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Abstract: The excessive use of pesticides has led to the harmful contamination of water reservoirs.
Visible-light-driven photocatalysis is one of the suitable methods for the removal of pesticides
from water. Herein, the development of CBO (Co3O4-Bi2O3) as a heterogeneous catalyst for the
visible light-assisted degradation of Fipronil and Acetochlor pesticides is reported. After synthesis
via coprecipitation using cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O), bismuth (III) nitrate
pentahydrate (Bi(NO3)3·5H2O) and sodium hydroxide (NaOH) as precursor materials, the prepared
CBO was characterized using advanced techniques including XRD, EDS, TEM, SEM, FTIR, and
surface area and pore size analysis. Then, it was employed as a photocatalyst for the degradation of
Fipronil and Acetochlor pesticides under visible light irradiation. The complete removal of Fipronil
and Acetochlor pesticides was observed over CBO photocatalyst using 50 mL (100 mg/L) of each
pesticide separately within 120 min of reaction. The reaction kinetics was investigated using a
non-linear method of analysis using the Solver add-in. The prepared CBO exhibited a 2.8-fold and
2-fold catalytic performance in the photodegradation of selected pesticides than Co3O4 and Bi2O3

did, respectively.

Keywords: CBO; pesticides; Fipronil; Acetochlor; photocatalysis

1. Introduction

The intense growth in the human population has led to a significant increase in
the demand for food and clean water. Additionally, rapid expansion in industries has
accelerated the deterioration of the fresh water supply [1–4] Various strategies have been
adopted for the increase in the production of food. One of the strategies is the employment
of agrochemicals called pesticides. Pesticides are agrochemicals commonly employed
for the eradication of useless organisms and the preservation of agricultural products.
Pesticides are employed for the abatement of pests and weeds to promote the growth of
crops and increase the production of food [5,6]. About 2 million tons of pesticides are
used annually around the world. However, the excessive use of pesticides causes severe
environmental pollution because most of the pesticides disseminate to the environment. It
is assumed that less than 15% of the pesticides employed meet their targets [7] (As most
of these pesticides are stable and persistent, they therefore remain in soil for a long time.
Ultimately, they leach to water bodies as persistent organic pollutants (POPs). Several
studies have shown that the toxicological effects of these micropollutants persist even at low
concentrations due to their endocrine disruptor potential and become further complicated
by their presence as a mixture [8–10].
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Fipronil and Acetochlor are commonly used pesticides in Pakistan. Fipronil, which
is generally employed for pest control in veterinary applications, household applica-
tions, and agriculture, is a wide-ranging phenylpyrazole insecticide. Its IUPA name
is [5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-
pyrazole-3-carbonitrile] [11]. It is efficacious in the control of insects that have resistance
to other insecticides like carbamate, organophosphorus, cyclodiene, and pyrethroids. It
disrupts the central nervous system through interfering with the flow of Cl1- through the
γ-aminobutyric acid-regulated chloride channel [12]. Acetochlor, which is widely used
in agriculture applications for the control of annual grasses and broad-leaf weeds, is an
effective chloroacetanilide herbicide. Its IPAC name is [2-chloro-N-(ethoxymethyl)-N-(2-
ethyl-6-methylphenyl) acetamide] [13,14]. The excessive use of these pesticides causes the
contamination of water resources due to water runoff in agricultural fields. Additionally,
the industries of pesticide production and domestic wastewater also contribute to the
formation of the pesticide-contaminated wastewater. These pesticides are considered as
emerging micropollutants. These micropollutants are stable over a long time; therefore,
they are transported in water and cause pollution far away from their point source. The
existence of these pesticides in surface water and drinking water is a big concern because
they are extremely hazardous due to their endocrine disruptor potential. The sporadic use
of pesticides has affected ecosystems, which threaten fish, domestic animals, wildlife, birds,
and livestock.

