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Simple Summary: Brain cancers, which can start in the brain or spread there from other parts of the
body, are difficult to treat and often lead to severe health issues and death. Radiotherapy (RT) is a
main treatment that helps control symptoms and can sometimes cure the disease, but many brain
cancers resist it, especially those that start in the brain. Combining immunotherapy with RT has
shown promise for treating cancers that spread to the brain, but has limited success with gliomas, the
most common primary brain cancer. This review looks at why brain tumors resist RT, new strategies
to overcome this, and the role of the tumor’s environment. We highlight key findings from recent
research and identify new treatment opportunities to improve outcomes and survival rates for brain
cancer patients.

Abstract: Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-
eases characterized by a relative resistance to treatments and distinguished as either primary tumors
arising in the CNS or secondary tumors that spread from other organs into the brain. Despite
therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy
(RT) remains the main treatment for brain cancers, improving associated symptoms, improving
tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to
improve a patient’s survival, remains elusive for many CNS cancers, especially primary tumors.
Over the years, there have thus been many preclinical studies and clinical trials designed to identify
and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For
example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT,
is synergistic and has revolutionized the clinical management and outcome of some brain tumors,
in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most
common primary malignant CNS tumors, remains limited. In this review, we provide an overview
of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the
tumor microenviroment (TME), and the selection of the most significant results of radiation–immuno–
oncological investigations. We also identify novel therapeutic opportunities in primary and secondary
brain tumors with the purpose of elucidating current knowledge and stimulating further research to
improve tumor control and patients’ survival.
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1. Introduction

Malignant central nervous system (CNS) tumors include a group of heterogeneous
oncological diseases each defined by unique pathology, clinical presentation, site of in-
volvement, and prognostic features. Many are also characterized by a relative resistance
to treatments. Malignant brain tumors are distinguished as either primary tumors aris-
ing in the CNS, or secondary tumors that spread from other organs. Whether primary
or secondary, brain tumors often cause significant morbidity and can have high mortal-
ity rates. In adults, the incidence of primary malignant brain tumors is approximately
7 per 100,000 individuals, of which approximately half are glioblastomas (GBM) [1]. Un-
fortunately, GBMs are very aggressive tumors with a median survival of approximately
12–18 months [2,3]. Secondary CNS cancers, brain metastases (BMs), are much more com-
mon than primary malignant brain tumors. In fact, approximately 20–40% of patients with
solid tumors eventually develop BM [4], resulting every year in >200,000 BM patients in the
USA. Non-small cell lung cancer, breast cancer, and melanoma are the three most common
primary cancers that metastasize to the brain. Radiation therapy (RT) remains the primary
treatment for BM, but subsets of solid tumor cancers are driven by specific mutations that
can be treated effectively with targeted systemic therapies. Some of the specific pathways
or receptors with mutations leading to solid tumors include epidermal growth factor recep-
tor EGFR, ALK, KRAS, ROS1, BRAF, and HER2, which can be treated by drugs targeting
those specific mutations. Many of the targeted drugs are small molecules which can cross
the blood–brain barrier and thus are relatively effective in the upfront treatment of BM
harboring these mutations [5–7]. However, in the absence of genetic targetable drivers, RT
is typically used, sometimes in conjunction with surgery as the primary treatment. Many
clinical studies and decades of experience have demonstrated the effectiveness of radio-
therapy (RT) to control tumors and improve survival for both primary and secondary brain
tumors. More recent studies have demonstrated that immunotherapy (IT) in conjunction
with RT can be very effective for certain tumor types. This observation has revolutionized
the landscape of brain cancer treatments [8,9]. As mentioned, the predominant role of RT
in the treatment of primary and secondary brain tumors is well recognized [10,11], but
the powerful and significant immunomodulatory capacity of RT has only recently been
recognized [12]. The potential immunomodulatory effect of RT is more pronounced when
high-dose RT such as radiosurgery (SRS) or hypo-fractionated stereotactic RT (HFSRT) is
used. Initial results of both preclinical and clinical studies of HFSRT and IT are promis-
ing, but the optimal combination and sequence of these therapeutic approaches remain
under investigation.

In this context, research is ongoing to elucidate the interactions between tumor cells,
the tumor microenvironment (TME), and the host’s innate/adaptive immune system.
Understanding how interactions modulate and influence cancer development, growth, and
response or resistance to treatment is obviously important to improve the therapeutic index
and cure more brain cancers.

