia–
Shigella and Escherichia coli, and the abundance was only 10% of that of the control group.
The Escherichia–Shigella genus contains many potential pathogenic bacteria, including Es-
cherichia coli, and a reduced abundance of this flora has been considered to be beneficial
to the health of the intestinal flora [41–43]. The reduction in the abundance of Escherichia
coli may be related to the protective effect of Bifidobacteria on the intestinal tract. Bifi-
dobacteria has been proven to inhibit the growth of Escherichia coli by producing acetic
acid [44]. Enterococcus is the main pathogen that causes body infection, and the inhib-
ited growth of Enterococcus was reported to protect the intestinal flora and regulate the
intestinal microecology [45,46]. POSH1 significantly reduced the relative abundance of
Enterococcus in the intestinal flora and inhibited its growth, which was consistent with
the inhibition trend of POSH1 on Enterococcus in mice fecal contents in our previous re-
port [27]. Prevotella is one of the major genera of Bacteroidetes with anti-inflammatory
effects [47]. POSH1 significantly increased the abundance of Prevotella compared with the
control group. Bacteroides and Prevotella are the main flora that decompose and utilize
pectin in the intestine, and the intake of pectin and dietary fiber foods significantly in-
creases the abundance of Prevotella [36,40,48,49]. Bifidobacterium and Lactobacillus are two
types of probiotics recognized in the intestinal flora that exert beneficial effects by modulat-
ing cholesterol metabolism [50,51], POSH1 significantly increased the relative ratio of the
two in the intestinal flora abundance, especially the relative abundance of Bifidobacterium
pseudocatenulatum and Bifidobacterium longum in the Bifidobacterium genus, similar to the
prebiotic effects of pectin and pectin oligosaccharides reported in the literature [52–54].
In addition, studies have shown that the cross-feeding mechanism between Bacteroidetes
and Bifidobacterium genera promotes the growth and reproduction of Bifidobacterium [55].
These findings are consistent with the growth-promoting effect of POSH1 on cholesterol
metabolism-related intestinal flora, lactic acid bacteria and bifidobacteriaobserved in the
in vivo research in our previous study [27]. It showed that POSH1 promoted the growth of
beneficial bacteria in the intestinal flora and exerted potential probiotic activity.

Intestinal flora is a highly complex micro-ecological system. In addition to the compo-
sition of the flora itself affecting the health of the host, its fermentation products are also an
important way for the intestinal flora to regulate the host metabolism [18,56]. The fermen-
tation products produced by the intestinal flora after the fermentation of POSH1 caused a
total of 221 significant changes in the fermentation products, and the metabolic pathways
of the differential fermentation products were mainly concentrated in lipids and lipid-like
substances, organic acids and their derivatives, and organic heterocyclic compounds.
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Small molecules in fermentation products produced by intestinal flora, such as BAs,
SCFAs, amino acids, and other derivatives, have been reported to be involved in regulating
the body’s physiological metabolism and maintaining host health [57]. The results of KEGG
pathway enrichment showed that 68 significantly enriched pathways were composed of 38
differential fermentation products. Among them, there were three kinds of fermentation
products related to cholesterol metabolism, namely adenosine monophosphate (adenosine
monophosphate), cAMP (cyclic adenosine monophosphate) and guanosine (guanosine
nucleoside), the abundance of which was significantly higher in the P24 group than in the
N24 group.

Adenosine monophosphate-activated protein kinase (AMPK) is involved in the regu-
lation of multiple cellular biological processes, including cholesterol metabolism. When the
ratio of adenosine monophosphate to adenosine triphosphate increased, AMPK could be
activated by phosphorylating the T172 binding site [14]. Studies have shown that AMPK
prevented the development of atherosclerosis-related cardiovascular disease by upregulat-
ing the expression of ABCA1 and ABCG1 in macrophages and promoting HDL-regulated
cholesterol efflux in macrophages [58]. Therefore, compared with N24, the increased adeno-
sine monophosphate content in P24 might explain the reason for significantly promoting the
effects of P24 on the cholesterol efflux of macrophages in our previous reported study [28].
After cyclic adenosine monophosphate treatment of macrophages, the mRNA expression of
ABCA1 in the cells increased to 4.1 times, which significantly promoted the cholesterol ef-
flux [59]. Therefore, the cholesterol efflux-promoting effects of P24 reported in our previous
study might be associated with the marked rise of cyclic AMP in the P24 composition [28].
Guanosine has been reported to be able to increase cholesterol efflux in astrocytes and
C6 rat glioma cells without exogenous receptors [60]. In addition, significantly elevated
guanine in P24 components might also be another reason why P24 significantly promoted
the cholesterol efflux of macrophage at a normal state in our previous study [28].

SCFAs are the main end products of indigestible sugars fermented by intestinal mi-
croorganisms, mainly including acetic acid, propionic acid, isobutyric acid, butyric acid,
isovaleric acid and valeric acid, among which acetic acid, propionic acid and butyric
acid account for the sum of SCFAs by more than 95% [61]. In the current study, acetic
acid, propionic acid and butyric acid were the most important SCFAs in the P24 and N24
groups, and valeric acid and isovaleric acid accounted for only 4.9–7.2%. Studies have
shown that pectin and its hydrothermal hydrolyzed oligosaccharide mixture significantly
increased the concentration of acetic acid, propionic acid, butyric acid and total SCFAs
in the fermentation broth [52], which was in line with the observation of the elevated
SCFA production of supernatant contents caused by POSH1 in the current study. It has
been reported that acetate and propionate were mainly metabolized by Bacteroidetes, while
butyrate was mainly metabolized by Firmicutes [62,63]. SCFAs are produced by fermenting
dietary fibers through gut microbes, so their changes are often associated with changes in
the gut microbiota. High-throughput sequencing results showed that POSH1 increased the
abundance of Firmicutes and Bacteroidetes in the intestinal flora, which may be the main
reason for the increase in SCFAs in P24. It has been reported that butyric acid alleviated
abnormal cholesterol metabolism in HF-diet ApoE knockout mice by upregulating the gene
expression of macrophage ABCA1 [18]. The concentration of butyric acid in the P24 group
was significantly higher than that in the N24 group, which may have been the reason for
significantly promoting effects of P24on cholesterol efflux in our previous findings [28].

5. Conclusions

POSH1 altered the composition of the gut microbiota and its fermentation products.
POSH1 significantly changed the composition of fecal gut microbiota at the phylum, genus
and species levels; promoted the growth of bacteria related to cholesterol metabolism (Bac-
teroidetes, Bifidobacterium and Lactobacillus); and inhibited the growth of potential pathogenic
bacteria such as Escherichia coli and Enterococcus, showing good probiotic activity.
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POSH1 altered the composition of gut microbiota fermentation products, causing
significant changes in 221 non-target fermentation products. Through KEGG pathway
enrichment and fermentation product screening, the abundance of three fermentation
products related to cholesterol metabolism (adenosine monophosphate, cyclic adenosine
monophosphate and guanosine) in the P24 group was significantly higher than that in the
N24 group.

POSH1 significantly promoted the secretion of SCFAs in the fermentation products of
intestinal flora and increased the concentrations of acetic acid, propionic acid, isobutyric
acid, butyric acid, isovaleric acid and valeric acid.

This is the first study to reveal the regulatory mechanisms of chemically prepared
citrus POS on cholesterol metabolism via an integrative analysis of the gut microbiota. Our
results demonstrated that POSs might be promising substrates for cholesterol metabolism
regulation; however, further clinical research is recommended to elucidate the detailed
regulatory pathways of POS on cholesterol metabolism.
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