Therefore, the treatment of pesticide-contaminated wastewater is a crucial research
domain. The conventional methods, including chemical methods (such as electrochemical
and chemical precipitation), physical methods (such as adsorption), and biological meth-
ods are not effective in the eradication of the pesticide pollutants from the environment.
Therefore, advanced methods are needed for the treatment of pesticide-contaminated
water [7,15]. Techniques known as advanced oxidation processes (AOPs) are considered
effective strategies for the complete remediation of the agrochemicals present in water.
These techniques have abilities to mineralize the pesticides to non-toxic inorganic molecules.
AOPs comprise various methods including photo-Fenton, Fenton, UV/O3, O3, UV/H2O2,
photocatalyst/UV-A, photocatalyst/UV-B, and photocatalyst/Vis. All these methods in-
volve the in situ production of hydroxyl radicals (OH•) [16–18]. The semiconductor metal
oxides-based visible-light-driven photocatalytic method is superior to other methods ow-
ing to a low processing cost, the complete decomposition of the pesticide molecules, and
mild reaction conditions [19,20]. Only the narrow-band gap semiconductor metal oxides
can be employed as visible-light-driven photocatalysts for the degradation of pesticide
molecules in the aqueous medium. However, the narrow-band gap semiconductor metal
oxides have the drawback of low photocatalytic performance due to the fast recombination
of photoinduced charges. Various approaches have been adopted for the improvement
of photocatalytic performances of narrow-band gap semiconductor metal oxides. The
construction of heterostructure/heterojunction through coupling two or more semicon-
ductor metal oxides is one of the approaches used for the enhancement of photocatalytic
performance under visible light irradiation due to its effectiveness and feasibility for the
spatial separation of positive holes and electrons [21–23]. The coupling of two semicon-
ductors of different work functions creates a built-in electric field at the interface of the
two semiconductors. The creation of a built-in electric field is due to the flow of electrons
from the semiconductor having a higher work function compared to the one with a lower
work function. As a result, the positive holes accumulate in one component of the het-
erojunction while the electrons in accumulate other components, and consequently, the
recombination is inhibited [24]. The cobalt oxide (Co3O4) and bismuth oxide (Bi2O3) are
typical narrow-band semiconductors with a band gap energy of 1.2–2.1 eV and 2.5–2.9 eV,
respectively. Although both have a response to the absorption of visible light, they have
limited photocatalytic performances due to the quick recombination of positive holes
and electrons. The construction of the heterojunction between cobalt oxide (Co3O4) and
bismuth oxide (Bi2O3) creates a driving force for the separation of positive holes and elec-
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trons. Hence, the construction of a cost-effective CBO (Co3O4-Bi2O3) composite for the
efficient photodegradation of Fipronil and Acetochlor pesticides under sunlight is reported
in this study.

2. Results and Discussion
2.1. Characterization

XRD analysis is a powerful technique to estimate the crystalline nature and crystal
structure of the synthesized catalyst. Therefore, the successful synthesis of CBO was
confirmed using XRD analysis. Figure 1 shows the XRD spectrum of CBO and stan-
dard XRD spectra of Co3O4 and Bi2O3. According to JCPDS No. 42-1476, the diffrac-
tion peaks observed in the XRD of CBO at 2θ ~ 18, 30, 37, 43, and 58◦ indicate the exis-
tence of a cubic structure of Co3O4 in fabricated CBO. These peaks have been indexed to
111, 200, 311, 200, and 511 planes of the cubic structure of Co3O4, respectively [25].). Simi-
larly, the diffraction peaks observed at 2θ ~ 19◦, 22◦, 25◦, 26◦, 27◦, 28◦, 33◦, 35◦, 38◦, 46◦, 52◦,
53◦, 54◦, and 58◦ correspond to Bi2O3 according to JCPDS No 41-1449 [26–28]. It can also
be observed that the characteristics diffraction peaks of Bi2O3 in CBO have been slightly
shifted. Ding et al. [29] have reported that this slight shift is due to the incorporation of
Co3+, which has a smaller ion radius (0.063 nm) than Bi3+ (0.117 nm).
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Figure 1. XRD analyses.