Based on this background, we provide an overview of radioresistance mechanisms,
strategies to overcome radioresistance, the role of TME, and the main results of radiation–
immuno–oncological investigations as well as novel tailored therapeutic opportunities
in primary and secondary brain cancers. The goal of this review is to elucidate current
knowledge and stimulate further research to improve tumor control and patients’ survival
Several other immunotherapeutic approaches are under investigation, including peptide,
multi-peptide, and dendritic cell-based vaccines, oncolytic viral therapy, antibody drug
conjugates (ACPs), and CAR-T cell therapy (Figure 1).
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Figure 1. The tumor microenvironment of primary and secondary brain tumors refers to the complex
network of cells, molecules, and structures surrounding the tumor cells within the brain. This
environment plays a critical role in influencing different aspects of tumor growth, invasiveness, and
treatment response. Between oncological treatments for both primary and secondary brain tumors
(solid arrows denote significant treatment impacts, while dashed arrows signify less significant
therapeutic results), radiotherapy plays a pivotal and fundamental role in both contexts. Concerning
systemic treatments, chemotherapy remains a cornerstone in the treatment of primary brain tumors,
whereas in secondary brain tumors, targeted therapies, including monoclonal antibodies, immune
checkpoint blockade, and small molecules with inhibitor functions, have revolutionized the landscape
of brain cancer treatments. Several immunotherapeutic approaches are currently under preclinical
and clinical development.

2. Radioresistance

Radioresistance in cancer cells is defined as the cellular capacity of resisting the lethal
effects of radiation, resulting in tumor recurrence. Understanding radioresistance pathways
may help identify potential strategies to overcome radioresistance in brain tumors.

Fortunately, the ablative doses of SRS and HFSRT are relatively effective for most
BM. However, there are a few types of BM that are relatively radioresistant. These include
BM from melanoma, renal cell carcinoma, sarcoma, and gastrointestinal cancers [13,14].
Primary malignant brain tumors [15] are often initially responsive to radiation, but the
high-grade tumors which represent the majority of primary brain tumors eventually recur
despite high initial doses of RT. Radioresistance is a complex phenomenon that involves
multiple pathways, including DNA repair, apoptosis, and inflammation. One of the main
mechanisms of radioresistance is the activation of DNA damage repair pathways [16]. After
exposure to radiation, cells activate various DNA repair pathways, such as homologous
recombination, non-homologous end-joining, and base excision repair, to repair the DNA
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damage induced through RT. The activation of these pathways promotes cell survival and
results in radioresistance. Another pathway that plays a role in radioresistance is apoptosis
or programmed cell death. Radiation can induce apoptosis in tumor cells, but radioresistant
tumors can evade apoptosis by upregulating anti-apoptotic proteins such as Bcl-2 and
Bcl-xL [17,18]. These proteins inhibit the intrinsic apoptotic pathway through blocking
the release of cytochrome c from the mitochondria and activating survival pathways
such as PI3K/Akt. Inflammation also can result in radioresistance. Radiation-induced
inflammatory response can contribute to tumor progression and treatment resistance, as
inflammation can activate survival pathways, promote angiogenesis, and recruit immune
cells that can suppress the immune response against the tumor [19,20].

3. Radiation Optimization Strategies

Some strategies developed and under investigation to overcome tumor resistance
include SRS or HFSRT ± IT, innovative approaches for radiation delivery in terms of
temporal and spatial fractionation, particle RT, and tailored systemic therapy.

SRS or HFSRT is non-invasive, high-dose, and highly conformal, typically used to treat
brain metastases, occasionally primary malignant tumors such as GBM, and benign tumors
such as acoustic neuromas. Because of the conformality of these treatment techniques, SRS
or HFSRT minimizes exposure to surrounding normal healthy tissue while delivering a
focused high dose of radiation to a specific target or tumor. RT at a high dose per fraction
can overcome radioresistance, as opposed to RT at a lower dose per fraction, as a high
dose per fraction induces more direct DNA damage and indirect cellular injury due to the
ablative effect on the tumor vasculature [21]. Moreover, preclinical studies have shown
that SRS or HFSRT can stimulate antitumor immune responses by inducing immunogenic
cell response, promoting antigen presentation, and enhancing infiltration of immune cells
into the TME [8,9]. IT such as immune checkpoint inhibitors or adoptive T-cell therapy
can further enhance these effects by removing immunosuppressive barriers and activating
tumor-specific T cells [22–25]. In this direction, heightened application of technical and
biological knowledge allows innovative approaches for radiation delivery that could elicit
an in situ vaccination effect from RT in combination with checkpoint blockade, increasing
diversity among tumor-infiltrated lymphocytes and stimulating recognition of tumor
mutation-associated neoantigens [26,27].

Recent and contemporary areas of exploration in RT application include FLASH-RT
and PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) which
represent examples of different temporal fractionation RT delivery. FLASH-RT delivers
radiation at ultra-high dose rates with specific beam parameters able to effectively treat
tumors without inducing adverse toxicity within the surrounding normal tissues [28]. The
physical, chemical, and biological mechanisms of FLASH are unknown, but several studies
are exploring these [29]. PULSAR is characterized by the possibility of splitting the course
of RT in time by weeks or months, through giving a large radiation dose with each fraction.
This administration modality aims to improve the tolerance of organs at risk and to adapt
the treatment based on tumor response and modification of its TME [30]. In terms of
alternative spatial fractionation, RT approaches such as GRID, lattice RT, and minibeam
RT are under investigation [30–33]. GRID and lattice RT are types of high-dose spatially
fractionated radiation therapy, based on 2D and 3D techniques, respectively, that allow
ablative doses to be delivered to large lesions without increasing toxicity, with alternating
high-dose and low-dose areas as peaks and valleys [31,32]. Minibeam provides preclinical
ultrahigh dose rates RT of the order of up to 100 Gy/s or higher, using a strong spatial
modulation of the dose, as the irradiation is performed with arrays of narrow parallel
beams (0.5–1 mm) spaced 1.5 to 4 mm apart, resulting in a highly heterogeneous dose
distribution [31,33].

Clinical trials are ongoing to investigate the safety and efficacy of combining different
RT approaches with IT in patients with both primary brain tumors and BM. While initial
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results have been promising, more data are needed to determine the optimal timing,
sequencing, and dosing of these treatments [34].

In addition to developing more efficient combination therapies, precise RT targeting
of the tumor is essential for minimizing side effects and improving the efficacy of SRS.
Advanced imaging techniques such as MRI and PET, as well as innovative technologies
such as the Gamma Knife, Cyberknife, Novalis, and ZAP-X Gyroscopic SRS devices have
been developed to improve the precision of SRS, increasing the potential efficacy and
reducing the risk of side effects.

Particle therapy with protons and heavier charged particles is a modality of RT that
can be used to treat radioresistant tumors. Compared with conventional photon RT, particle
therapy is characterized by high-linear energy transfer (LET) radiation that theoretically
leads to higher biological effectiveness (RBE) as it can cause more DNA double-strand
breaks than comparable photon RT [35]. Practically, though, there is no obvious clinical
evidence of the advantages of particle therapy in terms of overcoming radioresistance. The
most commonly used particle therapy, proton therapy, is most recognized for its physically
advantageous feature of the Bragg peak. The Bragg peak imparted by proton beams enables
a rapid drop-off of dose beyond the depth of the targeted tumor, which reduces exposure
of normal tissue and is particularly useful for larger field treatments or pediatric patients.

Beyond the physical advantages of proton therapy, there are biologic strategies to
improve the radiosensitivity of tumors, such as combining RT with drugs that enhance
biologic sensitivities. One example is combining RT with PARP inhibitors that target DNA
repair pathways. This combination has shown promise in preclinical studies for enhancing
the sensitivity of brain tumors to radiation [36]. Similarly, targeting anti-apoptotic proteins
such as Bcl-2 and Bcl-xL can sensitize radioresistant tumors to radiation [37]. In addition,
inhibiting inflammatory pathways such as the NF-kB pathway has been shown to sensitize
tumors to radiation and reduce treatment resistance [38].

Overall, the strategies described above have been promising in preclinical and clin-
ical studies for enhancing the sensitivity of brain tumors to radiation and overcoming
radioresistance.