Energy dispersive X-ray spectroscopy (EDS) was utilized for the determination of
the elemental composition of CBO. The EDS spectrum of CBO is given in Figure 2. The
spectroscopic analysis showed that the synthesized heterostructure is composed of cobalt,
bismuth, and oxygen. The percentages of these elements are 11.1, 70.8, and 13.9, respectively.
The EDS spectrum shows the existence of 4.2% carbon as well in the synthesized CBO.
The exact source of this carbon is not known; however, it is considered an impurity in the
precursor materials.
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Figure 2. EDS spectrum and percent composition of CBO.

The shape and size of the particles of CBO were studied using TEM and SEM anal-
yses. Figure 3 shows the TEM and SEM images of CBO. TEM indicates that the particle
size of CBO is less than 50 nm. The observable lattice fringes in HR-TEM confirm the
crystalline nature of CBO. Both the XRD and HR-TEM results support each other. The
results of SEM show the dispersed, non-agglomerated, CBO particles and their irregularity
in their morphology. The dispersed, non-agglomerated particles have higher catalytic
performance because the active centers of such particles are easily accessible to reactant
molecules [30]. The TEM image was analyzed for particle size distribution using ImageJ
software (https://imagej.net/ij/). The particle size distribution is depicted in Figure 3.

Catalysts 2024, 14, x FOR PEER REVIEW 4 of 16 
 

 

The EDS spectrum shows the existence of 4.2% carbon as well in the synthesized CBO. 
The exact source of this carbon is not known; however, it is considered an impurity in the 
precursor materials. 

 
Figure 2. EDS spectrum and percent composition of CBO. 

The shape and size of the particles of CBO were studied using TEM and SEM anal-
yses. Figure 3 shows the TEM and SEM images of CBO. TEM indicates that the particle 
size of CBO is less than 50 nm. The observable lattice fringes in HR-TEM confirm the crys-
talline nature of CBO. Both the XRD and HR-TEM results support each other. The results 
of SEM show the dispersed, non-agglomerated, CBO particles and their irregularity in 
their morphology. The dispersed, non-agglomerated particles have higher catalytic per-
formance because the active centers of such particles are easily accessible to reactant mol-
ecules [30] . The TEM image was analyzed for particle size distribution using ImageJ soft-
ware (https://imagej.net/ij/). The particle size distribution is depicted in Figure 3. 

 

 

Figure 3. TEM, SEM analyses, and particle size distribution.

The functional groups and bonds associated with synthesized CBO were examined
with FTIR spectroscopy. Figure 4 depicts the FTIR spectrum of CBO. Several absorption

https://imagej.net/ij/


Catalysts 2024, 14, 392 5 of 15

bands can be observed in the FTIR spectrum of CBO. The presence of an absorption band at
1634 cm−1 indicates the existence of OH groups on the CBO heterostructure. The existence
of Bi-O and Bi-O-Bi linkages can be confirmed using absorption bands at ~445 cm−1 and
846 cm−1, respectively. The absorption bands at ~571 and 668 cm−1 are representative
peaks of Co3O4 due to Co-O stretching vibrations [31–33].
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The surface area and pore size analyses were carried out by investigating the ad-
sorption of nitrogen at 77.4 K. The surface area calculated through analyzing the nitrogen
adsorption data according to the BET equation was found as 38.53 m2/g (Figure 5). Simi-
larly, the pore surface area and pore volume were determined as 11.13 m2/g and 15.342 cc/g
using the BJH method, respectively (Figure 5).
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2.2. Photocatalysis

Fipronil and Acetochlor were selected as model pollutants for the evaluation of photo-
catalytic activities. In the first step, 50 mL of 100 mg/L solution of Fipronil and Acetochlor
were stirred under the irradiation of light for 1 h separately. The analysis of the reaction
mixture after one hour of stirring showed that there was no loss in the concentration of
Fipronil and Acetochlor after stirring the solutions. It confirms that there is no degradation
of Fipronil and Acetochlor due to photolysis. In the second step, 0.05 g CBO was added
to the solution of Fipronil and Acetochlor in separate experiments. The reaction mixtures
were stirred under dark conditions for half an hour. The analyses of reaction mixtures
showed about a 20% decrease in the concentration of Fipronil and Acetochlor. This decrease
in concentration is attributed to the adsorption of Fipronil and Acetochlor onto the surface
of CBO. In the third step, the separate solutions of Fipronil and Acetochlor containing CBO
were stirred under sunlight for the evaluation of photocatalytic degradation activities. The
analyses showed the complete mineralization of Fipronil and Acetochlor within two hours
of the reaction duration. For comparison, the photocatalytic degradation of Fipronil and
Acetochlor was carried out with Bi2O3 and Co3O4 under similar reaction conditions. More
than a 70 and 60% mineralization of Fipronil and Acetochlor were achieved using Bi2O3
and Co3O4 as photocatalysts, respectively. Figure 6 depicts the obtained data.
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The optimization of catalyst dose is also an important parameter in catalysis. The use
of an optimized catalyst dose avoids the unnecessary utilization of a catalyst in a catalytic
reaction. Therefore, the optimum catalyst doses were determined for the photocatalytic
degradation of Fipronil and Acetochlor pesticides. This study was accomplished by per-
forming separate photodegradation experiments of Fipronil and Acetochlor with different
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dosages of CBO in the range of 0.03 to 0.1 g under the same experimental conditions.
Separate 50 mL aqueous solutions of Fipronil and Acetochlor (100 mg/L) were used in
this investigation. The reaction duration was 60 min. The obtained results are given in
Figure 7. The given data indicate that initially both the percent degradation of Fipronil
and Acetochlor and their rate of reaction increased with a catalyst dose from 0.03 to 0.05 g
and then a decrease was observed with a higher catalyst dose. Hence, a 0.05 g dose was
declared as the optimum catalyst dose in this study. Initially, the catalytic activity increases
with the catalyst dose because the number of active centers increases with the catalyst dose.
However, the higher catalyst dose causes the scattering of light resulting in a decrease in
catalytic activity [3].
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The best photocatalyst is one that can be recycled many times without any loss in its
photocatalytic activities. Hence, the reusability and stability of the CBO heterogeneous
photocatalyst were also studied. The spent CBO samples were collected from the reaction
mixture using filtration after photocatalytic degradation experiments. The collected spent
sample was first washed many times with ethanol and then with distilled water. After
washing, it was dried at 100 ◦C for 12 h. Then, it was reused as a heterogeneous photo-
catalyst for the degradation of acetochlor under similar experimental conditions as used
earlier. The analyses of samples taken from the reaction mixture showed that the recycled
CBO catalyst has almost the same photocatalytic activity as the fresh sample. Hence, it is
concluded that fabricated CBO is a stable and reusable heterogeneous photocatalyst for the
degradation of pesticides.

2.3. Mechanism and Kinetics

The prime reactive species involved in the degradation of selected pesticides were
identified through trapping experiments. Separate experiments were performed for the
CBO-catalyzed photodegradation of Fipronil in the presence of EDTA and BQ. It was
observed that photodegradation of Fipronil decreased from 80% to 68% and 53% in the
presence of EDTA and BQ, respectively. The EDTA and BQ have been used as scavengers for
h+ and superoxide anion radicals, respectively. These results confirm that h+ and superoxide
anion radicals are the primary reactive species involved in the degradation of pesticide
molecules [34–37]. Hence, the enhanced photocatalytic activity of CBO is attributed to the
formation and separation of h+ and e−. As the XRD suggests, synthesized CBO is a mixture
of the Co3O4-Bi2O3 heterojunction and a composite of these two components. Hence, the
enhanced photocatalytic activity of synthesized CBO can be explained by two mechanisms.