4. The Role of Tumor Microenvironment in Brain Cancers

Over the past several years, it has become clear that the initiation, growth, progression,
and recurrence of primary and secondary brain tumors rely heavily on regulatory signals
and factors that emanate from the TME and factors that tumor cells direct at constituents of
the TME. From the time of tumor initiation to recurrence after treatment, there are complex
and constant interactions between tumor and non-tumor host cells. Tumor cells express
ligands and receptors through which they interact with the extracellular matrix and cells
that reside in or home to the microenvironment [39,40]. The interaction between neoplastic
and non-neoplastic cells typically involves downstream activation of transcriptional factors
that either activate or inhibit a set of target genes that mediate phenotypic and/or func-
tional changes in cells in the microenvironment [39,40]. Tumor cells also release factors that
antagonize the anti-tumor immunity activities of various resident or homing immune cells
that are poised to mount anti-tumor immunity. Microglia, the resident macrophages of the
CNS, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),
B, T, and NK cells constitute some of the key immune cells in the microenvironment of
brain tumors [41,42]. The outcome of anti-tumor and pro-tumorigenic interactions of host
cells with neoplastic cells ultimately defines a microenvironment that is either favorable or
detrimental to tumor growth, progression, and/or recurrence. Astrocytes also constitute
key components of the tumor microenvironment in the brain. Astrocytes are the most
abundant cells in the brain, where they play various roles in health and disease [43–45].
In the context of brain tumors, astrocytes, in addition to possibly being cells of origin for
many primary tumors, can become reactive and impact disease progression. For instance,
tumor-associated astrocytes have been shown to support tumor cell proliferation and
migration [44] as well as anti-inflammatory responses. Therefore, a thorough understand-
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ing of the formation of brain tumors, their mechanisms of progression, and reasons for
recurrence after treatment requires characterization of the molecular and genetic factors
that mediate and regulate the temporal and spatial roles of non-neoplastic cells, especially
immune cells [46,47]. This ultimately may lead to the development of stroma-directed
glioma therapies that can be combined with anti-neoplastic cell-targeted therapies for more
effective treatment of primary and secondary brain tumors.

5. Radiotherapy as Standard Care in Primary Brain Tumor and Brain Metastasis

Radiotherapy (RT) has been used to treat cancer since the early 20th century. At the
end of the 19th century, in 1896, Wilhelm Conrad Roentgen, a German professor of physics,
presented a lecture describing the “X-ray”. Systems were rapidly developed to use X-rays
for diagnostic purposes and then, within a few years, X-rays were used to treat cancer. It
was quickly recognized that fractionated, small, daily doses of X-rays delivered over an
interval of several weeks enabled optimal recovery of the normal tissues in the radiation
field while offering patients local tumor control that in some cases could result in a cure.
Decades later, progress in technology has perfected dose delivery with optimal sparing of
normal tissues, often enabling the use of hypofractionation.

After the mid 1930’s, X-ray therapy was mainly conducted with electron accelerating
machines developed primarily in the United States and England. Some of the earliest
studies were directed towards radiosensitive tumors such as lymphomas and some brain
tumors such as oligodendrogliomas. Ballard et al. [48] and Wagner et al. [49] published
their outcomes in relatively modern series that included patients treated in the 1940’s
and showed dramatic improvement in 5- and 10-year survival in patients who received
radiation therapy (RT) following surgery compared with surgery alone.

RT has also long been used for the treatment of BM. For several decades, the standard
of care for patients with BM was whole-brain radiation therapy (WBRT), typically delivered
in 10 fractions of 300 cGy each to a total dose of 3000 cGy (30 Gy) [50]. A practice-changing
study by Patchell et al. [51] demonstrated the role of post-operative WBRT after surgical
resection of BM [51]. Although WBRT is effective in controlling BM, it unfortunately has
significant toxicity in many patients. It is well recognized that WBRT can impact memory
and induce dementia in some patients [52,53]. Additionally, the 2 weeks of WBRT often
delay initiation of systemic therapies. Furthermore, WBRT negatively impacts the immune
system as it affects circulating lymphocyte counts [54]. Multiple publications in the past
20 years demonstrate that lymphocytopenia following RT is associated with poor outcomes.