The CBO is a second-generation photocatalyst. It is also known as a heterojunc-
tion. The second-generation photocatalysts were designed to overcome the limitations or
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drawbacks associated with first-generation photocatalysts. The fast recombination of posi-
tive holes and electrons is the most significant drawback associated with first-generation
photocatalysts. In second-generation photocatalysts, these positive holes and electrons
are confined to the valence band of one component and the conduction band of other
components. Hence, the separation between positive holes and electrons impedes their
recombination. Consequently, these species result in the production of highly reactive
hydroxyl radicals that take part in the degradation of organic molecules [38,39]. The band
edge positions of the components of the CBO heterojunction have been estimated through
Mott–Schottky measurement using the theory of electronegativity as reported by Pradhan
et al. [40]. Accordingly, the band gap energy, VB, and the CB of Co3O4, have been calculated
as 2.4 eV, 2.63 eV, and 0.23 eV, respectively. On the other hand, the band gap energy, VB,
and CB for Bi2O3, have been calculated as 2.7 eV, 2.78 eV, and 0.08 eV, respectively. In a
heterojunction, the excited electrons (e−) move from the lower CB of Co3O4 to the higher
CB of Bi2O3. The higher CB of Bi2O3 acts as a barrier to charge recombination. The transfer
of e− from one component to the other component of heterojunction reduces the recombi-
nation of h+ and e−. The separated charges (h+ and e−) yield hydroxyl radicals in reaction
with water and oxygen, respectively. Hydroxyl radicals are powerful oxidizing agents that
degrade pollutant molecules [41–43]. Figure 8a explains the possible mechanism.
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The enhanced photocatalytic performance of synthesized CBO can also be explained
by another mechanism considering the composite or doped nature of synthesized CBO. As
it has been reported in the discussion of XRD analysis, the characteristics diffraction peaks
of Bi2O3 in CBO have been slightly shifted. Ding et al. [29] have reported that this slight
shift is due to the incorporation of Co3+ which has a smaller ion radius (0.063 nm) than Bi3+

(0.117 nm). The incorporation of Co3+ in Bi2O3 acts as a sink for photoexcited electrons
and obtains the electrons which restrict the recombination of electrons and holes, resulting
in the enhancement of the photocatalytic activity of the CBO [44,45]. Figure 8b explains
this mechanism.
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The following reactions describe the photocatalytic process:

CBO + Visible irradiation → h+(CBO) + e−(CBO) (1)

h+(CBO) + H2O → OH• (2)

e−(CBO) + (O2)ads → O•−
2 (3)

O•−
2 + H2O → OH• (4)

Pesticide molecules + OH• → Degradation products (5)

Based on the above mechanism, the rate of reaction is proposed as (hv: Light energy,
P: Concentration of pesticide)

−dP
dt

= k(hv)(O2)ads(P) (6)

The following experimental conditions make the rate of reaction independent of the
first two terms in the above rate expression.

The reaction mixture is continuously irradiated.
The reaction mixture is open to the atmosphere.
Therefore, the rate expression becomes as follows:

−dP
dt

= k(P) (7)

−dP
P

= k dt (8)

P = Po e−kt (9)

where P and Po represent the concentration at a given time and the initial concentration
of pesticides in mg/L, respectively. The photocatalytic degradation data of Fipronil and
Acetochlor were analyzed according to the kinetic model given in Equation (9) via the
non-linear method of analysis using the Solver add-in. Figure 9 shows the analyses of
degradation data of Fipronil and Acetochlor via a non-linear method of analysis. The
rate constants (k) for the degradation of Fipronil and Acetochlor were determined as
given in Table 1. The higher values of R2 indicate the fitness of the kinetics model to
experimental data. The observed rate constants show that CBO exhibited 2.8-fold and
2-fold catalytic performance in the photodegradation of selected pesticides than Co3O4 and
Bi2O3, respectively.

Table 1. Rate constants for degradation of Fipronil and Acetochlor.