Finally, since WBRT can induce tumor-associated edema that can exacerbate neurologi-
cal symptoms, corticosteroids are typically used, with their associated immunosuppressive
effects representing a double-edged sword as they are often necessary to help control
significant neurologic symptoms until the tumor is well treated.

Fortunately, the introduction of SRS has revolutionized the management of BM over
the past several decades [4,11]. SRS is commonly used in cancer centers throughout the
USA, Europe, and Asia to treat BM as well as other types of brain tumors (primarily
benign) and to ablate vascular malformations. In the past, SRS was often offered only to
patients with one to three BMs. However, relatively recently, SRS technology has advanced
such that we are often able to treat patients with several or many (more than 10) BMs
and avoid the toxicity and delays associated with WBRT [55,56]. In addition, SRS has the
distinct advantage of delivering an ablative dose of radiation in a highly accurate manner
with a dramatic drop-off of dose outside the targeted tumor, which has been shown in
randomized trials to provide better neurocognitive outcomes than WBRT. It is best suited
for very distinct tumors, such as BMs that are well defined and relatively small in volume.
For slightly larger BMs, HFSRT is used to deliver an ablative dose of RT, usually divided
into 3 or 5 treatments. It was also recently demonstrated that high-dose RT, such as SRS or
HFSRT, induces an immunogenic response [8].

Likewise, RT is a cornerstone in the treatment of GBM. In 2005, the results of a
randomized phase III trial [10] testing the role of adjuvant RT (60 Gy in 30 fractions) with
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concomitant and adjuvant temozolomide (TMZ) after maximal surgical resection compared
with RT alone showed a median survival of 14.6 months with RT + TMZ vs. 12.1 months
with RT alone and a 2-year survival rate of 26.5% with RT + TMZ vs. 10.4% with RT alone,
changing the practice of GBM management.

Over the years, mostly in patients with poor prognosis, hypofractionated RT
(10–15 fractions) and HFSRT (3–5 fractions) schemes ± TMZ have been tested, with the
purpose of reducing overall treatment time and offering patients possibly effective and safe
palliative care [3]. In 2004, Roa et al. published the results of non-inferiority trial comparing
40 Gy/15 fractions vs. 60 Gy/30 fractions in patients 60 years and older, showing no differ-
ence in survival between patients receiving standard RT or short-course RT [57]. Additional
studies also demonstrated the safety and efficacy of that shorted RT regimen with concur-
rent and adjuvant temozolomide in elderly and infirm patients [58]. A phase II clinical
trial also demonstrated the efficacy and tolerability of HFSRT (6 Gy × 6) and concurrent
TMZ and bevacizumab with impressive (but not significant) prolonged overall survival
in patients whose tumors did not harbor MGMT methylation, thus perhaps suggesting
a heightened immune response in these patients when treated with an immunogenic
fractionation scheme [59].

More progress is warranted to treat both high-grade gliomas and BM. Tailored strate-
gies to overcome treatment resistance show promise. Particularly, how to elicit immuno-
genicity and recruit the host’s immune system to combat brain cancers has grown as a
central area of investigation.

6. IT-RT in Brain Metastasis

Ipilimumab was the first checkpoint inhibitor approved for the use of cancer treatment
after Hodi et al. demonstrated a survival advantage over standard chemotherapy in
patients with advanced melanoma [60]. Patients with BM from melanoma were excluded
from this study, given their notoriously bad outcomes with a median survival rate of
only a few months. However, following the encouraging results of patients with systemic
metastatic disease from melanoma, patients with BM were empirically treated with SRS and
ipilimumab. The results were astounding with many patients achieving durable control and
indeed, even cure in some [61,62]. Those studies showed that there was prolonged survival
in many of these patients treated with SRS and ipilimumab, with results clearly superior to
historic controls. Around that time, preclinical evidence was published demonstrating the
immunologic effect of hypo-fractionated radiation therapy with clear infiltration of TILs
after doses similar to what was and is used for larger BMs [63]. Additionally, a preclinical
study showed a dramatic survival advantage and abscopal effect in mice with bilateral
flank tumors treated with RT compared with those with only one tumor treated with
concurrent checkpoint inhibitors. These lessons were rationally applied to our practice, as
patients with melanoma BM in particular had very dire outcomes otherwise. Beyond our
experience with ipilimumab and SRS, we recognized that other checkpoint inhibitors also
induced a dramatic response with SRS [64]. In 2017, Anderson et al. [65] published their
experience of pembrolizumab and SRS, demonstrating a remarkable and rapid response
of BMs in comparison to ipilimumab and SRS or SRS alone. Furthermore, there were
reports of high-dose hypofractionated RT for body metastases delivered concurrent with
ipilimumab that induced an abscopal effect, clearly demonstrating the immunogenicity of
high-dose hypofractionated RT [66,67].

Since these early studies, there have been many publications demonstrating similar
effects and variable radiographic responses with perhaps heightened “adverse radiation
effects” or even radiation necrosis, following IT and SRS for BM. Interestingly, these
observed effects seem to correlate with good outcomes, similar to adverse immune effects
seen systemically after IT alone. Importantly, at ASTRO 2022, the Memorial Sloan Kettering
Cancer Center (MSKCC) presented their experience of patients who had survived >5 years
following SRS and IT for melanoma BM. In this group of patients, >25% eventually had
their BMs resected due to worrisome changes, and none of those specimens had viable
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disease. In fact, all of them comprised reactive tissue and showed evidence of gliosis,
indicating a very robust treatment response unlike responses seen in BM treated with
RT alone.

Finally, IT in the form of checkpoint inhibitors is nowadays applied to many immuno-
genic cancers, such as lung and renal cell cancers. In fact, a clinical trial at MSKCC is
exploring the use of checkpoint inhibitors in combination with VEGF inhibitors and SRS
for renal cell cancer BM. This trial takes advantage of the anti-edema properties of VEGF
inhibition that allow avoidance of (immunosuppressive) corticosteroids in patients with
BM. This combination and avoidance of corticosteroids may yet heighten the effect of
concurrent IT and SRS.

7. IT-RT in High Grade Gliomas

Immune checkpoint inhibitors have demonstrated only modest activity when used as
part of the management of patients with GBM, either at recurrence or as part of initial ther-
apy. The phase II/III trial NRG-BN007 (NCT04396860) [68] compared the usual treatment of
RT and temozolomide to RT in combination with IT (ipilimumab and nivolumab) for treat-
ing patients with newly diagnosed unmethylated MGMT (tumor O-6-methylguanine DNA
methyltransferase) GBM. Recently, a futility analysis led to the early closure of that trial
because the investigational arm did not meet protocol-defined criteria for progression-free
survival [69].

Another trial, CheckMate 143, compared the efficacy and safety of nivolumab admin-
istered alone versus bevacizumab in patients diagnosed with recurrent GBM. It also further
evaluated the safety and tolerability of nivolumab administered alone or in combination
with ipilimumab in patients at different disease points of their recurrent GBM [69,70]. In
total, 439 patients with recurrent GBM were enrolled at their first failure after standard
partial brain RT and temozolomide, and 369 were randomized on the trial. The study was
negative overall, but in subset analyses, patients with methylated MGMT promoters had a
survival advantage with nivolumab and temozolomide, with a median overall survival of
33.4 months vs. 16.9 months for patients who lacked MGMT promoter methylation [70,71].

It appears that unlike in other cancers, programmed death ligand 1 (PD-L1) levels
do not predict response to checkpoint inhibitors in GBM [72]. However, these and other
discouraging findings have not shut down investigator interest in trying to improve control
of malignant gliomas through employing immune checkpoint inhibitors.

The futility of the trials conducted so far has been disappointing, but there may be
factors related to current management approaches that can be ameliorated or avoided in
subsequent trials. Lymphopenia caused by temozolomide and corticosteroids may blunt
potential immune responses to checkpoint inhibitors. Radiotherapy also contributes to
lymphopenia, and the current standard prescription of 2.0 Gy doses administered over
30 daily fractions is less immunogenic than a hypofractionated approach with high doses
of RT with each treatment, which is known to be immunogenic. However, the standard
treatment approach to GBM of 30 daily fractions of RT with concurrent temozolomide
was derived through decades of clinical trials demonstrating superior survival to other
competing approaches. These approaches were adopted before the current understanding
and recognition that high-dose hypofractionated RT was immunogenic and may be very
effective in tandem with IO (as with some types of BM).