Catalyst Fipronil Acetochlor

k (min−1) R2 Half Life
(min) k (min−1) R2 Half Life

(min)

Co3O4 0.0101 0.998 68.6 0.0088 0.999 78.8

Bi2O3 0.0145 0.997 47.8 0.0119 0.995 58.2

CBO 0.0283 0.997 24.5 0.0233 0.992 29.7

The results of photodegradation of Fipronil and Acetochlor over CBO reported in
this study were compared to already reported data as well. For example, Tenri and
co-workers [46] have employed 5% AC/Chitosan-Ca2Fe2O5 for the photodegradation
of Fipronil. They irradiated a 25 mg/L solution of Fipronil containing 0.3 mg/L cata-
lyst for 1 h. They obtained a 77% degradation of Fipronil. Hirashima et al. [47] have
investigated the photodegradation of Fipronil using tandem mass spectrometry-liquid
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chromatography for the detection of degradation products. They detected many degra-
dation products including dechlorinated compounds. Similarly, Mianjy and Niknafs [48]
reported fipronil-desulfinyl as the main degradation product in the photolysis of Fipronil
under the irradiation of UV light. Fu et al. [13] studied the H2O2/UV-assisted photocat-
alytic degradation of acetochlor using α-Fe2O3 as a catalyst. They investigated the effect
of various parameters such as pH, concentration, and α-Fe2O3 dose on the photocatalytic
degradation of acetochlor. The results showed a 91% photocatalytic degradation efficiency
with a 50 m/L solution of acetochlor. Similarly, the TiO2/UV system has been employed for
the successful degradation of metolachlor, acetochlor, and alachlor pesticides in aqueous
medium. The maximum degradation efficiency of these pesticides was reported as 98%,
93%, and 97%, respectively. A 1000 mL solution of 10 mg/L concentration was used for
each pesticide. Furthermore, the toxicity of these pesticides was also investigated using
freshwater alga Chlorella kessleri [49]. Wang and co-workers [50] reported the removal
of Acetochlor via adsorption and degradation using MnFe2O4@AC as the adsorbent and
catalyst. The removal efficiency through adsorption using 0.2 g/L MnFe2O4@AC as the
adsorbent was found as 226 mg/g at 25 ◦C after 10 h of agitation. The removal efficiency
of Acetochlor through catalytic degradation was found as >90% through heat-activated
peroxymonosulfate (PMS) oxidation. Another research group reported BiOBr as a catalyst
for the degradation of acetochlor under visible light irradiation. They mainly focused on
the dependence of degradation efficiency on catalyst dosage. They found that degradation
efficiency increased exponentially with increasing catalyst dosage [51].
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3. Experimental Section
3.1. Synthesis of CBO Heterogeneous Photocatalyst

The photocatalyst CBO was synthesized through the coprecipitation method accord-
ing to the procedure reported earlier [30]. Typically, a 10 mL solution was prepared by
dissolving 10 mmol (2.9 g) cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O) in de-ionized
water. Another 10 mL solution was prepared by dissolving 10 mmol (4.85 g) bismuth
(III) nitrate in 1 M nitric acid. Then, the solutions of cobalt (II) nitrate hexahydrate and
bismuth (III) nitrate were mixed in a beaker. The pH of the resultant mixed solution was
adjusted at 12 by dropwise addition of 1 M sodium hydroxide solution from the burette.
The resultant mixed solution was continuously stirred for 3 h at a speed of 120 rpm while
keeping the temperature constant at 60 ◦C. As a result of stirring for 3 h, green precipitates
of hydroxides of Co and Bi were formed. The resultant precipitates were separated through
filtration. The precipitates were washed for the removal of unreacted precursor materials.
The washed precipitates were dried at 100 ◦C for 24 h. Finally, the dried substrate was
ground and annealed at 500 ◦C for 3 h. After cooling to room temperature in the desiccator,
the resultant black CBO was ground and sieved via 200 mesh. It was then stored in a glass
vial for further study.