Some factors inherent to GBM are likely to continue to be refractory. GBM cells are
spatially heterogeneous. Clonal evolution occurs within a tumor under differing microen-
vironments, and this results in genotypically and phenotypically different subclones that
may differ significantly in their response to therapy [73]. The selective pressure of tu-
mor therapies also exerts an influence—more aggressive and resistant clones proliferate
through treatment.

Tumors promote an immunosuppressive microenvironment within a relatively immune-
privileged organ. Soluble factors produced by the tumor, such as kynurenine and adenosine,
initiate signal cascades that inhibit the immune system [74,75] and tryptophan secretion
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causes paracrine sequestration of T cells in bone marrow [76]. T cells found within GBM
are both sparse and ineffective, exhibiting anergy, tolerance, and exhaustion from persistent
exposure to tumor-associated antigens in the presence of inhibitory receptors. This lowers
IL-2 production and blunts antitumor immune responses. Also, despite the presence of
high levels of tumor-associated macrophages (both brain-resident microglia and bone
marrow-derived macrophages), they are largely inactive and play a supportive role in the
growth of tumor cells.

A phase II trial published by Omuro et al. tested some of the treatment-related factors
mentioned above through giving HFSRT (6.0 Gy × 6 to resection beds and unresected solid
tumor and 4.0 Gy × 6 to FLAIR abnormality) with concurrent and adjuvant temozolomide
and with concurrent bevacizumab for prophylaxis against RT injury and to decrease tumor-
associated edema (and avoid corticosteroids). The regimen was well tolerated; indeed, the
demonstrated median OS was 19 months for all patients, with an OS of 22 months in the
subset of patients whose tumors did not demonstrate MGMT methylation. This result was
not statistically significant, but is nonetheless thought-provoking as MGMT-unmethylated
tumors are notoriously aggressive and may thus be more immunogenic and more likely to
benefit from a more immunogenic treatment strategy such as HFSRT [58].

Several other immunotherapeutic approaches are under investigation, including pep-
tide, multi-peptide, and dendritic cell-based vaccines, oncolytic viral therapy, antibody–
drug conjugates (ACPs), and CAR-T cell therapy. However, the results remain immature
and require further clinical evaluation [77].

8. A New Strategy of Tailored Therapy for Radioresistant Brain Tumors

Targeting fatty acids (FAs), a class of lipids, is emerging as a promising approach
against brain tumors [78]. FAs are long-chain hydrocarbons that can be classified into
saturated fatty acids (SFAs), mono-unsaturated fatty acids (MUFAs), and poly-unsaturated
fatty acids (PUFAs), based on the carbon lengths and degrees of desaturation. They
serve as building blocks of many lipids and have shown important roles in energy storage,
insulation, and cell signaling. In the brain, FAs are critical for numerous processes, including
(but not limited to) neurotransmitter trafficking [79] and myelination [80]. Importantly,
while glucose is the predominant energy substrate in the brain, long-chain FAs can be
catabolized as an alternative source to produce ATP [81]. In the context of a tumor, brain
cancer cells overexpress the fatty acid synthase (FASN) to synthesize new FAs to sustain
their growth [82,83]. Specifically, they preferentially utilize short-chain FAs to facilitate its
absorption and acquire a growth advantage when compared to normal brain cells [78,84].
Supporting the critical role of FASN in the carcinogenesis of brain tumors, a recent phase
II clinical study of relapsed high-grade astrocytoma showed an objective response rate of
56%, complete response rate of 17%, plus partial response rate of 39% in patients receiving
FASN inhibition in combination with bevacizumab [85]. Progression-free survival at
6 months (PFS6) with the combination of FASN inhibition and bevacizumab was 31.4%,
which was statistically significant when compared with historical controls of bevacizumab
as monotherapy (BELOB trial; PFS6: 16%) [86].

The pro-tumorigenic role of FA metabolism extends beyond neoplastic development.
Indeed, accumulating evidence reveals that resistant cancers, including brain tumors,
reprogram their energy metabolism to survive anti-cancer treatment such as radiation
therapy (RT) [87–89]. Such metabolic rewiring is a consequence of excessive levels of
reactive oxygen species (ROS) that impair cellular homeostasis [90–93]. Therefore, to
decrease ROS toxicity and maintain cell survival, irradiated cancer cells reprogram their
metabolism to elicit a cytoprotective response to oxidative stress, in part through increasing
FA metabolism [93–95]. FASN-mediated de novo FA synthesis has been linked to RT
resistance and poor outcomes [96–99], giving rise to FASN blockade strategies to sensitize
tumors to RT [97].

We recently showed that RT promotes FASN-mediated unsaturated fatty acids to
protect GBM cells from undergoing apoptosis and sustain their survival, thus further rein-
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forcing the rationale for targeting FASN in irradiated brain tumors [95]. However, a recent
study demonstrated that supplementation with exogeneous MUFAs and di-unsaturated
FAs radio-sensitized cervical cancer via a p53/CD36-dependent mechanism [100]. These
potential discrepancies might be explained by the activation of two distinct pathways that
permit the accumulation of FAs in cancer cells, namely FASN-mediated de novo FA synthe-
sis and CD36-mediated FA uptake. Additional work is warranted to better characterize
the function of SFAs, MUFAs, and PUFAs in radiation response with respect to tumor
metabolic landscape at baseline and the pathway responsible for FA accumulation in cancer
cells after RT.

Aside from its role in brain tumor development and RT resistance, FA metabolism was
also recently reported to have an immunosuppressive role in irradiated GBM. Specifically,
Jiang et al. demonstrated that fatty acid oxidation (FAO; also referred as fatty acid β-
oxidation) upregulated the “don’t eat me signal” CD47 in GBM to hinder the phagocytosis
properties of macrophages [101]. These data suggest that targeting FAO with an inhibitor
of carnitine palmitotransferase-1 (CPT-1) to prevent the transport of FAs into mitochondria
for oxidation is a potential new approach to improve the combination of focal RT with
anti-CD47 antibody to stimulate immunity against brain tumors.

While emerging evidence points towards a major role of FA metabolism in mediating
brain tumor carcinogenesis, resistance to treatment, and immunosuppression, additional
work is warranted to successfully translate the combination of RT and FA metabolism to
target agents to control brain tumors (Figure 2).
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Figure 2. Radiation therapy (RT) promotes radiation resistance and immune evasion by reprogram-
ming the tumor metabolism. Briefly, RT induced de novo lipid metabolism mediated by fatty acid
synthase (FASN) to accumulate intracellular fatty acids (FAs) that can be used as an energy supply
for fatty acid oxidation (FAO) in the mitochondria. Acetyl-CoA, the end product of FAO, can enter
the tricarboxylic acid cycle (TCA cycle, also known as the Krebs cycle) to produce citrate. Citrate is
then exported into the cytosol as substrate for de novo lipogenesis to subsequently promote radiation
resistance and immune evasion.

9. Conclusions

Primary and secondary brain tumors are a group of heterogeneous oncological diseases
that, despite therapeutic efforts, often cause significant mortality and morbidity across all
ages. Historically, RT has played a key role in the treatment of brain cancers, delivered
for the purpose of improving local control and/or palliating symptoms. However, the
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definitive goal of cancer treatments, to cure patients, remains elusive for many brain cancers;
thus, translational research by clinicians and scientists continues in earnest around the
world. Over the years, several preclinical studies and clinical trials have been designed
to elucidate possible mechanisms of resistance and treatment paths more effective than
standard care. IT in synergistic association with RT, mostly HFSRT, has revolutionized
the clinical management of many malignancies, including brain metastases. Single or
combination immune checkpoint inhibitors, such as anti-cytotoxic T-lymphocyte associated
protein 4 (CTLA-4) and anti-programmed cell death 1 (PD-1), associated with stereotactic
RT showed remarkable and durable responses in patients with BM from melanoma without
severe side effects. Moreover, an abscopal effect was observed in some cases, highlighting
the immunogenic effect of IT-RT combination therapy. These emerging data support the
same therapeutic application in many other immunogenic cancers, such as lung cancer BM.
Nevertheless, the impact of IT-RT on GBM and resistant metastatic tumors is still under
investigation. Some evidence derived through clinical trials suggests that methylated
MGMT GBM may have a therapeutic advantage, based on adding nivolumab to standard
therapy; on the other hand, in unmethylated MGMT GBM, HFSRT could be used to induce
an immunogenic reaction that improves survival. In this scenario, investigating radiation
and drug resistance mechanisms presents a major challenge to the treatment of primary
and secondary brain tumors.
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