3.2. Characterization

The synthesized CBO was characterized by various advanced techniques. Various
techniques used for the characterization of CBO include X-ray diffraction spectroscopy,
Energy dispersive X-ray spectroscopy, Scanning electron microscopy, Transmission electron
microscopy, Infrared spectroscopy and surface area and pore size analysis using JOEL-JDX-
3532 (made in Tokyo, Japan), JSM5910 (made in Tokyo, Japan), JEOL-JSM 5910 (made in
Tokyo, Japan), JEM 2100 JEOL (made in Tokyo, Japan), and Bruker VRTEX70 (made in
Billerica, MA, USA), and NOVA 2200e (made in Connersville, IN, USA), respectively.

3.3. Photocatalysis

The photocatalytic activities of synthesized CBO were explored through the degrada-
tion of pesticides Fipronil and Acetochlor, which were selected as model pollutants. The
evaluation of photocatalytic activities of CBO was explored in three steps.

A 50 mL solution of Fipronil and/or Acetochlor having a specific concentration was
taken in a 500 mL Pyrex glass beaker. The solution of Fipronil and/or Acetochlor was
stirred continually under irradiation of ultraviolet or visible light for 1 h. After stirring
for one hour, a sample was extracted, and its absorbance was measured. This experiment
was performed to know whether Fipronil and Acetochlor degrade under irradiation of
ultraviolet or visible light. The analysis showed that there was no degradation of ultraviolet
or visible light due to photolysis.

A 0.05 g of CBO was added to the solution of Fipronil and/or Acetochlor after the
photolysis experiment. The Fipronil and/or Acetochlor solution containing CBO was stirred
continuously under dark conditions for half an hour. After stirring under the dark, a sample
was extracted, and its absorbance was measured with a UV-visible spectrophotometer.
This experiment was performed to know the removal of Fipronil and Acetochlor due to
adsorption on CBO.

The Fipronil and/or Acetochlor solution containing CBO was stirred continuously
under irradiation of ultraviolet or visible light. Reaction mixture samples were extracted at
different time intervals. The extracted samples were analyzed via measurement of their
absorbance values. This experiment was performed to know the removal of Fipronil and
Acetochlor due to photocatalytic degradation.

3.4. Analysis of Reaction Mixture

For estimation of photocatalytic activity, the reaction mixture was analyzed via mea-
surement of absorbance of reaction mixture samples extracted at different time intervals at
λmax of Fipronil and Acetochlor. A UV-visible double-beam spectrophotometer (Lambda 25,
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Perkin Elmer, Waltham, MA, USA) was used for the analyses of the reaction mixture. For the
estimation of photocatalytic degradation of selected pesticides, 10, 15, 20, 25, and 30 mg/L
standard solutions of Fipronil and Acetochlor were prepared. The absorbance of each
standard solution was measured in the range of 200–250 nm; 350 and 219 nm were found
as λmax of Fipronil and Acetochlor, respectively. The absorbance of each standard solution
at λmax was plotted against concentration. Figure 10 shows these results. The resultant cali-
bration curves were used for the determination of the centration of Fipronil and Acetochlor
in the reaction samples extracted at different time intervals. Then, the following equation
was used for the estimation of photocatalytic activity in terms of percent photodegradation
of the Fipronil and Acetochlor:

Percent degradation =
Co − C

Co
× 100 (10)
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4. Conclusions

The photocatalyst CBO was synthesized via coprecipitation using cobalt (II) nitrate
hexahydrate, bismuth (III) nitrate, nitric acid, and sodium hydroxide as the precursor mate-
rials. The fabrication of Co3Bi2O7 was confirmed with XRD, EDS, TEM, SEM, TGA, FTIR,
and surface area analysis. The fabricated Co3O4-Bi2O3 was employed as a photocatalyst
for the degradation of Fipronil and Acetochlor under visible light irradiation. An almost
complete ~75 and ~62% removal of both pesticides was observed with the CBO, Bi2O3, and
Co3O4 photocatalysts, respectively. The photodegradation data were analyzed according
to a first-order kinetics model using a non-linear method of analysis. The fabricated CBO
was found to be an efficient, stable, and reusable photocatalyst for the photodegradation of
Fipronil and Acetochlor under visible light irradiation.
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